1
|
Lau MJ, Schmidt TL, Yang Q, Chung J, Sankey L, Ross PA, Hoffmann AA. Genetic stability of Aedes aegypti populations following invasion by wMel Wolbachia. BMC Genomics 2021; 22:894. [PMID: 34906084 PMCID: PMC8670162 DOI: 10.1186/s12864-021-08200-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Background Wolbachia wMel is the most commonly used strain in rear and release strategies for Aedes aegypti mosquitoes that aim to inhibit the transmission of arboviruses such as dengue, Zika, Chikungunya and yellow fever. However, the long-term establishment of wMel in natural Ae. aegypti populations raises concerns that interactions between Wolbachia wMel and Ae. aegypti may lead to changes in the host genome, which could affect useful attributes of Wolbachia that allow it to invade and suppress disease transmission. Results We applied an evolve-and-resequence approach to study genome-wide genetic changes in Ae. aegypti from the Cairns region, Australia, where Wolbachia wMel was first introduced more than 10 years ago. Mosquito samples were collected at three different time points in Gordonvale, Australia, covering the phase before (2010) and after (2013 and 2018) Wolbachia releases. An additional three locations where Wolbachia replacement happened at different times across the last decade were also sampled in 2018. We found that the genomes of mosquito populations mostly remained stable after Wolbachia release, with population differences tending to reflect the geographic location of the populations rather than Wolbachia infection status. However, outlier analysis suggests that Wolbachia may have had an influence on some genes related to immune response, development, recognition and behavior. Conclusions Ae. aegypti populations remained geographically distinct after Wolbachia wMel releases in North Australia despite their Wolbachia infection status. At some specific genomic loci, we found signs of selection associated with Wolbachia, suggesting potential evolutionary impacts can happen in the future and further monitoring is warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08200-1.
Collapse
Affiliation(s)
- Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Thomas L Schmidt
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessica Chung
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Bioinformatics, The University of Melbourne, Parkville, Victoria, Australia
| | - Lucien Sankey
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
MacLeod HJ, Dimopoulos G, Short SM. Larval Diet Abundance Influences Size and Composition of the Midgut Microbiota of Aedes aegypti Mosquitoes. Front Microbiol 2021; 12:645362. [PMID: 34220739 PMCID: PMC8249813 DOI: 10.3389/fmicb.2021.645362] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
The midgut microbiota of the yellow fever mosquito Aedes aegypti impacts pathogen susceptibility and transmission by this important vector species. However, factors influencing the composition and size of the microbiome in mosquitoes are poorly understood. We investigated the impact of larval diet abundance during development on the composition and size of the larval and adult microbiota by rearing Aedes aegypti under four larval food regimens, ranging from nutrient deprivation to nutrient excess. We assessed the persistent impacts of larval diet availability on the microbiota of the larval breeding water, larval mosquitoes, and adult mosquitoes under sugar and blood fed conditions using qPCR and high-throughput 16S amplicon sequencing to determine bacterial load and microbiota composition. Bacterial loads in breeding water increased with increasing larval diet. Larvae reared with the lowest diet abundance had significantly fewer bacteria than larvae from two higher diet treatments, but not from the highest diet abundance. Adults from the lowest diet abundance treatment had significantly fewer bacteria in their midguts compared to all higher diet abundance treatments. Larval diet amount also had a significant impact on microbiota composition, primarily within larval breeding water and larvae. Increasing diet correlated with increased relative levels of Enterobacteriaceae and Flavobacteriaceae and decreased relative levels of Sphingomonadaceae. Multiple individual OTUs were significantly impacted by diet including one mapping to the genus Cedecea, which increased with higher diet amounts. This was consistent across all sample types, including sugar fed and blood fed adults. Taken together, these data suggest that availability of diet during development can cause lasting shifts in the size and composition of the microbiota in the disease vector Aedes aegypti.
Collapse
Affiliation(s)
- Hannah J MacLeod
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Sarah M Short
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
3
|
Petersen I, Chang WWJ, Hu MY. Na+/H+ exchangers differentially contribute to midgut fluid sodium and proton concentration in the sea urchin larva. J Exp Biol 2021; 224:239542. [PMID: 34424985 DOI: 10.1242/jeb.240705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 11/20/2022]
Abstract
Regulation of ionic composition and pH is a requisite of all digestive systems in the animal kingdom. Larval stages of the marine superphylum Ambulacraria, including echinoderms and hemichordates, were demonstrated to have highly alkaline conditions in their midgut with the underlying epithelial transport mechanisms being largely unknown. Using ion-selective microelectrodes, the present study demonstrated that pluteus larvae of the purple sea urchin have highly alkaline pH (pH ∼9) and low [Na+] (∼120 mmol l-1) in their midgut fluids, compared with the ionic composition of the surrounding seawater. We pharmacologically investigated the role of Na+/H+ exchangers (NHE) in intracellular pH regulation and midgut proton and sodium maintenance using the NHE inhibitor 5-(n-ethyl-n-isopropyl)amiloride (EIPA). Basolateral EIPA application decreased midgut pH while luminal application via micro-injections increased midgut [Na+], without affecting pH. Immunohistochemical analysis demonstrated a luminal localization of NHE-2 (SpSlc9a2) in the midgut epithelium. Specific knockdown of spslc9a2 using Vivo-Morpholinos led to an increase in midgut [Na+] without affecting pH. Acute acidification experiments in combination with quantitative PCR analysis and measurements of midgut pH and [Na+] identified two other NHE isoforms, Spslc9a7 and SpSlc9a8, which potentially contribute to the regulation of [Na+] and pH in midgut fluids. This work provides new insights into ion regulatory mechanisms in the midgut epithelium of sea urchin larvae. The involvement of NHEs in regulating pH and Na+ balance in midgut fluids shows conserved features of insect and vertebrate digestive systems and may contribute to the ability of sea urchin larvae to cope with changes in seawater pH.
Collapse
Affiliation(s)
- Inga Petersen
- Institute of Physiology, Christian-Albrechts University of Kiel, Hermann-Rodewaldstraße 5, 24118 Kiel, Germany
| | - William W J Chang
- Institute of Physiology, Christian-Albrechts University of Kiel, Hermann-Rodewaldstraße 5, 24118 Kiel, Germany
| | - Marian Y Hu
- Institute of Physiology, Christian-Albrechts University of Kiel, Hermann-Rodewaldstraße 5, 24118 Kiel, Germany
| |
Collapse
|
4
|
Wang Z, Perumalsamy H, Wang X, Ahn YJ. Toxicity and possible mechanisms of action of honokiol from Magnolia denudata seeds against four mosquito species. Sci Rep 2019; 9:411. [PMID: 30674912 PMCID: PMC6344527 DOI: 10.1038/s41598-018-36558-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
This study was performed to determine the toxicity and possible mechanism of the larvicidal action of honokiol, extracted from Magnolia denudata seeds, and its 10 related compounds against third-instar larvae of insecticide-susceptible Culex pipiens pallens, Aedes aegypti, and Aedes albopictus and Anopheles sinensis resistant to deltamethrin and temephos. Honokiol (LC50, 6.13–7.37 mg/L) was highly effective against larvae of all of the four mosquito species, although the toxicity of the compound was lower than that of the synthetic larvicide temephos. Structure–activity relationship analyses indicated that electron donor and/or bulky groups at the ortho or para positions of the phenol were required for toxicity. Honokiol moderately inhibited acetylcholinesterase and caused a considerable increase in cyclic AMP levels, indicating that it might act on both acetylcholinesterase and octopaminergic receptors. Microscopy analysis clearly indicated that honokiol was mainly targeted to the midgut epithelium and anal gills, resulting in variably dramatic degenerative responses of the midgut through sequential epithelial disorganization. Honokiol did not affect the AeCS1 mRNA expression level in Ae. aegypti larvae, but did enhance expression of the genes encoding vacuolar-type H+-ATPase and aquaporin 4, indicating that it may disturb the Na+, Cl− and K+ co-transport systems. These results demonstrate that honokiol merits further study as a potential larvicide, with a specific target site, and as a lead molecule for the control of mosquito populations.
Collapse
Affiliation(s)
- Zhangqian Wang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, China
| | - Haribalan Perumalsamy
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xue Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Young-Joon Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Miao YT, Deng Y, Jia HK, Liu YD, Hou ML. Proteomic analysis of watery saliva secreted by white-backed planthopper, Sogatella furcifera. PLoS One 2018; 13:e0193831. [PMID: 29727440 PMCID: PMC5935387 DOI: 10.1371/journal.pone.0193831] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/20/2018] [Indexed: 12/03/2022] Open
Abstract
The white-backed planthopper, Sogatella furcifera, is a phloem sap feeder that secretes watery and gelling saliva during feeding. In this study, we identified the major proteins in watery saliva of S. furcifera by shotgun LC-MS/MS analysis combined with transcriptomic analysis. A total of 161 proteins were identified, which were divided into 8 function categories, including enzymes, transporter, calcium ion binding protein, salivary sheath protein, cytoskeleton protein, DNA-, RNA-, and protein-binding or regulating proteins, other non-enzyme proteins and unknown proteins. Gene expression pattern of 11 secretory proteins were analyzed by real time quantitative-PCR. We detected the mucin-like protein, which had a unique expression level in salivary gland, most likely to be a candidate effector involved in regulation of plant defense. This study identified the watery saliva component of S. furcifera and it provided a list of proteins which may play a role in interaction between S. furcifera and rice.
Collapse
Affiliation(s)
- Yu-Tong Miao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, China
| | - Yao Deng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, China
| | - Hao-Kang Jia
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, China
| | - Yu-Di Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, China
- * E-mail:
| | - Mao-Lin Hou
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, China
| |
Collapse
|
6
|
Abstract
Mosquitoes host communities of microbes in their digestive tract that consist primarily of bacteria. We previously reported that several mosquito species, including Aedes aegypti, do not develop beyond the first instar when fed a nutritionally complete diet in the absence of a gut microbiota. In contrast, several species of bacteria, including Escherichia coli, rescue development of axenic larvae into adults. The molecular mechanisms underlying bacteria-dependent growth are unknown. Here, we designed a genetic screen around E. coli that identified high-affinity cytochrome bd oxidase as an essential bacterial gene product for mosquito growth. Bioassays showed that bacteria in nonsterile larvae and gnotobiotic larvae inoculated with wild-type E. coli reduced midgut oxygen levels below 5%, whereas larvae inoculated with E. coli mutants defective for cytochrome bd oxidase did not. Experiments further supported that hypoxia leads to growth and ecdysone-induced molting. Altogether, our results identify aerobic respiration by bacteria as a previously unknown but essential process for mosquito development.
Collapse
|
7
|
Dixon DP, Van Ekeris L, Linser PJ. Characterization of Carbonic Anhydrase 9 in the Alimentary Canal of Aedes aegypti and Its Relationship to Homologous Mosquito Carbonic Anhydrases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E213. [PMID: 28230813 PMCID: PMC5334767 DOI: 10.3390/ijerph14020213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 01/22/2023]
Abstract
In the mosquito midgut, luminal pH regulation and cellular ion transport processes are important for the digestion of food and maintenance of cellular homeostasis. pH regulation in the mosquito gut is affected by the vectorial movement of the principal ions including bicarbonate/carbonate and protons. As in all metazoans, mosquitoes employ the product of aerobic metabolism carbon dioxide in its bicarbonate/carbonate form as one of the major buffers of cellular and extracellular pH. The conversion of metabolic carbon dioxide to bicarbonate/carbonate is accomplished by a family of enzymes encoded by the carbonic anhydrase gene family. This study characterizes Aedes aegypti carbonic anhydrases using bioinformatic, molecular, and immunohistochemical methods. Our analyses show that there are fourteen Aedes aegypti carbonic anhydrase genes, two of which are expressed as splice variants. The carbonic anhydrases were classified as either integral membrane, peripheral membrane, mitochondrial, secreted, or soluble cytoplasmic proteins. Using polymerase chain reaction and Western blotting, one of the carbonic anhydrases, Aedes aegypti carbonic anhydrase 9, was analyzed and found in each life stage, male/female pupae, male/female adults, and in the female posterior midgut. Next, carbonic anhydrase 9 was analyzed in larvae and adults using confocal microscopy and was detected in the midgut regions. According to our analyses, carbonic anhydrase 9 is a soluble cytoplasmic enzyme found in the alimentary canal of larvae and adults and is expressed throughout the life cycle of the mosquito. Based on previous physiological analyses of adults and larvae, it appears AeCA9 is one of the major carbonic anhydrases involved in producing bicarbonate/carbonate which is involved in pH regulation and ion transport processes in the alimentary canal. Detailed understanding of the molecular bases of ion homeostasis in mosquitoes will provide targets for novel mosquito control strategies into the new millennium.
Collapse
Affiliation(s)
- Daniel P Dixon
- The Whitney Laboratory, University of Florida, Saint Augustine, FL 32080, USA.
- The Anastasia Mosquito Control District, St. Augustine Florida, Saint Augustine, FL 32092, USA.
| | - Leslie Van Ekeris
- The Whitney Laboratory, University of Florida, Saint Augustine, FL 32080, USA.
| | - Paul J Linser
- The Whitney Laboratory, University of Florida, Saint Augustine, FL 32080, USA.
| |
Collapse
|
8
|
D'Silva NM, Patrick ML, O'Donnell MJ. Effects of rearing salinity on expression and function of ion motive ATPases and ion transport across the gastric caecum of Aedes aegypti larvae. J Exp Biol 2017; 220:3172-3180. [DOI: 10.1242/jeb.163170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/26/2017] [Indexed: 01/15/2023]
Abstract
Larvae of Aedes aegypti, the yellow fever vector, inhabit a variety of aquatic habitats ranging from fresh water to brackish water. This study focuses on the gastric caecum of the larvae, an organ that has not been widely studied. We provide the first measurements of H+, K+, and Na+ fluxes at the distal and proximal gastric caecum, and have shown that they differ in the two regions, consistent with previously reported regionalization of ion transporters. Moreover we have shown that the regionalization of vacuolar H+-ATPase and Na+/K+ -ATPase is altered when larvae are reared in brackish water (30% seawater) relative to fresh water. Measurements of luminal Na+ and K+ concentrations also show a 5-fold increase in Na+/K+ ratio in the caecal lumen in larvae reared in brackish water relative to fresh water, whereas transepithelial potential and luminal pH were unchanged. Calculated electrochemical potentials reveal changes in the active accumulation of Na+ and K+ in the lumen of the gastric caecum of fresh water versus brackish water larvae. Together with the results of previous studies of the larval midgut, our results show that the caecum is functionally distinct from the adjacent anterior midgut, and may play an important role in osmoregulation as well as uptake of nutrients.
Collapse
|
9
|
Francis SAM, Taylor-Wells J, Gross AD, Bloomquist JR. Toxicity and Physiological Actions of Carbonic Anhydrase Inhibitors to Aedes aegypti and Drosophila melanogaster. INSECTS 2016; 8:insects8010002. [PMID: 28025488 PMCID: PMC5371930 DOI: 10.3390/insects8010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 01/18/2023]
Abstract
The physiological role of carbonic anhydrases in pH and ion regulation is crucial to insect survival. We examined the toxic and neurophysiological effects of five carbonic anhydrase inhibitors (CAIs) against Aedes aegypti. The 24 h larvicidal toxicities followed this rank order of potency: dichlorphenamide > methazolamide > acetazolamide = brinzolamide = dorzolamide. Larvicidal activity increased modestly in longer exposures, and affected larvae showed attenuated responses to probing without overt tremors, hyperexcitation, or convulsions. Acetazolamide and dichlorphenamide were toxic to adults when applied topically, but were of low potency and had an incomplete effect (<50% at 300 ng/mosquito) even after injection. Dichlorphenamide was also the most toxic compound when fed to adult mosquitoes, and they displayed loss of posture and occasionally prolonged fluttering of the wings. Co-exposure with 500 ng of the synergist piperonyl butoxide (PBO) increased the toxicity of dichlorphenamide ca. two-fold in feeding assays, indicating that low toxicity was not related to oxidative metabolism. Dichlorphenamide showed mild depolarizing and nerve discharge actions on insect neuromuscular and central nervous systems, respectively. These effects were increased in low buffer salines, indicating they were apparently related to loss of pH control in these tissues. Overall, sulfonamides displayed weak insecticidal properties on Aedes aegypti and are weak lead compounds.
Collapse
Affiliation(s)
- Sheena A M Francis
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Jennina Taylor-Wells
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Aaron D Gross
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Jeffrey R Bloomquist
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
10
|
Perumalsamy H, Kim JR, Oh SM, Jung JW, Ahn YJ, Kwon HW. Novel histopathological and molecular effects of natural compound pellitorine on larval midgut epithelium and anal gills of Aedes aegypti. PLoS One 2013; 8:e80226. [PMID: 24260359 PMCID: PMC3832413 DOI: 10.1371/journal.pone.0080226] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022] Open
Abstract
The yellow fever mosquito, Aedes aegypti, is a vector for transmitting dengue fever and yellow fever. In this study, we assessed the histopathological and molecular effects of pellitorine, an isobutylamide alkaloid, on the third instar of Ae. aegypti larvae. At 5 mg/l concentration of pellitorine, the whole body of the treated larvae became dark in color, particularly damaged thorax and abdominal regions. Pellitorine was targeted mainly on midgut epithelium and anal gills, indicating variably dramatic degenerative responses of the midgut through a sequential epithelial disorganization. The anterior and posterior midgut was entirely necrosed, bearing only gut lumen residues inside the peritrophic membranes. Pellitorine caused comprehensive damage of anal gill cells and branches of tracheole and debris was found in hemolymph of the anal gills. RT-PCR analysis indicates that the compound inhibited gene expression encoding V-type H+-ATPase and aquaporine 4 after treatment with 2.21 mg/l pellitorine. These results verify that pellitorine merits further study as a potential larvicide with a specific target site and a lead molecule for the control of mosquito populations.
Collapse
Affiliation(s)
- Haribalan Perumalsamy
- Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jun-Ran Kim
- Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sang Mi Oh
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Je Won Jung
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Young-Joon Ahn
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- * E-mail: (Y-JA); (HWK)
| | - Hyung Wook Kwon
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- * E-mail: (Y-JA); (HWK)
| |
Collapse
|
11
|
Ascunce MS, Toups MA, Kassu G, Fane J, Scholl K, Reed DL. Nuclear genetic diversity in human lice (Pediculus humanus) reveals continental differences and high inbreeding among worldwide populations. PLoS One 2013; 8:e57619. [PMID: 23460886 PMCID: PMC3583987 DOI: 10.1371/journal.pone.0057619] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/24/2013] [Indexed: 11/19/2022] Open
Abstract
Understanding the evolution of parasites is important to both basic and applied evolutionary biology. Knowledge of the genetic structure of parasite populations is critical for our ability to predict how an infection can spread through a host population and for the design of effective control methods. However, very little is known about the genetic structure of most human parasites, including the human louse (Pediculus humanus). This species is composed of two ecotypes: the head louse (Pediculus humanus capitis De Geer), and the clothing (body) louse (Pediculus humanus humanus Linnaeus). Hundreds of millions of head louse infestations affect children every year, and this number is on the rise, in part because of increased resistance to insecticides. Clothing lice affect mostly homeless and refugee-camp populations and although they are less prevalent than head lice, the medical consequences are more severe because they vector deadly bacterial pathogens. In this study we present the first assessment of the genetic structure of human louse populations by analyzing the nuclear genetic variation at 15 newly developed microsatellite loci in 93 human lice from 11 sites in four world regions. Both ecotypes showed heterozygote deficits relative to Hardy-Weinberg equilibrium and high inbreeding values, an expected pattern given their parasitic life history. Bayesian clustering analyses assigned lice to four distinct genetic clusters that were geographically structured. The low levels of gene flow among louse populations suggested that the evolution of insecticide resistance in lice would most likely be affected by local selection pressures, underscoring the importance of tailoring control strategies to population-specific genetic makeup and evolutionary history. Our panel of microsatellite markers provides powerful data to investigate not only ecological and evolutionary processes in lice, but also those in their human hosts because of the long-term coevolutionary association between lice and humans.
Collapse
Affiliation(s)
- Marina S Ascunce
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America.
| | | | | | | | | | | |
Collapse
|
12
|
Linser PJ, Neira Oviedo M, Hirata T, Seron TJ, Smith KE, Piermarini PM, Romero MF. Slc4-like anion transporters of the larval mosquito alimentary canal. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:551-562. [PMID: 22251674 PMCID: PMC3322255 DOI: 10.1016/j.jinsphys.2012.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 05/31/2023]
Abstract
Mosquito larvae exhibit luminal pH extremes along the axial length of their alimentary canal that range from very alkaline (pH>10) in the anterior midgut to slightly acid in the hindgut. The principal buffer in the system is thought to be bicarbonate and/or carbonate, because the lumen is known to contain high levels of bicarbonate/carbonate and is surrounded by various epithelial cell types which express a variety of carbonic anhydrases. However, the precise mechanisms responsible for the transport of bicarbonate/carbonate into and out of the lumen are unclear. In the present study, we test the hypothesis that SLC4-like anion transporters play a role in bicarbonate/carbonate accumulation in the larval mosquito alimentary canal. Molecular, physiological and immnuohistochemical characterizations of Slc4-like transporters in the gut of larval mosquitoes (Aedes aegypti and Anopheles gambiae) demonstrate the presence of both a Na(+)-independent chloride/bicarbonate anion exchanger (AE) as well as a Na(+)-dependent anion exchanger (NDAE). Notably, immunolocalization experiments in Malpighian tubules show that the two proteins can be located in the same tissue, but to different cell types. Immunolabeling experiments in the gastric caecae show that the two proteins can be found in the same cells, but on opposite sides (basal vs. apical). In summary, our results indicate that the alimentary canal of larval mosquitoes exhibits robust expression of two SLC4-like transporters in locations that are consistent with a role in the regulation of luminal pH. The precise physiological contributions of each transporter remain to be determined.
Collapse
Affiliation(s)
- Paul J Linser
- University of Florida, Whitney Laboratory, St. Augustine, FL 32086, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Onken H, Parks SK, Goss GG, Moffett DF. Serotonin-induced high intracellular pH aids in alkali secretion in the anterior midgut of larval yellow fever mosquito Aedes aegypti L. ACTA ACUST UNITED AC 2009; 212:2571-8. [PMID: 19648402 DOI: 10.1242/jeb.030221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The anterior midgut of the larval yellow fever mosquito Aedes aegypti generates a luminal pH in excess of 10 in vivo and similar values are attained by isolated and perfused anterior midgut segments after stimulation with submicromolar serotonin. In the present study we investigated the mechanisms of strong luminal alkalinization using the intracellular fluorescent indicator BCECF-AM. Following stimulation with serotonin, we observed that intracellular pH (pH(i)) of the anterior midgut increased from a mean of 6.89 to a mean of 7.62, whereas pH(i) of the posterior midgut did not change in response to serotonin. Moreover, a further increase of pH(i) to 8.58 occurred when the pH of the luminal perfusate was raised to an in vivo-like value of 10.0. Luminal Zn(2+) (10 micromol l(-1)), an inhibitor of conductive proton pathways, did not inhibit the increase in pH(i), the transepithelial voltage, or the capacity of the isolated tissue to alkalinize the lumen. Finally, the transapical voltage did not significantly respond to luminal pH changes induced either by perfusion with pH 10 or by stopping the luminal perfusion with unbuffered solution which results in spontaneous luminal alkalinization. Together, these results seem to rule out the involvement of conductive pathways for proton absorption across the apical membrane and suggest that a serotonin-induced alkaline pH(i) plays an important role in the generation of an alkaline lumen.
Collapse
Affiliation(s)
- Horst Onken
- Department of Biological Sciences, Wagner College, Staten Island, NY 10301, USA.
| | | | | | | |
Collapse
|
14
|
Izeirovski S, Moffett SB, Moffett DF, Onken H. The anterior midgut of larval yellow fever mosquitoes (Aedes aegypti): effects of amino acids, dicarboxylic acids, and glucose on the transepithelial voltage and strong luminal alkalinization. ACTA ACUST UNITED AC 2009; 311:719-26. [DOI: 10.1002/jez.561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Shanbhag S, Tripathi S. Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. ACTA ACUST UNITED AC 2009; 212:1731-44. [PMID: 19448082 DOI: 10.1242/jeb.029306] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is a resurgence of interest in the Drosophila midgut on account of its potential value in understanding the structure, development and function of digestive organs and related epithelia. The recent identification of regenerative or stem cells in the adult gut of Drosophila has opened up new avenues for understanding development and turnover of cells in insect and mammalian gastrointestinal tracts. Conversely, the physiology of the Drosophila gut is less well understood as it is a difficult epithelial preparation to study under controlled conditions. Recent progress in microperfusion of individual segments of the Drosophila midgut, in both larval and adult forms, has enabled ultrastructural and electrophysiological study and preliminary characterization of cellular transport processes in the epithelium. As larvae are more active feeders, the transport rates are higher than in adults. The larval midgut has at least three segments: an anterior neutral zone, a short and narrow acid-secreting middle segment and a long and wider posterior segment (which is the best studied) that secretes base (probably HCO(3)(-)) into the lumen. The posterior midgut has a lumen-negative transepithelial potential (35-45 mV) and a high resistance (800-1400 Omega.cm(2)) that correlates with little or no lateral intercellular volume. The primary transport system driving base secretion into the lumen appears to be a bafilomycin-A(1)-sensitive, electrogenic H(+) V-ATPase located on the basal membrane, which extrudes acid into the haemolymph, as inferred from the extracellular pH gradients detected adjacent to the basal membrane. The adult midgut is also segmented (as inferred from longitudinal gradients of pH dye-indicators in the lumen) into anterior, middle and posterior regions. The anterior segment is probably absorptive. The middle midgut secretes acid (pH<4.0), a process dependent on a carbonic-anhydrase-catalysed H(+) pool. Cells of the middle segment are alternately absorptive (apically amplified by approximately 9-fold, basally amplified by >90-fold) and secretory (apically amplified by >90-fold and basally by approximately 10-fold). Posterior segment cells have an extensively dilated basal extracellular labyrinth, with a volume larger than that of anterior segment cells, indicating more fluid reabsorption in the posterior segment. The luminal pH of anterior and posterior adult midgut is 7-9. These findings in the larval and adult midgut open up the possibility of determining the role of plasma membrane transporters and channels involved in driving not only H(+) fluxes but also secondary fluxes of other solutes and water in Drosophila.
Collapse
Affiliation(s)
- Shubha Shanbhag
- Tata Institute of Fundamental Research, Colaba, Mumbai 400 005, India
| | | |
Collapse
|
16
|
Linser PJ, Smith KE, Seron TJ, Neira Oviedo M. Carbonic anhydrases and anion transport in mosquito midgut pH regulation. ACTA ACUST UNITED AC 2009; 212:1662-71. [PMID: 19448076 DOI: 10.1242/jeb.028084] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mosquito larvae use a digestive strategy that is relatively rare in nature. The anterior half of the larval mosquito midgut has a luminal pH that ranges between 10.5 and 11.5. Most other organisms, both large and small, initiate digestion in an acid medium. The relative uniqueness of the highly alkaline digestive strategy has been a long-standing research focus in larval lepidopterans. More recently, the disease vector potential of mosquitoes has fueled specific interest in larval mosquito biology and the alkaline digestive environment in the midgut. The probable principle anion influencing the highly alkaline gut lumen is bicarbonate/carbonate. Bicarbonate/carbonate is regulated at least in part by the activity of carbonic anhydrases. Hence, we have focused attention on the carbonic anhydrases of the mosquito larva. Anopheles gambiae, the major malaria mosquito of Africa, is an organism with a published genome which has facilitated molecular analyses of the 12 carbonic anhydrase genes annotated for this mosquito. Microarray expression analyses, tissue-specific quantitative RT-PCR, and antibody localization have been used to generate a picture of carbonic anhydrase distribution in the larval mosquito. Cytoplasmic, GPI-linked extracellular membrane-bound and soluble extracellular carbonic anhydrases have been located in the midgut and hindgut. The distribution of the enzymes is consistent with an anion regulatory system in which carbonic anhydrases provide a continuous source of bicarbonate/carbonate from the intracellular compartments of certain epithelial cells to the ectoperitrophic space between the epithelial cells and the acellular membrane separating the food bolus from the gut cells and finally into the gut lumen. Carbonic anhydrase in specialized cells of the hindgut (rectum) probably plays a final role in excretion of bicarbonate/carbonate into the aquatic environment of the larva. Detection and characterization of classic anion exchangers of the SLC4A family in the midgut has been problematic. The distribution of carbonic anhydrases in the system may obviate the requirement for such transporters, making the system more dependent on simple carbon dioxide diffusion and ionization via the activity of the enzyme.
Collapse
Affiliation(s)
- Paul J Linser
- The University of Florida Whitney Laboratory, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA.
| | | | | | | |
Collapse
|
17
|
Onken H, Patel M, Javoroncov M, Izeirovski S, Moffett SB, Moffett DF. Strong alkalinization in the anterior midgut of larval yellow fever mosquitoes (Aedes aegypti): involvement of luminal Na+/K+-ATPase. ACTA ACUST UNITED AC 2009; 311:155-61. [PMID: 19048614 DOI: 10.1002/jez.512] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recently, Na(+)/K(+)-ATPase has been detected in the luminal membrane of the anterior midgut of larval yellow fever mosquitoes (Aedes aegypti) with immunohistochemical techniques. In this study, the possible involvement of this ATPase in strong alkalinization was investigated on the level of whole larvae, isolated and perfused midgut preparations and on the molecular level of the Na(+)/K(+)-ATPase protein. Ouabain (5 mM) did not inhibit the capability of intact larval mosquitoes to alkalinize their anterior midgut. Also in isolated and perfused midgut preparations the perfusion of the lumen with ouabain (5 mM) did not result in a significant change of the transepithelial voltage or the capacity of luminal alkalinization. Na(+)/K(+)-ATPase activity was completely abolished when KCl was substituted with choline chloride, suggesting that the enzyme cannot act as an ATP-driven Na(+)/H(+)-exchanger. Altogether the results of the present investigation indicate that apical Na(+)/K(+)-ATPase is not of direct importance for strong luminal alkalinization in the anterior midgut of larval yellow fever mosquitoes.
Collapse
Affiliation(s)
- Horst Onken
- Department of Biological Sciences, Wagner College, Staten Island, New York 10301, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Onken H, Moffett DF. Revisiting the cellular mechanisms of strong luminal alkalinization in the anterior midgut of larval mosquitoes. ACTA ACUST UNITED AC 2009; 212:373-7. [PMID: 19151212 DOI: 10.1242/jeb.023580] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here we critically review two recent hypotheses about the mechanism of strong alkalinization by the anterior midgut of mosquito larvae and our tests of these hypotheses. We present experimental evidence against the major components of transport models proposed in these hypotheses. Measurements of the transapical and transbasal proton electrochemical gradients provide an indication of driving forces faced by and generated by the transport mechanisms of the tissue. These measurements confirmed that basal V-ATPase energizes alkalinization. Serotonin stimulates the V-ATPase, as indicated by the ensuing increase in proton-motive force across the basal membrane. Moreover, the neurohormone resulted in a surprisingly large increase in the intracellular pH. The results of inhibitor studies indicate that, contrary to previous proposals, carbonic anhydrase is apparently not involved in supplying acid-base equivalents to the respective transporters. Furthermore, any apical processes proposed to be involved in alkali secretion or acid absorption must be Cl(-) independent and insensitive to DIDS, amiloride, Zn(2+) and ouabain. These results argue against the involvement of putative apical Cl(-)/HCO (-)(3) exchangers, apical H(+) channels, apical cation/proton exchangers and the importance of the apical Na(+)/K(+) pump. The studies analyzed here thus provide both a limitation and direction for further studies of the mechanism of strong alkalinization in this system.
Collapse
Affiliation(s)
- Horst Onken
- Department of Biological Sciences, Wagner College, Staten Island, NY 10301, USA.
| | | |
Collapse
|
19
|
Ray K, Mercedes M, Chan D, Choi CY, Nishiura JT. Growth and differentiation of the larval mosquito midgut. JOURNAL OF INSECT SCIENCE (ONLINE) 2009; 9:1-13. [PMID: 20053117 PMCID: PMC3011905 DOI: 10.1673/031.009.5501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 08/23/2008] [Indexed: 05/28/2023]
Abstract
Factors affecting larval growth and nutrition have consequences on adult fecundity. Since the mosquito larval midgut is the primary organ of digestion and nutrient absorption, factors that affect the growth and development of the midgut may have potential consequences on the reproductive potential of the adult. To gain a better understanding of mosquito midgut development the growth and metamorphic remodeling of the Aedes aegypti L. and Culex pipiens L. (Diptera: Culicidae) midguts were investigated. Cytological evidence was obtained suggesting that, in both the anterior and posterior Ae. aegypti larval midgut, diploid regenerative cells give rise to new endoreplicating cells that significantly contribute to the growth and metabolism of the midgut. This hypothesis was supported by BrdU incorporation studies showing that diploid cells, as well as large and small endoreplicating cells, synthesize DNA during the 2(nd), 3(rd) and 4(th) instars. Cytological studies of the Cx. pipiens larval midgut suggest that anterior midgut growth in this species is primarily by cell enlargement. To study metamorphic remodeling of the midgut, DNA synthesis in Ae. aegypti 4(th) instar midguts was followed by using 5-bromo-2-deoxyuridine (BrdU) incorporation. During the 24 hr period after the last larval-larval molt both endoreplicating and diploid cells incorporate BrdU. After the critical weight is achieved, endoreplicating cell BrdU incorporation gradually ceases while diploid cells continue to replicate. The period of maximum diploid cell incorporation correlated with the period of maximum ecdysone titer.
Collapse
Affiliation(s)
- Kathryn Ray
- Biology Department, Brooklyn College, 2900 Bedford Ave, Brooklyn, NY 11210
| | - Maria Mercedes
- Biology Department, Brooklyn College, 2900 Bedford Ave, Brooklyn, NY 11210
| | - Doris Chan
- Biology Department, Brooklyn College, 2900 Bedford Ave, Brooklyn, NY 11210
| | - Chi Yan Choi
- Biology Department, Brooklyn College, 2900 Bedford Ave, Brooklyn, NY 11210
| | - James T. Nishiura
- Biology Department, Brooklyn College, 2900 Bedford Ave, Brooklyn, NY 11210
| |
Collapse
|
20
|
Smith KE, VanEkeris LA, Okech BA, Harvey WR, Linser PJ. Larval anopheline mosquito recta exhibit a dramatic change in localization patterns of ion transport proteins in response to shifting salinity: a comparison between anopheline and culicine larvae. ACTA ACUST UNITED AC 2008; 211:3067-76. [PMID: 18805805 DOI: 10.1242/jeb.019299] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mosquito larvae live in dynamic aqueous environments, which can fluctuate drastically in salinity due to environmental events such as rainfall and evaporation. Larval survival depends upon the ability to regulate hemolymph osmolarity by absorbing and excreting ions. A major organ involved in ion regulation is the rectum, the last region for modification of the primary urine before excretion. The ultrastructure and function of culicine larval recta have been studied extensively; however, very little published data exist on the recta of anopheline larvae. To gain insight into the structure and functions of this organ in anopheline species, we used immunohistochemistry to compare the localization of three proteins [carbonic anhydrase (CA9), Na+/K+ P-ATPase and H+ V-ATPase] in the recta of anopheline larvae reared in freshwater and saline water with the localization of the same proteins in culicine larvae reared under similar conditions. Based on the following key points, we concluded that anophelines differ from culicines in larval rectal structure and in regulation of protein expression: (1) despite the fact that obligate freshwater and saline-tolerant culicines have structurally distinct recta, all anophelines examined (regardless of saline-tolerance) have a structurally similar rectum consisting of distinct DAR (dorsal anterior rectal) cells and non-DAR cells; (2) anopheline larvae undergo a dramatic shift in rectal Na+/K+-ATPase localization when reared in freshwater vs saline water. This shift is not seen in any culicine larvae examined. Additionally, we use these immunohistochemical analyses to suggest possible functions for the DAR and non-DAR cells of anopheline larvae in freshwater and saline conditions.
Collapse
Affiliation(s)
- Kristin E Smith
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| | | | | | | | | |
Collapse
|
21
|
Santos VC, Araujo RN, Machado LAD, Pereira MH, Gontijo NF. The physiology of the midgut of Lutzomyia longipalpis (Lutz and Neiva 1912): pH in different physiological conditions and mechanisms involved in its control. ACTA ACUST UNITED AC 2008; 211:2792-8. [PMID: 18723537 DOI: 10.1242/jeb.019836] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nutrient digestion and absorption after blood feeding are important events for Lutzomyia longipalpis, which uses these nutrients to produce eggs. In this context, the pH inside the digestive tract is an important physiological feature as it can markedly influence the digestive process as well as interfere with Leishmania development in infected phlebotomines. It was described previously that unfed females have an acidic midgut (pH 6). In this study, the pH inside the midgut of blood-fed females was measured. The abdominal midgut (AM) pH varied from 8.15+/-0.31 in the first 10 h post-blood meal to 7.7+/-0.17 after 24 h. While the AM was alkaline during blood digestion, the pH in the thoracic midgut (TM) remained acidic (5.5-6.0). In agreement with these findings, the enzyme alpha-glucosidase, which has an optimum pH of 5.8, is mainly encountered in the acidic TM. The capacity of unfed females to maintain the acidic intestinal pH was also evaluated. Our results showed the presence of an efficient mechanism that maintains the pH almost constant at about 6 in the midgut, but not in the crop. This mechanism is promptly interrupted in the AM by blood ingestion. RT-PCR results indicated the presence of carbonic anhydrase in the midgut cells, which apparently is required to maintain the pH at 6 in the midgut of unfed females. Investigations on the phenomenon of alkalization observed after blood ingestion indicated that two mechanisms are involved: in addition to the alkalization promoted by CO2 volatilization there is a minor contribution from a second mechanism not yet characterized. Some inferences concerning Leishmania development and pH in the digestive tube are presented.
Collapse
Affiliation(s)
- Vânia C Santos
- Department of Parasitology, Federal University of Minas Gerais-UFMG, Avenue Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
22
|
Okech BA, Boudko DY, Linser PJ, Harvey WR. Cationic pathway of pH regulation in larvae of Anopheles gambiae. ACTA ACUST UNITED AC 2008; 211:957-68. [PMID: 18310121 DOI: 10.1242/jeb.012021] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Anopheles gambiae larvae (Diptera: Culicidae) live in freshwater with low Na(+) concentrations yet they use Na(+) for alkalinization of the alimentary canal, for electrophoretic amino acid uptake and for nerve function. The metabolic pathway by which larvae accomplish these functions has anionic and cationic components that interact and allow the larva to conserve Na(+) while excreting H(+) and HCO(3)(-). The anionic pathway consists of a metabolic CO(2) diffusion process, carbonic anhydrase and Cl(-)/HCO(3)(-) exchangers; it provides weak HCO(3)(-) and weaker CO(3)(2-) anions to the lumen. The cationic pathway consists of H(+) V-ATPases and Na(+)/H(+) antiporters (NHAs), Na(+)/K(+) P-ATPases and Na(+)/H(+) exchangers (NHEs) along with several (Na(+) or K(+)):amino acid(+/-) symporters, a.k.a. nutrient amino acid transporters (NATs). This paper considers the cationic pathway, which provides the strong Na(+) or K(+) cations that alkalinize the lumen in anterior midgut then removes them and restores a lower pH in posterior midgut. A key member of the cationic pathway is a Na(+)/H(+) antiporter, which was cloned recently from Anopheles gambiae larvae, localized strategically in plasma membranes of the alimentary canal and named AgNHA1 based upon its phylogeny. A phylogenetic comparison of all cloned NHAs and NHEs revealed that AgNHA1 is the first metazoan NHA to be cloned and localized and that it is in the same clade as electrophoretic prokaryotic NHAs that are driven by the electrogenic H(+) F-ATPase. Like prokaryotic NHAs, AgNHA1 is thought to be electrophoretic and to be driven by the electrogenic H(+) V-ATPase. Both AgNHA1 and alkalophilic bacterial NHAs face highly alkaline environments; to alkalinize the larva mosquito midgut lumen, AgNHA1, like the bacterial NHAs, would have to move nH(+) inwardly and Na(+) outwardly. Perhaps the alkaline environment that led to the evolution of electrophoretic prokaryotic NHAs also led to the evolution of an electrophoretic AgNHA1 in mosquito larvae. In support of this hypothesis, antibodies to both AgNHA1 and H(+) V-ATPase label the same membranes in An. gambiae larvae. The localization of H(+) V-ATPase together with (Na(+) or K(+)):amino acid(+/-) symporter, AgNAT8, on the same apical membrane in posterior midgut cells constitutes the functional equivalent of an NHE that lowers the pH in the posterior midgut lumen. All NATs characterized to date are Na(+) or K(+) symporters so the deduction is likely to have wide application. The deduced colocalization of H(+) V-ATPase, AgNHA1 and AgNAT8, on this membrane forms a pathway for local cycling of H(+) and Na(+) in posterior midgut. The local H(+) cycle would prevent unchecked acidification of the lumen while the local Na(+) cycle would regulate pH and support Na(+):amino acid(+/-) symport. Meanwhile, a long-range Na(+) cycle first transfers Na(+) from the blood to gastric caeca and anterior midgut lumen where it initiates alkalinization and then returns Na(+) from the rectal lumen to the blood, where it prevents loss of Na(+) during H(+) and HCO(3)(-) excretion. The localization of H(+) V-ATPase and Na(+)/K(+)-ATPase in An. gambiae larvae parallels that reported for Aedes aegypti larvae. The deduced colocalization of the two ATPases along with NHA and NAT in the alimentary canal constitutes a cationic pathway for Na(+)-conserving midgut alkalinization and de-alkalinization which has never been reported before.
Collapse
Affiliation(s)
- Bernard A Okech
- The Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | | | | | | |
Collapse
|
23
|
Neira Oviedo M, Vanekeris L, Corena-McLeod MDP, Linser PJ. A microarray-based analysis of transcriptional compartmentalization in the alimentary canal of Anopheles gambiae (Diptera: Culicidae) larvae. INSECT MOLECULAR BIOLOGY 2008; 17:61-72. [PMID: 18237285 DOI: 10.1111/j.1365-2583.2008.00779.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The alimentary canal of the larval mosquito displays a considerable degree of physiological compartmentalization among its different anatomical sub-divisions (gastric caeca, anterior midgut, posterior midgut and hindgut). We performed a comparative microarray analysis in order to identify transcripts which are particularly enriched in each gut section. Based on the available annotation of the selected transcripts, we suggest that the metabolism and absorption of proteins and carbohydrates takes place mainly in the gastric caeca and posterior midgut, whereas the anterior midgut specializes in the metabolism and absorption of lipids. Transcripts encoding antimicrobial peptides were found to be enriched in the gastric caeca, and a high enrichment of transcripts associated with enzymes involved in xenobiotic detoxification was found in the anterior midgut. Furthermore, our data support the notion that the region encompassing the hindgut and Malpighian tubes plays important roles in avoiding the excretion of nutrients, as well as in xenobiotic detoxification.
Collapse
Affiliation(s)
- M Neira Oviedo
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | | | | | | |
Collapse
|
24
|
Onken H, Moffett SB, Moffett DF. Alkalinization in the isolated and perfused anterior midgut of the larval mosquito, Aedes aegypti. JOURNAL OF INSECT SCIENCE (ONLINE) 2008; 8:1-20. [PMID: 20307229 PMCID: PMC2846556 DOI: 10.1673/031.008.4601] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
In the present study, isolated midguts of larval Aedes aegypti L. (Diptera: Culicidae) were mounted on perfusion pipettes and bathed in high buffer mosquito saline. With low buffer perfusion saline, containing m-cresol purple, transepithelial voltage was monitored and luminal alkalinization became visible through color changes of m-cresol purple after perfusion stop. Lumen negative voltage and alkalinization depended on metabolic energy and were stimulated in the presence of serotonin (0.2 micromol l(-1)). In some experiments a pH microelectrode in the lumen recorded pH values up to 10 within minutes after perfusion stop. The V-ATPase inhibitor concanamycin (50 micromol l(-1)) on the hemolymph side almost abolished V(te) and inhibited luminal alkalinization. The carbonic anhydrase inhibitor, methazolamide (50 micromol l(-1)), on either the luminal or hemolymph-side, or the inhibitor of anion transport, DIDS (1 mmol l(-1)) on the luminal side, had no effect on V(te) or alkalinization. Cl(-) substitution in the lumen or on both sides of the tissue affected V(te), but the color change of m-cresol purple was unchanged from control conditions. Hemolymph-side Na(+) substitution or addition of the Na(+)/H(+) exchange inhibitor, amiloride (200 micromol l(-1)), reduced V(te) and luminal alkalinization. Luminal amiloride (200 micromol l(-1)) was without effects on V(te) or alkalinization. High K(+) (60 mmol l(-1)) in the lumen reduced V(te) without affecting alkalinization. These results indicate that strong luminal alkalinization in isolated and perfused anterior midgut of larval A. aegypti depends on basolateral V-ATPase, but is apparently independent of carbonic anhydrase, apical Cl(-)/HCO(3)(-) exchange or apical K(+)/2H(+) antiport.
Collapse
Affiliation(s)
- Horst Onken
- Department of Biological Sciences, Wagner College, Staten Island, NY 10301, USA.
| | | | | |
Collapse
|
25
|
Smith KE, VanEkeris LA, Linser PJ. Cloning and characterization of AgCA9, a novel α-carbonic anhydrase from Anopheles gambiae Giles sensu stricto (Diptera:Culicidae) larvae. J Exp Biol 2007; 210:3919-30. [DOI: 10.1242/jeb.008342] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Mosquito larvae generate a luminal pH as high as 10.5 in the anterior region of their midgut. The mechanisms responsible for the generation and maintenance of this alkaline pH are largely unknown, but there is evidence suggesting a role for the enzyme carbonic anhydrase (CA). CA has been cloned from the alimentary canal epithelium of Anopheles gambiae larvae and can generate bicarbonate, which is implicated as a buffer for the larval lumen. The question remains as to how the bicarbonate is transported from the cells into the lumen. We hypothesize the presence of a CA within the lumen itself to generate bicarbonate from CO2 produced by the metabolically active alimentary canal cells. Here, we report the cloning and characterization of a novel cytoplasmic-type α-CA from the larval An. gambiae alimentary canal. Antibody immunolocalization reveals a unique protein distribution pattern that includes the ectoperitrophic fluid,`transitional region' of the alimentary canal, Malpighian tubules and a subset of cells in the dorsal anterior region of the rectum. Localization of this CA within the lumen of the alimentary canal may be a key to larval pH regulation,while detection within the rectum reveals a novel subset of cells in An. gambiae not described to date. Phylogenetic analysis of members of theα-CA family from the Homo sapiens, Drosophila melanogaster, Aedes aegypti and An. gambiae genomes shows a clustering of the novel CA with Homo sapiens CAs but not with other insect CAs. Finally, a universal system for naming newly cloned An. gambiae CAs is suggested.
Collapse
Affiliation(s)
- Kristin E. Smith
- The Whitney Laboratory for Marine Biology, University of Florida,9505 Ocean Shore Boulevard, Saint Augustine, FL 32080, USA
| | - Leslie A. VanEkeris
- The Whitney Laboratory for Marine Biology, University of Florida,9505 Ocean Shore Boulevard, Saint Augustine, FL 32080, USA
| | - Paul J. Linser
- The Whitney Laboratory for Marine Biology, University of Florida,9505 Ocean Shore Boulevard, Saint Augustine, FL 32080, USA
| |
Collapse
|
26
|
Sanchez S, Andersen AC, Hourdez S, Lallier FH. Identification, sequencing, and localization of a new carbonic anhydrase transcript from the hydrothermal vent tubeworm Riftia pachyptila. FEBS J 2007; 274:5311-24. [PMID: 17892492 DOI: 10.1111/j.1742-4658.2007.06050.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vestimentiferan annelid Riftia pachyptila forms dense populations at hydrothermal vents along the East Pacific Rise at a depth of 2600 m. It harbors CO(2)-assimilating sulfide-oxidizing bacteria that provide all of its nutrition. To find specific host transcripts that could be important for the functioning of this symbiosis, we used a subtractive suppression hybridization approach to identify plume- or trophosome-specific proteins. We demonstrated the existence of carbonic anhydrase transcripts, a protein endowed with an essential role in generating the influx of CO(2) required by the symbionts. One of the transcripts was previously known and sequenced. Our quantification analyses showed a higher expression of this transcript in the trophosome compared to the branchial plume or the body wall. A second transcript, with 69.7% nucleotide identity compared to the previous one, was almost only expressed in the branchial plume. Fluorescent in situ hybridization confirmed the coexpression of the two transcripts in the branchial plume in contrast with the trophosome where only one transcript could be detected. An alignment of these translated carbonic anhydrase cDNAs with vertebrate and nonvertebrate carbonic anhydrase protein sequences revealed the conservation of most amino acids involved in the catalytic site. According to the phylogenetic analyses, the two R. pachyptila transcripts clustered together but not all nonvertebrate sequences grouped together. Complete sequencing of the new carbonic anhydrase transcript revealed the existence of two slightly divergent isoforms probably coded by two different genes.
Collapse
Affiliation(s)
- Sophie Sanchez
- Equipe Ecophysiologie: Adaptation et Evolution Moléculaires, UMR 7144 CNRS UPMC, Station Biologique, Roscoff, France
| | | | | | | |
Collapse
|
27
|
Linser PJ, Boudko DY, Corena MDP, Harvey WR, Seron TJ. The molecular genetics of larval mosquito biology: a path to new strategies for control. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2007; 23:283-93. [PMID: 17853613 DOI: 10.2987/8756-971x(2007)23[283:tmgolm]2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Paul J Linser
- The University of Florida Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Blvd., Saint Augustine, FL 32080-8610, USA
| | | | | | | | | |
Collapse
|
28
|
Fisher SZ, Tariku I, Case NM, Tu C, Seron T, Silverman DN, Linser PJ, McKenna R. Expression, purification, kinetic, and structural characterization of an α-class carbonic anhydrase from Aedes aegypti (AaCA1). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1413-9. [PMID: 16920039 DOI: 10.1016/j.bbapap.2006.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 06/22/2006] [Indexed: 11/24/2022]
Abstract
Carbonic anhydrases (CAs) are zinc-containing metalloenzymes that catalyze the interconversion of carbon dioxide and bicarbonate. The alpha-class CAs are found predominantly in vertebrates, but they are also expressed in insects like mosquitoes. Recently, an alpha-CA from the midgut of Aedes aegypti larvae (AaCA1) was identified, cloned, and subsequently shown to share high sequence homologous to human CA I (HCA I). This paper presents the bacterial expression, purification, and kinetic characterization of the soluble CA domain of AaCA1. The data show AaCA1 is a highly active CA that displays inhibition by methazolamide and ethoxzolamide with nM affinity. Additionally, a homology model of AaCA1, based on the crystal structure of HCA I, is presented and the overall structure, active site, and surface charge properties are compared to those of HCA I and II. Measurements of catalysis show that AaCA1 is more like HCA II in terms of proton transfer, but more similar to HCA I in terms of conversion of carbon dioxide to bicarbonate, and these differences are rationalized in terms of structure. These results also indicate that amino acid differences in the active site of AaCA1 compared to human CAs could be used to design specific CA inhibitors for the management of mosquito populations.
Collapse
Affiliation(s)
- S Zoë Fisher
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
del Pilar Corena M, VanEkeris L, Salazar MI, Bowers D, Fiedler MM, Silverman D, Tu C, Linser PJ. Carbonic anhydrase in the adult mosquito midgut. ACTA ACUST UNITED AC 2006; 208:3263-73. [PMID: 16109888 DOI: 10.1242/jeb.01739] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously demonstrated the involvement of carbonic anhydrase (CA) in larval mosquito midgut physiology. In this study, we used Hansson's histochemistry to examine the distribution of the enzyme in the midgut of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, Culex nigripalpus, Ochlerotatus taeniorhynchus, Anopheles albimanus and Anopheles quadrimaculatus adult mosquitoes. Additionally, we quantitated CA content in the anterior and posterior midgut of adult males and females from these species using the 18O isotope exchange method coupled to mass spectrometry. We also tested the effect of CA inhibitors such as methazolamide and acetazolamide in the alkalization of the midgut in females from these species. Our results indicate that CA is present in the midgut of adults from the species studied and that it appears to be preferentially associated with the posterior midgut in both males and females. CA inhibitors appear to have a profound effect on midgut pH indicating that this enzyme might play a key role in the maintenance of this pH.
Collapse
|
30
|
Onken H, Moffett SB, Moffett DF. The isolated anterior stomach of larval mosquitoes (Aedes aegypti): Voltage-clamp measurements with a tubular epithelium. Comp Biochem Physiol A Mol Integr Physiol 2006; 143:24-34. [PMID: 16310390 DOI: 10.1016/j.cbpa.2005.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 10/07/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
The anterior stomach of larval Aedes aegypti was isolated and perfused via two pipettes. For transepithelial voltage (V(te)) measurement, the inflow pipette and the bath were connected via agar bridges to calomel electrodes. For voltage-clamping, the lumen of the tissue contained an Ag/AgCl wire held by the outflow pipette, and the preparation was placed in a bath within a spiral of Ag/AgCl wire. After equilibrating the tissue in mosquito saline on both sides, a V(te) of -8+/-1 mV was measured (+/-S.E.M., N=32). Current-voltage curves (+/-100 mV) demonstrated ohmic behaviour of the epithelium. Short-circuiting resulted in a current (I(sc)) of 103+/-16 microA cm(-2) and a mean transepithelial conductance (G(te)) of 11.8+/-1.3 mS cm(-2) (+/-S.E.M., N=32). A Yonath-Civan plot of G(te) of individual preparations over the corresponding I(sc) resulted in a straight line (r(2)=0.8422), indicating that the difference in I(sc) of individual preparations is mainly based on different transcellular conductances (G(c)). This analysis allowed to estimate the mean leak conductance (G(l) approximately 3.9 mS cm(-2)) and the mean transcellular electromotive force (E(c) approximately 13 mV). After administering 0.2 micromol L(-1) serotonin, I(sc) and G(te) significantly increased, to 457+/-49 microA cm(-2) and to 21.3+/-2.3 mS cm(-2) (+/-S.E.M., N=31, P<0.05), respectively. The Yonath-Civan plot after serotonin resulted again in a straight line (r(2)=0.8219), indicating a mean G(l) of about 1 mS cm(-2) and a mean E(c) of about 22 mV. Dinitrophenol (2.5 mmol L(-1)) almost abolished I(sc) and significantly reduced G(te) (N=6). Concanamycin A (100 micromol L(-1)) reduced I(sc) by more than 90% without significantly affecting G(te).
Collapse
Affiliation(s)
- Horst Onken
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | |
Collapse
|
31
|
Clark TM, Hutchinson MJ, Huegel KL, Moffett SB, Moffett DF. Additional morphological and physiological heterogeneity within the midgut of larval Aedes aegypti (Diptera: Culicidae) revealed by histology, electrophysiology, and effects of Bacillus thuringiensis endotoxin. Tissue Cell 2005; 37:457-68. [PMID: 16221479 DOI: 10.1016/j.tice.2005.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Analysis of larval Aedes aegypti midgut using scanning electron microscopy, nuclear and mitochondrial dyes, response to Bacillus thuringiensis israelensis CryIVB toxin, and electrophysiology is described. The anterior ventriculus ("stomach") region is found to have much lower mitochondrial densities than other midgut regions. The transitional region is distinguished by apical surface architecture, and by region-specific effects of CryIVB endotoxin. In this region CryIVB causes holes ranging from 1.0 to 7.0 microm in diameter (mean 3.3+/-0.53 microm, N=12), blisters 16.9+/-1.54 microm in diameter (N=10), and separation of adjacent cells. The holes are not consistent with damage due to the colloid osmotic lysis model of delta-endotoxin activity. The posterior ventriculus possesses a distinctive cellular architecture consisting of hemispherical, domed apical membranes surrounded by deep clefts. Functional and morphological heterogeneity is revealed within the posterior ventriculus, with the anterior end dominating the electrical profile of isolated, perfused preparations and showing the greatest response to serotonin. Hyperpolarization of the transepithelial potential by serotonin occurred in conjunction with a decrease in the space constant lambda, ruling out closure of ion channels as the mechanism of action of serotonin.
Collapse
Affiliation(s)
- T M Clark
- Indiana University South Bend, Department of Biological Sciences, 1700 Mishawaka Ave. P.O. Box 7111, South Bend, IN 46634-7111, USA.
| | | | | | | | | |
Collapse
|
32
|
Ricci-Silva ME, Konno K, Faria F, Rádis-Baptista G, Fontes W, Stöcklin R, Michalet S, Yamane T, Chudzinski-Tavassi AM. Protein mapping of the salivary complex from a hematophagous leech. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2005; 9:194-208. [PMID: 15969650 DOI: 10.1089/omi.2005.9.194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The salivary complex of leeches contains many components able to modulate physiological mechanisms, such as coagulation and fibrinolysis, and it is composed by the salivary glands and proboscis, encompassing two different proteomes. The bidimensional electrophoretic pattern of the salivary complex from the Haementeria depressa leech revealed a total of 352 spots, 103 in common with the muscular tissue and 249 exclusive from the salivary complex as detected by silver staining; these spots showed isoelectric points from 3.5 to 9.5 and covered an apparent molecular weight range from 10 to 105 kDa. The following isoforms of proteins were identified by mass spectrometry analysis: antiplatelet protein, myohemerythrin and carbonic anhydrase. Since the leeches were not fed for about 2-3 months to stimulate the secretion of proteins that facilitates the blood metabolism, these most abundant proteins in the salivary complex excised from leeches, are expected to play a role during feeding and might have some anti-hemostatic properties. Furthermore, by zymography, a gelatinolytic and a fibrinolytic protein were identified.
Collapse
|
33
|
Leggat W, Dixon R, Saleh S, Yellowlees D. A novel carbonic anhydrase from the giant clam Tridacna gigas contains two carbonic anhydrase domains. FEBS J 2005; 272:3297-305. [PMID: 15978036 DOI: 10.1111/j.1742-4658.2005.04742.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report describes the presence of a unique dual domain carbonic anhydrase (CA) in the giant clam, Tridacna gigas. CA plays an important role in the movement of inorganic carbon (Ci) from the surrounding seawater to the symbiotic algae that are found within the clam's tissue. One of these isoforms is a glycoprotein which is significantly larger (70 kDa) than any previously reported from animals (generally between 28 and 52 kDa). This alpha-family CA contains two complete carbonic anhydrase domains within the one protein, accounting for its large size; dual domain CAs have previously only been reported from two algal species. The protein contains a leader sequence, an N-terminal CA domain and a C-terminal CA domain. The two CA domains have relatively little identity at the amino acid level (29%). The genomic sequence spans in excess of 17 kb and contains at least 12 introns and 13 exons. A number of these introns are in positions that are only found in the membrane attached/secreted CAs. This fact, along with phylogenetic analysis, suggests that this protein represents the second example of a membrane attached invertebrate CA and it contains a dual domain structure unique amongst all animal CAs characterized to date.
Collapse
Affiliation(s)
- William Leggat
- Biochemistry and Molecular Biology, James Cook University, Townsville, Queensland, Australia.
| | | | | | | |
Collapse
|
34
|
Seron TJ, Hill J, Linser PJ. A GPI-linked carbonic anhydrase expressed in the larval mosquito midgut. ACTA ACUST UNITED AC 2005; 207:4559-72. [PMID: 15579552 DOI: 10.1242/jeb.01287] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have previously described the first cloning and partial characterization of carbonic anhydrase from larval Aedes aegypti mosquitoes. Larval mosquitoes utilize an alkaline digestive environment in the lumen of their anterior midgut, and we have also demonstrated a critical link between alkalization of the gut and carbonic anhydrase(s). In this report we further examine the nature of the previously described carbonic anhydrase and test the hypothesis that its pattern of expression is consistent with a role in gut alkalization. Additionally we take advantage of the recently published genome of the mosquito Anopheles gambiae to assess the complexity of the carbonic anhydrase gene family in these insects. We report here that the previously described carbonic anhydrase from Aedes aegypti is similar to mammalian CA IV in that it is a GPI-linked peripheral membrane protein. In situ hybridization analyses identify multiple locations of carbonic anhydrase expression in the larval mosquito. An antibody prepared against a peptide sequence specific to the Aedes aegypti GPI-linked carbonic anhydrase labels plasma membranes of a number of cell types including neuronal cells and muscles. A previously undescribed subset of gut muscles is specifically identified by carbonic anhydrase immunohistochemistry. Bioinformatic analyses using the Ensembl automatic analysis pipeline show that there are at least 14 carbonic anhydrase genes in the Anopheles gambiae genome, including a homologue to the GPI-linked gene product described herein. Therefore, as in mammals which similarly possess numerous carbonic anhydrase genes, insects require a large family of these genes to handle the complex metabolic pathways influenced by carbonic anhydrases and their substrates.
Collapse
Affiliation(s)
- Terri J Seron
- The Whitney Laboratory, University of Florida, Saint Augustine, FL 32080, USA
| | | | | |
Collapse
|
35
|
Faria F, Junqueira-de-Azevedo IDLM, Ho PL, Sampaio MU, Chudzinski-Tavassi AM. Gene expression in the salivary complexes from Haementeria depressa leech through the generation of expressed sequence tags. Gene 2005; 349:173-85. [PMID: 15777719 DOI: 10.1016/j.gene.2004.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 11/15/2004] [Accepted: 12/15/2004] [Indexed: 10/25/2022]
Abstract
A survey of the transcriptional profile of Haementeria depressa Ringuelet, 1972 (Annelida, Hirudinea) salivary complexes was produced through expressed sequence tag (EST). Sequences from 898 independent clones were assembled in 555 clusters, representing the transcript profile of this tissue. The repertoire of possible proteins involved in feeding and host interaction processes of the leech corresponded to 10.6% of all identified transcripts (67 clusters), being the carbonic anhydrases (30%), several coagulation inhibitors (25%) and hemerythrin-like molecules (19%), the major components. Among the 387 clusters matching cellular proteins, the majority represents molecules involved in gene and protein expression, reflecting a high specialization of this tissue for protein synthesis. Our H. depressa dbEST was also compared to those from other blood-feeding organisms, providing evidences that among the secreted proteins, the coagulation inhibitors present a profile very characteristic of this animal class.
Collapse
Affiliation(s)
- Fernanda Faria
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, Av. Vital Brazil, 1500, CEP: 05503-900, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
36
|
Haritos VS, Dojchinov G. Carbonic anhydrase metabolism is a key factor in the toxicity of CO2 and COS but not CS2 toward the flour beetle Tribolium castaneum [Coleoptera: Tenebrionidae]. Comp Biochem Physiol C Toxicol Pharmacol 2005; 140:139-47. [PMID: 15792633 DOI: 10.1016/j.cca.2005.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 01/18/2005] [Accepted: 01/19/2005] [Indexed: 11/19/2022]
Abstract
The analogues carbon dioxide (CO(2)), carbonyl sulfide (COS) and carbon disulfide (CS(2)) have been useful as substrate probes for enzyme activities. Here we explored the affinity of the enzyme carbonic anhydrase for its natural substrate CO(2), as well as COS and CS(2) (1) by in vitro kinetic metabolism studies using pure enzyme and (2) through mortality bioassay of insects exposed to toxic levels of each of the gases during carbonic anhydrase inhibition. Hydrolysis of COS to form hydrogen sulfide was catalysed rapidly showing parameters K(m) 1.86 mM and K(cat) 41 s(-1) at 25 degrees C; however, the specificity constant (K(cat)/K(m)) was 4000-fold lower than the reported value for carbonic anhydrase-catalysed hydration of CO(2). Carbonic anhydrase-mediated CS(2) metabolism was a further 65,000-fold lower than COS. Both results demonstrate the deactivating effect toward the enzyme of sulfur substitution for oxygen in the molecule. We also investigated the role of carbonic anhydrases in CO(2), COS and CS(2) toxicity using a specific inhibitor, acetazolamide, administered to Tribolium castaneum (Herbst) larvae via the diet. CO(2) toxicity was greatly enhanced by up to seven-fold in acetazolamide-treated larvae indicating that carbonic anhydrases are a key protective enzyme in elevated CO(2) concentrations. Conversely, mortality was reduced by up to 12-fold in acetazolamide-treated larvae exposed to COS due to reduced formation of toxic hydrogen sulfide. CS(2) toxicity was unaffected by acetazolamide. These results show that carbonic anhydrase has a key role in toxicity of the substrates CO(2) and COS but not CS(2), despite minor differences in chemical formulae.
Collapse
|
37
|
Onken H, Moffett SB, Moffett DF. The transepithelial voltage of the isolated anterior stomach of mosquito larvae (Aedes aegypti): pharmacological characterization of the serotonin-stimulated cells. J Exp Biol 2004; 207:1779-87. [PMID: 15107433 DOI: 10.1242/jeb.00964] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
SUMMARYThe lumen-negative transepithelial voltage (Vte) of the isolated and perfused anterior stomach of mosquito larvae (Aedes aegypti) was studied with a `semi-open' preparation in which one end of the gut was ligated onto a perfusion pipette and the other end remained open to the bath. All experiments were performed with serotonin-stimulated preparations. Vte was abolished after addition of 2.5 mmol l-1 dinitrophenol and depended on the presence of Cl-. Na+ substitution experiments showed that a major part of Vte depended on the presence of this cation in the hemolymph side of the epithelium. Addition of 10 μmol l-1concanamycin (78±6% inhibition) or 2.5 mmol l-1 ouabain(15±2% inhibition) to the bath partially inhibited Vte. DPC (0.5 mmol l-1) or DIDS (0.1 mmol l-1) reduced Vte when applied to the hemolymph side of the epithelium (to 49±8% or 78±3% of the control,respectively). When present on both sides of the epithelium, these inhibitors caused further Vte reductions (to 23±4% or 35±4% of the control, respectively). Hemolymph-side furosemide (0.1 mmol l-1) or BaCl2 (5 mmol l-1) reduced Vte by 13±3% or 23±4% of the control,respectively. When applied to the hemolymph side of the epithelium, amiloride(0.2 mmol l-1) significantly decreased Vte by 35±6% of the control, whereas the drug caused no further effect when it was subsequently also applied to the luminal side of the epithelium. The above results are the basis for an extended model for the cellular mechanisms of NaHCO3 secretion/HCl absorption involved in alkalization of the anterior stomach of mosquito larvae.
Collapse
Affiliation(s)
- H Onken
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | |
Collapse
|
38
|
del Pilar Corena M, Fiedler MM, VanEkeris L, Tu C, Silverman DN, Linser PJ. Alkalization of larval mosquito midgut and the role of carbonic anhydrase in different species of mosquitoes. Comp Biochem Physiol C Toxicol Pharmacol 2004; 137:207-25. [PMID: 15171946 DOI: 10.1016/j.cca.2003.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2003] [Revised: 12/08/2003] [Accepted: 12/09/2003] [Indexed: 10/26/2022]
Abstract
We have previously demonstrated the involvement of carbonic anhydrase (CA) in the alkalization mechanism of the Aedes aegypti larval midgut. In this study, we used Hansson's histochemistry to examine the distribution of the enzyme in the midgut of six different species of mosquito larvae (Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, Culex nigripalpus, Ochlerotatus taeniorhynchus, Anopheles quadrimaculatus). Additionally, we quantitated CA content in the gastric caeca, anterior and posterior midgut of fourth instar larvae from these species using the 18O isotope exchange method coupled to mass spectrometry. We also tested the effect of CA inhibitors such as methazolamide and acetazolamide in the alkalization of the midgut for these species. Our results indicate that CA is present in the larval midgut of the species studied and that it appears to be associated with the posterior midgut and gastric caeca in some species and with the anterior midgut in others. CA inhibitors appear to have a profound effect on the alkalization mechanism of the midgut with lethal consequences for most of the species tested.
Collapse
|