1
|
Burggren W, Fahlman A, Milsom W. Breathing patterns and associated cardiovascular changes in intermittently breathing animals: (Partially) correcting a semantic quagmire. Exp Physiol 2024; 109:1051-1065. [PMID: 38502538 PMCID: PMC11215480 DOI: 10.1113/ep091784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Many animal species do not breathe in a continuous, rhythmic fashion, but rather display a variety of breathing patterns characterized by prolonged periods between breaths (inter-breath intervals), during which the heart continues to beat. Examples of intermittent breathing abound across the animal kingdom, from crustaceans to cetaceans. With respect to human physiology, intermittent breathing-also termed 'periodic' or 'episodic' breathing-is associated with a variety of pathologies. Cardiovascular phenomena associated with intermittent breathing in diving species have been termed 'diving bradycardia', 'submersion bradycardia', 'immersion bradycardia', 'ventilation tachycardia', 'respiratory sinus arrhythmia' and so forth. An examination across the literature of terminology applied to these physiological phenomena indicates, unfortunately, no attempt at standardization. This might be viewed as an esoteric semantic problem except for the fact that many of the terms variously used by different authors carry with them implicit or explicit suggestions of underlying physiological mechanisms and even human-associated pathologies. In this article, we review several phenomena associated with diving and intermittent breathing, indicate the semantic issues arising from the use of each term, and make recommendations for best practice when applying specific terms to particular cardiorespiratory patterns. Ultimately, we emphasize that the biology-not the semantics-is what is important, but also stress that confusion surrounding underlying mechanisms can be avoided by more careful attention to terms describing physiological changes during intermittent breathing and diving.
Collapse
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Group, Department of Biological SciencesUniversity of North TexasDentonTexasUSA
| | - Andreas Fahlman
- Fundación OceanogràficValenciaSpain
- Kolmården Wildlife ParkKolmårdenSweden
- IFMLinkoping UniversityLinkopingSweden
| | - William Milsom
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
2
|
Elmegaard SL, Teilmann J, Rojano-Doñate L, Brennecke D, Mikkelsen L, Balle JD, Gosewinkel U, Kyhn LA, Tønnesen P, Wahlberg M, Ruser A, Siebert U, Madsen PT. Wild harbour porpoises startle and flee at low received levels from acoustic harassment device. Sci Rep 2023; 13:16691. [PMID: 37794093 PMCID: PMC10550999 DOI: 10.1038/s41598-023-43453-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 09/24/2023] [Indexed: 10/06/2023] Open
Abstract
Acoustic Harassment Devices (AHD) are widely used to deter marine mammals from aquaculture depredation, and from pile driving operations that may otherwise cause hearing damage. However, little is known about the behavioural and physiological effects of these devices. Here, we investigate the physiological and behavioural responses of harbour porpoises (Phocoena phocoena) to a commercial AHD in Danish waters. Six porpoises were tagged with suction-cup-attached DTAGs recording sound, 3D-movement, and GPS (n = 3) or electrocardiogram (n = 2). They were then exposed to AHDs for 15 min, with initial received levels (RL) ranging from 98 to 132 dB re 1 µPa (rms-fast, 125 ms) and initial exposure ranges of 0.9-7 km. All animals reacted by displaying a mixture of acoustic startle responses, fleeing, altered echolocation behaviour, and by demonstrating unusual tachycardia while diving. Moreover, during the 15-min exposures, half of the animals received cumulative sound doses close to published thresholds for temporary auditory threshold shifts. We conclude that AHD exposure at many km can evoke both startle, flight and cardiac responses which may impact blood-gas management, breath-hold capability, energy balance, stress level and risk of by-catch. We posit that current AHDs are too powerful for mitigation use to prevent hearing damage of porpoises from offshore construction.
Collapse
Affiliation(s)
- Siri L Elmegaard
- Zoophysiology, Dept. of Biology, Aarhus University, 8000, Aarhus, Denmark.
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark.
| | - Jonas Teilmann
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
| | - Laia Rojano-Doñate
- Zoophysiology, Dept. of Biology, Aarhus University, 8000, Aarhus, Denmark
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
| | - Dennis Brennecke
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany
| | - Lonnie Mikkelsen
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
- Norwegian Polar Institute, 9296, Tromsø, Norway
| | - Jeppe D Balle
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
| | - Ulrich Gosewinkel
- Environmental Microbiology, Dept. of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Line A Kyhn
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
| | - Pernille Tønnesen
- Zoophysiology, Dept. of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Magnus Wahlberg
- Marine Biological Research Centre, Dept. of Biology, University of Southern Denmark, 5300, Kerteminde, Denmark
| | - Andreas Ruser
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany
| | | |
Collapse
|
3
|
Bakkeren C, Ladegaard M, Hansen KA, Wahlberg M, Madsen PT, Rojano-Doñate L. Visual deprivation induces a stronger dive response in a harbor porpoise. iScience 2023; 26:106204. [PMID: 36876128 PMCID: PMC9982314 DOI: 10.1016/j.isci.2023.106204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The dive response allows marine mammals to perform prolonged breath-hold dives to access rich marine prey resources. Via dynamic adjustments of peripheral vasoconstriction and bradycardia, oxygen consumption can be tailored to breath-hold duration, depth, exercise, and even expectations during dives. By investigating the heart rate of a trained harbor porpoise during a two-alternative forced choice task, where the animal is either acoustically masked or blindfolded, we test the hypothesis that sensory deprivation will lead to a stronger dive response to conserve oxygen when facing a more uncertain and smaller sensory umwelt. We show that the porpoise halves its diving heart rate (from 55 to 25 bpm) when blindfolded but presents no change in heart rate during masking of its echolocation. Therefore, visual stimuli may matter more to echolocating toothed whales than previously assumed, and sensory deprivation can be a major driver of the dive response, possibly as an anti-predator measure.
Collapse
Affiliation(s)
- Ciska Bakkeren
- Zoophysiology, Department of Biology, Aarhus University, Building 1131, C. F. Møllers Allé 3, DK-8000 Aarhus C, Denmark
| | - Michael Ladegaard
- Zoophysiology, Department of Biology, Aarhus University, Building 1131, C. F. Møllers Allé 3, DK-8000 Aarhus C, Denmark
| | - Kirstin Anderson Hansen
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Fjord&Bælt, Margrethes Plads 1, 5300 Kerteminde, Denmark
| | - Magnus Wahlberg
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Peter Teglberg Madsen
- Zoophysiology, Department of Biology, Aarhus University, Building 1131, C. F. Møllers Allé 3, DK-8000 Aarhus C, Denmark
| | - Laia Rojano-Doñate
- Zoophysiology, Department of Biology, Aarhus University, Building 1131, C. F. Møllers Allé 3, DK-8000 Aarhus C, Denmark
| |
Collapse
|
4
|
McDonald BI, Elmegaard SL, Johnson M, Wisniewska DM, Rojano-Doñate L, Galatius A, Siebert U, Teilmann J, Madsen PT. High heart rates in hunting harbour porpoises. Proc Biol Sci 2021; 288:20211596. [PMID: 34753357 PMCID: PMC8580435 DOI: 10.1098/rspb.2021.1596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The impressive breath-hold capabilities of marine mammals are facilitated by both enhanced O2 stores and reductions in the rate of O2 consumption via peripheral vasoconstriction and bradycardia, called the dive response. Many studies have focused on the extreme role of the dive response in maximizing dive duration in marine mammals, but few have addressed how these adjustments may compromise the capability to hunt, digest and thermoregulate during routine dives. Here, we use DTAGs, which record heart rate together with foraging and movement behaviour, to investigate how O2 management is balanced between the need to dive and forage in five wild harbour porpoises that hunt thousands of small prey daily during continuous shallow diving. Dive heart rates were moderate (median minimum 47-69 bpm) and relatively stable across dive types, dive duration (0.5-3.3 min) and activity. A moderate dive response, allowing for some perfusion of peripheral tissues, may be essential for fuelling the high field metabolic rates required to maintain body temperature and support digestion during diving in these small, continuously feeding cetaceans. Thus, despite having the capacity to prolong dives via a strong dive response, for these shallow-diving cetaceans, it appears to be more efficient to maintain circulation while diving: extreme heart rate gymnastics are for deep dives and emergencies, not everyday use.
Collapse
Affiliation(s)
- Birgitte I. McDonald
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA 93933, USA
| | - Siri L. Elmegaard
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark,Marine Mammal Research, Bioscience to Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Mark Johnson
- Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus, Denmark
| | - Danuta M. Wisniewska
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-Université La Rochelle, 79360 Villiers en Bois, France
| | - Laia Rojano-Doñate
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Anders Galatius
- Marine Mammal Research, Bioscience to Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, 25761 Büsum, Germany
| | - Jonas Teilmann
- Marine Mammal Research, Bioscience to Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Peter T. Madsen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
5
|
Smith AB, Madsen PT, Johnson M, Tyack P, Wahlberg M. Toothed whale auditory brainstem responses measured with a non-invasive, on-animal tag. JASA EXPRESS LETTERS 2021; 1:091201. [PMID: 36154211 DOI: 10.1121/10.0006454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Empirical measurements of odontocete hearing are limited to captive individuals, constituting a fraction of species across the suborder. Data from more species could be available if such measurements were collected from unrestrained animals in the wild. This study investigated whether electrophysiological hearing data could be recorded from a trained harbor porpoise (Phocoena phocoena) using a non-invasive, animal-attached tag. The results demonstrate that auditory brainstem responses to external and self-generated stimuli can be measured from a stationary odontocete using an animal-attached recorder. With additional development, tag-based electrophysiological platforms may facilitate the collection of hearing data from freely swimming odontocetes in the wild.
Collapse
Affiliation(s)
- Adam B Smith
- Marine Research Centre, University of Southern Denmark, 5300 Kerteminde, Denmark
| | - Peter T Madsen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Mark Johnson
- Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus C, Denmark
| | - Peter Tyack
- Scottish Oceans Institute, School of Biology, University of St Andrews, KY16 8LB St. Andrews, United Kingdom , , , ,
| | - Magnus Wahlberg
- Marine Research Centre, University of Southern Denmark, 5300 Kerteminde, Denmark
| |
Collapse
|
6
|
Ponganis PJ. A Physio-Logging Journey: Heart Rates of the Emperor Penguin and Blue Whale. Front Physiol 2021; 12:721381. [PMID: 34413792 PMCID: PMC8369151 DOI: 10.3389/fphys.2021.721381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Physio-logging has the potential to explore the processes that underlie the dive behavior and ecology of marine mammals and seabirds, as well as evaluate their adaptability to environmental change and other stressors. Regulation of heart rate lies at the core of the physiological processes that determine dive capacity and performance. The bio-logging of heart rate in unrestrained animals diving at sea was infeasible, even unimaginable in the mid-1970s. To provide a historical perspective, I review my 40-year experience in the development of heart rate physio-loggers and the evolution of a digital electrocardiogram (ECG) recorder that is still in use today. I highlight documentation of the ECG and the interpretation of heart rate profiles in the largest of avian and mammalian divers, the emperor penguin and blue whale.
Collapse
Affiliation(s)
- Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
7
|
Williams CL, Ponganis PJ. Diving physiology of marine mammals and birds: the development of biologging techniques. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200211. [PMID: 34121464 PMCID: PMC8200650 DOI: 10.1098/rstb.2020.0211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 11/12/2022] Open
Abstract
In the 1940s, Scholander and Irving revealed fundamental physiological responses to forced diving of marine mammals and birds, setting the stage for the study of diving physiology. Since then, diving physiology research has moved from the laboratory to the field. Modern biologging, with the development of microprocessor technology, recorder memory capacity and battery life, has advanced and expanded investigations of the diving physiology of marine mammals and birds. This review describes a brief history of the start of field diving physiology investigations, including the invention of the time depth recorder, and then tracks the use of biologging studies in four key diving physiology topics: heart rate, blood flow, body temperature and oxygen store management. Investigations of diving heart rates in cetaceans and O2 store management in diving emperor penguins are highlighted to emphasize the value of diving physiology biologging research. The review concludes with current challenges, remaining diving physiology questions and what technologies are needed to advance the field. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.
Collapse
Affiliation(s)
- Cassondra L. Williams
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, CA 92106, USA
| | - Paul J. Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| |
Collapse
|
8
|
Williams CL, Hindle AG. Field Physiology: Studying Organismal Function in the Natural Environment. Compr Physiol 2021; 11:1979-2015. [PMID: 34190338 DOI: 10.1002/cphy.c200005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Continuous physiological measurements collected in field settings are essential to understand baseline, free-ranging physiology, physiological range and variability, and the physiological responses of organisms to disturbances. This article presents a current summary of the available technologies to continuously measure the direct physiological parameters in the field at high-resolution/instantaneous timescales from freely behaving animals. There is a particular focus on advantages versus disadvantages of available methods as well as emerging technologies "on the horizon" that may have been validated in captive or laboratory-based scenarios but have yet to be applied in the wild. Systems to record physiological variables from free-ranging animals are reviewed, including radio (VHF/UFH) telemetry, acoustic telemetry, and dataloggers. Physiological parameters that have been continuously measured in the field are addressed in seven sections including heart rate and electrocardiography (ECG); electromyography (EMG); electroencephalography (EEG); body temperature; respiratory, blood, and muscle oxygen; gastric pH and motility; and blood pressure and flow. The primary focal sections are heart rate and temperature as these can be, and have been, extensively studied in free-ranging organisms. Predicted aspects of future innovation in physiological monitoring are also discussed. The article concludes with an overview of best practices and points to consider regarding experimental designs, cautions, and effects on animals. © 2021 American Physiological Society. Compr Physiol 11:1979-2015, 2021.
Collapse
Affiliation(s)
- Cassondra L Williams
- National Marine Mammal Foundation, San Diego, California, USA.,Department of Ecology and Evolutionary Biology, School of Biological Science, University of California Irvine, Irvine, California, USA
| | - Allyson G Hindle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
9
|
Aoki K, Watanabe Y, Inamori D, Funasaka N, Sakamoto KQ. Towards non-invasive heart rate monitoring in free-ranging cetaceans: a unipolar suction cup tag measured the heart rate of trained Risso's dolphins. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200225. [PMID: 34176321 DOI: 10.1098/rstb.2020.0225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heart rate monitoring in free-ranging cetaceans to understand their behavioural ecology and diving physiology is challenging. Here, we developed a simple, non-invasive method to monitor the heart rate of cetaceans in the field using an electrocardiogram-measuring device and a single suction cup equipped with an electrode. The unipolar suction cup was placed on the left lateral body surface behind the pectoral fin of Risso's dolphins (Grampus griseus) and a false killer whale (Pseudorca crassidens) in captivity; their heart rate was successfully monitored. We observed large heart rate oscillations corresponding to respiration in the motionless whales during surfacing (a false killer whale, mean 47 bpm, range 20-75 bpm; Risso's dolphins, mean ± s.d. 61 ± 15 bpm, range 28-120 bpm, n = 4 individuals), which was consistent with the sinus arrhythmia pattern (eupneic tachycardia and apneic bradycardia) observed in other cetaceans. Immediately after respiration, the heart rate rapidly increased to approximately twice that observed prior to the breath. Heart rate then gradually decreased at around 20-50 s and remained relatively constant until the next breath. Furthermore, we successfully monitored the heart rate of a free-swimming Risso's dolphin. The all-in-one suction cup device is feasible for field use without restraining animals and is helpful in further understanding the diving physiology of free-ranging cetaceans. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
Collapse
Affiliation(s)
- Kagari Aoki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Yurie Watanabe
- Taiji Whale Museum and Aquarium, Wakayama 649-5171, Japan
| | - Daiki Inamori
- Taiji Whale Museum and Aquarium, Wakayama 649-5171, Japan
| | - Noriko Funasaka
- Taiji Whale Museum and Aquarium, Wakayama 649-5171, Japan.,Cetacean Research Center, Graduate School of Bioresources, Mie University, Mie 514-8507, Japan
| | - Kentaro Q Sakamoto
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| |
Collapse
|
10
|
Elmegaard SL, McDonald BI, Teilmann J, Madsen PT. Heart rate and startle responses in diving, captive harbour porpoises (Phocoena phocoena) exposed to transient noise and sonar. Biol Open 2021; 10:bio058679. [PMID: 34133736 PMCID: PMC8249908 DOI: 10.1242/bio.058679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 11/20/2022] Open
Abstract
Anthropogenic noise can alter marine mammal behaviour and physiology, but little is known about cetacean cardiovascular responses to exposures, despite evidence that acoustic stressors, such as naval sonars, may lead to decompression sickness. Here, we measured heart rate and movements of two trained harbour porpoises during controlled exposure to 6-9 kHz sonar-like sweeps and 40 kHz peak-frequency noise pulses, designed to evoke acoustic startle responses. The porpoises initially responded to the sonar sweep with intensified bradycardia despite unaltered behaviour/movement, but habituated rapidly to the stimuli. In contrast, 40 kHz noise pulses consistently evoked rapid muscle flinches (indicative of startles), but no behavioural or heart rate changes. We conclude that the autonomous startle response appears decoupled from, or overridden by, cardiac regulation in diving porpoises, whereas certain novel stimuli may motivate oxygen-conserving cardiovascular measures. Such responses to sound exposure may contribute to gas mismanagement for deeper-diving cetaceans.
Collapse
Affiliation(s)
- Siri L. Elmegaard
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
- Marine Mammal Research, Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark
| | - Birgitte I. McDonald
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA 95039-9647, USA
| | - Jonas Teilmann
- Marine Mammal Research, Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark
| | - Peter T. Madsen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
11
|
Fahlman A, Aoki K, Bale G, Brijs J, Chon KH, Drummond CK, Føre M, Manteca X, McDonald BI, McKnight JC, Sakamoto KQ, Suzuki I, Rivero MJ, Ropert-Coudert Y, Wisniewska DM. The New Era of Physio-Logging and Their Grand Challenges. Front Physiol 2021; 12:669158. [PMID: 33859577 PMCID: PMC8042203 DOI: 10.3389/fphys.2021.669158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- Andreas Fahlman
- Fundación Oceanográfic de la Comunitat Valenciana, Valencia, Spain
| | - Kagari Aoki
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Gemma Bale
- Department of Physics and Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Jeroen Brijs
- Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Manoa, HI, United States
| | - Ki H. Chon
- Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Colin K. Drummond
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Martin Føre
- Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Xavier Manteca
- Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Birgitte I. McDonald
- Moss Landing Marine Labs at San Jose State University, Moss Landing, CA, United States
| | - J. Chris McKnight
- Sea Mammal Research Unit, University of St. Andrews, Scotland, United Kingdom
| | - Kentaro Q. Sakamoto
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Ippei Suzuki
- Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Akkeshi, Japan
| | | | - Yan Ropert-Coudert
- Centre D'Etudes Biologiques de Chizé, La Rochelle Université, UMR7372, CNRS, France
| | | |
Collapse
|
12
|
Otero-Sabio C, Centelleghe C, Corain L, Graïc JM, Cozzi B, Rivero M, Consoli F, Peruffo A. Microscopic anatomical, immunohistochemical, and morphometric characterization of the terminal airways of the lung in cetaceans. J Morphol 2020; 282:291-308. [PMID: 33338275 DOI: 10.1002/jmor.21304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/08/2022]
Abstract
The lungs of cetaceans undergo anatomical and physiological adaptations that facilitate extended breath-holding during dives. Here, we present new insights on the ontogeny of the microscopic anatomy of the terminal portion of the airways of the lungs in five cetacean species: the fin whale (Balaenoptera physalus); the sperm whale (Physeter macrocephalus), the Cuvier's beaked whale (Ziphius cavirostris); the bottlenose dolphin (Tursiops truncatus); and the striped dolphin (Stenella coeruleoalba). We (a) studied the histology of the terminal portion of the airways; (b) used immunohistochemistry (IHC) to characterize the muscle fibers with antibodies against smooth muscle (sm-) actin, sm-myosin, and desmin; (c) the innervation of myoelastic sphincters (MESs) with an antibody against neurofilament protein; and (d) defined the diameter of the terminal bronchioles, the diameter and length of the alveoli, the thickness of the septa, the major and minor axis, perimeter and section area of the cartilaginous rings by quantitative morphometric analyses in partially inflated lung tissue. As already reported in the literature, in bottlenose and striped dolphins, a system of MESs was observed in the terminal bronchioles. Immunohistochemistry confirmed the presence of smooth muscle in the terminal bronchioles, alveolar ducts, and alveolar septa in all the examined species. Some neurofilaments were observed close to the MESs in both bottlenose and striped dolphins. In fin, sperm, and Cuvier's beaked whales, we noted a layer of longitudinal smooth muscle going from the terminal bronchioles to the alveolar sacs. The morphometric analysis allowed to quantify the structural differences among cetacean species by ranking them into groups according to the adjusted mean values of the morphometric parameters measured. Our results contribute to the current understanding of the anatomy of the terminal airways of the cetacean lung and the role of the smooth muscle in the alveolar collapse reflex, crucial for prolonged breath-holding diving.
Collapse
Affiliation(s)
- Cristina Otero-Sabio
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Livio Corain
- Department of Management and Engineering, University of Padova, Vicenza, Padova, Italy
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Miguel Rivero
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Francesco Consoli
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Antonella Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| |
Collapse
|
13
|
Fahlman A, Cozzi B, Manley M, Jabas S, Malik M, Blawas A, Janik VM. Conditioned Variation in Heart Rate During Static Breath-Holds in the Bottlenose Dolphin ( Tursiops truncatus). Front Physiol 2020; 11:604018. [PMID: 33329056 PMCID: PMC7732665 DOI: 10.3389/fphys.2020.604018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/28/2020] [Indexed: 02/03/2023] Open
Abstract
Previous reports suggested the existence of direct somatic motor control over heart rate (f H) responses during diving in some marine mammals, as the result of a cognitive and/or learning process rather than being a reflexive response. This would be beneficial for O2 storage management, but would also allow ventilation-perfusion matching for selective gas exchange, where O2 and CO2 can be exchanged with minimal exchange of N2. Such a mechanism explains how air breathing marine vertebrates avoid diving related gas bubble formation during repeated dives, and how stress could interrupt this mechanism and cause excessive N2 exchange. To investigate the conditioned response, we measured the f H-response before and during static breath-holds in three bottlenose dolphins (Tursiops truncatus) when shown a visual symbol to perform either a long (LONG) or short (SHORT) breath-hold, or during a spontaneous breath-hold without a symbol (NS). The average f H (if Hstart), and the rate of change in f H (dif H/dt) during the first 20 s of the breath-hold differed between breath-hold types. In addition, the minimum instantaneous f H (if Hmin), and the average instantaneous f H during the last 10 s (if Hend) also differed between breath-hold types. The dif H/dt was greater, and the if Hstart, if Hmin, and if Hend were lower during a LONG as compared with either a SHORT, or an NS breath-hold (P < 0.05). Even though the NS breath-hold dives were longer in duration as compared with SHORT breath-hold dives, the dif H/dt was greater and the if Hstart, if Hmin, and if Hend were lower during the latter (P < 0.05). In addition, when the dolphin determined the breath-hold duration (NS), the f H was more variable within and between individuals and trials, suggesting a conditioned capacity to adjust the f H-response. These results suggest that dolphins have the capacity to selectively alter the f H-response during diving and provide evidence for significant cardiovascular plasticity in dolphins.
Collapse
Affiliation(s)
- Andreas Fahlman
- Global Diving Research Inc., Ottawa, ON, Canada
- Research Department, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Mercy Manley
- Siegfried & Roy’s Secret Garden and Dolphin Habitat, The Mirage, Las Vegas, NV, United States
| | - Sandra Jabas
- Siegfried & Roy’s Secret Garden and Dolphin Habitat, The Mirage, Las Vegas, NV, United States
| | - Marek Malik
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Internal Cardiology Medicine, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ashley Blawas
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, United States
| | - Vincent M. Janik
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
14
|
Fahlman A, Miedler S, Marti-Bonmati L, Ferrero Fernandez D, Muñoz Caballero P, Arenarez J, Rocho-Levine J, Robeck T, Blawas A. Cardiorespiratory coupling in cetaceans; a physiological strategy to improve gas exchange? J Exp Biol 2020; 223:jeb226365. [PMID: 32680902 DOI: 10.1242/jeb.226365] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/15/2020] [Indexed: 11/20/2022]
Abstract
In the current study we used transthoracic echocardiography to measure stroke volume (SV), heart rate (fH) and cardiac output (CO) in adult bottlenose dolphins (Tursiops truncatus), a male beluga whale calf [Delphinapterus leucas, body mass (Mb) range: 151-175 kg] and an adult female false killer whale (Pseudorca crassidens, estimated Mb: 500-550 kg) housed in managed care. We also recorded continuous electrocardiogram (ECG) in the beluga whale, bottlenose dolphin, false killer whale, killer whale (Orcinus orca) and pilot whale (Globicephala macrorhynchus) to evaluate cardiorespiratory coupling while breathing spontaneously under voluntary control. The results show that cetaceans have a strong respiratory sinus arrythmia (RSA), during which both fH and SV vary within the interbreath interval, making average values dependent on the breathing frequency (fR). The RSA-corrected fH was lower for all cetaceans compared with that of similarly sized terrestrial mammals breathing continuously. As compared with terrestrial mammals, the RSA-corrected SV and CO were either lower or the same for the dolphin and false killer whale, while both were elevated in the beluga whale. When plotting fR against fH for an inactive mammal, cetaceans had a greater cardiac response to changes in fR as compared with terrestrial mammals. We propose that these data indicate an important coupling between respiration and cardiac function that enhances gas exchange, and that this RSA is important to maximize gas exchange during surface intervals, similar to that reported in the elephant seal.
Collapse
Affiliation(s)
- Andreas Fahlman
- Global Diving Research, Inc., Ottawa, ON, K2J 5E8, Canada
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
- Research Group on Biomedical Imaging (GIBI230), Instituto de Investigación Sanitaria la Fe, 46026 Valencia, Spain
| | - Stefan Miedler
- Veterinary Cardiology, Plaza Mayor 7/10, 46120 Alboraya, Valencia, Spain
| | - Luis Marti-Bonmati
- Research Group on Biomedical Imaging (GIBI230), Instituto de Investigación Sanitaria la Fe, 46026 Valencia, Spain
| | - Diana Ferrero Fernandez
- Biology Department, Avanqua-Oceanográfic SL, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Paola Muñoz Caballero
- Biology Department, Avanqua-Oceanográfic SL, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Julietta Arenarez
- Biology Department, Avanqua-Oceanográfic SL, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | | | | | - Ashley Blawas
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 28516, USA
| |
Collapse
|
15
|
Fahlman A, Sato K, Miller P. Improving estimates of diving lung volume in air-breathing marine vertebrates. ACTA ACUST UNITED AC 2020; 223:223/12/jeb216846. [PMID: 32587107 DOI: 10.1242/jeb.216846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The air volume in the respiratory system of marine tetrapods provides a store of O2 to fuel aerobic metabolism during dives; however, it can also be a liability, as the associated N2 can increase the risk of decompression sickness. In order to more fully understand the physiological limitations of different air-breathing marine vertebrates, it is therefore important to be able to accurately estimate the air volume in the respiratory system during diving. One method that has been used to do so is to calculate the air volume from glide phases - periods of movement during which no thrust is produced by the animal - which many species conduct during ascent periods, when gases are expanding owing to decreasing hydrostatic pressure. This method assumes that there is conservation of mass in the respiratory system, with volume changes only driven by pressure. In this Commentary, we use previously published data to argue that both the respiratory quotient and differences in tissue and blood gas solubility potentially alter the mass balance in the respiratory system throughout a dive. Therefore, near the end of a dive, the measured volume of gas at a given pressure may be 12-50% less than from the start of the dive; the actual difference will depend on the length of the dive, the cardiac output, the pulmonary shunt and the metabolic rate. Novel methods and improved understanding of diving physiology will be required to verify the size of the effects described here and to more accurately estimate the volume of gas inhaled at the start of a dive.
Collapse
Affiliation(s)
- Andreas Fahlman
- Global Diving Research Inc., Ottawa, ON, Canada, K2J 5E8 .,Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Patrick Miller
- SMRU (Sea Mammal Research Unit), University of St Andrews, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|