1
|
Facchini G, Rathery A, Douady S, Sillam-Dussès D, Perna A. Substrate evaporation drives collective construction in termites. eLife 2024; 12:RP86843. [PMID: 38597934 PMCID: PMC11006414 DOI: 10.7554/elife.86843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Termites build complex nests which are an impressive example of self-organization. We know that the coordinated actions involved in the construction of these nests by multiple individuals are primarily mediated by signals and cues embedded in the structure of the nest itself. However, to date there is still no scientific consensus about the nature of the stimuli that guide termite construction, and how they are sensed by termites. In order to address these questions, we studied the early building behavior of Coptotermes gestroi termites in artificial arenas, decorated with topographic cues to stimulate construction. Pellet collections were evenly distributed across the experimental setup, compatible with a collection mechanism that is not affected by local topography, but only by the distribution of termite occupancy (termites pick pellets at the positions where they are). Conversely, pellet depositions were concentrated at locations of high surface curvature and at the boundaries between different types of substrate. The single feature shared by all pellet deposition regions was that they correspond to local maxima in the evaporation flux. We can show analytically and we confirm experimentally that evaporation flux is directly proportional to the local curvature of nest surfaces. Taken together, our results indicate that surface curvature is sufficient to organize termite building activity and that termites likely sense curvature indirectly through substrate evaporation. Our findings reconcile the apparently discordant results of previous studies.
Collapse
Affiliation(s)
- Giulio Facchini
- Life Sciences Department, University of RoehamptonLondonUnited Kingdom
- Service de Chimie et Physique Non Linéaire, Université Libre de BruxellesBrusselsBelgium
- Laboratoire Matière et Systèmes Complexe, CNRS, Université Paris CitéParisFrance
| | - Alann Rathery
- Life Sciences Department, University of RoehamptonLondonUnited Kingdom
| | - Stéphane Douady
- Laboratoire Matière et Systèmes Complexe, CNRS, Université Paris CitéParisFrance
| | - David Sillam-Dussès
- Laboratoire d’Ethologie Expérimentale et Comparée, LEEC, UR 4443, Université Sorbonne Paris NordVilletaneuseFrance
| | - Andrea Perna
- Life Sciences Department, University of RoehamptonLondonUnited Kingdom
- Networks Unit, IMT School for Advanced Studies LuccaLuccaItaly
| |
Collapse
|
2
|
Oberst S, Martin R. Feature-preserving synthesis of termite-mimetic spinodal nest morphology. iScience 2024; 27:108674. [PMID: 38292166 PMCID: PMC10825051 DOI: 10.1016/j.isci.2023.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/09/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024] Open
Abstract
Termite-built topology is complex due to group interactions and environmental feedback. Being interlinked with material characteristics and related to functionality, an accurate synthesis of termite mound topology has never been achieved. We scanned inner termite mound pieces via high-resolution micro-computed tomography. A wavelet scattering transform followed by optimization extracts features that are fed into a Gaussian Random Fields (GRFs) approach to synthesize termite-mimetic spinodal topology. Compared to natural structures the GRF topology is more regular. Irregularity is related to anisotropy, indicative of directionality caused by porous network connectivity of chambers and corridors. Since GRFs are related to diffusion, we assume that deterministic behavioral traits play a significant role in the development of these local differences. We pioneer a framework to reliably mimic termite mound spinodal features. Engineering termite-inspired structures will allow to inspect aspects of termite architectures and their behavior to manufacture novel material concepts with imprinted multi-functionality.
Collapse
Affiliation(s)
- Sebastian Oberst
- Centre for Audio, Acoustics and Vibration, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Engineering and IT, University of New South Wales, University of New South Wales, Canberra, ACT 2612, Australia
| | - Richard Martin
- Centre for Audio, Acoustics and Vibration, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
Takata M, Konishi T, Nagai S, Wu Y, Nozaki T, Tasaki E, Matsuura K. Discovery of an underground chamber to protect kings and queens during winter in temperate termites. Sci Rep 2023; 13:8809. [PMID: 37258652 DOI: 10.1038/s41598-023-36035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023] Open
Abstract
Overwintering is a critical part of the annual cycle for species that live in temperate, polar, and alpine regions. Consequently, low-temperature biology is a key determinant of temperate species distribution. Termites are distributed predominantly in tropical regions, and a limited number of species are found in the temperate zone. Here, in the termite Reticulitermes speratus, we report the discovery of an underground chamber that protects kings and queens to survive the winter, which is separate from the one they used during the warmer breeding season. In the spring, the royals inhabited decayed logs on the ground, then moved to their underground chamber located in the roots of stumps in the fall. The winter minimum temperature measured in the royal chamber was higher than that in the logs on the ground. In overwintering termites, the kings and queens had higher cold tolerance than workers and soldiers. Air temperatures dropped below the critical temperature multiple times, as evidenced from the past 140 years of weather records in Kyoto. These results demonstrated the survival strategies of reproductives to overcome the environment at the latitudinal limits. This study helps further the understanding of the termite's seasonal phenology, long-term survivorship, and life cycle.
Collapse
Affiliation(s)
- Mamoru Takata
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Takao Konishi
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shuya Nagai
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yao Wu
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tomonari Nozaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Eisuke Tasaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
4
|
Avinery R, Aina KO, Dyson CJ, Kuan HS, Betterton MD, Goodisman MAD, Goldman DI. Agitated ants: regulation and self-organization of incipient nest excavation via collisional cues. J R Soc Interface 2023; 20:20220597. [PMID: 37194494 PMCID: PMC10189599 DOI: 10.1098/rsif.2022.0597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
Ants are millimetres in scale yet collectively create metre-scale nests in diverse substrates. To discover principles by which ant collectives self-organize to excavate crowded, narrow tunnels, we studied incipient excavation in small groups of fire ants in quasi-two-dimensional arenas. Excavation rates displayed three stages: initially excavation occurred at a constant rate, followed by a rapid decay, and finally a slower decay scaling in time as t-1/2. We used a cellular automata model to understand such scaling and motivate how rate modulation emerges without global control. In the model, ants estimated their collision frequency with other ants, but otherwise did not communicate. To capture early excavation rates, we introduced the concept of 'agitation'-a tendency of individuals to avoid rest if collisions are frequent. The model reproduced the observed multi-stage excavation dynamics; analysis revealed how parameters affected features of multi-stage progression. Moreover, a scaling argument without ant-ant interactions captures tunnel growth power-law at long times. Our study demonstrates how individual ants may use local collisional cues to achieve functional global self-organization. Such contact-based decisions could be leveraged by other living and non-living collectives to perform tasks in confined and crowded environments.
Collapse
Affiliation(s)
- Ram Avinery
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kehinde O. Aina
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA
| | - Carl J. Dyson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hui-Shun Kuan
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | | | | | - Daniel I. Goldman
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
5
|
Morphological and Behavioral Adaptations of Silk-Lovers (Plokiophilidae: Embiophila) for Their Lifestyle in the Silk Domiciles of Webspinners (Embioptera). DIVERSITY 2023. [DOI: 10.3390/d15030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The diversity of true bugs gave rise to various lifestyles, including gaining advantage from other organisms. Plokiophilidae are cimicomorphan bugs that live in the silk constructions of other arthropods. One group, Embiophila, exclusively settles in the silk colonies of webspinners (Embioptera). We investigated the lifestyle of Embiophila using microscopy to study the micromorphology and material composition of the leg cuticle, choice assays and retention time measurements based on different characteristics of the embiopteran galleries and tilting experiments with different substrates to quantify the attachment performance of the bugs. Embiophila neither explicitly preferred embiopteran presence, nor required silk for locomotion, but the bugs preferred fibrous substrates during the choice experiments. The hairy attachment pad on the tibia showed the best attachment performance on substrates, with an asperity size of 1 µm. Additionally, very rough substrates enabled strong attachment, likely due to the use of claws. Our findings suggest that Embiophila settle in galleries of webspinners to benefit from the shelter against weather and predators and to feed on mites and other intruders. The combination of behavioral and functional morphological experiments enables insights into the life history of these silk-associated bugs, which would be highly challenging in the field due to the minute size and specialized lifestyle of Embiophila.
Collapse
|
6
|
Toth JM, Fewell JH, Waters JS. Scaling of ant colony interaction networks. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.993627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In social insect colonies, individuals are physically independent but functionally integrated by interaction networks which provide a foundation for communication and drive the emergence of collective behaviors, including nest architecture, division of labor, and potentially also the social regulation of metabolic rates. To investigate the relationship between interactions, metabolism, and colony size, we varied group size for harvester ant colonies (Pogonomyrmex californicus) and assessed their communication networks based on direct antennal contacts and compared these results with proximity networks and a random movement simulation. We found support for the hypothesis of social regulation; individuals did not interact with each other randomly but exhibited restraint. Connectivity scaled hypometrically with colony size, per-capita interaction rate was scale-invariant, and smaller colonies exhibited higher measures of closeness centrality and edge density, correlating with higher per-capita metabolic rates. Although the immediate energetic cost for two ants to interact is insignificant, the downstream effects of receiving and integrating social information can have metabolic consequences. Our results indicate that individuals in larger colonies are relatively more insulated from each other, a factor that may reduce or filter noisy stimuli and contribute to the hypometric scaling of their metabolic rates, and perhaps more generally, the evolution of larger colony sizes.
Collapse
|
7
|
Ganga Prasath S, Mahadevan L. Rheomergy
: collective behaviour mediated by active flow-based recruitment. Proc Math Phys Eng Sci 2023. [DOI: 10.1098/rspa.2022.0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The physics of signal propagation in a collection of organisms that communicate with each other both enables and limits how active excitations at the individual level reach, recruit and lead to collective patterning. Inspired by the spatio-temporal patterns in a planar swarm of bees that use pheromones and fanning flows to recruit additional bees, we develop a theoretical framework for patterning via active flow-based recruitment. Our model generalizes the well-known Patlak–Keller–Segel model of diffusion dominated aggregation and leads to an enhanced phase space of patterns spanned by two dimensionless parameters that measure the scaled stimulus/activity and the scaled chemotactic response. Together these determine the efficacy of signal communication via fluid flow (which we dub
rheomergy
) that leads to a variety of migration and aggregation patterns, consistent with observations.
Collapse
Affiliation(s)
- S. Ganga Prasath
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - L. Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Ordering and topological defects in social wasps' nests. Sci Rep 2022; 12:12901. [PMID: 35902614 PMCID: PMC9334299 DOI: 10.1038/s41598-022-16836-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Social insects have evolved a variety of architectural formations. Bees and wasps are well known for their ability to achieve compact structures by building hexagonal cells. Polistes wattii, an open nesting paper wasp species, builds planar hexagonal structures. Here, using the pair correlation function approach, we show that their nests exhibit short-range hexagonal order (no long-range order) akin to amorphous materials. Hexagonal orientational order was well preserved globally. We also show the presence of topological defects such as dislocations (pentagon-heptagon disclination pairs) and Stone-Wales quadrupoles, and discuss how these defects were organised in the nest, thereby restoring order. Furthermore, we suggest the possible role of such defects in shaping nesting architectures of other social insect species.
Collapse
|
9
|
Bedford NL, Weber JN, Tong W, Baier F, Kam A, Greenberg RA, Hoekstra HE. Interspecific variation in cooperative burrowing behavior by
Peromyscus
mice. Evol Lett 2022; 6:330-340. [PMID: 35937472 PMCID: PMC9346082 DOI: 10.1002/evl3.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 12/03/2022] Open
Abstract
Animals often adjust their behavior according to social context, but the capacity for such behavioral flexibility can vary among species. Here, we test for interspecific variation in behavioral flexibility by comparing burrowing behavior across three species of deer mice (genus Peromyscus) with divergent social systems, ranging from promiscuous (Peromyscus leucopus and Peromyscus maniculatus) to monogamous (Peromyscus polionotus). First, we compared the burrows built by individual mice to those built by pairs of mice in all three species. Although burrow length did not differ in P. leucopus or P. maniculatus, we found that P. polionotus pairs cooperatively constructed burrows that were nearly twice as long as those built by individuals and that opposite‐sex pairs dug longer burrows than same‐sex pairs. Second, to directly observe cooperative digging behavior in P. polionotus, we designed a burrowing assay in which we could video‐record active digging in narrow, transparent enclosures. Using this novel assay, we found, unexpectedly, that neither males nor females spent more time digging with an opposite‐sex partner. Rather, we demonstrate that opposite‐sex pairs are more socially cohesive and thus more efficient digging partners than same‐sex pairs. Together, our study demonstrates how social context can modulate innate behavior and offers insight into how differences in behavioral flexibility may evolve among closely related species.
Collapse
Affiliation(s)
- Nicole L. Bedford
- Howard Hughes Medical Institute Harvard University Cambridge Massachusetts 02138 USA
- Museum of Comparative Zoology Harvard University Cambridge Massachusetts 02138 USA
- Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts 02138 USA
- Current address: Department of Zoology and Physiology University of Wyoming Laramie Wyoming 82071 USA
| | - Jesse N. Weber
- Museum of Comparative Zoology Harvard University Cambridge Massachusetts 02138 USA
- Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts 02138 USA
- Current address: Department of Integrative Biology University of Wisconsin–Madison Madison Wisconsin 53706 USA
| | - Wenfei Tong
- Museum of Comparative Zoology Harvard University Cambridge Massachusetts 02138 USA
- Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts 02138 USA
| | - Felix Baier
- Howard Hughes Medical Institute Harvard University Cambridge Massachusetts 02138 USA
- Museum of Comparative Zoology Harvard University Cambridge Massachusetts 02138 USA
- Department of Molecular and Cellular Biology Harvard University Cambridge Massachusetts 02138 USA
| | - Ariana Kam
- Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts 02138 USA
| | - Rebecca A. Greenberg
- Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts 02138 USA
| | - Hopi E. Hoekstra
- Howard Hughes Medical Institute Harvard University Cambridge Massachusetts 02138 USA
- Museum of Comparative Zoology Harvard University Cambridge Massachusetts 02138 USA
- Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts 02138 USA
- Department of Molecular and Cellular Biology Harvard University Cambridge Massachusetts 02138 USA
- Center for Brain Science Harvard University Cambridge Massachusetts 02138 USA
| |
Collapse
|
10
|
A customizable, low-cost alternative for distributed 2D flow sensing in swarms. ARTIFICIAL LIFE AND ROBOTICS 2022. [DOI: 10.1007/s10015-022-00760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Zhao J, Lynch N, Pratt SC. The Power of Population Effect in Temnothorax Ant House-Hunting: A Computational Modeling Approach. J Comput Biol 2022; 29:382-408. [PMID: 35049358 DOI: 10.1089/cmb.2021.0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The decentralized cognition of animal groups is both a challenging biological problem and a potential basis for bioinspired design. In this study, we investigated the house-hunting algorithm used by emigrating colonies of Temnothorax ants to reach consensus on a new nest. We developed a tractable model that encodes accurate individual behavior rules, and estimated our parameter values by matching simulated behaviors with observed ones on both the individual and group levels. We then used our model to explore a potential, but yet untested, component of the ants' decision algorithm. Specifically, we examined the hypothesis that incorporating site population (the number of adult ants at each potential nest site) into individual perceptions of nest quality can improve emigration performance. Our results showed that attending to site population accelerates emigration and reduces the incidence of split decisions. This result suggests the value of testing empirically whether nest site scouts use site population in this way, in addition to the well-demonstrated quorum rule. We also used our model to make other predictions with varying degrees of empirical support, including the high cognitive capacity of colonies and their rational time investment during decision-making. In addition, we provide a versatile and easy-to-use Python simulator that can be used to explore other hypotheses or make testable predictions. It is our hope that the insights and the modeling tools can inspire further research from both the biology and computer science community.
Collapse
Affiliation(s)
- Jiajia Zhao
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nancy Lynch
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stephen C Pratt
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
12
|
Prasath SG, Mandal S, Giardina F, Kennedy J, Murthy VN, Mahadevan L. Dynamics of cooperative excavation in ant and robot collectives. eLife 2022; 11:79638. [PMID: 36214457 PMCID: PMC9894586 DOI: 10.7554/elife.79638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/07/2022] [Indexed: 02/07/2023] Open
Abstract
The solution of complex problems by the collective action of simple agents in both biologically evolved and synthetically engineered systems involves cooperative action. Understanding the resulting emergent solutions requires integrating across the organismal behavior of many individuals. Here, we investigate an ecologically relevant collective task in black carpenter ants Camponotus pennsylvanicus: excavation of a soft, erodible confining corral. These ants show a transition from individual exploratory excavation at random locations to spatially localized collective exploitative excavation and escape from the corral. Agent-based simulations and a minimal continuum theory that coarse-grains over individual actions and considers their integrated influence on the environment leads to the emergence of an effective phase space of behaviors, characterized in terms of excavation strength and cooperation intensity. To test the theory over the range of both observed and predicted behaviors, we use custom-built robots (RAnts) that respond to stimuli to characterize the phase space of emergence (and failure) of cooperative excavation. Tuning the amount of cooperation between RAnts, allows us to vary the efficiency of excavation and synthetically generate the entire range of macroscopic phases predicted by our theory. Overall, our approach shows how the cooperative completion of tasks can arise from simple rules that involve the interaction of agents with a dynamically changing environment that serves as both an enabler and a modulator of behavior.
Collapse
Affiliation(s)
- S Ganga Prasath
- School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - Souvik Mandal
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States,Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Fabio Giardina
- School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - Jordan Kennedy
- School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - Venkatesh N Murthy
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States,Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - L Mahadevan
- School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States,Center for Brain Science, Harvard UniversityCambridgeUnited States,Department of Physics, Harvard UniversityCambridgeUnited States,Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
13
|
Laidre ME. The Architecture of Cooperation Among Non-kin: Coalitions to Move Up in Nature’s Housing Market. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.766342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The evolution of cooperation among non-kin poses a major theoretical puzzle: why should natural selection favor individuals who help unrelated conspecifics at a cost to themselves? The relevance of architecture to this question has rarely been considered. Here I report cooperation among non-kin in social hermit crabs (Coenobita compressus), where unrelated conspecifics work together to evict larger individuals from a housing market of architecturally remodeled shells. I present (1) the first detailed description of natural coalitions in the wild and (2) a theoretical framework, which examines the evolutionary benefits to each coalition member and predicts when forming a coalition will be successful. In the wild, important ecological and social constraints exist, which are built into the model. Based on these constraints, I show that coalitions can be a successful strategy if several key criteria hold: the coalition is necessary, effective, stable dyadically, and stable polyadically. Notably, the “splitting the spoils” problem—which often undermines non-kin cooperation—is eliminated via architecture: a small individual (C) who helps a medium individual (B) to evict a large individual (A) will ultimately benefit, since C will get B’s left behind shell after B moves into A’s shell. Coalitions, however, can break down due to added layers of social complexity involving third-party “free riders” and “cheaters,” which strategically butt in the architectural queue and thereby steal incentives from the smaller coalition member. Overall, therefore, substantial scope exists for both cooperation and conflict within nature’s housing market of architecture. Experiments are now needed to directly test the impact on coalitions of architecture, from the interior of homes up to whole housing markets.
Collapse
|
14
|
Muenwacha T, Weeranantanapan O, Chudapongse N, Diaz Sanchez FJ, Maensiri S, Radacsi N, Nuansing W. Fabrication of Piezoelectric Electrospun Termite Nest-like 3D Scaffolds for Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7684. [PMID: 34947288 PMCID: PMC8708465 DOI: 10.3390/ma14247684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022]
Abstract
A high piezoelectric coefficient polymer and biomaterial for bone tissue engineering- poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-has been successfully fabricated into 3D scaffolds using the wet electrospinning method. Three-dimensional (3D) scaffolds have significant advantages for tissue engineering applications. Electrospinning is an advanced method and can fabricate 3D scaffolds. However, it has some limitations and is difficult to fabricate nanofibers into 3D shapes because of the low controllability of porosity and internal pore shape. The PVDF-HFP powders were dissolved in a mixture of acetone and dimethylformamide with a ratio of 1:1 at various concentrations of 10, 13, 15, 17, and 20 wt%. However, only the solutions at 15 and 17 wt% with optimized electrospinning parameters can be fabricated into biomimetic 3D shapes. The produced PVDF-HFP 3D scaffolds are in the cm size range and mimic the structure of the natural nests of termites of the genus Apicotermes. In addition, the 3D nanofiber-based structure can also generate more electrical signals than the conventional 2D ones, as the third dimension provides more compression. The cell interaction with the 3D nanofibers scaffold was investigated. The in vitro results demonstrated that the NIH 3T3 cells could attach and migrate in the 3D structures. While conventional electrospinning yields 2D (flat) structures, our bio-inspired electrospun termite nest-like 3D scaffolds are better suited for tissue engineering applications since they can potentially mimic native tissues as they have biomimetic structure, piezoelectric, and biological properties.
Collapse
Affiliation(s)
- Thanapon Muenwacha
- Institute of Science, School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (T.M.); (S.M.)
- Thailand Center of Excellence in Physics (ThEP), Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Oratai Weeranantanapan
- Institute of Science, School of Preclinical Sciences, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (O.W.); (N.C.)
- Center of Excellence on Advanced Functional Materials (CoE-AFM), Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nuannoi Chudapongse
- Institute of Science, School of Preclinical Sciences, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (O.W.); (N.C.)
- Center of Excellence on Advanced Functional Materials (CoE-AFM), Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Francisco Javier Diaz Sanchez
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK;
| | - Santi Maensiri
- Institute of Science, School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (T.M.); (S.M.)
- Center of Excellence on Advanced Functional Materials (CoE-AFM), Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Network NANOTEC—SUT on Advanced Nanomaterials and Characterization, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Norbert Radacsi
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK;
| | - Wiwat Nuansing
- Institute of Science, School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (T.M.); (S.M.)
- Center of Excellence on Advanced Functional Materials (CoE-AFM), Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Network NANOTEC—SUT on Advanced Nanomaterials and Characterization, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
15
|
Abstract
Many animals shape and modify their physical environment, thereby creating a diversity of structures, from underground burrows to constructed nests to towering above-ground edifices, all of which are referred to as 'animal architecture'. Examples of animal architecture are found everywhere on Earth: beneath the sea and on land, below and above ground, and hanging into the air off trees and precipices. Fossils suggest that animals have been acting as architects by constructing shelters and other built structures for hundreds of millions of years. Animal architects are widespread taxonomically, spanning invertebrates (Figure 1) and vertebrates (Figure 2). Their architectural creations are diverse, including: the fortress-like mounds of termites, the housing markets of architecturally remodeled shells of social hermit crabs, the subterranean tunnel systems of naked mole rats, the intricately decorated bowers of bowerbirds or the engineered dams of beavers. Even the tallest of human architecture is rivaled by animal architecture: termite mounds exceed skyscrapers in their size relative to that of the architects. Animal architecture raises many fascinating questions at the interface of behavior, ecology and evolution: How is this architecture built? What instinctive 'blueprints' or cognitive mechanisms underlie its creation? What functions does the architecture serve? And why did it evolve? Notably, because architecture changes the world, it may have far-reaching impacts on collective behavior and social life, interactions among communities of species and whole ecosystems. Architecture may even have altered the very course of evolution.
Collapse
Affiliation(s)
- Mark E Laidre
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
16
|
Laidre ME. Social conquest of land: Sea-to-land changes in shell architecture and body morphology, with consequences for social evolution. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 63:101064. [PMID: 34098322 DOI: 10.1016/j.asd.2021.101064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Architecture, like nests, burrows, and other types of fortresses, may have played an important role in the evolution of social life on land. However, few studies have examined architecture in organisms that transitioned from sea to land to test how and why architectural and morphological changes might have jointly impacted social evolution. Here I contrasted the shell architecture and body morphology of two of the phylogenetically most closely-related land versus sea species of hermit crab (the terrestrial hermit crab, Coenobita compressus, and the marine hermit crab, Calcinus obscurus), as well as the original builder of their shells (the gastropod, Nerita scabricosta). In contrast to the shells of gastropods and marine hermit crabs, only the shells of terrestrial hermit crabs were architecturally remodeled, with no columella inside for the occupants to grip upon to resist eviction. The bodies of terrestrial hermit crabs were also significantly more exposed outside the enlarged openings of their remodeled shells, whereas the substantially smaller-bodied marine hermit crabs were safeguarded deep within the recesses of their unremodeled shells. Ultimately, these changes in shell architecture and body morphology likely had consequences for social evolution on land, making conspecifics not only more dependent upon one another for homes, but also potentially easier to evict. Further changes in claw shape on land (with the claws of terrestrial hermit crabs becoming shorter, wider, and thicker) may have evolved to help offset their heightened danger of social eviction, acting as a more effective door against conspecifics.
Collapse
Affiliation(s)
- Mark E Laidre
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
17
|
Oberst S, Martin R, Halkon BJ, Lai JCS, Evans TA, Saadatfar M. Submillimetre mechanistic designs of termite-built structures. J R Soc Interface 2021; 18:20200957. [PMID: 33947222 PMCID: PMC8097512 DOI: 10.1098/rsif.2020.0957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/12/2021] [Indexed: 11/12/2022] Open
Abstract
Termites inhabit complex underground mounds of intricate stigmergic labyrinthine designs with multiple functions as nursery, food storage and refuge, while maintaining a homeostatic microclimate. Past research studied termite building activities rather than the actual material structure. Yet, prior to understanding how multi-functionality shaped termite building, a thorough grasp of submillimetre mechanistic architecture of mounds is required. Here, we identify for Nasutitermes exitiosus via granulometry and Fourier transform infrared spectroscopy analysis, preferential particle sizes related to coarse silts and unknown mixtures of organic/inorganic components. High-resolution micro-computed X-ray tomography and microindentation tests reveal wall patterns of filigree laminated layers and sub-millimetre porosity wrapped around a coarse-grained inner scaffold. The scaffold geometry, which is designed of a lignin-based composite and densely biocementitious stercoral mortar, resembles that of trabecula cancellous bones. Fractal dimension estimates indicate multi-scaled porosity, important for enhanced evaporative cooling and structural stability. The indentation moduli increase from the outer to the inner wall parts to values higher than those found in loose clays and which exceed locally the properties of anthropogenic cementitious materials. Termites engineer intricately layered biocementitious composites of high elasticity. The multiple-scales and porosity of the structure indicate a potential to pioneer bio-architected lightweight and high-strength materials.
Collapse
Affiliation(s)
- Sebastian Oberst
- Centre for Audio, Acoustics and Vibrations, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2040, Australia
- School of Engineering and Information Technology, University of New South Wales, Canberra, Australian Capital Territory 2600, Australia
| | - Richard Martin
- Centre for Audio, Acoustics and Vibrations, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2040, Australia
| | - Benjamin J. Halkon
- Centre for Audio, Acoustics and Vibrations, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2040, Australia
| | - Joseph C. S. Lai
- School of Engineering and Information Technology, University of New South Wales, Canberra, Australian Capital Territory 2600, Australia
| | - Theodore A. Evans
- School of Animal Biology, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Mohammed Saadatfar
- School of Civil Engineering, The University of Sydney, 2006, Sydney, Australia
- Department of Applied Mathematics, The Australian National University, Canberra, 2601, Australia
| |
Collapse
|
18
|
Abstract
The termite nest is one of the architectural wonders of the living world, built by the collective action of workers in a colony. Each nest has several characteristic structural motifs that allow for efficient ventilation, cooling, and traversal. We use tomography to quantify the nest architecture of the African termite Apicotermes lamani, consisting of regularly spaced floors connected by scattered linear and helicoidal ramps. To understand how these elaborate structures are built and arranged, we formulate a minimal model for the spatiotemporal evolution of three hydrodynamic fields-mud, termites, and pheromones-linking environmental physics to collective building behavior using simple local rules based on experimental observations. We find that floors and ramps emerge as solutions of the governing equations, with statistics consistent with observations of A. lamani nests. Our study demonstrates how a local self-reinforcing biotectonic scheme is capable of generating an architecture that is simultaneously adaptable and functional, and likely to be relevant for a range of other animal-built structures.
Collapse
|
19
|
Fujioka H, Okada Y, Abe MS. Bipartite network analysis of ant-task associations reveals task groups and absence of colonial daily activity. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201637. [PMID: 33614094 PMCID: PMC7890512 DOI: 10.1098/rsos.201637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Social insects are one of the best examples of complex self-organized systems exhibiting task allocation. How task allocation is achieved is the most fascinating question in behavioural ecology and complex systems science. However, it is difficult to comprehensively characterize task allocation patterns due to behavioural complexity, such as the individual variation, context dependency and chronological variation. Thus, it is imperative to quantify individual behaviours and integrate them into colony levels. Here, we applied bipartite network analyses to characterize individual-behaviour relationships. We recorded the behaviours of all individuals with verified age in ant colonies and analysed the individual-behaviour relationship at the individual, module and network levels. Bipartite network analysis successfully detected the module structures, illustrating that certain individuals performed a subset of behaviours (i.e. task groups). We confirmed age polyethism by comparing age between modules. Additionally, to test the daily rhythm of the executed tasks, the data were partitioned between daytime and nighttime, and a bipartite network was re-constructed. This analysis supported that there was no daily rhythm in the tasks performed. These findings suggested that bipartite network analyses could untangle complex task allocation patterns and provide insights into understanding the division of labour.
Collapse
Affiliation(s)
- Haruna Fujioka
- Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yasukazu Okada
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, Japan
| | - Masato S. Abe
- Center for Advanced Intelligence Project, RIKEN, Nihonbashi 1-chome Mitsui Building, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
20
|
Mizumoto N, Bardunias PM, Pratt SC. Complex Relationship between Tunneling Patterns and Individual Behaviors in Termites. Am Nat 2020; 196:555-565. [PMID: 33064584 DOI: 10.1086/711020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe nests built by social insects are complex group-level structures that emerge from interactions among individuals following simple behavioral rules. Nest patterns vary among species, and the theory of complex systems predicts that there is no simple one-to-one relationship between variation in collective patterns and variation in individual behaviors. Therefore, a species-by-species comparison of the actual building process is essential to understand the mechanism producing diverse nest patterns. Here, we compare tunnel formation of three termite sp ecies and reveal two mechanisms producing interspecific variation: in one, a common behavioral rule yields distinct patterns via parameter tuning, and in the other, distinct rules produce similar patterns. We found that two related species transport sand in the same way using mandibles but build tunnels with different degrees of branching. The variation arises from different probabilities of choosing between two behavioral options at crowded tunnel faces: excavating the sidewall to make a new branch or waiting for clearance to extend the current tunnel. We further discovered that a third species independently evolved low-branched patterns using different building rules, namely, a bucket brigade that can excavate a crowded tunnel. Our findings emphasize the importance of direct comparative study of collective behaviors at both individual and group levels.
Collapse
|
21
|
Oberst S, Lai JC, Martin R, Halkon BJ, Saadatfar M, Evans TA. Revisiting stigmergy in light of multi-functional, biogenic, termite structures as communication channel. Comput Struct Biotechnol J 2020; 18:2522-2534. [PMID: 33005314 PMCID: PMC7516209 DOI: 10.1016/j.csbj.2020.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022] Open
Abstract
Termite mounds are fascinating because of their intriguing composition of numerous geometric shapes and materials. However, little is known about these structures, or of their functionalities. Most research has been on the basic composition of mounds compared with surrounding soils. There has been some targeted research on the thermoregulation and ventilation of the mounds of a few species of fungi-growing termites, which has generated considerable interest from human architecture. Otherwise, research on termite mounds has been scattered, with little work on their explicit properties. This review is focused on how termites design and build functional structures as nest, nursery and food storage; for thermoregulation and climatisation; as defence, shelter and refuge; as a foraging tool or building material; and for colony communication, either as in indirect communication (stigmergy) or as an information channel essential for direct communication through vibrations (biotremology). Our analysis shows that systematic research is required to study the properties of these structures such as porosity and material composition. High resolution computer tomography in combination with nonlinear dynamics and methods from computational intelligence may provide breakthroughs in unveiling the secrets of termite behaviour and their mounds. In particular, the examination of dynamic and wave propagation properties of termite-built structures in combination with a detailed signal analysis of termite activities is required to better understand the interplay between termites and their nest as superorganism. How termite structures serve as defence in the form of disguising acoustic and vibration signals from detection by predators, and what role local and global vibration synchronisation plays for building are open questions that need to be addressed to provide insights into how termites utilise materials to thrive in a world of predators and competitors.
Collapse
Affiliation(s)
- Sebastian Oberst
- Centre for Audio, Acoustics and Vibration, Faculty of Engineering and IT, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
- School of Engineering and IT, University of New South Wales Canberra, Northcott Dr, Campbell ACT 2612, Australia
| | - Joseph C.S. Lai
- School of Engineering and IT, University of New South Wales Canberra, Northcott Dr, Campbell ACT 2612, Australia
| | - Richard Martin
- Centre for Audio, Acoustics and Vibration, Faculty of Engineering and IT, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Benjamin J. Halkon
- Centre for Audio, Acoustics and Vibration, Faculty of Engineering and IT, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Mohammad Saadatfar
- Department of Applied Mathematics, Australian National University, 58-60 Mills Road, Canberra, ACT 2601, Australia
| | - Theodore A. Evans
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| |
Collapse
|
22
|
Facchini G, Lazarescu A, Perna A, Douady S. A growth model driven by curvature reproduces geometric features of arboreal termite nests. J R Soc Interface 2020; 17:20200093. [PMID: 32693744 PMCID: PMC7423439 DOI: 10.1098/rsif.2020.0093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present a simple three-dimensional model to describe the autonomous expansion of a substrate whose growth is driven by the local mean curvature of its surface. The model aims to reproduce the nest construction process in arboreal Nasutitermes termites, whose cooperation may similarly be mediated by the shape of the structure they are walking on, for example focusing the building activity of termites where local mean curvature is high. We adopt a phase-field model where the nest is described by one continuous scalar field and its growth is governed by a single nonlinear equation with one adjustable parameter d. When d is large enough the equation is linearly unstable and fairly reproduces a growth process in which the initial walls expand, branch and merge, while progressively invading all the available space, which is consistent with the intricate structures of real nests. Interestingly, the linear problem associated with our growth equation is analogous to the buckling of a thin elastic plate under symmetric in-plane compression, which is also known to produce rich patterns through nonlinear and secondary instabilities. We validated our model by collecting nests of two species of arboreal Nasutitermes from the field and imaging their structure with a micro-computed tomography scanner. We found a strong resemblance between real and simulated nests, characterized by the emergence of a characteristic length scale and by the abundance of saddle-shaped surfaces with zero-mean curvature, which validates the choice of the driving mechanism of our growth model.
Collapse
Affiliation(s)
- G Facchini
- Life Sciences Department, University of Roehampton, London, UK
| | - A Lazarescu
- Institut de Recherche en Mathématique et Physique, UCLouvain, Louvain-la-Neuve, Belgium
| | - A Perna
- Life Sciences Department, University of Roehampton, London, UK
| | - S Douady
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, Paris, France
| |
Collapse
|
23
|
Bardunias PM, Calovi DS, Carey N, Soar R, Turner JS, Nagpal R, Werfel J. The extension of internal humidity levels beyond the soil surface facilitates mound expansion in Macrotermes. Proc Biol Sci 2020; 287:20200894. [PMID: 32635873 DOI: 10.1098/rspb.2020.0894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Termites in the genus Macrotermes construct large-scale soil mounds above their nests. The classic explanation for how termites coordinate their labour to build the mound, based on a putative cement pheromone, has recently been called into question. Here, we present evidence for an alternate interpretation based on sensing humidity. The high humidity characteristic of the mound's internal environment extends a short distance into the low-humidity external world, in a 'bubble' that can be disrupted by external factors like wind. Termites transport more soil mass into on-mound reservoirs when shielded from water loss through evaporation, and into experimental arenas when relative humidity is held at a high value. These results suggest that the interface between internal and external conditions may serve as a template for mound expansion, with workers moving freely within a zone of high humidity and depositing soil at its edge. Such deposition of additional moist soil will increase local humidity, in a feedback loop allowing the 'interior' zone to progress further outward and lead to mound expansion.
Collapse
Affiliation(s)
- Paul M Bardunias
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.,Department of Civil and Environmental Engineering, South Dakota School of Mines, Rapid City, SD 57701, USA
| | - Daniel S Calovi
- Harvard School of Engineering and Applied Sciences, 33 Oxford Street, Cambridge, MA 02138, USA
| | - Nicole Carey
- Harvard School of Engineering and Applied Sciences, 33 Oxford Street, Cambridge, MA 02138, USA
| | - Rupert Soar
- School of Architecture, Design and the Built Environment, Nottingham Trent University, Burton Street, Nottingham, UK
| | - J Scott Turner
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Radhika Nagpal
- Harvard School of Engineering and Applied Sciences, 33 Oxford Street, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA
| | - Justin Werfel
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
24
|
Mizumoto N, Bourguignon T. Modern termites inherited the potential of collective construction from their common ancestor. Ecol Evol 2020; 10:6775-6784. [PMID: 32724550 PMCID: PMC7381753 DOI: 10.1002/ece3.6381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022] Open
Abstract
Animal collective behaviors give rise to various spatial patterns, such as the nests of social insects. These structures are built by individuals following a simple set of rules, slightly varying within and among species, to produce a large diversity of shapes. However, little is known about the origin and evolution of the behavioral mechanisms regulating nest structures. In this study, we discuss the perspective of inferring the evolution of collective behaviors behind pattern formations using a phylogenetic framework. We review the collective behaviors that can be described by a single set of behavioral rules, and for which variations of the environmental and behavioral parameter values produce diverse patterns. We propose that this mechanism could be at the origin of the pattern diversity observed among related species, and that, when they are placed in the proper conditions, species have the behavioral potential to form patterns observed in related species. The comparative analysis of shelter tube construction by lower termites is consistent with this hypothesis. Although the use of shelter tubes in natural conditions is variable among species, most modern species have the potential to build them, suggesting that the behavioral rules for shelter tube construction evolved once in the common ancestor of modern termites. Our study emphasizes that comparative studies of behavioral rules have the potential to shed light on the evolution of collective behaviors.
Collapse
Affiliation(s)
- Nobuaki Mizumoto
- School of Life SciencesArizona State UniversityISTB1, 423, East MallTempeAZ85287‐9425USA
- Okinawa Institute of Science & Technology Graduate University1919–1 TanchaOnna‐sonOkinawa904–0495Japan
| | - Thomas Bourguignon
- Okinawa Institute of Science & Technology Graduate University1919–1 TanchaOnna‐sonOkinawa904–0495Japan
- Faculty of Forestry and Wood SciencesCzech University of Life SciencesKamycka 129, 16521PrahaCzech Republic
| |
Collapse
|
25
|
Somogyi AÁ, Tartally A, Maák IE, Barta Z. Colony size, nestmate density and social history shape behavioural variation in
Formica fusca
colonies. Ethology 2020. [DOI: 10.1111/eth.13022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anna Ágnes Somogyi
- Department of Evolutionary Zoology and Human Biology University of Debrecen Debrecen Hungary
- Juhász-Nagy Pál Doctoral School University of Debrecen Debrecen Hungary
| | - András Tartally
- Department of Evolutionary Zoology and Human Biology University of Debrecen Debrecen Hungary
| | - István Elek Maák
- Department of Ecology University of Szeged Szeged Hungary
- Museum and Institute of Zoology Polish Academy of Sciences Warsaw Poland
| | - Zoltán Barta
- MTA‐DE Behavioural Ecology Research Group Department of Evolutionary Zoology and Human Biology University of Debrecen Debrecen Hungary
| |
Collapse
|
26
|
The effect of nest topology on spatial organization and recruitment in the red ant Myrmica rubra. Naturwissenschaften 2020; 107:23. [PMID: 32436082 DOI: 10.1007/s00114-020-01675-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
Nests of social insects are an important area for the exchange of food and information among workers. We investigated how the topology of nest chambers (as opposed to nest size or environmental factors) affects the spatial distribution of nestmates and the foraging behavior of Myrmica rubra ant colonies. Colonies were housed in artificial nests, each with same-sized chambers differing in the spatial arrangement of galleries. A highly connected central chamber favored higher occupancy rates and a more homogeneous distribution of ants across chambers. In contrast, a chain of successive chambers led to a more heterogeneous distribution of ants, with the occupancy of a chamber chiefly mediated by its distance to the entrance. Irrespective of nest topology, the entrance chamber housed the largest proportion of ants, often including the queen, which exhibited a preference for staying in densely populated chambers. Finally, we investigated how nest topology influenced nestmate recruitment. Surprisingly, a highly connected chamber in the center of the nest did not promote greater recruitment nor activation of ants. At the onset of foraging, the largest number of moving ants was reached in the topology where the most connected chamber was the nest entrance. Later in the process, we found that a chain of successive chambers was the best topology for promoting ant's mobilization. Our work demonstrates that nest topology can shape the spatial organization and the collective response of ant colonies, thereby taking part in their adaptative strategies to exploit environmental resources.
Collapse
|
27
|
Lehue M, Collignon B, Detrain C. Multiple nest entrances alter foraging and information transfer in ants. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191330. [PMID: 32257309 PMCID: PMC7062076 DOI: 10.1098/rsos.191330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/17/2020] [Indexed: 05/02/2023]
Abstract
The ecological success of ants relies on their ability to discover and collectively exploit available resources. In this process, the nest entrances are key locations at which foragers transfer food and information about the surrounding environment. We assume that the number of nest entrances regulates social exchanges between foragers and inner-nest workers, and hence influences the foraging efficiency of the whole colony. Here, we compared the foraging responses of Myrmica rubra colonies settled in either one-entrance or two-entrance nests. The total outflows of workers exploiting a sucrose food source were similar regardless of the number of nest entrances. However, in the two-entrance nests, the launching of recruitment was delayed, a pheromone trail was less likely to emerge between the nest and the food source, and recruits were less likely to reach the food target. As a result, an additional entrance through which information could transit decreased the efficiency of social foraging and ultimately led to a lower amount of retrieved food. Our study confirms the key-role of nest entrances in the transfer of information from foragers to potential recruits. The influence of the number of entrances on the emergence of a collective trail also highlights the spatially extended impact of the nest architecture that can shape foraging patterns outside the nest.
Collapse
Affiliation(s)
- Marine Lehue
- Université Libre de Bruxelles, Bruxelles, Belgium
| | - Bertrand Collignon
- Université Libre de Bruxelles, Bruxelles, Belgium
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
28
|
Penn A, Turner JS. Can we identify general architectural principles that impact the collective behaviour of both human and animal systems? Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2018.0253. [PMID: 29967308 PMCID: PMC6030581 DOI: 10.1098/rstb.2018.0253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2018] [Indexed: 11/26/2022] Open
Abstract
The search for general common principles that unify disciplines is a longstanding challenge for interdisciplinary research. Architecture has always been an interdisciplinary pursuit, combining engineering, art and culture. The rise of biomimetic architecture adds to the interdisciplinary span. We discuss the similarities and differences among human and animal societies in how architecture influences their collective behaviour. We argue that the emergence of a fully biomimetic architecture involves breaking down what we call ‘pernicious dualities’ that have permeated our discourse for decades, artificial divisions between species, between organism and environment, between genotype and phenotype, and in the case of architecture, the supposed duality between the built environment and its builders. We suggest that niche construction theory may serve as a starting point for unifying our thinking across disciplines, taxa and spatial scales. This article is part of the theme issue ‘Interdisciplinary approaches for uncovering the impacts of architecture on collective behaviour’.
Collapse
Affiliation(s)
- Alan Penn
- The Bartlett School of Architecture, Faculty of the Built Environment, University College of London, London, UK
| | - J Scott Turner
- Department of Environmental and Forest Biology, SUNY College of Environmental Science & Forestry, Syracuse, NY, USA.,Stellenbosch Institute for Advanced Study, Stellenbosch, South Africa
| |
Collapse
|
29
|
Singh K, Muljadi BP, Raeini AQ, Jost C, Vandeginste V, Blunt MJ, Theraulaz G, Degond P. The architectural design of smart ventilation and drainage systems in termite nests. SCIENCE ADVANCES 2019; 5:eaat8520. [PMID: 30915392 PMCID: PMC6430624 DOI: 10.1126/sciadv.aat8520] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/31/2019] [Indexed: 05/19/2023]
Abstract
Termite nests have been widely studied as effective examples for ventilation and thermoregulation. However, the mechanisms by which these properties are controlled by the microstructure of the outer walls remain unclear. Here, we combine multiscale X-ray imaging with three-dimensional flow field simulations to investigate the impact of the architectural design of nest walls on CO2 exchange, heat transport and water drainage. We show that termites build outer walls that contain both small and percolating large pores at the microscale. The network of larger microscale pores enhances permeability by one to two orders of magnitude compared to the smaller pores alone, and it increases CO2 diffusivity up to eight times. In addition, the pore network offers enhanced thermal insulation and allows quick drainage of rainwater, thereby restoring the ventilation and providing structural stability to the wet nest.
Collapse
Affiliation(s)
- Kamaljit Singh
- Department of Earth Science and Engineering, Imperial College London, SW7 2AZ London, UK
- Corresponding author.
| | - Bagus P. Muljadi
- Department of Chemical and Environmental Engineering, University of Nottingham, NG7 2RD Nottingham, UK
| | - Ali Q. Raeini
- Department of Earth Science and Engineering, Imperial College London, SW7 2AZ London, UK
| | - Christian Jost
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Veerle Vandeginste
- School of Chemistry and GeoEnergy Research Centre, University of Nottingham, University Park, NG7 2RD Nottingham, UK
| | - Martin J. Blunt
- Department of Earth Science and Engineering, Imperial College London, SW7 2AZ London, UK
| | - Guy Theraulaz
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Degond
- Department of Mathematics, Imperial College London, SW7 2AZ London, UK
| |
Collapse
|
30
|
Abstract
Several species of millimetric-sized termites across Africa, Asia, Australia, and South America collectively construct large, meter-sized, porous mound structures that serve to regulate mound temperature, humidity, and gas concentrations. These mounds display varied yet distinctive morphologies that range widely in size and shape. To explain this morphological diversity, we introduce a mathematical model that couples environmental physics to insect behavior: The advection and diffusion of heat and pheromones through a porous medium are modified by the mound geometry and, in turn, modify that geometry through a minimal characterization of termite behavior. Our model captures the range of naturally observed mound shapes in terms of a minimal set of dimensionless parameters and makes testable hypotheses for the response of mound morphology to external temperature oscillations and internal odors. Our approach also suggests mechanisms by which evolutionary changes in odor production rate and construction behavior coupled to simple physical laws can alter the characteristic mound morphology of termites.
Collapse
Affiliation(s)
- Samuel A Ocko
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| | - Alexander Heyde
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - L Mahadevan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138;
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Department of Physics, Harvard University, Cambridge, MA 02138
- Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
31
|
Fisher DN, Haines JA, Boutin S, Dantzer B, Lane JE, Coltman DW, McAdam AG. Indirect effects on fitness between individuals that have never met via an extended phenotype. Ecol Lett 2019; 22:697-706. [PMID: 30740839 DOI: 10.1111/ele.13230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 12/23/2022]
Abstract
Interactions between organisms are ubiquitous and have important consequences for phenotypes and fitness. Individuals can even influence those they never meet, if they have extended phenotypes that alter the environments others experience. North American red squirrels (Tamiasciurus hudsonicus) guard food hoards, an extended phenotype that typically outlives the individual and is usually subsequently acquired by non-relatives. Hoarding by previous owners can, therefore, influence subsequent owners. We found that red squirrels breed earlier and had higher lifetime fitness if the previous hoard owner was a male. This was driven by hoarding behaviour, as males and mid-aged squirrels had the largest hoards, and these effects persisted across owners, such that if the previous owner was male or died in mid-age, subsequent occupants had larger hoards. Individuals can, therefore, influence each other's resource-dependent traits and fitness without ever meeting, such that the past can influence contemporary population dynamics through extended phenotypes.
Collapse
Affiliation(s)
- David N Fisher
- Department for Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Jessica A Haines
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,Department of Biological Sciences, MacEwan University, Edmonton, AB, T5J 4S2, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109-1043, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109-1043, USA
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Andrew G McAdam
- Department for Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
32
|
Ireland T, Garnier S. Architecture, space and information in constructions built by humans and social insects: a conceptual review. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170244. [PMID: 29967305 PMCID: PMC6030583 DOI: 10.1098/rstb.2017.0244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2018] [Indexed: 01/23/2023] Open
Abstract
The similarities between the structures built by social insects and by humans have led to a convergence of interests between biologists and architects. This new, de facto interdisciplinary community of scholars needs a common terminology and theoretical framework in which to ground its work. In this conceptually oriented review paper, we review the terms 'information', 'space' and 'architecture' to provide definitions that span biology and architecture. A framework is proposed on which interdisciplinary exchange may be better served, with the view that this will aid better cross-fertilization between disciplines, working in the areas of collective behaviour and analysis of the structures and edifices constructed by non-humans; and to facilitate how this area of study may better contribute to the field of architecture. We then use these definitions to discuss the informational content of constructions built by organisms and the influence these have on behaviour, and vice versa. We review how spatial constraints inform and influence interaction between an organism and its environment, and examine the reciprocity of space and information on construction and the behaviour of humans and social insects.This article is part of the theme issue 'Interdisciplinary approaches for uncovering the impacts of architecture on collective behaviour'.
Collapse
Affiliation(s)
- Tim Ireland
- Kent School of Architecture, University of Kent, Canterbury, CT2 7NR, UK
| | - Simon Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ07102, USA
| |
Collapse
|
33
|
Varoudis T, Swenson AG, Kirkton SD, Waters JS. Exploring nest structures of acorn dwelling ants with X-ray microtomography and surface-based three-dimensional visibility graph analysis. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170237. [PMID: 29967301 PMCID: PMC6030587 DOI: 10.1098/rstb.2017.0237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2018] [Indexed: 12/16/2022] Open
Abstract
The physical spaces within which organisms live affect their biology and in many cases can be considered part of their extended phenotype. The nests of social insect societies have a fundamental impact on their ability to function as complex superorganisms. Ants in many species excavate elaborate subterranean nests, but others inhabit relatively small pre-formed cavities within rock crevices and hollow seeds. Temnothorax ants, which often nest within acorns, have become a model system for studying collective decision making. While these ants have demonstrated remarkable degrees of rationality and consistent precision with regard to their nest choices, never before has the fine scale internal architecture and spatial organization of their nests been investigated. We used X-ray microtomography to record high-resolution three-dimensional (3D) scans of Temnothorax colonies within their acorns. These data were then quantified using image segmentation and surface-based 3D visibility graph analysis, a new computational methodology for analysing spatial structures. The visibility graph analysis method integrates knowledge from the field of architecture with the empirical study of animal-built structures, thus providing the first methodological cross-disciplinary synergy of these two research areas. We found a surprisingly high surface area and degree of spatial heterogeneity within the acorn nests. Specific regions, such as those associated with the locations of queens and brood, were significantly more conducive to connectivity than others. From an architect's point of view, spatial analysis research has never focused on all-surface 3D movement, as we describe within ant nests. Therefore, we believe our approach will provide new methods for understanding both human design and the comparative biology of habitat spaces.This article is part of the theme issue 'Interdisciplinary approaches for uncovering the impacts of architecture on collective behaviour'.
Collapse
Affiliation(s)
- Tasos Varoudis
- Bartlett School of Architecture, University College London (UCL), 22 Gordon Street, London, WC1H 0QB, UK
| | - Abigail G Swenson
- Department of Biology, Providence College Providence, 1 Cunningham Square, Providence, RI 02918, USA
| | - Scott D Kirkton
- Department of Biological Sciences, Union College, 807 Union St, Schenectady, NY 12308, USA
| | - James S Waters
- Department of Biology, Providence College Providence, 1 Cunningham Square, Providence, RI 02918, USA
| |
Collapse
|
34
|
The complex nest architecture of the Ponerinae ant Odontomachus chelifer. PLoS One 2018; 13:e0189896. [PMID: 29298335 PMCID: PMC5752012 DOI: 10.1371/journal.pone.0189896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/04/2017] [Indexed: 11/27/2022] Open
Abstract
In social insects, nests are very important structures built to provide a protected microhabitat for immature development and food storage and are the places where most interactions between all members of a colony occur. Considering that nest architecture is an important behavioural trait that can clarify essential points of the social level of the species, here we describe the architectural model of the Ponerinae ant Odontomachus chelifer. Five subterranean nests were excavated; one of them filled with liquid cement for extraction of casts of chambers, shafts and tunnels. All nests were found in a woodland area, with Dystrophic Red Latosol soil, associated with roots of large trees and, differently from the pattern currently described for this subfamily, presented a complex structure with multiple entrances and more than one vertical shaft connected by tunnels to relatively horizontal chambers. The number of chambers varied from 24 to 77, with mean volume ranging from 200.09 cm3 to 363.79 cm3, and maximum depth of 134 cm. Worker population varied between 304 and 864 individuals with on average 8.28 cm2 of area per worker. All nests had at least one Hall, which is a relatively larger chamber serving as a distribution centre of the nest, and to our knowledge, there is no record of Ponerinae species building similar structure. All nests had chambers "paved" with pieces of decaying plant material and on the floor of some of them, we found a fungus whose identification and function are being investigated. Thus, our findings provide evidence to suggest that nests of O. chelifer can be considered complex, due to the great number and organization of chambers, shafts and connections, compared to those currently described for Ponerinae species.
Collapse
|
35
|
Morin A, Lopes Cardozo D, Chikkadi V, Bartolo D. Diffusion, subdiffusion, and localization of active colloids in random post lattices. Phys Rev E 2017; 96:042611. [PMID: 29347592 DOI: 10.1103/physreve.96.042611] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Combining experiments and theory, we address the dynamics of self-propelled particles in crowded environments. We first demonstrate that motile colloids cruising at constant speed through random lattices undergo a smooth transition from diffusive to subdiffusive to localized dynamics upon increasing the obstacle density. We then elucidate the nature of these transitions by performing extensive simulations constructed from a detailed analysis of the colloid-obstacle interactions. We evidence that repulsion at a distance and hard-core interactions both contribute to slowing down the long-time diffusion of the colloids. In contrast, the localization transition stems solely from excluded-volume interactions and occurs at the void-percolation threshold. Within this critical scenario, equivalent to that of the random Lorentz gas, genuine asymptotic subdiffusion is found only at the critical density where the motile particles explore a fractal maze.
Collapse
Affiliation(s)
- Alexandre Morin
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - David Lopes Cardozo
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Vijayakumar Chikkadi
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Denis Bartolo
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|