1
|
Phetsanthad A, Roycroft C, Li L. Enrichment and fragmentation approaches for enhanced detection and characterization of endogenous glycosylated neuropeptides. Proteomics 2023; 23:e2100375. [PMID: 35906894 PMCID: PMC9884999 DOI: 10.1002/pmic.202100375] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
Glycosylated neuropeptides were recently discovered in crustaceans, a model organism with a well-characterized neuroendocrine system. Several workflows exist to characterize enzymatically digested peptides; however, the unique properties of endogenous neuropeptides require methods to be re-evaluated. We investigate the use of hydrophilic interaction liquid chromatography (HILIC) enrichment and different fragmentation methods to further probe the expression of glycosylated neuropeptides in Callinectes sapidus. During the evaluation of HILIC, we observed the necessity of a less aqueous solvent for endogenous peptide samples. This modification enabled the number of detected neuropeptide glycoforms to increase almost two-fold, from 18 to 36. Product ion-triggered electron-transfer/higher-energy collision dissociation enabled the site-specific detection of 55 intact N- and O-linked glycoforms, while the faster stepped collision energy higher-energy collisional dissociation resulted in detection of 25. Additionally, applying this workflow to five neuronal tissues enabled the characterization of 36 more glycoforms of known neuropeptides and 11 more glycoforms of nine putative novel neuropeptides. Overall, the database of glycosylated neuropeptides in crustaceans was largely expanded from 18 to 136 glycoforms of 40 neuropeptides from 10 neuropeptide families. Both macro- and micro-heterogeneity were observed, demonstrating the chemical diversity of this simple invertebrate, establishing a framework to use crustacean to probe modulatory effects of glycosylation on neuropeptides.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Caroline Roycroft
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
2
|
Stein W, Harzsch S. The Neurobiology of Ocean Change - insights from decapod crustaceans. ZOOLOGY 2021; 144:125887. [PMID: 33445148 DOI: 10.1016/j.zool.2020.125887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022]
Abstract
The unprecedented rate of carbon dioxide accumulation in the atmosphere has led to increased warming, acidification and oxygen depletion in the world's oceans, with projected impacts also on ocean salinity. In this perspective article, we highlight potential impacts of these factors on neuronal responses in decapod crustaceans. Decapod crustaceans comprise more than 8,800 marine species which have colonized a wide range of habitats that are particularly affected by global ocean change, including estuarine, intertidal, and coastal areas. Many decapod species have large economic value and high ecological importance because of their global invasive potential and impact on local ecosystems. Global warming has already led to considerable changes in decapod species' behavior and habitat range. Relatively little is known about how the decapod nervous system, which is the ultimate driver of all behaviors, copes with environmental stressors. We use select examples to summarize current findings and evaluate the impact of current and expected environmental changes. While data indicate a surprising robustness against stressors like temperature and pH, we find that only a handful of species have been studied and long-term effects on neuronal activity remain mostly unknown. A further conclusion is that the combined effects of multiple stressors are understudied. We call for greater research efforts towards long-term effects on neuronal physiology and expansion of cross-species comparisons to address these issues.
Collapse
Affiliation(s)
- Wolfgang Stein
- Illinois State University, School of Biological Sciences, Normal, IL 61790, USA.
| | - Steffen Harzsch
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, D-17498 Greifswald, Germany.
| |
Collapse
|
3
|
Wang M, Zhu Z. Nrf2 is involved in osmoregulation, antioxidation and immunopotentiation in Coilia nasus under salinity stress. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1673671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Meiyao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, P.R. China
- Department of Biotechnology, Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, P.R. China
- Aquatic Animal Genome Center, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, P.R. China
| | - Zhixiang Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, P.R. China
| |
Collapse
|
4
|
Parallel memory traces are built after an experience containing aversive and appetitive components in the crab Neohelice. Proc Natl Acad Sci U S A 2017; 114:E4666-E4675. [PMID: 28507135 DOI: 10.1073/pnas.1701927114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neurobiology of learning and memory has been mainly studied by focusing on pure aversive or appetitive experiences. Here, we challenged this approach considering that real-life stimuli come normally associated with competing aversive and appetitive consequences and that interaction between conflicting information must be intrinsic part of the memory processes. We used Neohelice crabs, taking advantage of two well-described appetitive and aversive learning paradigms and combining them in a single training session to evaluate how this affects memory. We found that crabs build separate appetitive and aversive memories that compete during retrieval but not during acquisition. Which memory prevails depends on the balance between the strength of the unconditioned stimuli and on the motivational state of the animals. The results indicate that after a mix experience with appetitive and aversive consequences, parallel memories are established in a way that appetitive and aversive information is stored to be retrieved in an opportunistic manner.
Collapse
|
5
|
Zhang Y, Buchberger A, Muthuvel G, Li L. Expression and distribution of neuropeptides in the nervous system of the crab Carcinus maenas and their roles in environmental stress. Proteomics 2015; 15:3969-79. [PMID: 26475201 DOI: 10.1002/pmic.201500256] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 01/05/2023]
Abstract
Environmental fluctuations, such as salinity, impose serious challenges to marine animal survival. Neuropeptides, signaling molecules involved in the regulation process, and the dynamic changes of their full complement in the stress response have yet to be investigated. Here, a MALDI-MS-based stable isotope labeling quantitation strategy was used to investigate the relationship between neuropeptide expression and adaptability of Carcinus maenas to various salinity levels, including high (60 parts per thousand [p.p.t.]) and low (0 p.p.t.) salinity, in both the crustacean pericardial organ (PO) and brain. Moreover, a high salinity stress time course study was conducted. MS imaging (MSI) of neuropeptide localization in C. maenas PO was also performed. As a result of salinity stress, multiple neuropeptide families exhibited changes in their relative abundances, including RFamides (e.g. APQGNFLRFamide), RYamides (e.g. SSFRVGGSRYamide), B-type allatostatins (AST-B; e.g. VPNDWAHFRGSWamide), and orcokinins (e.g. NFDEIDRSSFGFV). The MSI data revealed distribution differences in several neuropeptides (e.g. SGFYANRYamide) between color morphs, but salinity stress appeared to not have a major effect on the localization of the neuropeptides.
Collapse
Affiliation(s)
- Yuzhuo Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda Buchberger
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Delorenzi A, Maza FJ, Suárez LD, Barreiro K, Molina VA, Stehberg J. Memory beyond expression. ACTA ACUST UNITED AC 2014; 108:307-22. [PMID: 25102126 DOI: 10.1016/j.jphysparis.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/05/2023]
Abstract
The idea that memories are not invariable after the consolidation process has led to new perspectives about several mnemonic processes. In this framework, we review our studies on the modulation of memory expression during reconsolidation. We propose that during both memory consolidation and reconsolidation, neuromodulators can determine the probability of the memory trace to guide behavior, i.e. they can either increase or decrease its behavioral expressibility without affecting the potential of persistent memories to be activated and become labile. Our hypothesis is based on the findings that positive modulation of memory expression during reconsolidation occurs even if memories are behaviorally unexpressed. This review discusses the original approach taken in the studies of the crab Neohelice (Chasmagnathus) granulata, which was then successfully applied to test the hypothesis in rodent fear memory. Data presented offers a new way of thinking about both weak trainings and experimental amnesia: memory retrieval can be dissociated from memory expression. Furthermore, the strategy presented here allowed us to show in human declarative memory that the periods in which long-term memory can be activated and become labile during reconsolidation exceeds the periods in which that memory is expressed, providing direct evidence that conscious access to memory is not needed for reconsolidation. Specific controls based on the constraints of reminders to trigger reconsolidation allow us to distinguish between obliterated and unexpressed but activated long-term memories after amnesic treatments, weak trainings and forgetting. In the hypothesis discussed, memory expressibility--the outcome of experience-dependent changes in the potential to behave--is considered as a flexible and modulable attribute of long-term memories. Expression seems to be just one of the possible fates of re-activated memories.
Collapse
Affiliation(s)
- A Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - F J Maza
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - L D Suárez
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - K Barreiro
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - V A Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IFEC-CONICET (X5000HUA), Argentina.
| | - J Stehberg
- Laboratorio de Neurobiología, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Chile.
| |
Collapse
|
7
|
A Multidisciplinary Approach to Learning and Memory in the Crab Neohelice (Chasmagnathus) granulata. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
Klappenbach M, Maldonado H, Locatelli F, Kaczer L. Opposite actions of dopamine on aversive and appetitive memories in the crab. Learn Mem 2012; 19:73-83. [PMID: 22267303 DOI: 10.1101/lm.024430.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The understanding of how the reinforcement is represented in the central nervous system during memory formation is a current issue in neurobiology. Several studies in insects provide evidence of the instructive role of biogenic amines during the learning and memory process. In insects it was widely accepted that dopamine (DA) mediates aversive reinforcements. However, the idea of DA being exclusively involved in aversive memory has been challenged in recent studies. Here, we study the involvement of DA during aversive and appetitive memories in the crab Chasmagnathus. We found that DA-receptor antagonists impair aversive memory consolidation, in agreement with previous reports in insects, while administration of DA facilitates memory formation after a weak training protocol. In contrast, DA treatment during appetitive training was found to impair formation of long-term appetitive memory. In addition, as a first step in elucidating the neuroanatomical correlates of DA action on memory, we mapped dopaminergic neurons in the central nervous system of the crab. Results of the current study, together with those obtained in a previous work about the role of octopamine (OA), suggest that both amines (DA and OA) play a dual action in memory processes. On the one hand, DA and OA mediate the aversive and the appetitive signals, respectively, throughout training, while on the other hand, they interfere with the formation of memory of the opposite sign (DA in appetitive and OA in aversive). Our results support a new understanding about the way appetitive and aversive stimuli are processed during memory formation to ensure adaptive behavior.
Collapse
Affiliation(s)
- Martín Klappenbach
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIBYNE-CONICET, Pabellón II, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
| | | | | | | |
Collapse
|
9
|
Food odor, visual danger stimulus, and retrieval of an aversive memory trigger heat shock protein HSP70 expression in the olfactory lobe of the crab Chasmagnathus granulatus. Neuroscience 2011; 201:239-51. [PMID: 22100787 DOI: 10.1016/j.neuroscience.2011.10.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 01/21/2023]
Abstract
Although some of the neuronal substrates that support memory process have been shown in optic ganglia, the brain areas activated by memory process are still unknown in crustaceans. Heat shock proteins (HSPs) are synthesized in the CNS not only in response to traumas but also after changes in metabolic activity triggered by the processing of different types of sensory information. Indeed, the expression of citosolic/nuclear forms of HSP70 (HSC/HSP70) has been repeatedly used as a marker for increases in neural metabolic activity in several processes, including psychophysiological stress, fear conditioning, and spatial learning in vertebrates. Previously, we have shown that, in the crab Chasmagnathus, two different environmental challenges, water deprivation and heat shock, trigger a rise in the number of glomeruli of the olfactory lobes (OLs) expressing HSC/HSP70. In this study, we initially performed a morphometric analysis and identified a total of 154 glomeruli in each OL of Chasmagnathus. Here, we found that crabs exposed to food odor stimuli also showed a significant rise in the number of olfactory glomeruli expressing HSC/HSP70. In the crab Chasmagnathus, a powerful memory paradigm based on a change in its defensive strategy against a visual danger stimulus (VDS) has been extensively studied. Remarkably, the iterative presentation of a VDS caused an increase as well. This increase was triggered in animals visually stimulated using protocols that either build up a long-term memory or generate only short-term habituation. Besides, memory reactivation was sufficient to trigger the increase in HSC/HSP70 expression in the OL. Present and previous results strongly suggest that, directly or indirectly, an increase in arousal is a sufficient condition to bring about an increase in HSC/HSP70 expression in the OL of Chasmagnathus.
Collapse
|
10
|
Smal L, Suárez LD, Delorenzi A. Enhancement of long-term memory expression by a single trial during consolidation. Neurosci Lett 2011; 487:36-40. [DOI: 10.1016/j.neulet.2010.09.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 08/24/2010] [Accepted: 09/25/2010] [Indexed: 11/26/2022]
|
11
|
Angiotensin modulates long-term memory expression but not long-term memory storage in the crab Chasmagnathus. Neurobiol Learn Mem 2010; 94:509-20. [DOI: 10.1016/j.nlm.2010.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 12/20/2022]
|
12
|
Frenkel L, Dimant B, Portiansky EL, Imboden H, Maldonado H, Delorenzi A. Neuroanatomical distribution of angiotensin-II-like neuropeptide within the central nervous system of the crab Chasmagnathus; physiological changes triggered by water deprivation. Cell Tissue Res 2010; 341:181-95. [DOI: 10.1007/s00441-010-0990-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
|
13
|
Fathala MDV, Iribarren L, Kunert MC, Maldonado H. A field model of learning: 1. Short-term memory in the crab Chasmagnathus granulatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 196:61-75. [DOI: 10.1007/s00359-009-0494-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/27/2009] [Accepted: 11/28/2009] [Indexed: 11/29/2022]
|
14
|
Tomsic D, de Astrada MB, Sztarker J, Maldonado H. Behavioral and neuronal attributes of short- and long-term habituation in the crab Chasmagnathus. Neurobiol Learn Mem 2009; 92:176-82. [PMID: 19186214 DOI: 10.1016/j.nlm.2009.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/02/2008] [Accepted: 01/10/2009] [Indexed: 11/26/2022]
Abstract
Investigations using invertebrate species have led to a considerable progress in our understanding of the mechanisms underlying learning and memory. In this review we describe the main behavioral and neuronal findings obtained by studying the habituation of the escape response to a visual danger stimulus in the crab Chasmagnathus granulatus. Massed training with brief intertrial intervals lead to a rapid reduction of the escape response that recovers after a short term. Conversely, few trials of spaced training renders a slower escape reduction that endures for many days. As predicted by Wagner's associative theory of habituation, long-term habituation in the crab proved to be determined by an association between the contextual environment of the training and the unconditioned stimulus. By performing intracellular recordings in the brain of the intact animal at the same time it was learning, we identified a group of neurons that remarkably reflects the short- and long-term behavioral changes. Thus, the visual memory abilities of crabs, their relatively simple and accessible nervous system, and the recording stability that can be achieved with their neurons provide an opportunity for uncovering neurophysiological and molecular events that occur in identifiable neurons during learning.
Collapse
Affiliation(s)
- Daniel Tomsic
- Depto. Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, IFIBYNE-CONICET, Pabellon 2 Ciudad Universitaria, Ing. Güiraldes 2160, Buenos Aires 1428, Argentina.
| | | | | | | |
Collapse
|
15
|
Carbó Tano M, Molina V, Maldonado H, Pedreira M. Memory consolidation and reconsolidation in an invertebrate model: The role of the GABAergic system. Neuroscience 2009; 158:387-401. [DOI: 10.1016/j.neuroscience.2008.10.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/21/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
|
16
|
Bianchini A, Lauer MM, Nery LEM, Colares EP, Monserrat JM, dos Santos Filho EA. Biochemical and physiological adaptations in the estuarine crab Neohelice granulata during salinity acclimation. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:423-436. [DOI: 10.1016/j.cbpa.2007.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 11/21/2007] [Accepted: 12/03/2007] [Indexed: 11/25/2022]
|
17
|
Frenkel L, Dimant B, Portiansky EL, Maldonado H, Delorenzi A. Both heat shock and water deprivation trigger Hsp70 expression in the olfactory lobe of the crab Chasmagnathus granulatus. Neurosci Lett 2008; 443:251-6. [PMID: 18682274 DOI: 10.1016/j.neulet.2008.07.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/25/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
Abstract
Heat-shock proteins (Hsp) are synthesized in the central nervous system in response to traumas but also after physical exercise and psychophysiological stress. Therefore, an increase in Hsp expression is a good marker of changes in metabolic activity. In the crab Chasmagnathus, a powerful memory paradigm has been established. Memory modulation is possible by water shortage. The brain areas activated by either training protocols and/or water-deprivation are still unknown. Hsp expression might be a marker to sensing the increase in metabolic activity in crab Chasmagnathus brain neuropils engaged in the physiological responses triggered by water deprivation and cognitive processing. Here, we observed an increase in brain Hsp of 70kDa (Hsp70) expression after a heat-shock treatment. Additionally, immunohistochemistry analysis revealed that, under basal conditions, some glomeruli of the olfactory lobes showed Hsp70 immunoreactivity in an on-off manner. Both a hot environment and water deprivation increased the number of glomeruli expressing Hsp70. This marker of neuropil's activity might turn out to be a powerful tool to test whether crustacean olfactory lobes not only process olfactory information but also integrate multimodal signals.
Collapse
Affiliation(s)
- Lia Frenkel
- Departamento de Fisiología y Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA Ciudad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
18
|
Romano A, Freudenthal R, Merlo E, Routtenberg A. Evolutionarily-conserved role of the NF-kappaB transcription factor in neural plasticity and memory. Eur J Neurosci 2007; 24:1507-16. [PMID: 17004915 DOI: 10.1111/j.1460-9568.2006.05022.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
NF-kappaB is an evolutionarily conserved family of transcription factors (TFs) critically involved in basic cellular mechanisms of the immune response, inflammation, development and apoptosis. In spite of the fact that it is expressed in the central nervous system, particularly in areas involved in memory processing, and is activated by signals such as glutamate and Ca2+, its role in neural plasticity and memory has only recently become apparent. A surprising feature of this molecule is its presence within the synapse. An increasing number of reports have called attention to the role of this TF in processes that require long-term regulation of the synaptic function underlying memory and neural plasticity. Here we review the evidence regarding a dual role for NF-kappaB, as both a signalling molecule after its activation at the synapse and a transcriptional regulator upon reaching the nucleus. The specific role of this signal, as well as the general transcriptional mechanism, in the process of memory formation is discussed. Converging lines of evidence summarized here point to a pivotal role for the NF-kappaB transcription factor as a direct signalling mechanism in the regulation of gene expression involved in long-term memory.
Collapse
Affiliation(s)
- Arturo Romano
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBINE-CONICET, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
19
|
Braszko JJ. Valsartan abolishes most of the memory-improving effects of intracerebroventricular angiotensin II in rats. Clin Exp Hypertens 2006; 27:635-49. [PMID: 16303640 DOI: 10.1080/10641960500298723] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
UNLABELLED This study explores behavioral effects of angiotensin II (Ang II) and a potent AT(1) receptor inhibitor valsartan ((S)-N-valeryl-N-{[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]-methyl}-valine). Male Wistar rats (160-180 g) were administered valsartan (10 mg/kg) orally followed, 2 hr later, by Ang II (1 nmol) given intracerebroventricularly (i.c.v., right lateral ventricle). Then 15 min later rats underwent behavioral testing: acquisition of conditioned avoidance responses (CARs), recall of a passive avoidance behavior, open field, elevated "plus" maze, and "chimney" test. Object recognition was tested 60 min after the i.c.v. injections. In addition, effect of valsartan on Ang II stimulated drinking of water was tested. We found that valsartan did not modify the Ang II facilitation of CARs acquisition but abolished the Ang II improvement of memory retrieval and consolidation. The lack of effect of our treatments on the rats' motor activity in the open field makes unspecific contribution of the drug-induced performance changes to the cognitive tests improbable. The anxiogenic action of Ang II, decreased by valsartan, makes an unspecific influence of anxiety possible. The prevention of Ang II increase of drinking by orally given valsartan confirmed effective blockade of the brain AT(1) receptors by the drug. IN CONCLUSION valsartan appears to affect cognitive effects of i.c.v. Ang II in rats in a similar way to losartan; anxiolytic activity of valsartan appears to be slightly weaker than that of losartan.
Collapse
Affiliation(s)
- Jan J Braszko
- Department of Clinical Pharmacology, Medical Academy of Bialystok, Bialystok, Poland.
| |
Collapse
|
20
|
Frenkel L, Maldonado H, Delorenzi A. Memory strengthening by a real-life episode during reconsolidation: an outcome of water deprivation via brain angiotensin II. Eur J Neurosci 2005; 22:1757-66. [PMID: 16197516 DOI: 10.1111/j.1460-9568.2005.04373.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A considerable body of evidence reveals that consolidated memories, recalled by a reminder, enter into a new vulnerability phase during which they are susceptible to disruption again. Consistently, reconsolidation was shown by the amnesic effects induced by administration of consolidation blockers after memory labilization. To shed light on the functional value of reconsolidation, we explored whether an endogenous process activated during a concurrent real-life experience improved this memory phase. Reconsolidation of long-term contextual memory has been well documented in the crab Chasmagnathus. Previously we showed that angiotensin II facilitates memory consolidation. Moreover, water deprivation increases brain angiotensin and improves memory consolidation and retrieval through angiotensin II receptors. Here, we tested whether concurrent water deprivation improves reconsolidation via endogenous angiotensin and therefore strengthens memory. We show that memory reconsolidation, induced by training context re-exposure, is facilitated by a concurrent episode of water deprivation, which induces a raise in endogenous brain angiotensin II. Positive modulation is expressed by full memory retention, despite a weak training, 24 or 72 but not 4 h after memory reactivation. This is the first evidence that memory can be positively modulated during reconsolidation through an identified endogenous process triggered during a real-life episode. We propose that the functional value for reconsolidation would be to make possible a change in memory strength by the influence of a concurrent experience. Reconsolidation improvement would lead to memory re-evaluation, not by altering memory content but by modifying the behaviour as an outcome of changing the hierarchy of the memories that control it.
Collapse
Affiliation(s)
- Lia Frenkel
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, Universidad de Buenos Aires, IFIBYNE-CONICET, Argentina
| | | | | |
Collapse
|
21
|
Pedreira ME, Maldonado H. Protein synthesis subserves reconsolidation or extinction depending on reminder duration. Neuron 2003; 38:863-9. [PMID: 12818173 DOI: 10.1016/s0896-6273(03)00352-0] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
When learned associations are recalled from long-term memory stores by presentation of an unreinforced conditioned stimulus (CS), two processes are initiated. One, termed reconsolidation, re-activates the association between the conditioned and unconditioned stimuli and transfers it from a stable protein synthesis-independent form of storage to a more labile protein-dependent state. The other is an extinction process in which presentation of the CS alone degrades the association between CS and US. To address the mechanistic relationship between reconsolidation and extinction, we have used an invertebrate model of contextual memory, which involves an association between the learning context and a visual danger stimulus. Here, we show that re-exposure duration to the learning context acts as a switch guiding the memory course toward reconsolidation or extinction, each depending on protein synthesis. Manipulation of this variable allows findings of impaired extinction to be discriminated from those of disrupted reconsolidation.
Collapse
Affiliation(s)
- María Eugenia Pedreira
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIBYNE-CONICET, Pabellón II, Facultad de Ciencias Exactas y Naturales (C1428EHA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
22
|
Frenkel L, Freudenthal R, Romano A, Nahmod VE, Maldonado H, Delorenzi A. Angiotensin II and the transcription factor Rel/NF-kappaB link environmental water shortage with memory improvement. Neuroscience 2003; 115:1079-87. [PMID: 12453481 DOI: 10.1016/s0306-4522(02)00583-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
One of the essential requirements even in the most ancient life forms is to be able to preserve body fluid medium. In line with such requirement, animals need to perform different behaviors to cope with water shortages. As angiotensin II (ANGII) is involved on a widespread range of functions in vertebrates, including memory modulation, an integrative role, in response to an environmental water shortage, has been envisioned. Previous work on the semi-terrestrial and brackish-water crab Chasmagnathus granulatus showed that endogenous ANGII enhanced an associative long-term memory and, in addition, that high salinity environment induces both an increase of brain ANGII levels and memory improvement. Here, we show that in the crab Chasmagnathus air exposure transiently increases blood sodium concentration, significantly increases brain ANGII immunoreactivity, and has a facilitatory effect on memory that is abolished by a non-selective ANGII receptor antagonist, saralasin. Furthermore, Rel/NF-kappaB, a transcription factor activated by ANGII in mammals and during memory consolidation in Chasmagnathus brain, is induced in the crab's brain by air exposure. Moreover, nuclear brain NF-kappaB is activated by ANGII, and this effect is reversed by saralasin. Our results constitute the first demonstration in an invertebrate that cognitive functions are modulated by an environmental stimulus through a neuropeptide and give evolutionary support to the role of angiotensins in memory processes. Moreover, these results suggest that angiotensinergic system is preserved across evolution not only in its structure and molecular mechanisms, but also in its capability of coordinating specific adaptative responses.
Collapse
Affiliation(s)
- L Frenkel
- Laboratorio de Neurobiologi;a de la Memoria, Departamento de Fisiologi;a, Biologi;a Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II (C1428EHA), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
23
|
Nässel DR. Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol 2002; 68:1-84. [PMID: 12427481 DOI: 10.1016/s0301-0082(02)00057-6] [Citation(s) in RCA: 336] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuropeptides in insects act as neuromodulators in the central and peripheral nervous system and as regulatory hormones released into the circulation. The functional roles of insect neuropeptides encompass regulation of homeostasis, organization of behaviors, initiation and coordination of developmental processes and modulation of neuronal and muscular activity. With the completion of the sequencing of the Drosophila genome we have obtained a fairly good estimate of the total number of genes encoding neuropeptide precursors and thus the total number of neuropeptides in an insect. At present there are 23 identified genes that encode predicted neuropeptides and an additional seven encoding insulin-like peptides in Drosophila. Since the number of G-protein-coupled neuropeptide receptors in Drosophila is estimated to be around 40, the total number of neuropeptide genes in this insect will probably not exceed three dozen. The neuropeptides can be grouped into families, and it is suggested here that related peptides encoded on a Drosophila gene constitute a family and that peptides from related genes (orthologs) in other species belong to the same family. Some peptides are encoded as multiple related isoforms on a precursor and it is possible that many of these isoforms are functionally redundant. The distribution and possible functions of members of the 23 neuropeptide families and the insulin-like peptides are discussed. It is clear that each of the distinct neuropeptides are present in specific small sets of neurons and/or neurosecretory cells and in some cases in cells of the intestine or certain peripheral sites. The distribution patterns vary extensively between types of neuropeptides. Another feature emerging for many insect neuropeptides is that they appear to be multifunctional. One and the same peptide may act both in the CNS and as a circulating hormone and play different functional roles at different central and peripheral targets. A neuropeptide can, for instance, act as a coreleased signal that modulates the action of a classical transmitter and the peptide action depends on the cotransmitter and the specific circuit where it is released. Some peptides, however, may work as molecular switches and trigger specific global responses at a given time. Drosophila, in spite of its small size, is now emerging as a very favorable organism for the studies of neuropeptide function due to the arsenal of molecular genetics methods available.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
24
|
Troncoso J, Maldonado H. Two related forms of memory in the crab Chasmagnathus are differentially affected by NMDA receptor antagonists. Pharmacol Biochem Behav 2002; 72:251-65. [PMID: 11900795 DOI: 10.1016/s0091-3057(01)00779-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A visual danger stimulus (VDS) elicits an escape response in the crab Chasmagnathus that declines after a few iterative presentations. Long-lasting retention of such decrement, termed context-signal memory (CSM), is mediated by an association between danger stimulus and environmental cues, cycloheximide sensitive, correlated with PKA activity and NFkappa-B activation, positively modulated by angiotensins, and selectively regulated by a muscarinic-cholinergic mechanism. The present research was aimed at studying the possible involvement of NMDA-like receptors in CSM, given the role attributed to these receptors in vertebrate memory and their occurrence in invertebrates including crustaceans. Vertebrate antagonists (+/-)-2-amino-5-phosphonopentanoic acid (AP5) and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) were used. Memory retention impairment was shown with MK-801 10(-3) M (1 microg/g) injected immediately before training or after training, or delayed 1 or 4 h, but not 6 h, posttraining. An AP5 10(-3) M dose (0.6 microg/g) impairs retention when given before but not after training. Neither antagonist produced retrieval deficit. A memory process similar to CSM but nonassociative in nature and induced by massed training (termed signal memory, SM), proved entirely insensitive to AP5 or MK-801, confirming the view that distinct mechanisms subserve these different types of memory in the crab.
Collapse
Affiliation(s)
- Julieta Troncoso
- Laboratorio de Neurobiología de la Memoria, Facultad de Ciencias Exactas y Naturales, Departamento Biologia, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
25
|
Water on the brain. Nature 2000. [DOI: 10.1038/news001109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|