1
|
Dates J, Kolosov D. Voltage-gated ion channels as novel regulators of epithelial ion transport in the osmoregulatory organs of insects. FRONTIERS IN INSECT SCIENCE 2024; 4:1385895. [PMID: 38835480 PMCID: PMC11148248 DOI: 10.3389/finsc.2024.1385895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024]
Abstract
Voltage-gated ion channels (VGICs) respond to changes in membrane potential (Vm) and typically exhibit fast kinetic properties. They play an important role in signal detection and propagation in excitable tissues. In contrast, the role of VGICs in non-excitable tissues like epithelia is less studied and less clear. Studies in epithelia of vertebrates and invertebrates demonstrate wide expression of VGICs in epithelia of animals. Recently, VGICs have emerged as regulators of ion transport in the Malpighian tubules (MTs) and other osmoregulatory organs of insects. This mini-review aims to concisely summarize which VGICs have been implicated in the regulation of ion transport in the osmoregulatory epithelia of insects to date, and highlight select groups for further study. We have also speculated on the roles VGICs may potentially play in regulating processes connected directly to ion transport in insects (e.g., acid-base balance, desiccation, thermal tolerance). This review is not meant to be exhaustive but should rather serve as a thought-provoking collection of select existing highlights on VGICs, and to emphasize how understudied this mechanism of ion transport regulation is in insect epithelia.
Collapse
Affiliation(s)
- Jocelyne Dates
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States
| | - Dennis Kolosov
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States
| |
Collapse
|
2
|
Picinic B, Paluzzi JPV, Donini A. Protein localization of aquaporins in the adult female disease vector mosquito, Aedes aegypti. FRONTIERS IN INSECT SCIENCE 2024; 4:1365651. [PMID: 38699443 PMCID: PMC11064791 DOI: 10.3389/finsc.2024.1365651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024]
Abstract
The female Aedes aegypti mosquito is a vector for several arboviral diseases, due to their blood feeding behavior and their association with urban communities. While ion transport in Ae. aegypti has been studied, much less is known about mechanisms of water transport. Rapid water and ion excretion occurs in the adult female mosquito post blood meal and involves a set of organs including the midgut, Malpighian tubules (MTs), and hindgut. The MTs are responsible for the formation of primary urine and are considered the most important site for active transport of ions. Within the cells of the MTs, along with various ion transporters, there are aquaporin water channels that aid in the transport of water across the tubule cell membrane. Six aquaporin genes have been molecularly identified in Ae. aegypti (AQP1-6) and found to be responsible for the transport of water and in some cases, small solutes such as glycerol. In this study, we used immunohistochemistry to localize AaAQP1, 2, 4, 5, and 6 in the adult female Ae. aegypti, in non-blood fed and post blood feeding (0.5 and 24hr) conditions. We further examined the main water transporting aquaporin, AaAQP1, using western blotting to determine protein abundance changes in isolated MTs pre- and post-blood feeding. Using fluorescence in situ hybridization, aqp1 mRNA was found exclusively in the principal cells of female MTs. Finally, we used immunogold staining with transmission electron microscopy to determine subcellular localization of AaAQP1 in the Malpighian tubules under non-blood fed conditions. Interestingly, AaAQP1 was found to be predominantly in the principal cells of the MTs, dispersed throughout the brush border; however, there was also evidence of some AaAQP1 localization in the stellate cells of the MTs.
Collapse
Affiliation(s)
| | | | - Andrew Donini
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
3
|
Sajadi F, Paluzzi JPV. Molecular characterization, localization, and physiological roles of ITP and ITP-L in the mosquito, Aedes aegypti. FRONTIERS IN INSECT SCIENCE 2024; 4:1374325. [PMID: 38654748 PMCID: PMC11035804 DOI: 10.3389/finsc.2024.1374325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
The insect ion transport peptide (ITP) and its alternatively spliced variant, ITP-like peptide (ITP-L), belong to the crustacean hyperglycemic hormone family of peptides and are widely conserved among insect species. While limited, studies have characterized the ITP/ITP-L signaling system within insects, and putative functions including regulation of ion and fluid transport, ovarian maturation, and thirst/excretion have been proposed. Herein, we aimed to molecularly investigate Itp and Itp-l expression profiles in the mosquito, Aedes aegypti, examine peptide immunolocalization and distribution within the adult central nervous system, and elucidate physiological roles for these neuropeptides. Transcript expression profiles of both AedaeItp and AedaeItp-l revealed distinct enrichment patterns in adults, with AedaeItp expressed in the brain and AedaeItp-l expression predominantly within the abdominal ganglia. Immunohistochemical analysis within the central nervous system revealed expression of AedaeITP peptide in a number of cells in the brain and in the terminal ganglion. Comparatively, AedaeITP-L peptide was localized solely within the pre-terminal abdominal ganglia of the central nervous system. Interestingly, prolonged desiccation stress caused upregulation of AedaeItp and AedaeItp-l levels in adult mosquitoes, suggesting possible functional roles in water conservation and feeding-related activities. RNAi-mediated knockdown of AedaeItp caused an increase in urine excretion, while knockdown of both AedaeItp and AedaeItp-l reduced blood feeding and egg-laying in females as well as hindered egg viability, suggesting roles in reproductive physiology and behavior. Altogether, this study identifies AedaeITP and AedaeITP-L as key pleiotropic hormones, regulating various critical physiological processes in the disease vector, A. aegypti.
Collapse
|
4
|
Farrell S, Dates J, Ramirez N, Hausknecht-Buss H, Kolosov D. Voltage-gated ion channels are expressed in the Malpighian tubules and anal papillae of the yellow fever mosquito (Aedes aegypti), and may regulate ion transport during salt and water imbalance. J Exp Biol 2024; 227:jeb246486. [PMID: 38197515 PMCID: PMC10912814 DOI: 10.1242/jeb.246486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Vectors of infectious disease include several species of Aedes mosquitoes. The life cycle of Aedes aegypti, the yellow fever mosquito, consists of a terrestrial adult and an aquatic larval life stage. Developing in coastal waters can expose larvae to fluctuating salinity, causing salt and water imbalance, which is addressed by two prime osmoregulatory organs - the Malpighian tubules (MTs) and anal papillae (AP). Voltage-gated ion channels (VGICs) have recently been implicated in the regulation of ion transport in the osmoregulatory epithelia of insects. In the current study, we: (i) generated MT transcriptomes of freshwater-acclimated and brackish water-exposed larvae of Ae. aegypti, (ii) detected expression of several voltage-gated Ca2+, K+, Na+ and non-ion-selective ion channels in the MTs and AP using transcriptomics, PCR and gel electrophoresis, (iii) demonstrated that mRNA abundance of many altered significantly following brackish water exposure, and (iv) immunolocalized CaV1, NALCN, TRP/Painless and KCNH8 in the MTs and AP of larvae using custom-made antibodies. We found CaV1 to be expressed in the apical membrane of MTs of both larvae and adults, and its inhibition to alter membrane potentials of this osmoregulatory epithelium. Our data demonstrate that multiple VGICs are expressed in osmoregulatory epithelia of Ae. aegypti and may play an important role in the autonomous regulation of ion transport.
Collapse
Affiliation(s)
- Serena Farrell
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Jocelyne Dates
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Nancy Ramirez
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Hannah Hausknecht-Buss
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Dennis Kolosov
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| |
Collapse
|
5
|
Sajadi F, Vergara-Martínez MF, Paluzzi JPV. The V-type H +-ATPase is targeted in antidiuretic hormone control of the Malpighian "renal" tubules. Proc Natl Acad Sci U S A 2023; 120:e2308602120. [PMID: 38096413 PMCID: PMC10743368 DOI: 10.1073/pnas.2308602120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Like other insects, secretion by mosquito Malpighian tubules (MTs) is driven by the V-type H+-ATPase (VA) localized in the apical membrane of principal cells. In Aedes aegypti, the antidiuretic neurohormone CAPA inhibits secretion by MTs stimulated by select diuretic hormones; however, the cellular effectors of this inhibitory signaling cascade remain unclear. Herein, we demonstrate that the VA inhibitor bafilomycin selectively inhibits serotonin (5HT)- and calcitonin-related diuretic hormone (DH31)-stimulated secretion. VA activity increases in DH31-treated MTs, whereas CAPA abolishes this increase through a NOS/cGMP/PKG signaling pathway. A critical feature of VA activation involves the reversible association of the cytosolic (V1) and membrane (Vo) complexes. Indeed, higher V1 protein abundance was found in membrane fractions of DH31-treated MTs, whereas CAPA significantly decreased V1 abundance in membrane fractions while increasing it in cytosolic fractions. V1 immunolocalization was observed strictly in the apical membrane of DH31-treated MTs, whereas immunoreactivity was dispersed following CAPA treatment. VA complexes colocalized apically in female MTs shortly after a blood meal consistent with the peak and postpeak phases of diuresis. Comparatively, V1 immunoreactivity in MTs was more dispersed and did not colocalize with the Vo complex in the apical membrane at 3 h post blood meal, representing a time point after the late phase of diuresis has concluded. Therefore, CAPA inhibition of MTs involves reducing VA activity and promotes complex dissociation hindering secretion. Collectively, these findings reveal a key target in hormone-mediated inhibition of MTs countering diuresis that provides a deeper understanding of this critical physiological process necessary for hydromineral balance.
Collapse
Affiliation(s)
- Farwa Sajadi
- Department of Biology, York University, Toronto, ONM3J 1P3, Canada
| | - María Fernanda Vergara-Martínez
- Department of Biology, York University, Toronto, ONM3J 1P3, Canada
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, 04510, México
| | | |
Collapse
|
6
|
Xu W, Li G, Chen Y, Ye X, Song W. A novel antidiuretic hormone governs tumour-induced renal dysfunction. Nature 2023; 624:425-432. [PMID: 38057665 DOI: 10.1038/s41586-023-06833-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Maintenance of renal function and fluid transport are essential for vertebrates and invertebrates to adapt to physiological and pathological challenges. Human patients with malignant tumours frequently develop detrimental renal dysfunction and oliguria, and previous studies suggest the involvement of chemotherapeutic toxicity and tumour-associated inflammation1,2. However, how tumours might directly modulate renal functions remains largely unclear. Here, using conserved tumour models in Drosophila melanogaster3, we characterized isoform F of ion transport peptide (ITPF) as a fly antidiuretic hormone that is secreted by a subset of yki3SA gut tumour cells, impairs renal function and causes severe abdomen bloating and fluid accumulation. Mechanistically, tumour-derived ITPF targets the G-protein-coupled receptor TkR99D in stellate cells of Malpighian tubules-an excretory organ that is equivalent to renal tubules4-to activate nitric oxide synthase-cGMP signalling and inhibit fluid excretion. We further uncovered antidiuretic functions of mammalian neurokinin 3 receptor (NK3R), the homologue of fly TkR99D, as pharmaceutical blockade of NK3R efficiently alleviates renal tubular dysfunction in mice bearing different malignant tumours. Together, our results demonstrate a novel antidiuretic pathway mediating tumour-renal crosstalk across species and offer therapeutic opportunities for the treatment of cancer-associated renal dysfunction.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Gerui Li
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Yuan Chen
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
| | - Wei Song
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Koyama T, Rana DW, Halberg KV. Managing fuels and fluids: Network integration of osmoregulatory and metabolic hormonal circuits in the polymodal control of homeostasis in insects. Bioessays 2023; 45:e2300011. [PMID: 37327252 DOI: 10.1002/bies.202300011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Osmoregulation in insects is an essential process whereby changes in hemolymph osmotic pressure induce the release of diuretic or antidiuretic hormones to recruit individual osmoregulatory responses in a manner that optimizes overall homeostasis. However, the mechanisms by which different osmoregulatory circuits interact with other homeostatic networks to implement the correct homeostatic program remain largely unexplored. Surprisingly, recent advances in insect genetics have revealed several important metabolic functions are regulated by classic osmoregulatory pathways, suggesting that internal cues related to osmotic and metabolic perturbations are integrated by the same hormonal networks. Here, we review our current knowledge on the network mechanisms that underpin systemic osmoregulation and discuss the remarkable parallels between the hormonal networks that regulate body fluid balance and those involved in energy homeostasis to provide a framework for understanding the polymodal optimization of homeostasis in insects.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Danial Wasim Rana
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
8
|
Finetti L, Paluzzi JP, Orchard I, Lange AB. Octopamine and tyramine signalling in Aedes aegypti: Molecular characterization and insight into potential physiological roles. PLoS One 2023; 18:e0281917. [PMID: 36795713 PMCID: PMC9934454 DOI: 10.1371/journal.pone.0281917] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
In insects, the biogenic amines octopamine (OA) and tyramine (TA) are involved in controlling several physiological and behavioural processes. OA and TA act as neurotransmitters, neuromodulators or neurohormones, performing their functions by binding to specific receptors belonging to the G protein-coupled receptor (GPCR) superfamily. OA and TA along with their receptors are involved in reproduction, smell perception, metabolism, and homeostasis. Moreover, OA and TA receptors are targets for insecticides and antiparasitic agents, such as the formamidine Amitraz. In the dengue and yellow fever vector, Aedes aegypti, limited research has been reported on their OA or TA receptors. Here, we identify and molecularly characterize the OA and TA receptors in A. aegypti. Bioinformatic tools were used to identify four OA and three TA receptors in the genome of A. aegypti. The seven receptors are expressed in all developmental stages of A. aegypti; however, their highest transcript abundance is observed in the adult. Among several adult A. aegypti tissues examined, including the central nervous system, antennae and rostrum, midgut, Malpighian tubules, ovaries, and testes, the type 2 TA receptor (TAR2) transcript is most abundant in the ovaries and the type 3 TA receptor (TAR3) is enriched in the Malpighian tubules, leading us to propose putative roles for these receptors in reproduction and diuresis, respectively. Furthermore, a blood meal influenced OA and TA receptor transcript expression patterns in adult female tissues at several time points post blood meal, suggesting these receptors may play key physiological roles associated with feeding. To better understand OA and TA signalling in A. aegypti, the transcript expression profiles of key enzymes in their biosynthetic pathway, namely tyrosine decarboxylase (Tdc) and tyramine β-hydroxylase (Tβh), were examined in developmental stages, adult tissues, and brains from blood-fed females. These findings provide information for better understanding the physiological roles of OA, TA, and their receptors in A. aegypti, and additionally, may help in the development of novel strategies for the control of these human disease vectors.
Collapse
Affiliation(s)
- Luca Finetti
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- * E-mail:
| | | | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B. Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
9
|
Orchard I, Leyria J, Al-Dailami A, Lange AB. Fluid Secretion by Malpighian Tubules of Rhodnius prolixus: Neuroendocrine Control With New Insights From a Transcriptome Analysis. Front Endocrinol (Lausanne) 2021; 12:722487. [PMID: 34512553 PMCID: PMC8426621 DOI: 10.3389/fendo.2021.722487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023] Open
Abstract
Rhodnius prolixus (the kissing bug and a major vector of Chagas disease) is an obligate blood feeder that in the case of the fifth instar consumes up to 10 times its unfed body weight in a single 20-minute feed. A post-prandial diuresis is initiated, within minutes of the start of gorging, in order to lower the mass and concentrate the nutrients of the meal. Thus, R. prolixus rapidly excretes a fluid that is high in NaCl content and hypo-osmotic to the hemolymph, thereby eliminating 50% of the volume of the blood meal within 3 hours of gorging. In R. prolixus, as with other insects, the Malpighian tubules play a critical role in diuresis. Malpighian tubules are not innervated, and their fine control comes under the influence of the neuroendocrine system that releases amines and neuropeptides as diuretic or antidiuretic hormones. These hormones act upon the Malpighian tubules via a variety of G protein-coupled receptors linked to second messenger systems that influence ion transporters and aquaporins; thereby regulating fluid secretion. Much has been discovered about the control of diuresis in R. prolixus, and other model insects, using classical endocrinological studies. The post-genomic era, however, has brought new insights, identifying novel diuretic and antidiuretic hormone-signaling pathways whilst also validating many of the classical discoveries. This paper will focus on recent discoveries into the neuroendocrine control of the rapid post-prandial diuresis in R. prolixus, in order to emphasize new insights from a transcriptome analysis of Malpighian tubules taken from unfed and fed bugs.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | | | | |
Collapse
|
10
|
Kolosov D, Leonard EM, O'Donnell MJ. Voltage-gated calcium channels regulate K + transport in the Malpighian tubules of the larval cabbage looper, Trichoplusia ni. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104230. [PMID: 33766540 DOI: 10.1016/j.jinsphys.2021.104230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Transporting epithelia are tissues that specialize in the directional movements of ions and water and are typically either secretory or reabsorptive. Recent work on the Malpighian tubule of larval lepidopterans (caterpillars) demonstrated that the distal ileac plexus segment of this epithelium is capable of rapidly switching between ion secretion and reabsorption. Subsequent transcriptomic studies suggested expression of voltage-gated ion channels in the lepidopteran MTs (which are not contractile and not innervated). The present study shows that isolated MTs of larval Trichoplusia ni express α1, β2, and α2δ4 subunits of voltage-gated Ca2+ channel CaV1 and that pan-CaVα immunoreactivity is present in the apical and basolateral membranes of the principal cells. Basolateral membrane potential (Vbl) in isolated MTs of larval Trichoplusia ni was influenced by CaV1 functioning; pharmacological inhibition of CaV1 reversed Vbl from inside-negative to inside-positive, and also reduced transepithelial potential (Vte), lowered [Ca2+]i and reversed the direction of K+ transport from secretion to reabsorption. Thus, our findings indicate that a functional CaV1 channel is necessary for constitutive K+ secretion observed in isolated preparations of lepidopteran MTs. Lastly, Vte and Vbl of isolated MTs were influenced by changes in bathing saline [K+]. Our findings suggest that epithelia may rely on CaV channels to enable robust ion secretion and downregulation of CaV channels, together with other transcriptional changes, enables ion reabsorption.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, United States.
| | - Erin M Leonard
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario L8S4K1, Canada
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario L8S4K1, Canada
| |
Collapse
|
11
|
Zandawala M, Nguyen T, Balanyà Segura M, Johard HAD, Amcoff M, Wegener C, Paluzzi JP, Nässel DR. A neuroendocrine pathway modulating osmotic stress in Drosophila. PLoS Genet 2021; 17:e1009425. [PMID: 33684132 PMCID: PMC7971876 DOI: 10.1371/journal.pgen.1009425] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/18/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Environmental factors challenge the physiological homeostasis in animals, thereby evoking stress responses. Various mechanisms have evolved to counter stress at the organism level, including regulation by neuropeptides. In recent years, much progress has been made on the mechanisms and neuropeptides that regulate responses to metabolic/nutritional stress, as well as those involved in countering osmotic and ionic stresses. Here, we identified a peptidergic pathway that links these types of regulatory functions. We uncover the neuropeptide Corazonin (Crz), previously implicated in responses to metabolic stress, as a neuroendocrine factor that inhibits the release of a diuretic hormone, CAPA, and thereby modulates the tolerance to osmotic and ionic stress. Both knockdown of Crz and acute injections of Crz peptide impact desiccation tolerance and recovery from chill-coma. Mapping of the Crz receptor (CrzR) expression identified three pairs of Capa-expressing neurons (Va neurons) in the ventral nerve cord that mediate these effects of Crz. We show that Crz acts to restore water/ion homeostasis by inhibiting release of CAPA neuropeptides via inhibition of cAMP production in Va neurons. Knockdown of CrzR in Va neurons affects CAPA signaling, and consequently increases tolerance for desiccation, ionic stress and starvation, but delays chill-coma recovery. Optogenetic activation of Va neurons stimulates excretion and simultaneous activation of Crz and CAPA-expressing neurons reduces this response, supporting the inhibitory action of Crz. Thus, Crz inhibits Va neurons to maintain osmotic and ionic homeostasis, which in turn affects stress tolerance. Earlier work demonstrated that systemic Crz signaling restores nutrient levels by promoting food search and feeding. Here we additionally propose that Crz signaling also ensures osmotic homeostasis by inhibiting release of CAPA neuropeptides and suppressing diuresis. Thus, Crz ameliorates stress-associated physiology through systemic modulation of both peptidergic neurosecretory cells and the fat body in Drosophila.
Collapse
Affiliation(s)
- Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Thomas Nguyen
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Marta Balanyà Segura
- Neurobiology and Genetics, Würzburg Insect Research (WIR), Theodor-Boveri-Institute, Biocenter, University of Würzburg, Germany
| | | | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Christian Wegener
- Neurobiology and Genetics, Würzburg Insect Research (WIR), Theodor-Boveri-Institute, Biocenter, University of Würzburg, Germany
| | | | - Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
12
|
Lajevardi A, Paluzzi JPV. Receptor Characterization and Functional Activity of Pyrokinins on the Hindgut in the Adult Mosquito, Aedes aegypti. Front Physiol 2020; 11:490. [PMID: 32528310 PMCID: PMC7255104 DOI: 10.3389/fphys.2020.00490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/21/2020] [Indexed: 01/29/2023] Open
Abstract
Pyrokinins are structurally related insect neuropeptides, characterized by their myotropic, pheromonotropic and melanotropic roles in some insects, but their function is unclear in blood-feeding arthropods. In the present study, we functionally characterized the pyrokinin-1 and pyrokinin-2 receptors (PK1-R and PK2-R, respectively), in the yellow fever mosquito, Aedes aegypti, using a heterologous cell system to characterize their selective and dose-responsive activation by members of two distinct pyrokinin subfamilies. We also assessed transcript-level expression of these receptors in adult organs and found the highest level of PK1-R transcript in the posterior hindgut (rectum) while PK2-R expression was enriched in the anterior hindgut (ileum) as well as in reproductive organs, suggesting these to be prominent target sites for their peptidergic ligands. In support of this, PRXa-like immunoreactivity (where X = V or L) was localized to innervation along the hindgut. Indeed, we identified a myoinhibitory role for a PK2 on the ileum where PK2-R transcript was enriched. However, although we found that PK1 did not influence myoactivity or Na+ transport in isolated recta, the PRXa-like immunolocalization terminating in close association to the rectal pads and the significant enrichment of PK1-R transcript in the rectum suggests this organ could be a target of PK1 signaling and may regulate the excretory system in this important disease vector species.
Collapse
Affiliation(s)
- Aryan Lajevardi
- Laboratory of Integrative Vector Neuroendocrinology, Department of Biology, York University, Toronto, ON, Canada
| | - Jean-Paul V Paluzzi
- Laboratory of Integrative Vector Neuroendocrinology, Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
13
|
Sajadi F, Uyuklu A, Paputsis C, Lajevardi A, Wahedi A, Ber LT, Matei A, Paluzzi JPV. CAPA neuropeptides and their receptor form an anti-diuretic hormone signaling system in the human disease vector, Aedes aegypti. Sci Rep 2020; 10:1755. [PMID: 32020001 PMCID: PMC7000730 DOI: 10.1038/s41598-020-58731-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/20/2020] [Indexed: 01/07/2023] Open
Abstract
Insect CAPA neuropeptides are homologs of mammalian neuromedin U and are known to influence ion and water balance by regulating the activity of the Malpighian 'renal' tubules (MTs). Several diuretic hormones are known to increase primary fluid and ion secretion by insect MTs and, in adult female mosquitoes, a calcitonin-related peptide (DH31) called mosquito natriuretic peptide, increases sodium secretion to compensate for the excess salt load acquired during blood-feeding. An endogenous mosquito anti-diuretic hormone was recently described, having potent inhibitory activity against select diuretic hormones, including DH31. Herein, we functionally deorphanized, both in vitro and in vivo, a mosquito anti-diuretic hormone receptor (AedaeADHr) with expression analysis indicating highest enrichment in the MTs where it is localized within principal cells. Characterization using a heterologous in vitro system demonstrated the receptor was highly sensitive to mosquito CAPA neuropeptides while in vivo, AedaeADHr knockdown abolished CAPA-induced anti-diuretic control of DH31-stimulated MTs. CAPA neuropeptides are produced within a pair of neurosecretory cells in each of the abdominal ganglia, whose axonal projections innervate the abdominal neurohaemal organs, where these neurohormones are released into circulation. Lastly, pharmacological inhibition of nitric oxide synthase (NOS) and protein kinase G (PKG) signaling eliminated anti-diuretic activity of CAPA, highlighting the role of the second messenger cGMP and NOS/PKG in this anti-diuretic signaling pathway.
Collapse
Affiliation(s)
- Farwa Sajadi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Ali Uyuklu
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Christine Paputsis
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Aryan Lajevardi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Azizia Wahedi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Lindsay Taylor Ber
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Andreea Matei
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
14
|
Yu N, Han C, Liu Z. In silico identification of the neuropeptidome of the pond wolf spider Pardosa pseudoannulata. Gen Comp Endocrinol 2020; 285:113271. [PMID: 31525378 DOI: 10.1016/j.ygcen.2019.113271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/27/2019] [Accepted: 09/12/2019] [Indexed: 01/09/2023]
Abstract
Neuropeptides have been successfully documented in numerous arthropod species via in silico prediction from transcriptomic and genomic data. We recently sequenced the genome and nine transcriptomes of a chelicerate species, the pond wolf spider, Pardosa pseudoannulata. Here 43 neuropeptide families encoded by 87 neuropeptide genes were identified, among which 84 genes were presented with complete open reading frames. The neuropeptide genes often had paralogs and paralogous genes showed different expression profiles in nine transcriptomes. Six crustacean hyperglycemic hormone/ion transport peptide-like (CHH/ITP) genes were predicted and CHH/ITP6 was expressed much higher than the others. Orcokinin 1 and orcokinin 2 genes were both expressed in brain at a similar level. But, interestingly, orcokinin 1 gene was ubiquitously expressed in appendages while orcokinin 2 gene was enriched in venom gland to an extreme extent. The expression profiling of neuropeptide genes offers clues for further functional investigation. Paralogous genes were also found to be clustered at scaffolds such as nine insulin-like peptide genes at three scaffolds and six pyrokinin genes at two scaffolds, indicating a result of local gene duplication. In contrast, the four C-type allatostatin family members were scattered at five scaffolds, different from their closely associated locations reported in many arthropod species including several spiders. The comprehensive inventory of P. pseudoannulata neuropeptides here expands our repository of chelicerate neuropeptides and further promotes our understanding of neuropeptide evolution and functions.
Collapse
Affiliation(s)
- Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Chenyang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
15
|
Duvall LB. Mosquito Host-Seeking Regulation: Targets for Behavioral Control. Trends Parasitol 2019; 35:704-714. [PMID: 31326312 DOI: 10.1016/j.pt.2019.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022]
Abstract
Female Aedes aegypti mosquitoes require protein from blood to develop eggs. They have evolved a strong innate drive to find and bite humans and engorge on their blood. Decades of research have revealed that attraction to hosts is suppressed for days after blood-feeding. During this time, females coordinate complex physiological changes, allowing them to utilize blood protein to develop eggs: clearing excess fluid, digesting protein, and egg maturation. How do mechanosensation, nutrient consumption, and reproductive pathways combine to produce the full expression of host-seeking suppression? Understanding mechanisms of endogenous host-seeking suppression may allow them to be 'weaponized' against mosquitoes through exogenous activation and developed as tools for vector control. Recent work allows unprecedented genetic and pharmacological access to characterize and disrupt this behavioral cycle.
Collapse
Affiliation(s)
- Laura B Duvall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
16
|
Kolosov D, O'Donnell MJ. Helicokinin alters ion transport in the secondary cell-containing region of the Malpighian tubule of the larval cabbage looper Trichoplusia ni. Gen Comp Endocrinol 2019; 278:12-24. [PMID: 30012538 DOI: 10.1016/j.ygcen.2018.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/26/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022]
Abstract
Excretion in insects is accomplished by the combined actions of the Malpighian tubules (MTs) and hindgut, which together form the functional kidney. MTs of many insect groups consist of principal cells (PC) and secondary cells (SC). In most insect groups SCs are reported to secrete ions from haemolymph into the tubule lumen. Paradoxically, SCs in the MTs of the lepidopteran cabbage looper T. ni are used to reabsorb Na+ and K+ back into haemolymph. The current study was designed to investigate the effects and mode of action of the lepidopteran kinin, Helicokinin (HK), on ion transport in the SC-containing region of MT of T. ni. We identified a HK receptor (HK-R) homologue in T. ni and detected its expression in the SC-containing region of the MTs. The mRNA abundance of hk-r altered in response to changes in dietary K+ and Na+ content. HK-R immunolocalized to both PCs and SCs. Ramsay assays of preparations of the isolated distal ileac plexus (DIP) indicated that [HK] = 10-8 M: (i) decreased fluid secretion rate in unstimulated and serotonin-stimulated preparations, and (ii) increased [Na+]/[K+] ratio in the secreted fluid. Scanning ion-selective electrode technique measurements revealed that HK reduced: (i) K+ secretion by the PCs, and (ii) Na+ reabsorption by the SCs in intact tubules. In vitro incubation of the DIP with HK resulted in reduced mRNA abundance of hk-r as well as Na+/K+-ATPase subunit α (NKAα), Na+/K+/Cl- co-transporter (nkcc), Na+/H+ exchangers (nhe) 7 and 8, and aquaporin (aqp) 1. Taken together, results of the current study suggest that HK is capable of altering fluid secretion rate and [Na+]/[K+] ratio of the fluid, and that HK targets both PCs and SCs in the DIP of T. ni.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada.
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
17
|
Kolosov D, Donly C, MacMillan H, O'Donnell MJ. Transcriptomic analysis of the Malpighian tubules of Trichoplusia ni: Clues to mechanisms for switching from ion secretion to ion reabsorption in the distal ileac plexus. JOURNAL OF INSECT PHYSIOLOGY 2019; 112:73-89. [PMID: 30562492 DOI: 10.1016/j.jinsphys.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/02/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Excretion of metabolic wastes and toxins in insect Malpighian tubules (MTs) is coupled to secretion of ions and fluid. Larval lepidopterans demonstrate a complex and regionalized MT morphology, and recent studies of larvae of the cabbage looper, Trichoplusia ni, have revealed several unusual aspects of ion transport in the MTs. Firstly, cations are reabsorbed via secondary cells (SCs) in T. ni, whereas in most insects SCs secrete ions. Secondly, SCs are coupled to neighbouring principal cells (PCs) via gap junctions to enable such ion reabsorption. Thirdly, PCs in the SC-containing distal ileac plexus (DIP) region of the tubule reverse from cation secretion to reabsorption in response to dietary ion loading. Lastly, antidiuresis is observed in response to a kinin neuropeptide, which targets both PCs and SCs, whereas in most insects kinins are diuretics that act exclusively via SCs. Recent studies have generated a basic model of ion transport in the DIP of the larval T. ni. RNAseq was used to elucidate previously uncharacterised aspects of ion transport and endocrine regulation in the DIP, with the aim of painting a composite picture of ion transport and identifying putative regulatory mechanisms of ion transport reversal in this tissue. Results indicated an overall expression of 9103 transcripts in the DIP, 993 and 382 of which were differentially expressed in the DIP of larvae fed high-K+ and high-Na+ diets respectively. Differentially expressed transcripts include ion-motive ATPases, ion channels and co-transporters, aquaporins, nutrient and xenobiotic transporters, cell adhesion and junction components, and endocrine receptors. Notably, several transcripts for voltage-gated ion channels and cell volume regulation-associated products were detected in the DIP and differentially expressed in larvae fed ion-rich diet. The study provides insights into the transport of solutes (sugars, amino acids, xenobiotics, phosphate and inorganic ions) by the DIP of lepidopterans. Our data suggest that this region of the MT in lepidopterans (as previously reported) transports cations, fluid, and xenobiotics/toxic metals. Besides this, the DIP expresses genes coding for the machinery involved in Na+- and H+-dependent reabsorption of solutes, chloride transport, and base recovery. Additionally, many of the transcripts expressed by the DIP a capacity of this region to respond to, process, and sometimes produce, neuropeptides, steroid hormones and neurotransmitters. Lastly, the DIP appears to possess an arsenal of septate junction components, differential expression of which may indicate junctional restructuring in the DIP of ion-loaded larvae.
Collapse
Affiliation(s)
| | - Cam Donly
- Department of Biology, University of Western Ontario, Canada; London Research and Development Centre, Agriculture and Agri-Food Canada, Canada
| | | | | |
Collapse
|
18
|
Kolosov D, O'Donnell MJ. Malpighian tubules of caterpillars: blending RNAseq and physiology to reveal regional functional diversity and novel epithelial ion transport control mechanisms. J Exp Biol 2019; 222:jeb.211623. [PMID: 31636157 DOI: 10.1242/jeb.211623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022]
Abstract
Malpighian tubules (MTs) and hindgut constitute the functional kidney of insects. MTs are outpouches of the gut and in most insects demonstrate proximodistal heterogeneity in function. In most insects, such heterogeneity is confined to ion/fluid secretion in the distal portion and ion/fluid reabsorption in the proximal portion. In contrast, MTs of larval Lepidoptera (caterpillars of butterflies and moths), are comprised of five regions that differ in their association with the gut, their structure, and ion/fluid transport function. Recent studies have shown that several regions can rapidly and reversibly switch between ion secretion and reabsorption. The current study employed RNAseq, pharmacology and electrophysiology to characterize four distinct regions of the MT in larval Trichoplusia ni. Luminal microelectrode measurements indicate changes in [K+], [Na+] and pH as fluid passes through different regions of the tubule. In addition, the regions examined differ in gene ontology enrichment, and demonstrate robust gradients in expression of ion transporters and endocrine ligand receptors. Lastly, the study provides evidence for direct involvement of voltage-gated and ligand-gated ion channels in epithelial ion transport of insect MTs.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, McMaster University, 524 Life Sciences Building, 1280 Main St West, Hamilton, Ontario, L8S4K1, Canada
| | - Michael J. O'Donnell
- Department of Biology, McMaster University, 524 Life Sciences Building, 1280 Main St West, Hamilton, Ontario, L8S4K1, Canada
| |
Collapse
|
19
|
MacMillan HA, Nazal B, Wali S, Yerushalmi GY, Misyura L, Donini A, Paluzzi JP. Anti-diuretic activity of a CAPA neuropeptide can compromise Drosophila chill tolerance. ACTA ACUST UNITED AC 2018; 221:jeb.185884. [PMID: 30104306 DOI: 10.1242/jeb.185884] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023]
Abstract
For insects, chilling injuries that occur in the absence of freezing are often related to a systemic loss of ion and water balance that leads to extracellular hyperkalemia, cell depolarization and the triggering of apoptotic signalling cascades. The ability of insect ionoregulatory organs (e.g. the Malpighian tubules) to maintain ion balance in the cold has been linked to improved chill tolerance, and many neuroendocrine factors are known to influence ion transport rates of these organs. Injection of micromolar doses of CAPA (an insect neuropeptide) have been previously demonstrated to improve Drosophila cold tolerance, but the mechanisms through which it impacts chill tolerance are unclear, and low doses of CAPA have been previously demonstrated to cause anti-diuresis in insects, including dipterans. Here, we provide evidence that low (femtomolar) and high (micromolar) doses of CAPA impair and improve chill tolerance, respectively, via two different effects on Malpighian tubule ion and water transport. While low doses of CAPA are anti-diuretic, reduce tubule K+ clearance rates and reduce chill tolerance, high doses facilitate K+ clearance from the haemolymph and increase chill tolerance. By quantifying CAPA peptide levels in the central nervous system, we estimated the maximum achievable hormonal titres of CAPA and found further evidence that CAPA may function as an anti-diuretic hormone in Drosophila melanogaster We provide the first evidence of a neuropeptide that can negatively affect cold tolerance in an insect and further evidence of CAPA functioning as an anti-diuretic peptide in this ubiquitous insect model.
Collapse
Affiliation(s)
| | - Basma Nazal
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Sahr Wali
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Gil Y Yerushalmi
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Lidiya Misyura
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | | |
Collapse
|