1
|
Grosiak M, Koteja P, Hambly C, Speakman JR, Sadowska ET. Limits to sustained energy intake. XXXIV. Can the heat dissipation limit (HDL) theory explain reproductive aging? J Exp Biol 2024; 227:jeb246592. [PMID: 38264846 DOI: 10.1242/jeb.246592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
According to the heat dissipation limit (HDL) theory, reproductive performance is limited by the capacity to dissipate excess heat. We tested the novel hypotheses that (1) the age-related decline in reproductive performance is due to an age-related decrease of heat dissipation capacity and (2) the limiting mechanism is more severe in animals with high metabolic rates. We used bank voles (Myodes glareolus) from lines selected for high swim-induced aerobic metabolic rate, which have also increased basal metabolic rate, and unselected control lines. Adult females from three age classes - young (4 months), middle-aged (9 months) and old (16 months) - were maintained at room temperature (20°C), and half of the lactating females were shaved to increase heat dissipation capacity. Old females from both selection lines had a decreased litter size, mass and growth rate. The peak-lactation average daily metabolic rate was higher in shaved than in unshaved mothers, and this difference was more profound among old than young and middle-aged voles (P=0.02). In females with large litters, milk production tended to be higher in shaved (least squares mean, LSM±s.e.: 73.0±4.74 kJ day-1) than in unshaved voles (61.8±4.78 kJ day-1; P=0.05), but there was no significan"t effect of fur removal on the growth rate [4.47±2.29 g (4 days-1); P=0.45]. The results provide mixed support of the HDL theory and no support for the hypotheses linking the differences in reproductive aging with either a deterioration in thermoregulatory capability or genetically based differences in metabolic rate.
Collapse
Affiliation(s)
- Marta Grosiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
2
|
Yang R, Cao J, Speakman JR, Zhao Z. Limits to sustained energy intake. XXXIII. Thyroid hormones play important roles in milk production but do not define the heat dissipation limit in Swiss mice. J Exp Biol 2023; 226:jeb245393. [PMID: 37767758 DOI: 10.1242/jeb.245393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
The limits to sustained energy intake set physiological upper boundaries that affect many aspects of human and animal performance. The mechanisms underlying these limits, however, remain unclear. We exposed Swiss mice to either supplementary thyroid hormones (THs) or the inhibitor methimazole during lactation at 21 or 32.5°C, and measured food intake, resting metabolic rate (RMR), milk energy output (MEO), serum THs and mammary gland gene expression of females, and litter size and mass of their offspring. Lactating females developed hyperthyroidism following exposure to supplementary THs at 21°C, but they did not significantly change body temperature, asymptotic food intake, RMR or MEO, and litter and mass were unaffected. Hypothyroidism, induced by either methimazole or 32.5°C exposure, significantly decreased asymptotic food intake, RMR and MEO, resulting in significantly decreased litter size and litter mass. Furthermore, gene expression of key genes in the mammary gland was significantly decreased by either methimazole or heat exposure, including gene expression of THs and prolactin receptors, and Stat5a and Stat5b. This suggests that endogenous THs are necessary to maintain sustained energy intake and MEO. Suppression of the thyroid axis seems to be an essential aspect of the mechanism by which mice at 32.5°C reduce their lactation performance to avoid overheating. However, THs do not define the upper limit to sustained energy intake and MEO at peak lactation at 21°C. Another, as yet unknown, factor prevents supplementary thyroxine exerting any stimulatory metabolic impacts on lactating mice at 21°C.
Collapse
Affiliation(s)
- Rui Yang
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Zhijun Zhao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
3
|
Fur removal promotes an earlier expression of involution-related genes in mammary gland of lactating mice. J Comp Physiol B 2023; 193:171-192. [PMID: 36650338 PMCID: PMC9992052 DOI: 10.1007/s00360-023-01474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Peak lactation occurs when milk production is at its highest. The factors limiting peak lactation performance have been subject of intense debate. Milk production at peak lactation appears limited by the capacity of lactating females to dissipate body heat generated as a by-product of processing food and producing milk. As a result, manipulations that enhance capacity to dissipate body heat (such as fur removal) increase peak milk production. We investigated the potential correlates of shaving-induced increases in peak milk production in laboratory mice. By transcriptomic profiling of the mammary gland, we searched for the mechanisms underlying experimentally increased milk production and its consequences for mother-young conflict over weaning, manifested by advanced or delayed involution of mammary gland. We demonstrated that shaving-induced increases in milk production were paradoxically linked to reduced expression of some milk synthesis-related genes. Moreover, the mammary glands of shaved mice had a gene expression profile indicative of earlier involution relative to unshaved mice. Once provided with enhanced capacity to dissipate body heat, shaved mice were likely to rear their young to independence faster than unshaved mothers.
Collapse
|
4
|
Huang YX, Li HH, Wang L, Min HX, Xu JQ, Wu SL, Cao J, Zhao ZJ. The Ability to Dissipate Heat Is Likely to Be a More Important Limitation on Lactation in Striped Hamsters with Greater Reproductive Efforts under Warmer Conditions. Physiol Biochem Zool 2021; 93:282-295. [PMID: 32484722 DOI: 10.1086/709538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The limitations on energy availability and outputs have been implied to have a profound effect on the evolution of many morphological and behavioral traits. It has been suggested that the reproductive performance of mammals is frequently constrained by intrinsic physiological factors, such as the capacity of the mammary glands to produce milk (the peripheral limitation [PL] hypothesis) or that of the body to dissipate heat (the heat dissipation limitation [HDL] hypothesis). Research on a variety of small mammals, however, has so far failed to provide unequivocal support for one hypothesis over the other. We tested the PL and HDL hypotheses in female striped hamsters (Cricetulus barabensis) with artificially manipulated litter sizes of two (three or four pups removed from natural litter size), five, eight (two or three pups added to natural litter size), and 12 (five to seven pups added to natural litter size) pups at ambient temperatures of 21° and 30°C. Energy intake and milk output of mothers, litter size, and litter mass were measured throughout lactation. Several markers indicating digestive enzyme activity and the gene expression of hypothalamic neuropeptides related to food intake were also measured. Food consumption and milk output increased with increasing litter size but reached a ceiling at 12 pups, causing 12-pup litters to have significantly lower litter mass and pup body mass than litters composed of fewer pups. Litter mass and maternal metabolic rate, milk output, maltase, sucrase, and aminopeptidase activity in the small intestine, and gene expression of hypothalamic orexigenic peptides were significantly lower at 30°C than at 21°C, and these differences were considerably more pronounced in 12-pup litters. These results suggest that PL and HDL can operate simultaneously but that the HDL hypothesis is probably more valid at warmer temperatures. Our results suggest that increased environmental temperatures in future climates may limit reproductive output through heat dissipation limits.
Collapse
|
5
|
Ohrnberger SA, Hambly C, Speakman JR, Valencak TG. Limits to sustained energy intake. XXXII. Hot again: dorsal shaving increases energy intake and milk output in golden hamsters ( Mesocricetus auratus). J Exp Biol 2020; 223:jeb230383. [PMID: 33188060 DOI: 10.1242/jeb.230383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
Golden hamsters have four times the body size of mice, raise very large litters and are required to produce large quantities of milk during the 18-day lactation period. We have previously proposed that they may be prone to being limited by their heat dissipation capacity. Studies where lactating females are shaved to elevate their heat dissipation capacity have yielded conflicting data so far. With their short pregnancy of ∼18 days, the large litters and the reported high skin temperatures, they may serve as an ideal model to elucidate the role of epilation for energy budgets in lactating mammals. We shaved one group of lactating females dorsally on the sixth day of lactation, and tested if the elevated heat dissipation capacity would enable them to have higher energy intakes and better food-to-milk conversion rates. Indeed, we observed that females from the shaved group had 6% higher body mass and 0.78°C lower skin temperature than control females during lactation. When focusing on the phase of peak lactation, we observed significantly higher (10%) gross energy intake of food and 23.4% more milk energy output in the shaved females, resulting in 3.3 g higher individual pup weights. We conclude that shaving off the females' fur, even though restricted to the dorsal surface, had large consequences on female energy metabolism in lactation and improved milk production and pup growth in line with our previous work on heat dissipation limitation. Our new data from golden hamsters confirm heat dissipation as a limiting factor for sustained metabolic rate in lactation in some small mammals and emphasise the large effects of a relatively small manipulation such as fur removal on energy metabolism of lactating females.
Collapse
Affiliation(s)
- S A Ohrnberger
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - C Hambly
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - J R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- Institute of Genetics and Developmental Biology, State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming 650223, China
| | - T G Valencak
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
- College of Animal Sciences, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, 310058 Hangzhou, People's Republic of China
| |
Collapse
|
6
|
Grosiak M, Koteja P, Bauchinger U, Sadowska ET. Age-Related Changes in the Thermoregulatory Properties in Bank Voles From a Selection Experiment. Front Physiol 2020; 11:576304. [PMID: 33329026 PMCID: PMC7711078 DOI: 10.3389/fphys.2020.576304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/09/2020] [Indexed: 01/21/2023] Open
Abstract
As with many physiological performance traits, the capacity of endotherms to thermoregulate declines with age. Aging compromises both the capacity to conserve or dissipate heat and the thermogenesis, which is fueled by aerobic metabolism. The rate of metabolism, however, not only determines thermogenic capacity but can also affect the process of aging. Therefore, we hypothesized that selection for an increased aerobic exercise metabolism, which has presumably been a crucial factor in the evolution of endothermic physiology in the mammalian and avian lineages, affects not only the thermoregulatory traits but also the age-related changes of these traits. Here, we test this hypothesis on bank voles (Myodes glareolus) from an experimental evolution model system: four lines selected for high swim-induced aerobic metabolism (A lines), which have also increased the basal, average daily, and maximum cold-induced metabolic rates, and four unselected control (C) lines. We measured the resting metabolic rate (RMR), evaporative water loss (EWL), and body temperature in 72 young adult (4 months) and 65 old (22 months) voles at seven ambient temperatures (13-32°C). The RMR was 6% higher in the A than in the C lines, but, regardless of the selection group or temperature, it did not change with age. However, EWL was 12% higher in the old voles. An increased EWL/RMR ratio implies either a compromised efficiency of oxygen extraction in the lungs or increased skin permeability. This effect was more profound in the A lines, which may indicate their increased vulnerability to aging. Body temperature did not differ between the selection and age groups below 32°C, but at 32°C it was markedly higher in the old A-line voles than in those from other groups. As expected, the thermogenic capacity, measured as the maximum cold-induced oxygen consumption, was decreased by about 13% in the old voles from both selection groups, but the performance of old A-line voles was the same as that of the young C-line ones. Thus, the selection for high aerobic exercise metabolism attenuated the adverse effects of aging on cold tolerance, but this advantage has been traded off by a compromised coping with hot conditions by aged voles.
Collapse
Affiliation(s)
- Marta Grosiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Edyta T. Sadowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
7
|
Kozłowski J, Konarzewski M, Czarnoleski M. Coevolution of body size and metabolic rate in vertebrates: a life-history perspective. Biol Rev Camb Philos Soc 2020; 95:1393-1417. [PMID: 32524739 PMCID: PMC7540708 DOI: 10.1111/brv.12615] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Despite many decades of research, the allometric scaling of metabolic rates (MRs) remains poorly understood. Here, we argue that scaling exponents of these allometries do not themselves mirror one universal law of nature but instead statistically approximate the non-linearity of the relationship between MR and body mass. This 'statistical' view must be replaced with the life-history perspective that 'allows' organisms to evolve myriad different life strategies with distinct physiological features. We posit that the hypoallometric allometry of MRs (mass scaling with an exponent smaller than 1) is an indirect outcome of the selective pressure of ecological mortality on allocation 'decisions' that divide resources among growth, reproduction, and the basic metabolic costs of repair and maintenance reflected in the standard or basal metabolic rate (SMR or BMR), which are customarily subjected to allometric analyses. Those 'decisions' form a wealth of life-history variation that can be defined based on the axis dictated by ecological mortality and the axis governed by the efficiency of energy use. We link this variation as well as hypoallometric scaling to the mechanistic determinants of MR, such as metabolically inert component proportions, internal organ relative size and activity, cell size and cell membrane composition, and muscle contributions to dramatic metabolic shifts between the resting and active states. The multitude of mechanisms determining MR leads us to conclude that the quest for a single-cause explanation of the mass scaling of MRs is futile. We argue that an explanation based on the theory of life-history evolution is the best way forward.
Collapse
Affiliation(s)
- Jan Kozłowski
- Institute of Environmental SciencesJagiellonian UniversityGronostajowa7, 30‐387KrakówPoland
| | - Marek Konarzewski
- Institute of BiologyUniversity of BiałystokCiołkowskiego 1J, 15‐245, BiałystokPoland
| | - Marcin Czarnoleski
- Institute of Environmental SciencesJagiellonian UniversityGronostajowa7, 30‐387KrakówPoland
| |
Collapse
|
8
|
Late lactation in small mammals is a critically sensitive window of vulnerability to elevated ambient temperature. Proc Natl Acad Sci U S A 2020; 117:24352-24358. [PMID: 32929014 DOI: 10.1073/pnas.2008974117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Predicted increases in global average temperature are physiologically trivial for most endotherms. However, heat waves will also increase in both frequency and severity, and these will be physiologically more important. Lactating small mammals are hypothesized to be limited by heat dissipation capacity, suggesting high temperatures may adversely impact lactation performance. We measured reproductive performance of mice and striped hamsters (Cricetulus barabensis), including milk energy output (MEO), at temperatures between 21 and 36 °C. In both species, there was a decline in MEO between 21 and 33 °C. In mice, milk production at 33 °C was only 18% of that at 21 °C. This led to reductions in pup growth by 20% but limited pup mortality (0.8%), because of a threefold increase in growth efficiency. In contrast, in hamsters, MEO at 33 °C was reduced to 78.1% of that at 21 °C, yet this led to significant pup mortality (possibly infanticide) and reduced pup growth by 12.7%. Hamster females were more able to sustain milk production as ambient temperature increased, but they and their pups were less capable of adjusting to the lower supply. In both species, exposure to 36 °C resulted in rapid catastrophic lactation failure and maternal mortality. Upper lethal temperature was lowered by 3 to 6 °C in late lactation, making it a critically sensitive window to high ambient temperatures. Our data suggest future heat wave events will impact breeding success of small rodents, but this is based on animals with a long history in captivity. More work should be performed on wild rodents to confirm these impacts.
Collapse
|
9
|
Deng GM, Yu JX, Xu JQ, Bao YF, Chen Q, Cao J, Zhao ZJ. Exposure to artificial wind increases energy intake and reproductive performance of female Swiss mice ( Mus musculus) in hot temperatures. J Exp Biol 2020; 223:jeb231415. [PMID: 32665446 DOI: 10.1242/jeb.231415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
High temperatures and heatwaves are rapidly emerging as an important threat to many aspects of physiology and behavior in females during lactation. The body's capacity to dissipate heat is reduced by high ambient temperatures, increasing the risk of hyperthermia. Exposure to wind, a pervasive environmental factor for most terrestrial animals, is known to increase heat loss, but its effects on the reproductive performance of small mammals remains unclear. In the present study, the effects of wind on the energy budgets, resting metabolic rate and milk energy output (MEO) were measured in lactating Swiss mice at 21 and 32.5°C. Females kept at 32.5°C had a significantly lower resting metabolic rate, food intake and MEO, and lighter offspring, than those kept at 21°C. However, exposure to wind increased the asymptotic food intake of females kept at 32.5°C by 22.5% (P<0.01), their MEO by 20.7% (P<0.05) and their litter mass by 17.6% (P<0.05). The body temperature of females kept at 32.5°C was significantly higher during lactation than that of females kept at 21°C, but this difference was reduced by exposure to wind. These findings suggest that exposure to wind considerably improves reproductive performance, increasing the fitness of small mammals while undergoing hot temperatures during heatwaves.
Collapse
Affiliation(s)
- Guang-Min Deng
- Department of Biology, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing-Xin Yu
- Department of Biology, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jia-Qi Xu
- Department of Biology, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu-Fan Bao
- Department of Biology, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qian Chen
- Department of Biology, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- Department of Biology, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- Department of Biology, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
10
|
Huang Y, Mendoza JO, Hambly C, Li B, Jin Z, Li L, Madizi M, Hu S, Speakman JR. Limits to sustained energy intake. XXXI. Effect of graded levels of dietary fat on lactation performance in Swiss mice. J Exp Biol 2020; 223:jeb221911. [PMID: 32291324 DOI: 10.1242/jeb.221911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/04/2020] [Indexed: 08/26/2023]
Abstract
The heat dissipation limit theory predicts that lactating female mice consuming diets with lower specific dynamic action (SDA) should have enhanced lactation performance. Dietary fat has lower SDA than other macronutrients. Here we tested the effects of graded dietary fat levels on lactating Swiss mice. We fed females five diets varying in fat content from 8.3 to 66.6%. Offspring of mothers fed diets of 41.7% fat and above were heavier and fatter at weaning compared with those of 8.3 and 25% fat diets. Mice on dietary fat contents of 41.7% and above had greater metabolizable energy intake at peak lactation (8.3%: 229.4±39.6; 25%: 278.8±25.8; 41.7%: 359.6±51.5; 58.3%: 353.7±43.6; 66.6%: 346±44.7 kJ day-1), lower daily energy expenditure (8.3%: 128.5±16; 25%: 131.6±8.4; 41.7%: 124.4±10.8; 58.3%: 115.1±10.5; 66.6%: 111.2±11.5 kJ day-1) and thus delivered more milk energy to their offspring (8.3%: 100.8±27.3; 25%: 147.2±25.1; 41.7%: 225.1±49.6; 58.3%: 238.6±40.1; 66.6%: 234.8±41.1 kJ day-1). Milk fat content (%) was unrelated to dietary fat content, indicating that females on higher fat diets (>41.7%) produced more rather than richer milk. Mothers consuming diets with 41.7% fat or above enhanced their lactation performance compared with those on 25% or less, probably by diverting dietary fat directly into the milk, thereby avoiding the costs of lipogenesis. At dietary fat contents above 41.7% they were either unable to transfer more dietary fat to the milk, or they chose not to do so, potentially because of a lack of benefit to the offspring that were increasingly fatter as maternal dietary fat increased.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Zengguang Jin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Basic Medical Science, Dali University, Dali, Yunnan 671000, China
| | - Li Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Moshen Madizi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Sumei Hu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- CAS Center for Excellence in Animal Evolution and Genetics, Kunming, Yunnan 650223, China
| |
Collapse
|
11
|
Zhao ZJ, Derous D, Gerrard A, Wen J, Liu X, Tan S, Hambly C, Speakman JR. Limits to sustained energy intake. XXX. Constraint or restraint? Manipulations of food supply show peak food intake in lactation is constrained. J Exp Biol 2020; 223:jeb208314. [PMID: 32139473 DOI: 10.1242/jeb.208314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/27/2020] [Indexed: 11/20/2022]
Abstract
Lactating mice increase food intake 4- to 5-fold, reaching an asymptote in late lactation. A key question is whether this asymptote reflects a physiological constraint, or a maternal investment strategy (a 'restraint'). We exposed lactating mice to periods of food restriction, hypothesizing that if the limit reflected restraint, they would compensate by breaching the asymptote when refeeding. In contrast, if it was a constraint, they would by definition be unable to increase their intake on refeeding days. Using isotope methods, we found that during food restriction, the females shut down milk production, impacting offspring growth. During refeeding, food intake and milk production rose again, but not significantly above unrestricted controls. These data provide strong evidence that asymptotic intake in lactation reflects a physiological/physical constraint, rather than restraint. Because hypothalamic neuropeptide Y (Npy) was upregulated under both states of restriction, this suggests the constraint is not imposed by limits in the capacity to upregulate hunger signalling (the saturated neural capacity hypothesis). Understanding the genetic basis of the constraint will be a key future goal and will provide us additional information on the nature of the constraining factors on reproductive output, and their potential links to life history strategies.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Davina Derous
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Abby Gerrard
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China
| | - Jing Wen
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xue Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China
| | - Song Tan
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China
- CAS Center of Excellence for Animal Evolution and Genetics, Kunming 650223, China
| |
Collapse
|
12
|
Bao MH, Chen LB, Hambly C, Speakman JR, Zhao ZJ. Exposure to hot temperatures during lactation stunted offspring growth and decreased the future reproductive performance of female offspring. J Exp Biol 2020:jeb.223560. [PMID: 34005557 DOI: 10.1242/jeb.223560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Among the important aspects of climate change, exposure to high temperatures (heat waves) is rapidly emerging as an important issue, in particular for female mammals during lactation. High temperatures adversely impact ability to dissipate heat, which has negative effects on reproductive output. The cumulative effects on growth of F1 offspring after weaning and future reproductive performance of offspring remain uncertain. In this study, the F1 mice that weaned from mothers lactating at 21°C and 32.5°C were housed at 21°C from day 19 till 56 of age; during which food intake and body mass were measured. The F1 adult females that had been weaned at the two temperatures were bred and then both exposed to 32.5°C during lactation. Energy intake, milk output and litter size and mass were determined. The F1 adults weaned at 32.5°C consumed less food and had lower body mass than their counterparts weaned at 21°C. Several visceral organs or reproductive tissues were significantly lower in mass in F1 weaned at 32.5°C than at 21°C. The exposure to 32.5°C significantly decreased energy intake, milk output and litter mass in F1 adult females during lactation. The F1 adult females weaned at 32.5°C produced less milk and raised lighter pups than those previously weaned at 21°C. The data suggest that transient exposure to hot temperature during lactation has long-lasting impacts on the offspring, including stunted growth and decreases in future reproductive performance when adult. This indicates that the offspring of females previously experiencing hot temperatures have a significant fitness disadvantage.
Collapse
Affiliation(s)
- Meng-Huan Bao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li-Bing Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Catherine Hambly
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences, Bei Chen Xi Lu, Chaoyang, Beijing 100101, People's Republic of China
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming, People's Republic of China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
13
|
Andreasson F, Hegemann A, Nord A, Nilsson JÅ. Experimental facilitation of heat loss affects work rate and innate immune function in a breeding passerine bird. J Exp Biol 2020; 223:jeb.219790. [DOI: 10.1242/jeb.219790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/11/2020] [Indexed: 01/06/2023]
Abstract
The capacity to get rid of excess heat produced during hard work is a possible constraint on parental effort during reproduction (heat dissipation limit [HDL] theory). We released hard-working blue tits (Cyanistes caeruleus) from this constraint by experimentally removing ventral plumage. We then assessed if this changed their reproductive effort (feeding rate and nestling size) and levels of self-maintenance (change in body mass and innate immune function). Feather-clipped females reduced the number of feeding visits and increased levels of constitutive innate immunity compared to unclipped females but did not fledge smaller nestlings. Thus, they increased self-maintenance without compromising current reproductive output. In contrast, feather-clipping did not affect the number of feeding visits or innate immune function in males, despite increased heat loss rate. Our results show that analyses of physiological parameters, such as constitutive innate immune function, can be important when trying to understand sources of variation in investment in self-maintenance versus reproductive effort and that risk of overheating can influence innate immune function during reproduction.
Collapse
Affiliation(s)
- Fredrik Andreasson
- Department of Biology, Section for Evolutionary Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| | - Arne Hegemann
- Department of Biology, Section for Evolutionary Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| | - Andreas Nord
- Department of Biology, Section for Evolutionary Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
- Scottish Centre for Ecology and the Natural Environment, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Rowardennan G63 0AW, UK
| | - Jan-Åke Nilsson
- Department of Biology, Section for Evolutionary Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| |
Collapse
|
14
|
Switching off the furnace: brown adipose tissue and lactation. Mol Aspects Med 2019; 68:18-41. [DOI: 10.1016/j.mam.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/12/2019] [Indexed: 12/31/2022]
|
15
|
Sadowska J, Gębczyński AK, Lewoc M, Konarzewski M. Not that hot after all: no limits to heat dissipation in lactating mice selected for high or low BMR. J Exp Biol 2019; 222:jeb.204669. [DOI: 10.1242/jeb.204669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/09/2019] [Indexed: 01/06/2023]
Abstract
Heat dissipation has been suggested as a limit to sustained metabolic effort, e.g. during lactation, when overheating is a possible risk. We tested this hypothesis using mice artificially selected for high (H-BMR) or low (L-BMR) BMR that also differ with respect to parental effort. We used fixed sized cross-fostered families and recorded litter mass daily until the 14th day of lactation. Midway through the experiment (day 8th) half of randomly chosen mothers from each line type had fur from the dorsal body surface removed to increase their thermal conductance and facilitate heat dissipation. Our results showed that neither of the line types benefited from increasing their thermal conductance at peak lactation. On the contrary, growth of the litters reared by the L-BMR females was compromised. Thus, our results do not support the heat dissipation limitation hypothesis.
Collapse
Affiliation(s)
- Julita Sadowska
- Institute of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Andrzej K. Gębczyński
- Institute of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Małgorzata Lewoc
- Institute of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Marek Konarzewski
- Institute of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| |
Collapse
|
16
|
Affiliation(s)
- Andreas Nord
- Department of Biology, Section for Evolutionary Ecology, Ecology Building Lund University Lund Sweden
| | - Jan‐Åke Nilsson
- Department of Biology, Section for Evolutionary Ecology, Ecology Building Lund University Lund Sweden
| |
Collapse
|
17
|
Nilaweera KN, Speakman JR. Regulation of intestinal growth in response to variations in energy supply and demand. Obes Rev 2018; 19 Suppl 1:61-72. [PMID: 30511508 PMCID: PMC6334514 DOI: 10.1111/obr.12780] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
The growth of the intestine requires energy, which is known to be met by catabolism of ingested nutrients. Paradoxically, during whole body energy deficit including calorie restriction, the intestine grows in size. To understand how and why this happens, we reviewed data from several animal models of energetic challenge. These were bariatric surgery, cold exposure, lactation, dietary whey protein intake and calorie restriction. Notably, these challenges all reduced the adipose tissue mass, altered hypothalamic neuropeptide expression and increased intestinal size. Based on these data, we propose that the loss of energy in the adipose tissue promotes the growth of the intestine via a signalling mechanism involving the hypothalamus. We discuss possible candidates in this pathway including data showing a correlative change in intestinal (ileal) expression of the cyclin D1 gene with adipose tissue mass, adipose derived-hormone leptin and hypothalamic expression of leptin receptor and the pro-opiomelanocortin gene. The ability of the intestine to grow in size during depletion of energy stores provides a mechanism to maximize assimilation of ingested energy and in turn sustain critical functions of tissues important for survival.
Collapse
Affiliation(s)
- K N Nilaweera
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, County Cork, Ireland
| | - J R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
18
|
Khaliq I, Hof C. Testing the heat dissipation limitation hypothesis: basal metabolic rates of endotherms decrease with increasing upper and lower critical temperatures. PeerJ 2018; 6:e5725. [PMID: 30402344 PMCID: PMC6215442 DOI: 10.7717/peerj.5725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolic critical temperatures define the range of ambient temperatures where endotherms are able to minimize energy allocation to thermogenesis. Examining the relationship between metabolic critical temperatures and basal metabolic rates (BMR) provides a unique opportunity to gain a better understanding of how animals respond to varying ambient climatic conditions, especially in times of ongoing and projected future climate change. We make use of this opportunity by testing the heat dissipation limit (HDL) theory, which hypothesizes that the maximum amount of heat a species can dissipate constrains its energetics. Specifically, we test the theory’s implicit prediction that BMR should be lower under higher metabolic critical temperatures. We analysed the relationship of BMR with upper and lower critical temperatures for a large dataset of 146 endotherm species using regression analyses, carefully accounting for phylogenetic relationships and body mass. We show that metabolic critical temperatures are negatively related with BMR in both birds and mammals. Our results confirm the predictions of the HDL theory, suggesting that metabolic critical temperatures and basal metabolic rates respond in concert to ambient climatic conditions. This implies that heat dissipation capacities of endotherms may be an important factor to take into account in assessments of species’ vulnerability to climate change.
Collapse
Affiliation(s)
- Imran Khaliq
- Department of Zoology, Ghazi University, Pakistan, Dera Ghazi Khan, Punjab, Pakistan.,Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt, Germany.,Institute for Ecology, Evolution and Diversity, Department of Biological Sciences, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt, Germany
| | - Christian Hof
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt, Germany.,Terrestrial Ecology Research Group, Department for Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
19
|
Vaanholt LM, Duah OA, Balduci S, Mitchell SE, Hambly C, Speakman JR. Limits to sustained energy intake. XXVII. Trade-offs between first and second litters in lactating mice support the ecological context hypothesis. ACTA ACUST UNITED AC 2018; 221:jeb.170902. [PMID: 29361590 DOI: 10.1242/jeb.170902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/27/2017] [Indexed: 12/18/2022]
Abstract
Increased reproductive effort may lead to trade-offs with future performance and impact offspring, thereby influencing optimal current effort level. We experimentally enlarged or reduced litter size in mice during their first lactation, and then followed them through a successive unmanipulated lactation. Measurements of food intake, body mass, milk energy output (MEO), litter size and litter mass were taken. Offspring from the first lactation were also bred to investigate their reproductive success. In their first lactation, mothers with enlarged litters (n=9, 16 pups) weaned significantly smaller pups, culled more pups, and increased MEO and food intake compared with mothers with reduced litters (n=9, 5 pups). In the second lactation, no significant differences in pup mass or litter size were observed between groups, but mothers that had previously reared enlarged litters significantly decreased pup mass, MEO and food intake compared with those that had reared reduced litters. Female offspring from enlarged litters weaned slightly smaller pups than those from reduced litters, but displayed no significant differences in any of the other variables measured. These results suggest that females with enlarged litters suffered from a greater energetic burden during their first lactation, and this was associated with lowered performance in a successive reproductive event and impacted on their offspring's reproductive performance. Female 'choice' about how much to invest in the first lactation may thus be driven by trade-offs with future reproductive success. Hence, the 'limit' on performance may not be a hard physiological limit. These data support the ecological context hypothesis.
Collapse
Affiliation(s)
- Lobke M Vaanholt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Osei A Duah
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Suzanna Balduci
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Catherine Hambly
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK .,Institute of Genetics and Developmental Biology, State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
20
|
Ohrnberger SA, Hambly C, Speakman JR, Valencak TG. Limits to sustained energy intake XXIX: the case of the golden hamster (Mesocricetus auratus). J Exp Biol 2018; 221:jeb.183749. [DOI: 10.1242/jeb.183749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/11/2018] [Indexed: 01/11/2023]
Abstract
Golden hamster females have the shortest known gestation period among placental mammals and at the same time raise very large litters of up to 16 offspring, which are born in a naked and blind state and are able to pick up food from days 12-14 only. We quantified energy metabolism and milk production in female golden hamsters raising offspring under cold (8°C), normal (22°C) and hot (30°C) ambient temperature conditions. We monitored energy intake, subcutaneous body temperature, daily energy expenditure, litter size and pup masses over the course of lactation. Our results show that, in line with the concept of heat dissipation limitation, female golden hamsters had the largest energy intake under the coldest conditions and a significantly lower intake at 30° (partial for influence of ambient temperature: F2,403=5.6; p= 0.004). Metabolisable energy intake as well as milk energy output showed the same pattern and were significantly different between the temperatures (partial for milk energy production: F1,40= 86.4; p<0.0001). With consistently higher subcutaneous temperatures in the reproductive females (F1,813= 36.77; p<0.0001) compared to baseline females. These data suggest that raising offspring in golden hamsters comes at the cost of producing large amounts of body heat up to a level constraining energy intake, similar to that observed in some laboratory mice. Notably, we observed that females seemed to adjust litter size according to their milk production with the smallest litters (3.4±0.7 pups) being raised by hot exposed mothers. Future research is needed to unravel the mechanism by which females assess their own milk production capabilities and how this may be linked to litter size at different ambient temperatures. Golden hamsters reach 8-10 times resting metabolic rate (RMR) when raising offspring under cold conditions, which is compatible with the findings from laboratory mice and other rodents.
Collapse
Affiliation(s)
- S. A. Ohrnberger
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - C. Hambly
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB 24 2 TZ, UK
| | - J. R. Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB 24 2 TZ, UK
- Institute of Genetics and Developmental Biology, State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences, Beichen Xi Lu, Chaoyang, Beijing, People's Republic of China
| | - T. G. Valencak
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
21
|
Kagya-Agyemang JK, Vaanholt LM, Hambly C, Król E, Mitchell SE, Speakman JR. Limits to sustained energy intake XXVIII: Beneficial effects of high dietary fat on lactation performance in mice. J Exp Biol 2018; 221:jeb.180828. [DOI: 10.1242/jeb.180828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022]
Abstract
Maximal animal performance may be limited by the ability of animals to dissipate heat; the heat dissipation limitation (HDL) theory. Since diets vary in the incidental heat produced during digestion (specific dynamic action, SDA), the HDL theory predicts lactating female mice consuming diets with lower SDA should have increased reproductive performance. Dietary fat has a lower SDA than dietary carbohydrate. Female mice were fed low (LF), medium (MF) or high fat (HF) diets (10%, 45% and 60% energy from fat respectively) from days 4-18 of lactation. HF and MF-fed mice weaned significantly heavier litters than LF mice. This was because they not only consumed more energy (metabolisable energy intake, Emei; HF:306.5±25.0, MF:340.5±13.5 kJ d−1) at peak lactation, but also delivered more milk energy to their pups (milk energy output, Emilk: 203.2±49.9, 229.3±42.2 kJ d−1 respectively) than the LF-fed mice (Emei =266.7±4.5, Emilk =164.60±30.59 kJ d−1). This effect was greater than predicted from the SDA of the different diets combined with a mathematical model based on the HDL theory. Fatty acid profiles of the diets, milk and pups, showed significant correlations between the profiles. Besides reduced SDA, HF and MF-fed mice were probably able to directly transfer absorbed dietary fat into milk, reducing the heat production of lactogenesis, and enabling them to perform better than expected from the HDL model. In summary, HF and MF diets had beneficial effects on reproductive performance compared to the LF diet because they enabled mice to generate milk more efficiently with less incidental heat production.
Collapse
Affiliation(s)
- J. K. Kagya-Agyemang
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- College of Agriculture Education, University of Education, Winneba, P.O. Box 40, Mampong-Ashanti, Ghana
| | - L. M. Vaanholt
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - C. Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - E. Król
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - S. E. Mitchell
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - J. R. Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- State key laboratory of molecular developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing China
| |
Collapse
|
22
|
Stawski C, Koteja P, Sadowska ET. A Shift in the Thermoregulatory Curve as a Result of Selection for High Activity-Related Aerobic Metabolism. Front Physiol 2017; 8:1070. [PMID: 29326604 PMCID: PMC5741638 DOI: 10.3389/fphys.2017.01070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022] Open
Abstract
According to the “aerobic capacity model,” endothermy in birds and mammals evolved as a result of natural selection favoring increased persistent locomotor activity, fuelled by aerobic metabolism. However, this also increased energy expenditure even during rest, with the lowest metabolic rates occurring in the thermoneutral zone (TNZ) and increasing at ambient temperatures (Ta) below and above this range, depicted by the thermoregulatory curve. In our experimental evolution system, four lines of bank voles (Myodes glareolus) have been selected for high swim-induced aerobic metabolism and four unselected lines have been maintained as a control. In addition to a 50% higher rate of oxygen consumption during swimming, the selected lines have also evolved a 7.3% higher mass-adjusted basal metabolic rate. Therefore, we asked whether voles from selected lines would also display a shift in the thermoregulatory curve and an increased body temperature (Tb) during exposure to high Ta. To test these hypotheses we measured the RMR and Tb of selected and control voles at Ta from 10 to 34°C. As expected, RMR within and around the TNZ was higher in selected lines. Further, the Tb of selected lines within the TNZ was greater than the Tb of control lines, particularly at the maximum measured Ta of 34°C, suggesting that selected voles are more prone to hyperthermia. Interestingly, our results revealed that while the slope of the thermoregulatory curve below the lower critical temperature (LCT) is significantly lower in the selected lines, the LCT (26.1°C) does not differ. Importantly, selected voles also evolved a higher maximum thermogenesis, but thermal conductance did not increase. As a consequence, the minimum tolerated temperature, calculated from an extrapolation of the thermoregulatory curve, is 8.4°C lower in selected (−28.6°C) than in control lines (−20.2°C). Thus, selection for high aerobic exercise performance, even though operating under thermally neutral conditions, has resulted in the evolution of increased cold tolerance, which, under natural conditions, could allow voles to inhabit colder environments. Further, the results of the current experiment support the assumptions of the aerobic capacity model of the evolution of endothermy.
Collapse
Affiliation(s)
- Clare Stawski
- Faculty of Biology and Earth Sciences, Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland.,Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Paweł Koteja
- Faculty of Biology and Earth Sciences, Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Edyta T Sadowska
- Faculty of Biology and Earth Sciences, Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
23
|
Matysiak A, Malecha AW, Jakubowski H, Sadowska ET, Koteja P, Tryjanowski P. Sexual dimorphism, asymmetry, and the effect of reproduction on pelvis bone in the bank vole, Myodes glareolus. MAMMAL RES 2017. [DOI: 10.1007/s13364-017-0317-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Stewart F, McAdam A. Wild Peromyscus adjust maternal nest-building behaviour in response to ambient temperature. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The heat dissipation limit (HDL) hypothesis suggests that energy output during lactation in mammals might be constrained by their ability to dissipate heat. This hypothesis predicts that wild mammals ought to adjust nest insulation in response to heat load, but these predictions have rarely been tested in wild mammals. Here we developed a simple score of nest-building for wild deer mice (Peromyscus maniculatus (Wagner, 1845)) on an ordinal scale from 0 to 4, based on three qualitative and easy to observe aspects of nest-building behaviour: bedding quality, nest shape, and mouse visibility. We used this measure to track 472 nest-building observations across 14 wild P. maniculatus that were brought into captivity and housed under pseudoambient temperatures across one reproductive event. Our observations of nest-building behaviour of the genus Peromyscus Gloger, 1841 provide varying support for the HDL hypothesis; there is a negative effect of ambient temperature on nest-building behaviour and lactating females became more sensitive to temperature as days post partum increased. However, females generally build more elaborate nests in lactation than other reproductive states and there are no effects of litter size, total pup mass, or days post partum on nest scores during lactation. Our observations have broad implications for quantifying behaviours in nest-building species and metabolic relationships in wild mammals.
Collapse
Affiliation(s)
- F.E.C. Stewart
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - A.G. McAdam
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
25
|
Zhao ZJ, Li L, Yang DB, Chi QS, Hambly C, Speakman JR. Limits to sustained energy intake XXV: milk energy output and thermogenesis in Swiss mice lactating at thermoneutrality. Sci Rep 2016; 6:31626. [PMID: 27554919 PMCID: PMC4995430 DOI: 10.1038/srep31626] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/22/2016] [Indexed: 01/13/2023] Open
Abstract
Previous studies at 21 °C and 5 °C suggest that in Swiss mice sustained energy intake (SusEI) and reproductive performance are constrained by the mammary capacity to produce milk. We aimed to establish if this constraint also applied at higher ambient temperature (30 °C). Female Swiss mice lactating at 30 °C had lower asymptotic food intake and weaned lighter litters than those at 21 °C. Resting metabolic rate, daily energy expenditure, milk energy output and suckling time were all lower at 30 °C. In a second experiment we gave mice at 30 °C either 6 or 9 pups to raise. Female performance was independent of litter size, indicating that it is probably not controlled by pup demands. In a third experiment we exposed only the mother, or only the offspring to the elevated temperature. In this case the performance of the mother was only reduced when she was exposed, and not when her pups were exposed, showing that the high temperature directly constrains female performance. These data suggest that at 30 °C SusEI and reproductive performance are likely constrained by the capacity of females to dissipate body heat, and not indirectly via pup demands. Constraints seem to change with ambient temperature in this strain of mouse.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325027, China
| | - Li Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China
| | - Deng-Bao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Qing-Sheng Chi
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Catherine Hambly
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - John R. Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|