1
|
Labonte D, Holt NC. Beyond power limits: the kinetic energy capacity of skeletal muscle. J Exp Biol 2024; 227:jeb247150. [PMID: 39234652 PMCID: PMC11529885 DOI: 10.1242/jeb.247150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Muscle is the universal agent of animal movement, and limits to muscle performance are therefore an integral aspect of animal behaviour, ecology and evolution. A mechanical perspective on movement makes it amenable to analysis from first principles, and so brings the seeming certitude of simple physical laws to the challenging comparative study of complex biological systems. Early contributions on movement biomechanics considered muscle energy output to be limited by muscle work capacity, Wmax; triggered by seminal work in the late 1960s, it is now held broadly that a complete analysis of muscle energy output must also consider muscle power capacity, for no unit of work can be delivered in arbitrarily brief time. Here, we adopt a critical stance towards this paradigmatic notion of a power limit, and argue that the alternative constraint to muscle energy output is imposed instead by a characteristic kinetic energy capacity, Kmax, dictated by the maximum speed with which the actuating muscle can shorten. The two critical energies can now be directly compared, and define the physiological similarity index, Γ=Kmax/Wmax. It is the explanatory power of this comparison that lends weight to a shift in perspective from muscle power to kinetic energy capacity, as is argued through a series of illustrative examples. Γ emerges as an important dimensionless number in musculoskeletal dynamics, and sparks novel hypotheses on functional adaptations in musculoskeletal 'design' that depart from the parsimonious evolutionary null hypothesis of geometric similarity.
Collapse
Affiliation(s)
- David Labonte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Natalie C. Holt
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Mangalam M, Isoyama Y, Ogata H, Nose-Ogura S, Kayaba M, Nagai N, Kiyono K. Multi-scaling allometry in human development, mammalian morphology, and tree growth. Sci Rep 2024; 14:19957. [PMID: 39198500 PMCID: PMC11358500 DOI: 10.1038/s41598-024-69199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Various animal and plant species exhibit allometric relationships among their respective traits, wherein one trait undergoes expansion as a power-law function of another due to constraints acting on growth processes. For instance, the acknowledged consensus posits that tree height scales with the two-thirds power of stem diameter. In the context of human development, it is posited that body weight scales with the second power of height. This prevalent allometric relationship derives its nomenclature from fitting two variables linearly within a logarithmic framework, thus giving rise to the term "power-law relationship." Here, we challenge the conventional assumption that a singular power-law equation adequately encapsulates the allometric relationship between any two traits. We strategically leverage quantile regression analysis to demonstrate that the scaling exponent characterizing this power-law relationship is contingent upon the centile within these traits' distributions. This observation fundamentally underscores the proposition that individuals occupying disparate segments of the distribution may employ distinct growth strategies, as indicated by distinct power-law exponents. We introduce the innovative concept of "multi-scale allometry" to encapsulate this newfound insight. Through a comprehensive reevaluation of (i) the height-weight relationship within a cohort comprising 7, 863, 520 Japanese children aged 5-17 years for which the age, sex, height, and weight were recorded as part of a national study, (ii) the stem-diameter-height and crown-radius-height relationships within an expansive sample of 498, 838 georeferenced and taxonomically standardized records of individual trees spanning diverse geographical locations, and (iii) the brain-size-body-size relationship within an extensive dataset encompassing 1, 552 mammalian species, we resolutely substantiate the viability of multi-scale allometric analysis. This empirical substantiation advocates a paradigm shift from uni-scaling to multi-scaling allometric modeling, thereby affording greater prominence to the inherent growth processes that underlie the morphological diversity evident throughout the living world.
Collapse
Affiliation(s)
- Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| | - Yosuke Isoyama
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Hitomi Ogata
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Sayaka Nose-Ogura
- Department of Sports Medicine and Research, Japan High-Performance Sport Center, Japan Institute Sports Sciences, Tokyo, 115-0056, Japan
- Department of Obstetrics and Gynecology, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Momoko Kayaba
- Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Narumi Nagai
- School of Human Science and Environment, University of Hyogo, Himeji, 670-0092, Japan
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| |
Collapse
|
3
|
Böswald LF, Matzek D, von La Roche D, Stahr B, Bawidamann P, Popper B. Investigations on Xenopus laevis body composition and feeding behavior in a laboratory setting. Sci Rep 2024; 14:9517. [PMID: 38664518 PMCID: PMC11045782 DOI: 10.1038/s41598-024-59848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The African clawed frog, Xenopus laevis, has been used as a laboratory animal for decades in many research areas. However, there is a lack of knowledge about the nutritional physiology of this amphibian species and the feeding regimen is not standardized. The aim of the present study was to get more insights into the nutrient metabolism and feeding behavior of the frogs. In Trial 1, adult female X. laevis were fed either a Xenopus diet or a fish feed. After 4 weeks, they were euthanized, weighed, measured for morphometrics and dissected for organ weights and whole-body nutrient analysis. There were no significant differences between the diet groups regarding the allometric data and nutrient contents. The ovary was the major determinant of body weight. Body fat content increased with body weight as indicator of energy reserves. In Trial 2, 40 adult female frogs were monitored with a specifically developed digital tracking system to generate heat-maps of their activity before and up to 25 min after a meal. Three diets (floating, sinking, floating & sinking) were used. The main feed intake activity was fanning the feed into the mouth, peaking until 20 min after the meal. The different swimming characteristics of the diets thereby influenced the activity of the animals. Our dataset helps to adjust the feeding needs to the physical composition and also to meet the natural behavioral patterns of feed intake as a prerequisite of animal wellbeing and animal welfare in a laboratory setting.
Collapse
Affiliation(s)
- Linda F Böswald
- Chair for Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr 8, 85764, Oberschleißheim, Germany
- Biomedical Center, Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany
| | - Dana Matzek
- Biomedical Center, Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany
| | - Dominik von La Roche
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539, München, Germany
| | - Bianca Stahr
- Biomedical Center, Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany
| | - Pascal Bawidamann
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539, München, Germany
| | - Bastian Popper
- Biomedical Center, Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
4
|
Kim YI, Chuang MF, Borzée A, Kwon S, Jang Y. Latitude-Induced and Behaviorally Thermoregulated Variations in Upper Thermal Tolerance of Two Anuran Species. BIOLOGY 2022; 11:1506. [PMID: 36290410 PMCID: PMC9598288 DOI: 10.3390/biology11101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Although thermal tolerance along geographical gradients gives an insight into species' response to climate change, current studies on thermal tolerance are strongly skewed towards global-scale patterns. As a result, intraspecific variations are often assumed to be constant, despite a lack of evidence. To understand population-specific responses to thermal stress, we investigated the presence of intraspecific variations in the critical thermal maximum (CTmax) of tadpoles in two anuran species, Rana uenoi and Bufo sachalinensis. The study was conducted across a five-degree latitudinal gradient in the Republic of Korea. We exposed the tadpoles to increasing temperatures and recorded the CTmax for 270 R. uenoi individuals from 11 sites, collected in rice paddies, and for 240 B. sachalinensis individuals from ten sites, collected in reservoirs. We also recorded the swimming performance and behavior of the tadpoles when placed in an experimental apparatus during CTmax measurements. We then used linear regressions to determine the relationship between abiotic factors and CTmax. In R. uenoi, we found a positive relationship between latitude and CTmax, but the tadpoles did not display specific thermoregulatory behaviors. In B. sachalinensis, none of the abiotic factors such as climate and geographic coordinates were related to CTmax, but we detected a tendency to swim close to the water surface when water temperature was increasing. For R. uenoi, we tentatively relate the CTmax variability across the latitudinal gradient to a physiological adaptive response associated with habitat characteristics that are assumed to be fluctuating, as the species inhabits small water bodies prone to drying out. In the case of B. sachalinensis, the behavior observed may be linked to oxygen depletion and thermoregulation, as it may buffer temperature changes in the absence of physiological adjustment. These findings suggest that intra-specific variations in CTmax are greater than generally accounted for, and thermal conditions of natural environments are important for understanding thermal tolerance in ectothermic species. Our results highlight that species' specific responses to climate warmings need to be studied to better protect species against climate change.
Collapse
Affiliation(s)
- Ye Inn Kim
- Korea Environment Institute, Sejong 30147, Republic of Korea
| | - Ming-Feng Chuang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Amaël Borzée
- Laboratory of Animal Behaviour and Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Sera Kwon
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yikweon Jang
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
5
|
Does Exposure to Predator Cues Influence Movement Behavior of Postmetamorphic Juvenile Rana aurora? J HERPETOL 2022. [DOI: 10.1670/21-035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Keeffe R, Blackburn DC. Diversity and function of the fused anuran radioulna. J Anat 2022; 241:1026-1038. [PMID: 35962544 PMCID: PMC9482697 DOI: 10.1111/joa.13737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
In tetrapods, fusion between elements of the appendicular skeleton is thought to facilitate rapid movements during running, flying, and jumping. Although such fusion is widespread, frogs stand out because adults of all living species exhibit fusion of the zeugopod elements (radius and ulna, tibia and fibula), regardless of jumping ability or locomotor mode. To better understand what drives the maintenance of limb bone fusion in frogs, we use finite element modeling methods to assess the functional consequences of fusion in the anuran radioulna, the forearm bone of frogs that is important to both locomotion and mating behavior (amplexus). Using CT scans of museum specimens, measurement tools, and mesh‐editing software, we evaluated how different degrees of fusion between the radius and ulna affect the von Mises stress and bending resistance of the radioulna in three loading scenarios: landing, amplexus, and long‐axis loading conditions. We find that the semi‐fused state observed in the radioulna exhibits less von Mises stress and more resistance to bending than unfused or completely fused models in all three scenarios. Our results suggest that radioulna morphology is optimized to minimize von Mises stress across different loading regimes while also minimizing volume. We contextualize our findings in an evaluation of the diversity of anuran radioulnae, which reveals unique, permanent pronation of the radioulna in frogs and substantial variation in wall thickness. This work provides new insight into the functional consequences of limb bone fusion in anuran evolution.
Collapse
Affiliation(s)
- Rachel Keeffe
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - David C Blackburn
- Department of Biology, University of Florida, Gainesville, Florida, USA.,Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Chen A, Deng H, Song X, Liu X, Chai L. Effects of Separate and Combined Exposure of Cadmium and Lead on the Endochondral Ossification in Bufo gargarizans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1228-1245. [PMID: 35040517 DOI: 10.1002/etc.5296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) and lead (Pb) are ubiquitous in aquatic environments and most studies have examined the potential effects of Cd or Pb alone on aquatic organisms. In the present study, chronic effects of Cd and Pb, alone and in combination, on Bufo gargarizans were investigated by exposing embryos to these contaminants throughout metamorphosis. Significant reductions in body mass and snout-to-vent length were observed in B. gargarizans at Gosner stage 42 (Gs 42) and Gs 46 exposed to a Cd/Pb mixture. Single and combined exposure with Cd and Pb induced histological alterations of the thyroid gland characterized by reduced colloid area and thickness of epithelial cells. There was a significant decrease in the maximum jump distance of froglets exposed to Cd alone and the Cd/Pb mixture, and the jumping capacity showed a positive correlation with hind limb length and tibia/fibula. Moreover, single metals and their mixture induced reduction of endochondral bone formation in B. gargarizans. Transcriptomic and real-time quantitative polymerase chain reaction results showed that genes involved in skeletal ossification (TRα, TRβ, Dio2, Dio3, MMP9, MMP13, Runx1, Runx2, and Runx3) were transcriptionally dysregulated by Cd and Pb exposure alone or in combination. Our results suggested that despite the low concentration tested, the Cd/Pb mixture induced more severe impacts on B. gargarizans. In addition, the Cd/Pb mixture might reduce chances of survival for B. gargarizans froglets by decreasing size at metamorphosis, impaired skeletal ossification, and reduction in jumping ability, which might result from dysregulation of genes involved in thyroid hormone action and endochondral ossification. The findings obtained could add a new dimension to understanding of the mechanisms underpinning skeletal ossification response to heavy metals in amphibians. Environ Toxicol Chem 2022;41:1228-1245. © 2022 SETAC.
Collapse
Affiliation(s)
- Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Xiuling Song
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Xiaoli Liu
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, China
| |
Collapse
|
8
|
Freymiller GA, Whitford MD, Schwaner MJ, McGowan CP, Higham TE, Clark RW. Comparative analysis of Dipodomys species indicates that kangaroo rat hindlimb anatomy is adapted for rapid evasive leaping. J Anat 2022; 240:466-474. [PMID: 34648184 PMCID: PMC8819043 DOI: 10.1111/joa.13567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022] Open
Abstract
Body size is a key factor that influences antipredator behavior. For animals that rely on jumping to escape from predators, there is a theoretical trade-off between jump distance and acceleration as body size changes at both the inter- and intraspecific levels. Assuming geometric similarity, acceleration will decrease with increasing body size due to a smaller increase in muscle cross-sectional area than body mass. Smaller animals will likely have a similar jump distance as larger animals due to their shorter limbs and faster accelerations. Therefore, in order to maintain acceleration in a jump across different body sizes, hind limbs must be disproportionately bigger for larger animals. We explored this prediction using four species of kangaroo rats (Dipodomys spp.), a genus of bipedal rodent with similar morphology across a range of body sizes (40-150 g). Kangaroo rat jump performance was measured by simulating snake strikes to free-ranging individuals. Additionally, morphological measurements of hind limb muscles and segment lengths were obtained from thawed frozen specimens. Overall, jump acceleration was constant across body sizes and jump distance increased with increasing size. Additionally, kangaroo rat hind limb muscle mass and cross-sectional area scaled with positive allometry. Ankle extensor tendon cross-sectional area also scaled with positive allometry. Hind limb segment length scaled isometrically, with the exception of the metatarsals, which scaled with negative allometry. Overall, these findings support the hypothesis that kangaroo rat hind limbs are built to maintain jump acceleration rather than jump distance. Selective pressure from single-strike predators, such as snakes and owls, likely drives this relationship.
Collapse
Affiliation(s)
- Grace A. Freymiller
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Malachi D. Whitford
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Graduate Group in EcologyUniversity of CaliforniaDavisCaliforniaUSA
| | - M. Janneke Schwaner
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Craig P. McGowan
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Timothy E. Higham
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Rulon W. Clark
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Chiricahua Desert MuseumRodeoNew MexicoUSA
| |
Collapse
|
9
|
A Morphological Method to Approximate Jumping Performance in Anurans for Macroevolutionary Studies. Evol Biol 2020. [DOI: 10.1007/s11692-020-09509-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Penning DA, Sawvel B, Moon BR. The scaling of terrestrial striking performance in western ratsnakes (
Pantherophis obsoletus
). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 333:96-103. [DOI: 10.1002/jez.2328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 11/09/2022]
Affiliation(s)
- David A. Penning
- Department of Biology and Environmental Health Missouri Southern State University Joplin Missouri
| | - Baxter Sawvel
- Department of Biology University of Louisiana at Lafayette Lafayette Louisiana
| | - Brad R. Moon
- Department of Biology University of Louisiana at Lafayette Lafayette Louisiana
| |
Collapse
|
11
|
Zamora‐Camacho FJ, Aragón P. Failed predator attacks have detrimental effects on antipredatory capabilities through developmental plasticity inPelobates cultripestoads. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Pedro Aragón
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
| |
Collapse
|
12
|
Ilton M, Bhamla MS, Ma X, Cox SM, Fitchett LL, Kim Y, Koh JS, Krishnamurthy D, Kuo CY, Temel FZ, Crosby AJ, Prakash M, Sutton GP, Wood RJ, Azizi E, Bergbreiter S, Patek SN. The principles of cascading power limits in small, fast biological and engineered systems. Science 2018; 360:360/6387/eaao1082. [PMID: 29700237 DOI: 10.1126/science.aao1082] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/07/2018] [Indexed: 01/24/2023]
Abstract
Mechanical power limitations emerge from the physical trade-off between force and velocity. Many biological systems incorporate power-enhancing mechanisms enabling extraordinary accelerations at small sizes. We establish how power enhancement emerges through the dynamic coupling of motors, springs, and latches and reveal how each displays its own force-velocity behavior. We mathematically demonstrate a tunable performance space for spring-actuated movement that is applicable to biological and synthetic systems. Incorporating nonideal spring behavior and parameterizing latch dynamics allows the identification of critical transitions in mass and trade-offs in spring scaling, both of which offer explanations for long-observed scaling patterns in biological systems. This analysis defines the cascading challenges of power enhancement, explores their emergent effects in biological and engineered systems, and charts a pathway for higher-level analysis and synthesis of power-amplified systems.
Collapse
Affiliation(s)
- Mark Ilton
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - M Saad Bhamla
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Xiaotian Ma
- Department of Mechanical Engineering and Institute for Systems Research, University of Maryland, College Park, College Park, MD 20742, USA
| | - Suzanne M Cox
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Leah L Fitchett
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Yongjin Kim
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Je-Sung Koh
- School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | | | - Chi-Yun Kuo
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Fatma Zeynep Temel
- School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Alfred J Crosby
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Gregory P Sutton
- School of Biological Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Robert J Wood
- School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Emanuel Azizi
- Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Sarah Bergbreiter
- Department of Mechanical Engineering and Institute for Systems Research, University of Maryland, College Park, College Park, MD 20742, USA
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
13
|
Zamora-Camacho FJ. Locomotor performance in a running toad: roles of morphology, sex and agrosystem versus natural habitat. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Porro LB, Collings AJ, Eberhard EA, Chadwick KP, Richards CT. Inverse dynamic modelling of jumping in the red-legged running frog, Kassina maculata. ACTA ACUST UNITED AC 2017; 220:1882-1893. [PMID: 28275003 DOI: 10.1242/jeb.155416] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/02/2017] [Indexed: 11/20/2022]
Abstract
Although the red-legged running frog, Kassina maculata, is secondarily a walker/runner, it retains the capacity for multiple locomotor modes, including jumping at a wide range of angles (nearly 70 deg). Using simultaneous hind limb kinematics and single-foot ground reaction forces, we performed inverse dynamics analyses to calculate moment arms and torques about the hind limb joints during jumping at different angles in K. maculata. We show that forward thrust is generated primarily at the hip and ankle, while body elevation is primarily driven by the ankle. Steeper jumps are achieved by increased thrust at the hip and ankle and greater downward rotation of the distal limb segments. Because of its proximity to the GRF vector, knee posture appears to be important in controlling torque directions about this joint and, potentially, torque magnitudes at more distal joints. Other factors correlated with higher jump angles include increased body angle in the preparatory phase, faster joint openings and increased joint excursion, higher ventrally directed force, and greater acceleration and velocity. Finally, we demonstrate that jumping performance in K. maculata does not appear to be compromised by presumed adaptation to walking/running. Our results provide new insights into how frogs engage in a wide range of locomotor behaviours and the multi-functionality of anuran limbs.
Collapse
Affiliation(s)
- Laura B Porro
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | - Amber J Collings
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | - Enrico A Eberhard
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | - Kyle P Chadwick
- Children's Hospital Los Angeles, University of Southern California, 4650 Sunset Boulevard, Los Angeles, CA 90027, USA
| | - Christopher T Richards
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| |
Collapse
|
15
|
Reilly SM, Montuelle SJ, Schmidt A, Krause C, Naylor E, Essner RL. Functional evolution of jumping in frogs: Interspecific differences in take-off and landing. J Morphol 2015; 277:379-93. [DOI: 10.1002/jmor.20504] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/16/2015] [Accepted: 11/20/2015] [Indexed: 12/27/2022]
Affiliation(s)
| | - Stephane J. Montuelle
- Department of Biomedical Sciences; Ohio University Heritage College of Osteopathic Medicine; Athens Ohio
| | - André Schmidt
- Department of Biomedical Sciences; Ohio University Heritage College of Osteopathic Medicine; Athens Ohio
- Orthopedic University Hospital Friedrichsheim, Frankfurt Initiative for Regenerative Medicine; Frankfurt Germany
| | - Cornelia Krause
- Department of Biomedical Sciences; Ohio University Heritage College of Osteopathic Medicine; Athens Ohio
| | - Emily Naylor
- Department of Biomedical Sciences; Ohio University Heritage College of Osteopathic Medicine; Athens Ohio
- Department of Biology; University of California; Riverside California
| | - Richard L. Essner
- Department of Biological Sciences; Southern Illinois University Edwardsville; Edwardsville Illinois
| |
Collapse
|
16
|
Kern P, Cramp RL, Franklin CE. Physiological responses of ectotherms to daily temperature variation. ACTA ACUST UNITED AC 2015; 218:3068-76. [PMID: 26254318 DOI: 10.1242/jeb.123166] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/28/2015] [Indexed: 11/20/2022]
Abstract
Daily thermal fluctuations (DTFs) impact the capacity of ectotherms to maintain performance and energetic demands because of thermodynamic effects on physiological processes. Mechanisms that reduce the thermal sensitivity of physiological traits may buffer ectotherms from the consequences of DTFs. Species that experience varying degrees of DTFs in their environments may differ in their responses to thermally variable conditions, if thermal performance curves reflect environmental conditions. We tested the hypothesis that in response to DTFs, tadpoles from habitats characterised by small DTFs would show greater plasticity in the thermal sensitivity of physiological processes than tadpoles from environments characterised by large DTFs. We tested the thermal sensitivity of physiological traits in tadpoles of three species that differ naturally in their exposure to DTFs, raised in control (24°C) and DTF treatments (20-30°C and 18-38°C). DTFs reduced growth in all species. Development of tadpoles experiencing DTFs was increased for tadpoles from highly thermally variable habitats (∼15%), and slower in tadpoles from less thermally variable habitats (∼30%). In general, tadpoles were unable to alter the thermal sensitivity of physiological processes, although DTFs induced plasticity in metabolic enzyme activity in all species, although to a greater extent in species from less thermally variable environments. DTFs increased upper thermal limits in all species (between 0.89 and 1.6°C). Our results suggest that the impact of increased thermal variability may favour some species while others are negatively impacted. Species that cannot compensate for increased variability by buffering growth and development will probably be most affected.
Collapse
Affiliation(s)
- Pippa Kern
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
17
|
Wang Z, Ji A, Endlein T, Samuel D, Yao N, Wang Z, Dai Z. The role of fore- and hindlimbs during jumping in the Dybowski's frog (Rana dybowskii). ACTA ACUST UNITED AC 2014; 321:324-33. [DOI: 10.1002/jez.1865] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/16/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Zhongyuan Wang
- Institute of Bio-inspired Structure and Surface Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing PR China
- College of Mechanical and Electrical Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing PR China
| | - Aihong Ji
- Institute of Bio-inspired Structure and Surface Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing PR China
| | - Thomas Endlein
- The Centre for Cell Engineering; University of Glasgow; Glasgow Scotland United Kingdom
| | - Diana Samuel
- The Centre for Cell Engineering; University of Glasgow; Glasgow Scotland United Kingdom
| | - Ning Yao
- Institute of Bio-inspired Structure and Surface Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing PR China
- College of Mechanical and Electrical Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing PR China
| | - Zhouyi Wang
- Institute of Bio-inspired Structure and Surface Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing PR China
- College of Mechanical and Electrical Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing PR China
| | - Zhendong Dai
- Institute of Bio-inspired Structure and Surface Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing PR China
| |
Collapse
|
18
|
Hampton P. Allometry of cranial morphology, gape size and ingestion performance in the banded watersnake (Nerodia fasciata) feeding on two types of prey. J Exp Biol 2013; 217:472-8. [DOI: 10.1242/jeb.092924] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Small body size imposes limitations on the feeding capabilities of juveniles, particularly species that consume their prey whole. It has been hypothesized that juveniles exhibit exceptional performance measures to compensate for their small size. However, few studies have examined if juveniles have better feeding performance relative to adults. Investigations of snake feeding ontogeny have not found support for the compensation hypothesis. I tested this hypothesis by comparing maximum gape circumference and ingestion performance (time and number of pterygoid protractions) in a series of banded watersnakes (Nerodia fasciata) of different sizes fed fish and frogs. I also measured several external and osteological dimensions of the head and used Akaike's Information Criterion to determine which morphological measurements were the strongest predictors of relative gape. All skull measures and maximum gape circumference showed negative allometry compared to snout-vent length (SVL). Given the available models, AIC analysis indicated that both skull length and mandible length were the strongest predictors of gape circumference for both external and osteological measurements. Multiple regression analysis of ingestion performance indicated SVL was negatively correlated with the time and number of pterygoid protractions required to consume fish or frogs, indicating juveniles do not have a higher ingestion performance than adults. While exaggerated morphology in juvenile snakes does not appear to improve ingestion performance, a larger gape should increase the ability of juvenile snakes to consume a wide range of encountered prey shapes and sizes.
Collapse
|
19
|
Mitchell T, Alton LA, White CR, Franklin CE. Relations between conspecific density and effects of ultraviolet-b radiation on tadpole size in the striped marsh frog. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2012; 26:1112-1120. [PMID: 22834955 DOI: 10.1111/j.1523-1739.2012.01906.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/09/2012] [Indexed: 06/01/2023]
Abstract
Global increases in ultraviolet-B radiation (UVBR) associated with stratospheric ozone depletion are potentially contributing to the decline of numerous amphibian species around the world. Exposure to UVBR alone reduces survival and induces a range of sublethal effects in embryonic and larval amphibians. When additional environmental stressors are present, UVBR can have compounding negative effects. Thus, examination of the effects of UVBR in the absence of other stressors may substantially underestimate its potential to affect amphibians in natural habitats. We examined the independent and interactive effects of increased UVBR and high conspecific density would have embryonic and larval striped marsh frogs (Limnodynastes peronii). We exposed individuals to a factorial combination of low and high UVBR levels and low, medium, and high densities of striped marsh frog tadpoles. The response variables were time to hatching, hatching success, posthatch survival, burst-swimming performance of tadpoles (maximum instantaneous swim speed following an escape response), and size and morphology of tadpoles. Consistent with results of previous studies, we found that exposure to UVBR alone increased the time to hatching of embryos and reduced the burst-swimming performance and size of tadpoles. Similarly, increasing conspecific density increased the time to hatching of embryos and reduced the size of tadpoles, but had no effect on burst-swimming performance. The negative effect of UVBR on tadpole size was not apparent at high densities of tadpoles. This result suggests that tadpoles living at higher densities may invest relatively less energy in growth and thus have more energy to repair UVBR-induced damage. Lower densities of conspecifics increased the negative effects of UVBR on developing amphibians. Thus, low-density populations, which may include declining populations, may be particularly susceptible to the detrimental effects of increased UVBR and thus may be driven toward extinction faster than might be expected on the basis of results from single-factor studies.
Collapse
Affiliation(s)
- Toby Mitchell
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
20
|
Tucker DB, McBrayer LD. Overcoming obstacles: the effect of obstacles on locomotor performance and behaviour. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01993.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Lance D. McBrayer
- Department of Biology; Georgia Southern University; PO Box 8042; Statesboro; GA; 30460; USA
| |
Collapse
|
21
|
Anderson CV, Sheridan T, Deban SM. Scaling of the ballistic tongue apparatus in chameleons. J Morphol 2012; 273:1214-26. [PMID: 22730103 DOI: 10.1002/jmor.20053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 04/09/2012] [Accepted: 05/23/2012] [Indexed: 11/06/2022]
Abstract
Body dimensions of organisms can have a profound impact on their functional and structural properties. We examined the morphological proportions of the feeding apparatus of 105 chameleon specimens representing 23 species in seven genera, spanning a 1,000-fold range in body mass to test whether the feeding apparatus conforms to the null hypotheses of geometric similarity that is based on the prevalence of geometric similarity in other ectothermic vertebrates. We used a phylogenetically corrected regression analysis based on a composite phylogenetic hypothesis to determine the interspecific scaling patterns of the feeding apparatus. We also determined the intraspecific (ontogenetic) scaling patterns for the feeding apparatus in three species. We found that both intraspecifically and interspecifically, the musculoskeletal components of the feeding apparatus scale isometrically among themselves, independent of body length. The feeding apparatus is thus of conserved proportions regardless of overall body length. In contrast, we found that the tongue apparatus as a whole and its musculoskeletal components scale with negative allometry with respect to snout-vent length--smaller individuals have a proportionately larger feeding apparatus than larger individuals, both within and among species. Finally, the tongue apparatus as a whole scales with negative allometry with respect to body mass through ontogeny, but with isometry interspecifically. We suggest that the observed allometry may be maintained by natural selection because an enlarged feeding apparatus at small body size may maximize projection distance and the size of prey that smaller animals with higher mass-specific metabolic rates can capture.
Collapse
|
22
|
Herrel A, Gonwouo LN, Fokam EB, Ngundu WI, Bonneaud C. Intersexual differences in body shape and locomotor performance in the aquatic frog, Xenopus tropicalis. J Zool (1987) 2012. [DOI: 10.1111/j.1469-7998.2012.00919.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. Herrel
- Département d'Ecologie et de Gestion de la Biodiversité; Paris; France
| | - L. N. Gonwouo
- Faculty of Science; Laboratory of Zoology; University of Yaoundé I; Yaoundé; Cameroon
| | - E. B. Fokam
- Department of Plant and Animal Sciences; University of Buea; Buea; Cameroon
| | - W. I. Ngundu
- Department of Plant and Animal Sciences; University of Buea; Buea; Cameroon
| | - C. Bonneaud
- Station d'Ecologie Expérimentale du CNRS à Moulis; Saint-Girons; France
| |
Collapse
|
23
|
Jayatilaka P, Narendra A, Reid SF, Cooper P, Zeil J. Different effects of temperature on foraging activity schedules in sympatric Myrmecia ants. ACTA ACUST UNITED AC 2011; 214:2730-8. [PMID: 21795570 DOI: 10.1242/jeb.053710] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals avoid temperatures that constrain foraging by restricting activity to specific times of the day or year. However, because temperature alters the availability of food resources, it is difficult to separate temperature-dependent effects on foraging and the occupation of temporal niches. By studying two congeneric, sympatric Myrmecia ants we isolated the effect of temperature and investigated whether temperature affects foraging schedules and causes the two ants to be active at distinct times of the day or year. We monitored foraging activity and identified the ants' temperature tolerance in the laboratory by determining (1) critical thermal minima and maxima (CT(min) and CT(max)) and (2) the relationship between walking speed and temperature. Ants of Myrmecia croslandi were diurnal throughout the year, but ceased above-ground activity during winter. Surface temperature at the onset of foraging was 9.8-30.1°C, while their laboratory CT(min) and CT(max) were 10.4 and 48.5°C, respectively. Time of foraging onset was significantly influenced by surface temperature at time of sunrise and of onset. Ants of Myrmecia pyriformis were nocturnal throughout the year. Surface temperature at the onset of foraging was 5.4-26.2°C, while their laboratory CT(min) and CT(max) were 8.2 and 41.6°C, respectively. Time of foraging onset was not influenced by surface temperature, but solely by sunset time. We conclude that temperature determines the timing of foraging as well as the daily and seasonal foraging activity in M. croslandi, but has less obvious effects on M. pyriformis. In both species, CT(max) was greater than temperatures at the natural foraging times.
Collapse
Affiliation(s)
- Piyankarie Jayatilaka
- ARC Centre of Excellence in Vision Science, The Australian National University, Building 46, Biology Place, Canberra, ACT 0200, Australia.
| | | | | | | | | |
Collapse
|
24
|
Roberts TJ, Abbott EM, Azizi E. The weak link: do muscle properties determine locomotor performance in frogs? Philos Trans R Soc Lond B Biol Sci 2011; 366:1488-95. [PMID: 21502120 PMCID: PMC3130445 DOI: 10.1098/rstb.2010.0326] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Muscles power movement, yet the conceptual link between muscle performance and locomotor performance is poorly developed. Frog jumping provides an ideal system to probe the relationship between muscle capacity and locomotor performance, because a jump is a single discrete event and mechanical power output is a critical determinant of jump distance. We tested the hypothesis that interspecific variation in jump performance could be explained by variability in available muscle power. We used force plate ergometry to measure power produced during jumping in Cuban tree frogs (Osteopilus septentrionalis), leopard frogs (Rana pipiens) and cane toads (Bufo marinus). We also measured peak isotonic power output in isolated plantaris muscles for each species. As expected, jump performance varied widely. Osteopilus septentrionalis developed peak power outputs of 1047.0 ± 119.7 W kg(-1) hindlimb muscle mass, about five times that of B. marinus (198.5 ± 54.5 W kg(-1)). Values for R. pipiens were intermediate (543.9 ± 96.2 W kg(-1)). These differences in jump power were not matched by differences in available muscle power, which were 312.7 ± 28.9, 321.8 ± 48.5 and 262.8 ± 23.2 W kg(-1) muscle mass for O. septentrionalis, R. pipiens and B. marinus, respectively. The lack of correlation between available muscle power and jump power suggests that non-muscular mechanisms (e.g. elastic energy storage) can obscure the link between muscle mechanical performance and locomotor performance.
Collapse
Affiliation(s)
- Thomas J Roberts
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
25
|
Ryerson WG, Deban SM. Buccal pumping mechanics of Xenopus laevis tadpoles: effects of biotic and abiotic factors. ACTA ACUST UNITED AC 2010; 213:2444-52. [PMID: 20581274 DOI: 10.1242/jeb.038976] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biotic factors such as body size and shape have long been known to influence kinematics in vertebrates. Movement in aquatic organisms can also be strongly affected by abiotic factors such as the viscosity of the medium. We examined the effects of both biotic factors and abiotic factors on buccal pumping kinematics in Xenopus tadpoles using high-speed imaging of an ontogenetic series of tadpoles combined with experimental manipulation of the medium over a 10-fold range of viscosity. We found influences of both biotic and abiotic factors on tadpole movements; absolute velocities and excursions of the jaws and hyoid were greater in higher viscosity fluid but durations of movements were unaffected. Smaller tadpoles have relatively wider heads and more robust hyoid muscles used in buccal expansion and compression. Lever arm ratios were found to be constant at all sizes; therefore, smaller tadpoles have relatively higher resolved muscle forces and, like tadpoles in more viscous medium, displayed higher absolute velocities of jaw and hyoid movements. Nonetheless, small tadpoles drew in water at lower Reynolds numbers (Re) than predicted by kinematics, due to negative allometry of the buccal pump. Finally, tadpoles transitioned from a flow regime dominated by viscous forces (Re=2) to an intermediate regime (Re=106).
Collapse
Affiliation(s)
- William G Ryerson
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA.
| | | |
Collapse
|
26
|
Claverie T, Chan E, Patek SN. MODULARITY AND SCALING IN FAST MOVEMENTS: POWER AMPLIFICATION IN MANTIS SHRIMP. Evolution 2010; 65:443-61. [DOI: 10.1111/j.1558-5646.2010.01133.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
VANHOOYDONCK BIEKE, CRUZ FELIXB, ABDALA CRISTIANS, AZÓCAR DÉBORALMORENO, BONINO MARCELOF, HERREL ANTHONY. Sex-specific evolution of bite performance in Liolaemus lizards (Iguania: Liolaemidae): the battle of the sexes. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01519.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
McElroy E, McBrayer L. Getting Up to Speed: Acceleration Strategies in the Florida Scrub Lizard, Sceloporus woodi. Physiol Biochem Zool 2010; 83:643-53. [DOI: 10.1086/653476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Aerts P, Nauwelaerts S. Environmentally induced mechanical feedback in locomotion: Frog performance as a model. J Theor Biol 2009; 261:372-8. [DOI: 10.1016/j.jtbi.2009.07.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
|
30
|
Schoenfuss HL, Levitt JT, Rai R, Julius ML, Martinovic D. Treated wastewater effluent reduces sperm motility along an osmolality gradient. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 56:397-407. [PMID: 18769849 DOI: 10.1007/s00244-008-9219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 08/04/2008] [Indexed: 05/26/2023]
Abstract
Many toxic effects of treated wastewater effluent on organismal and reproductive health have been documented. However, the physicochemical environment of treated wastewater effluent frequently differs considerably from that of its receiving waters and may affect organismal function independently of toxic effects. Teleost sperm, for example, may be affected by the higher osmolality of treated wastewater, as this sperm is activated for a brief period of time following ejaculation due to the sudden decrease in osmolality of its surrounding environment. In this study, we examined the effects of treated wastewater effluent on sperm motility to test the hypothesis that the higher osmolality of effluent compared to river water will adversely affect sperm activation in a concentration-dependent relationship. Treated wastewater effluent was collected on 5 days from the outflow of the Metropolitan Wastewater Treatment Plant, St. Paul, Minnesota, and from an upstream site on the Mississippi River. Milt aliquots collected from goldfish were diluted in an isotonic extender solution and subsequently activated in either deionized water, 100%, 50%, or 10% effluent, a synthetic ion mixture, or river water. Sperm motility and velocity were assessed at 15-s intervals for 1 min using a computer assisted sperm analyzer. Significant differences in performance parameters were found only at 15 s, with sperm motility and velocity declining rapidly at later sampling times. Predictably, deionized water resulted in the greatest activation of sperm motility, while motility exhibited a concentration-dependent decline in 10%, 50%, and 100% treated wastewater effluent. Interestingly, Mississippi River water and a synthetic ion mixture with an osmolality comparable to 50% effluent both resulted in the least amount of sperm activation. However, sperm activation in river water varied between collection days during the study. River water and 100% effluent both had low sperm activation characteristics despite a 10-fold difference in osmolality between these two treatments (1 and 10 mOsmol kg(-1), respectively). Results of this study indicate a concentration-dependent decrease in sperm motility in treated wastewater effluent as well as significant fluctuations of sperm activation in Mississippi River water. This study illustrates the complexity of assessing the effects of treated wastewater effluents and the difficulty of determining appropriate reference sites for such studies.
Collapse
Affiliation(s)
- H L Schoenfuss
- Aquatic Toxicology Laboratory, St Cloud State University, St Cloud, MN 56301, USA.
| | | | | | | | | |
Collapse
|
31
|
McGee MR, Julius ML, Vajda AM, Norris DO, Barber LB, Schoenfuss HL. Predator avoidance performance of larval fathead minnows (Pimephales promelas) following short-term exposure to estrogen mixtures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 91:355-361. [PMID: 19162341 DOI: 10.1016/j.aquatox.2008.12.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 12/04/2008] [Accepted: 12/06/2008] [Indexed: 05/27/2023]
Abstract
Aquatic organisms exposed to endocrine disrupting compounds (EDCs) at early life-stages may have reduced reproductive fitness via disruption of reproductive and non-reproductive behavioral and physiological pathways. Survival to reproductive age relies upon optimal non-reproductive trait expression, such as adequate predator avoidance responses, which may be impacted through EDC exposure. During a predator-prey confrontation, larval fish use an innate C-start escape behavior to rapidly move away from an approaching threat. We tested the hypotheses that (1) larval fathead minnows exposed to estrogens, a primary class of EDCs, singularly or in mixture, suffer a reduced ability to perform an innate C-start behavior when faced with a threat stimulus; (2) additive effects will cause greater reductions in C-start behavior; and (3) effects will differ among developmental stages. In this study, embryos (post-fertilization until hatching) were exposed for 5 days to environmentally relevant concentrations of estrone (E1), 17beta-estradiol (E2), and 17alpha-ethinylestradiol (EE2) singularly and in mixture. Exposed embryos were allowed to hatch and grow in control well water until 12 days old. Similarly, post-hatch fathead minnows were exposed for 12 days to these compounds. High-speed (1000frames/s) video recordings of escape behavior were collected and transferred to National Institutes of Health Image for frame-by-frame analysis of latency period, escape velocity, and total escape response (combination of latency period and escape velocity). When tested 12 days post-hatch, only E1 adversely affected C-start performance of larvae exposed as embryos. Conversely, larvae exposed for 12 days post-hatch did not exhibit altered escape responses when exposed to E1, while adverse responses were seen in E2 and the estrogen mixture. Ethinylestradiol exposure did not elicit changes in escape behaviors at either developmental stage. The direct impact of reduced C-start performance on survival, and ultimately, reproductive fitness provides an avenue to assess the ecological relevance of exposure in an assay of relatively short duration.
Collapse
|
32
|
Cooper WE, Caldwell JP, Vitt LJ. Effective Crypsis and Its Maintenance by Immobility in Craugastor Frogs. COPEIA 2008. [DOI: 10.1643/ce-07-056] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
James R, Wilson R. Explosive Jumping: Extreme Morphological and Physiological Specializations of Australian Rocket Frogs (Litoria nasuta). Physiol Biochem Zool 2008; 81:176-85. [DOI: 10.1086/525290] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Nauwelaerts S, Ramsay J, Aerts P. Morphological correlates of aquatic and terrestrial locomotion in a semi-aquatic frog, Rana esculenta: no evidence for a design conflict. J Anat 2007; 210:304-17. [PMID: 17331179 PMCID: PMC2100283 DOI: 10.1111/j.1469-7580.2007.00691.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Semi-aquatic frogs are faced with an unusual locomotory challenge. They have to swim and jump using the same apparatus, i.e. the hind limbs. Optimization of two tasks that require mutually incompatible morphologies or physiologies cannot occur simultaneously. In such cases, natural selection will result in some compromise, i.e. an intermediate phenotype that can perform both tasks reasonably well, but its performance will never match that of a specialized phenotype. We found no direct evidence for a trade-off between jumping and swimming performance nor for a coupled optimization. This could be due to the importance of overall quality, as suggested by the fact that some frogs possess greater overall muscularity than others, irrespective of their body size. Another explanation could be that some morphological characteristics have a positive effect on both locomotor modes and others show a trade-off effect. The net effect of these characteristics could result in an overall absence of correlation between the two locomotor performances. Size has a great influence on the morphological data and on jumping performance, but not if performance is expressed as velocity. The body shape of an anuran is conservative and scales mostly isometrically.
Collapse
|
35
|
KOHLSDORF TIANA, NAVAS CARLOSA. Evolution of jumping capacity in Tropidurinae lizards: does habitat complexity influence obstacle-crossing ability? Biol J Linn Soc Lond 2007. [DOI: 10.1111/j.1095-8312.2007.00804.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Vanhooydonck B, Herrel A, Damme RV, Irschick DJ. THE QUICK AND THE FAST: THE EVOLUTION OF ACCELERATION CAPACITY IN ANOLIS LIZARDS. Evolution 2007. [DOI: 10.1111/j.0014-3820.2006.tb01851.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
PHILLIPS BENJAMINL, BROWN GREGORYP, GREENLEES MATTHEW, WEBB JONATHANK, SHINE RICHARD. Rapid expansion of the cane toad (Bufo marinus) invasion front in tropical Australia. AUSTRAL ECOL 2007. [DOI: 10.1111/j.1442-9993.2007.01664.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
James RS, Navas CA, Herrel A. How important are skeletal muscle mechanics in setting limits on jumping performance? J Exp Biol 2007; 210:923-33. [PMID: 17337705 DOI: 10.1242/jeb.02731] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYJumping is an important locomotor behaviour used by many animals. The power required to perform a jump is supplied by skeletal muscle. The mechanical properties of skeletal muscle, including the power it can produce, are determined by its composition, which in turn reflects trade-offs between the differing tasks performed by the muscle. Recent studies suggest that muscles used for jumping are relatively fast compared with other limb muscles. As animals get bigger absolute jump performance tends to increase, but recent evidence suggests that adult jump performance may be relatively independent of body size. As body size increases the relative shortening velocity of muscle decreases, whereas normalised power output remains relatively constant. However, the relative shortening velocity of the fastest muscle fibre types appears to remain relatively constant over a large body size range of species. It appears likely that in many species during jumping, other factors are compensating for, or allowing for, uncoupling of jumping performance from size-related changes in the mechanical properties of muscle. In some species smaller absolute body size is compensated for by rapid development of locomotor morphology to attain high locomotor performance early in life. Smaller animal species also appear to rely more heavily on elastic storage mechanisms to amplify the power output available from skeletal muscle. Adaptations involving increased relative hindlimb length and relative mass of jumping muscles, and beneficial alteration of the origin and/or insertion of jumping muscles, have all been found to improve animal jump performance. However, further integrative studies are needed to provide conclusive evidence of which morphological and physiological adaptations are the most important in enhancing jump performance.
Collapse
Affiliation(s)
- Rob S James
- Department of Biomolecular and Sport Sciences, Coventry University, James Starley Building, Priory Street, Coventry, CV1 5FB, UK.
| | | | | |
Collapse
|
39
|
Bergmann P, Irschick DJ. Effects of temperature on maximum acceleration, deceleration and power output during vertical running in geckos. ACTA ACUST UNITED AC 2006; 209:1404-12. [PMID: 16574800 DOI: 10.1242/jeb.02155] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied performance and kinematics of the diurnal gekkonid lizard Phelsuma dubia while running vertically on a smooth surface at different temperatures. Trials were conducted at 5 degrees C intervals from 15 degrees C to 35 degrees C. High-speed video recordings and digitization were used to obtain measures of instantaneous velocity, acceleration, deceleration and mass-specific power output and maximal values for each were taken as performance measures. Kinematic variables were also obtained from high-speed video recordings and included stride length and duration, step (stance phase) length and duration, and duty factor. Maximal instantaneous velocity, acceleration and deceleration increased by a factor of approximately 1.7 between 15 degrees C and 25 degrees C, and less so (approximately 1.2x) between 25 degrees C and 35 degrees C. Mass-specific power output was more temperature-sensitive, increasing 2.5x up to 25 degrees C and a further 1.4x above that temperature. Stride length increased 1.5x over the entire temperature interval studied, while stride duration decreased by a factor of 1.9, suggesting that velocity is modulated by changes in both stride length and duration in P. dubia. Duty factor was not significantly influenced by temperature. Stride length was the only kinematic measure to be influenced by stride number, with second steps from a standstill being longer than first steps. We discuss the significance of velocity and acceleration being affected in a similar manner by temperature, and that speed is modulated by both changes in stride length and duration.
Collapse
Affiliation(s)
- Phillip Bergmann
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, 70118, USA.
| | | |
Collapse
|
40
|
Smith JM, Barnes WJP, Downie JR, Ruxton GD. Adhesion and allometry from metamorphosis to maturation in hylid tree frogs: a sticky problem. J Zool (1987) 2006. [DOI: 10.1111/j.1469-7998.2006.00145.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Blob RW, Rai R, Julius ML, Schoenfuss HL. Functional diversity in extreme environments: effects of locomotor style and substrate texture on the waterfall-climbing performance of Hawaiian gobiid fishes. J Zool (1987) 2006. [DOI: 10.1111/j.1469-7998.2005.00034.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Vanhooydonck B, Herrel A, Van Damme R, Irschick DJ. THE QUICK AND THE FAST: THE EVOLUTION OF ACCELERATION CAPACITY IN ANOLIS LIZARDS. Evolution 2006. [DOI: 10.1554/06-413.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Abstract
When competing for food or other resources, or when confronted with predators, young animals may be at a disadvantage relative to adults because of their smaller size. Additionally, the ongoing differentiation and growth of tissues and the development of sensory-motor integration during early ontogeny may constrain performance. Because ectothermic vertebrates show different growth regimes and energetic requirements when compared to endothermic vertebrates, differences in the ontogenetic trajectories of performance traits in these two groups might be expected. However, both groups of vertebrates show similar patterns of changes in performance with ontogeny. Evidence for compensation, resulting in relatively high levels of performance in juveniles relative to adults, appears common for traits related to locomotor and defensive behaviors. However, there is little evidence for compensation in traits associated with feeding and foraging. We suggest that this difference may be due to different selective regimes operating on locomotor versus feeding traits. As a result, relatively high levels of locomotor performance in juveniles and relatively high levels of feeding performance in adults are observed across a wide range of vertebrate groups.
Collapse
Affiliation(s)
- Anthony Herrel
- Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | | |
Collapse
|
44
|
Abstract
SUMMARY
Anurans use a saltatorial (jumping) mode of locomotion. A jumping cycle can be divided into four subphases: propulsion, flight, landing and recovery. We studied the landing phase during locomotion in Rana esculenta by measuring the ground reaction forces during propulsion and landing over a range of distances. Landing performance affects locomotor ability in jumping frogs. Landing and recovery together take up one third of the locomotor cycle. Peak landing forces are on average almost three times larger than propulsive forces. The forelimbs appear to be fully extended when they make contact with the substrate and absorb the first impact peak. The height of this peak varies depending on arm positioning and jumping distance. Since the stiffness of the arms stays constant over the full jumping range, it is possible that this is a limiting factor in the ability of the forelimbs to work as dampers. A spring-dashpot model is used to model the effect of arm angle at touch down. Damping during landing is performed by placing the forelimbs at an optimal angle to cancel frictional forces effectively.
Collapse
Affiliation(s)
- Sandra Nauwelaerts
- Department of Biology, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Wilrijk, Antwerpen, Belgium
| | | |
Collapse
|
45
|
Herrel A, O'reilly JC. Ontogenetic Scaling of Bite Force in Lizards and Turtles. Physiol Biochem Zool 2006; 79:31-42. [PMID: 16380926 DOI: 10.1086/498193] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2005] [Indexed: 11/03/2022]
Abstract
Because selection on juvenile life-history stages is likely strong, disproportionately high levels of performance (e.g., sprint speed, endurance, etc.) might be expected. Whereas this phenomenon has been demonstrated with respect to locomotor performance, data for feeding are scarce. Here, we investigate the relationships among body dimensions, head dimensions, and bite force during growth in lizards and turtles. We also investigate whether ontogenetic changes in bite performance are related to changes in diet. Our analyses show that, for turtles, head dimensions generally increase with negative allometry. For lizards, heads scale as expected for geometrically growing systems. Bite force generally increased isometrically with carapace length in turtles but showed significant positive allometry relative to body dimensions in lizards. However, both lizards and turtles display positive allometric scaling of bite force relative to some measures of head size throughout ontogeny, suggesting (1) strong selection for increased relative bite performance with increasing head size and (2) intrinsic changes in the geometry and/or mass of the jaw adductors during growth. Whereas our data generally do not provide strong evidence of compensation for lower absolute levels of performance, they do show strong links among morphology, bite force, and diet during growth.
Collapse
Affiliation(s)
- Anthony Herrel
- Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | | |
Collapse
|
46
|
James RS, Wilson RS, de Carvalho JE, Kohlsdorf T, Gomes FR, Navas CA. Interindividual differences in leg muscle mass and pyruvate kinase activity correlate with interindividual differences in jumping performance of Hyla multilineata. Physiol Biochem Zool 2005; 78:857-67. [PMID: 16052454 DOI: 10.1086/432149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2005] [Indexed: 11/04/2022]
Abstract
Frog jumping is an excellent model system for examining the structural basis of interindividual variation in burst locomotor performance. Some possible factors that affect jump performance, such as total body size, hindlimb length, muscle mass, and muscle mechanical and biochemical properties, were analysed at the interindividual (intraspecies) level in the tree frog Hyla multilineata. The aim of this study was to determine which of these physiological and anatomical variables both vary between individuals and are correlated with interindividual variation in jump performance. The model produced via stepwise linear regression analysis of absolute data suggested that 62% of the interindividual variation in maximum jump distance could be explained by a combination of interindividual variation in absolute plantaris muscle mass, total hindlimb muscle mass (excluding plantaris muscle), and pyruvate kinase activity. When body length effects were removed, multiple regression indicated that the same independent variables explained 43% of the residual interindividual variation in jump distance. This suggests that individuals with relatively large jumping muscles and high pyruvate kinase activity for their body size achieved comparatively large maximal jump distances for their body size.
Collapse
Affiliation(s)
- Rob S James
- School of Science and the Environment, Coventry University, Coventry CV1 5FB, United Kingdom.
| | | | | | | | | | | |
Collapse
|
47
|
Deban SM, O'Reilly JC. The ontogeny of feeding kinematics in a giant salamander Cryptobranchus alleganiensis: Does current function or phylogenetic relatedness predict the scaling patterns of movement? ZOOLOGY 2005; 108:155-67. [PMID: 16351963 DOI: 10.1016/j.zool.2005.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 03/11/2005] [Indexed: 10/25/2022]
Abstract
Studies of the scaling of feeding movements in vertebrates have included three species that display both near-geometric growth and isometry of kinematic variables. These scaling characteristics allow one to examine the "pure" relationship of growth and movement. Despite similar growth patterns, the feeding movements of toads (Bufo) slow down more with increasing body size than those of bass (Micropterus), and sharks (Ginglymostoma). This variation might be due to major differences in the mechanism of prey capture; the bass and sharks use suction to capture prey in water, while the toad uses tongue prehension to capture prey on land. To investigate whether or not these different scaling patterns are correlated with differences in feeding mechanics, we examined the ontogenetic scaling of prey capture movements in the hellbender salamander (Cryptobranchus alleganiensis), which also has near-geometric growth. The hellbender suction feeds in the same general manner as the teleosts and shark, but is much more closely related to the toad. The feeding movements of the hellbender scale more similarly to the feeding movements of toads than to those of fishes or sharks, indicating that phylogenetic relatedness rather than biomechanical similarity predicts ontogenetic scaling patterns of movement.
Collapse
Affiliation(s)
- Stephen M Deban
- Museum of Vertebrate Zoology and Department of Integrative Biology, 3101 Valley Life Sciences Building #3160, University of California, Berkeley, CA 94720-3160, USA.
| | | |
Collapse
|
48
|
McGuire JA, Dudley R. The cost of living large: comparative gliding performance in flying lizards (Agamidae: Draco). Am Nat 2005; 166:93-106. [PMID: 15937792 DOI: 10.1086/430725] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 03/15/2005] [Indexed: 11/03/2022]
Abstract
Despite exhibiting considerable interspecific variation in body mass, flying lizards of the genus Draco are isometric in their area-mass scaling relationships and exhibit no significant compensatory variation in wing aspect ratio. Thus, larger species are expected to be relatively poor gliders, in lieu of behavioral or physiological compensation, when compared with smaller congeners. Here we tested this hypothesis by conducting gliding performance trials for 11 Draco species spanning virtually the entire size range of the genus. We considered three primary performance variables: maximum velocity adjusted for wind conditions, height lost over a standard horizontal glide distance, and glide angle. Comparative analysis confirmed that larger species are relatively poor gliders and do not compensate substantially for their higher wing loadings via either behavioral or physiological mechanisms. Flying lizards were found to exhibit substantial context-dependent variation in glide performance, with smaller species often exhibiting extensive variation in height lost and glide angle between trials. Variation also was observed in empirically derived velocity profiles, with only a subset of individuals appearing to perform equilibrium glides. Such size-dependent variation in performance has important consequences for the ecology and evolution of flying lizards and other glissant taxa.
Collapse
Affiliation(s)
- Jimmy A McGuire
- Museum of Vertebrate Zoology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
49
|
BUCKLEY CR, MICHAEL SF, IRSCHICK DJ. Early hatching decreases jumping performance in a direct-developing frog, Eleutherodactylus coqui. Funct Ecol 2005. [DOI: 10.1111/j.0269-8463.2005.00931.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Swanson BO, Gibb AC. Kinematics of aquatic and terrestrial escape responses in mudskippers. J Exp Biol 2004; 207:4037-44. [PMID: 15498949 DOI: 10.1242/jeb.01237] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Escape responses in fishes are rapid behaviors that are critical for survival. The barred mudskipper (Periophthalmus argentilineatus) is an amphibious fish that must avoid predators in two environments. We compared mudskipper terrestrial and aquatic escapes to address two questions. First,how does an amphibious fish perform an escape response in a terrestrial environment? Second, how similar is a terrestrial escape response to an aquatic escape response? Because a mudskipper on land does not have to contend with the high viscosity of water, we predicted that, if the same behavior is employed across environments, terrestrial escape responses should have`better' performance (higher velocity and more rapid completion of movements)when compared with aquatic escape responses. By contrast, we predicted that intervertebral bending would be similar across environments because previous studies of escape response behaviors in fishes have proposed that vertebral morphology constrains intervertebral bending. High-speed digital imaging was used to record mudskipper escapes in water and on land, and the resulting images were used to calculate intervertebral bending during the preparatory phase, peak velocity and acceleration of the center of mass during the propulsive phase, and relative timing of movements. Although similar maximum velocities are achieved across environments, terrestrial responses are distinct from aquatic responses. During terrestrial escapes, mudskippers produce greater axial bending in the preparatory phase, but only in the posterior region of the body and over a much longer time period. Mudskippers also occasionally produced the `wrong' behavior for a given environment. Thus,it appears that the same locomotor morphology is recruited differently by the central nervous system to produce a distinct behavior appropriate for each environment.
Collapse
Affiliation(s)
- Brook O Swanson
- Department of Biological Sciences, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA.
| | | |
Collapse
|