1
|
Storz JF, Scott GR. To what extent do physiological tolerances determine elevational range limits of mammals? J Physiol 2024; 602:5475-5484. [PMID: 37889163 PMCID: PMC11052920 DOI: 10.1113/jp284586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
A key question in biology concerns the extent to which distributional range limits of species are determined by intrinsic limits of physiological tolerance. Here, we use common-garden data for wild rodents to assess whether species with higher elevational range limits typically have higher thermogenic capacities in comparison to closely related lowland species. Among South American leaf-eared mice (genus Phyllotis), mean thermogenic performance is higher in species with higher elevational range limits, but there is little among-species variation in the magnitude of plasticity in this trait. In the North American rodent genus Peromyscus, highland deer mice (Peromyscus maniculatus) have greater thermogenic maximal oxygen uptake (V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ) than lowland white-footed mice (Peromyscus leucopus) at a level of hypoxia that matches the upper elevational range limit of the former species. In highland deer mice, the enhanced thermogenicV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ in hypoxia is attributable to a combination of evolved and plastic changes in physiological pathways that govern the transport and utilization of O2 and metabolic substrates. Experiments with Peromyscus mice also demonstrate that exposure to hypoxia during different stages of development elicits plastic changes in cardiorespiratory traits that improve thermogenicV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ via distinct physiological mechanisms. Evolved differences in thermogenic capacity provide clues about why some species are able to persist in higher-elevation habitats that lie slightly beyond the tolerable limits of other species. Such differences in environmental tolerance also suggest why some species might be more vulnerable to climate change than others.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Scott GR, Garvey KM, Wearing OH. The role of the heart in the evolution of aerobic performance. J Exp Biol 2024; 227:jeb247642. [PMID: 39045710 DOI: 10.1242/jeb.247642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Aerobic metabolism underlies vital traits such as locomotion and thermogenesis, and aerobic capacity influences fitness in many animals. The heart is a key determinant of aerobic capacity, but the relative influence of cardiac output versus other steps in the O2 transport pathway remains contentious. In this Commentary, we consider this issue by examining the mechanistic basis for adaptive increases in aerobic capacity (thermogenic V̇O2,max; also called summit metabolism) in deer mice (Peromyscus maniculatus) native to high altitude. Thermogenic V̇O2,max is increased by acclimation to cold hypoxia (simulating high-altitude conditions), and high-altitude populations generally have greater V̇O2,max than their low-altitude counterparts. This plastic and evolved variation in V̇O2,max is associated with corresponding variation in maximal cardiac output, along with variation in other traits across the O2 pathway (e.g. arterial O2 saturation, blood haemoglobin content and O2 affinity, tissue O2 extraction, tissue oxidative capacity). By applying fundamental principles of gas exchange, we show that the relative influence of cardiac output on V̇O2,max depends on the O2 diffusing capacity of thermogenic tissues (skeletal muscles and brown adipose tissues). Functional interactions between cardiac output and blood haemoglobin content determine circulatory O2 delivery and thus affect V̇O2,max, particularly in high-altitude environments where erythropoiesis can increase haematocrit and blood viscosity. There may also be functional linkages between cardiac output and tissue O2 diffusion due to the role of blood flow in determining capillary haematocrit and red blood cell flux. Therefore, the functional interactions between cardiac output and other traits in the O2 pathway underlie the adaptive evolution of aerobic capacities.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Kayla M Garvey
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Oliver H Wearing
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 2A1
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada, V1V 1V7
| |
Collapse
|
3
|
Bautista NM, Herrera ND, Shadowitz E, Wearing OH, Cheviron ZA, Scott GR, Storz JF. Local adaptation, plasticity, and evolved resistance to hypoxic cold stress in high-altitude deer mice. Proc Natl Acad Sci U S A 2024; 121:e2412526121. [PMID: 39352929 PMCID: PMC11474095 DOI: 10.1073/pnas.2412526121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024] Open
Abstract
A fundamental question in evolutionary biology concerns the relative contributions of phenotypic plasticity vs. local adaptation (genotypic specialization) in enabling wide-ranging species to inhabit diverse environmental conditions. Here, we conduct a long-term hypoxia acclimation experiment to assess the relative roles of local adaptation and plasticity in enabling highland and lowland deer mice (Peromyscus maniculatus) to sustain aerobic thermogenesis at progressively increasing elevations. We assessed the relative physiological performance capacities of highland and lowland natives as they were exposed to progressive, stepwise increases in hypoxia, simulating the gradual ascent from sea level to an elevation of 6,000 m. The final elevation of 6,000 m far exceeds the highest attainable elevations within the species' range, and therefore tests the animals' ability to tolerate levels of hypoxia that surpass the prevailing conditions within their current distributional limits. Our results demonstrate that highland natives exhibit superior thermogenic capacities at the most severe levels of hypoxia, suggesting that the species' broad fundamental niche and its ability to inhabit such a broad range of elevational zones is attributable to genetically based local adaptation, including evolved changes in plasticity. Transcriptomic and physiological measurements identify evolved changes in the acclimation response to hypoxia that contribute to the enhanced thermogenic capacity of highland natives.
Collapse
Affiliation(s)
- Naim M. Bautista
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| | | | - Ellen Shadowitz
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Oliver H. Wearing
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | | | - Graham R. Scott
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| |
Collapse
|
4
|
Bautista NM, Herrera ND, Shadowitz E, Wearing OH, Cheviron ZA, Scott GR, Storz JF. Local adaptation, plasticity, and evolved resistance to hypoxic cold stress in high-altitude deer mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600120. [PMID: 38979138 PMCID: PMC11230211 DOI: 10.1101/2024.06.21.600120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A fundamental question in evolutionary biology concerns the relative contributions of phenotypic plasticity vs. local adaptation (genotypic specialization) in enabling wide-ranging species to inhabit diverse environmental conditions. Here we conduct a long-term hypoxia acclimation experiment to assess the relative roles of local adaptation and plasticity in enabling highland and lowland deer mice (Peromyscus maniculatus) to sustain aerobic thermogenesis at progressively increasing elevations. We assessed the relative physiological performance capacities of highland and lowland natives as they were exposed to progressive, stepwise increases in hypoxia, simulating the gradual ascent from sea level to an elevation of 6000 m. The final elevation of 6000 m far exceeds the highest attainable elevations within the species' range, and therefore tests the animals' ability to tolerate levels of hypoxia that surpass the prevailing conditions within their current distributional limits. Our results demonstrate that highland natives exhibit superior thermogenic capacities at the most severe levels of hypoxia, suggesting that the species' broad fundamental niche and its ability to inhabit such a broad range of elevational zones is attributable to a combination of genetically based local adaptation and plasticity. Transcriptomic and physiological measurements identify evolved changes in the acclimation response to hypoxia that contribute to the enhanced thermogenic capacity of highland natives.
Collapse
Affiliation(s)
- Naim M Bautista
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
| | | | - Ellen Shadowitz
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Oliver H Wearing
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
| |
Collapse
|
5
|
Rees BB, Reemeyer JE, Binning SA, Brieske SD, Clark TD, De Bonville J, Eisenberg RM, Raby GD, Roche D, Rummer JL, Zhang Y. Estimating maximum oxygen uptake of fishes during swimming and following exhaustive chase - different results, biological bases and applications. J Exp Biol 2024; 227:jeb246439. [PMID: 38819376 DOI: 10.1242/jeb.246439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The maximum rate at which animals take up oxygen from their environment (ṀO2,max) is a crucial aspect of their physiology and ecology. In fishes, ṀO2,max is commonly quantified by measuring oxygen uptake either during incremental swimming tests or during recovery from an exhaustive chase. In this Commentary, we compile recent studies that apply both techniques to the same fish and show that the two methods typically yield different mean estimates of ṀO2,max for a group of individuals. Furthermore, within a group of fish, estimates of ṀO2,max determined during swimming are poorly correlated with estimates determined during recovery from chasing (i.e. an individual's ṀO2,max is not repeatable across methods). One explanation for the lack of agreement is that these methods measure different physiological states, each with their own behavioural, anatomical and biochemical determinants. We propose that these methods are not directly interchangeable but, rather, each is suited to address different questions in fish biology. We suggest that researchers select the method that reflects the biological contexts of their study, and we advocate for the use of accurate terminology that acknowledges the technique used to elevate ṀO2 (e.g. peak ṀO2,swim or peak ṀO2,recovery). If the study's objective is to estimate the 'true' ṀO2,max of an individual or species, we recommend that pilot studies compare methods, preferably using repeated-measures designs. We hope that these recommendations contribute new insights into the causes and consequences of variation in ṀO2,max within and among fish species.
Collapse
Affiliation(s)
- Bernard B Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | | | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, CanadaH2V 0B3
| | - Samantha D Brieske
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Timothy D Clark
- School of Life and Environmental Science, Deakin University, Geelong, Victoria, Australia3216
| | - Jeremy De Bonville
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, CanadaH2V 0B3
| | - Rachel M Eisenberg
- Department of Zoology, University of British Columbia, Vancouver, BC, CanadaV6T 1Z4
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, ON, CanadaK9L 0G2
| | - Dominique Roche
- Social Sciences and Humanities Research Council of Canada, Ottawa, ON, CanadaK1R 0E3
| | - Jodie L Rummer
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Yangfan Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
6
|
Khan RH, Rhodes JS, Girard IA, Schwartz NE, Garland T. Does Behavior Evolve First? Correlated Responses to Selection for Voluntary Wheel-Running Behavior in House Mice. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:97-117. [PMID: 38728689 DOI: 10.1086/730153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
AbstractHow traits at multiple levels of biological organization evolve in a correlated fashion in response to directional selection is poorly understood, but two popular models are the very general "behavior evolves first" (BEF) hypothesis and the more specific "morphology-performance-behavior-fitness" (MPBF) paradigm. Both acknowledge that selection often acts relatively directly on behavior and that when behavior evolves, other traits will as well but most with some lag. However, this proposition is exceedingly difficult to test in nature. Therefore, we studied correlated responses in the high-runner (HR) mouse selection experiment, in which four replicate lines have been bred for voluntary wheel-running behavior and compared with four nonselected control (C) lines. We analyzed a wide range of traits measured at generations 20-24 (with a focus on new data from generation 22), coinciding with the point at which all HR lines were reaching selection limits (plateaus). Significance levels (226 P values) were compared across trait types by ANOVA, and we used the positive false discovery rate to control for multiple comparisons. This meta-analysis showed that, surprisingly, the measures of performance (including maximal oxygen consumption during forced exercise) showed no evidence of having diverged between the HR and C lines, nor did any of the life history traits (e.g., litter size), whereas body mass had responded (decreased) at least as strongly as wheel running. Overall, results suggest that the HR lines of mice had evolved primarily by changes in motivation rather than performance ability at the time they were reaching selection limits. In addition, neither the BEF model nor the MPBF model of hierarchical evolution provides a particularly good fit to the HR mouse selection experiment.
Collapse
|
7
|
Parker KS, El N, Buldo EC, MacCormack TJ. Mechanisms of PVP-functionalized silver nanoparticle toxicity in fish: Intravascular exposure disrupts cardiac pacemaker function and inhibits Na +/K +-ATPase activity in heart, but not gill. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109837. [PMID: 38218567 DOI: 10.1016/j.cbpc.2024.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Polyvinylpyrrolidone-functionalized silver nanoparticles (nAgPVP) are popular in consumer products for their colloidal stability and antimicrobial activity. Whole lake additions of nAgPVP cause long term, ecosystem-scale changes in fish populations but the mechanisms underlying this effect are unclear. We have previously shown that in fish, nAgPVP impairs cardiac contractility and Na+/K+-ATPase (NKA) activity in vitro, raising the possibility that heart dysfunction could underlie population-level exposure effects. The goal of this study was to determine if nAgPVP influences the control of heart rate (fh), blood pressure, or cardiac NKA activity in vivo. First, a dose-response curve for the effects of 5 nm nAgPVP on contractility was completed on isometrically contracting ventricular muscle preparations from Arctic char (Salvelinus alpinus) and showed that force production was lowest at 500 μg L-1 and maximum pacing frequency increased with nAgPVP concentration. Stroke volume, cardiac output, and power output were maintained in isolated working heart preparations from brook char (Salvelinus fontinalis) exposed to 700 μg L-1 nAgPVP. Both fh and blood pressure were elevated after 24 h in brook char injected with 700 μg kg body mass-1 nAgPVP and fh was insensitive to modulation with blockers of β-adrenergic and muscarinic cholinergic receptors. Na+/K+-ATPase activity was significantly lower in heart, but not gill of nAgPVP injected fish. The results indicate that nAgPVP influences cardiac function in vivo by disrupting regulation of the pacemaker and cardiomyocyte ionoregulation. Impaired fh regulation may prevent fish from appropriately responding to environmental or social stressors and affect their ability to survive.
Collapse
Affiliation(s)
- K S Parker
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - N El
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - E C Buldo
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|
8
|
Prokkola JM, Chew KK, Anttila K, Maamela KS, Yildiz A, Åsheim ER, Primmer CR, Aykanat T. Tissue-specific metabolic enzyme levels covary with whole-animal metabolic rates and life-history loci via epistatic effects. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220482. [PMID: 38186275 PMCID: PMC10772610 DOI: 10.1098/rstb.2022.0482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/03/2023] [Indexed: 01/09/2024] Open
Abstract
Metabolic rates, including standard (SMR) and maximum (MMR) metabolic rate have often been linked with life-history strategies. Variation in context- and tissue-level metabolism underlying SMR and MMR may thus provide a physiological basis for life-history variation. This raises a hypothesis that tissue-specific metabolism covaries with whole-animal metabolic rates and is genetically linked to life history. In Atlantic salmon (Salmo salar), variation in two loci, vgll3 and six6, affects life history via age-at-maturity as well as MMR. Here, using individuals with known SMR and MMR with different vgll3 and six6 genotype combinations, we measured proxies of mitochondrial density and anaerobic metabolism, i.e. maximal activities of the mitochondrial citrate synthase (CS) and lactate dehydrogenase (LDH) enzymes, in four tissues (heart, intestine, liver, white muscle) across low- and high-food regimes. We found enzymatic activities were related to metabolic rates, mainly SMR, in the intestine and heart. Individual loci were not associated with the enzymatic activities, but we found epistatic effects and genotype-by-environment interactions in CS activity in the heart and epistasis in LDH activity in the intestine. These effects suggest that mitochondrial density and anaerobic capacity in the heart and intestine may partly mediate variation in metabolic rates and life history via age-at-maturity. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Jenni M. Prokkola
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
- Natural Resources Institute Finland (Luke), Paavo Havaksen tie 3, 90570 Oulu, Finland
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900 Lammi, Finland
| | - Kuan Kiat Chew
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Katja Anttila
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Katja S. Maamela
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900 Lammi, Finland
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Atakan Yildiz
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| | - Eirik R. Åsheim
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900 Lammi, Finland
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Craig R. Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Tutku Aykanat
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| |
Collapse
|
9
|
Leszczynski EC, Schwartz NE, McPeek AC, Currie KD, Ferguson DP, Garland T. Selectively breeding for high voluntary physical activity in female mice does not bestow inherent characteristics that resemble eccentric remodeling of the heart, but the mini-muscle phenotype does. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:205-212. [PMID: 37753423 PMCID: PMC10518799 DOI: 10.1016/j.smhs.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 09/28/2023] Open
Abstract
Physical activity engagement results in a variety of positive health outcomes, including a reduction in cardiovascular disease risk partially due to eccentric remodeling of the heart. The purpose of this investigation was to determine if four replicate lines of High Runner mice that have been selectively bred for voluntary exercise on wheels have a cardiac phenotype that resembles the outcome of eccentric remodeling. Adult females (average age 55 days) from the 4 High Runner and 4 non-selected control lines were anaesthetized via vaporized isoflurane, then echocardiographic images were collected and analyzed for structural and functional differences. High Runner mice in general had lower ejection fractions compared to control mice lines (2-tailed p = 0.023 6) and tended to have thicker walls of the anterior portion of the left ventricle (p = 0.065). However, a subset of the High Runner individuals, termed mini-muscle mice, had greater ejection fraction (p = 0.000 6), fractional shortening percentage (p < 0.000 1), and ventricular mass at dissection (p < 0.002 7 with body mass as a covariate) compared to non-mini muscle mice. Mice from replicate lines bred for high voluntary exercise did not all have inherent positive cardiac functional or structural characteristics, although a genetically unique subset of mini-muscle individuals did have greater functional cardiac characteristics, which in conjunction with their previously described peripheral aerobic enhancements (e.g., increased capillarity) would partially account for their increased V ˙ O2max.
Collapse
Affiliation(s)
| | - Nicole E. Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Ashley C. McPeek
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | | | - David P. Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
10
|
Albuquerque RL, Zani PA, Garland T. Lower-level predictors and behavioral correlates of maximal aerobic capacity and sprint speed among individual lizards. J Exp Biol 2023; 226:286757. [PMID: 36700411 DOI: 10.1242/jeb.244676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
The standard paradigm of organismal biology views lower-level traits (e.g. aspects of physiology) as determining organismal performance ability (e.g. maximal sprint speed), which in turn constrains behavior (e.g. social interactions). However, few studies have simultaneously examined all three levels of organization. We used focal observations to record movement behaviors and push-up displays in the field for adult male Sceloporus occidentalis lizards during the breeding season. We then captured animals, measured aspects of their physiology, morphology and performance, and counted ectoparasites and endoparasites as potential predictors of sprint speed and maximal oxygen consumption (V̇O2,max). Field behaviors were statistically repeatable, but not strongly so. Sprint speed and V̇O2,max were repeatable using residuals from regressions on body mass (speed: r=0.70; V̇O2,max: r=0.88). Both calf [standardized partial regression (path) coefficient B=0.53] and thigh [B=-0.37] muscle mass (as residuals from regressions on body mass) were significant predictors of sprint speed; hemoglobin concentration (B=0.42) was a predictor of V̇O2,max. In turn, V̇O2,max predicted the maximum number of four-legged push-ups per bout (B=0.39). In path analysis, log likelihood ratio tests indicated no direct paths from lower-level traits to behavior, supporting the idea that morphology, in the broad sense, only affects behavior indirectly through measures of performance. Our results show that inter-individual variation in field behaviors can be related to performance ability, which in turn reflect differences in morphology and physiology, although not parasite load. Given the low repeatability of field behaviors, some of the relationships between behavior and performance may be stronger than suggested by our results.
Collapse
Affiliation(s)
- Ralph L Albuquerque
- Department of Evolution Ecology and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA.,Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, PB, 58050-585, Brazil
| | - Peter A Zani
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, WI 54481-3897, USA
| | - Theodore Garland
- Department of Evolution Ecology and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
11
|
Meza-Buendia AK, Aparicio-Trejo OE, Díaz F, Caamal-Monsreal C, Pedraza-Chaverri J, Álvarez-Delgado C, Paschke K, Rosas C. High resolution respirometry of isolated mitochondria from adult Octopus maya (Class: Cephalopoda) systemic heart. PLoS One 2022; 17:e0273554. [PMID: 36037204 PMCID: PMC9423623 DOI: 10.1371/journal.pone.0273554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial respirometry is key to understand how environmental factors model energetic cellular process. In the case of ectotherms, thermal tolerance has been hypothesized to be intimately linked with mitochondria capability to produce enough adenosine triphosphate (ATP) to respond to the energetic demands of animals in high temperatures. In a recent study made in Octopus maya was proposed the hypothesis postulating that high temperatures could restrain female reproduction due to the limited capacity of the animals’ heart to sustain oxygen flow to the body, affecting in this manner energy production in the rest of the organs, including the ovarium Meza-Buendia AK et al. (2021). Unfortunately, until now, no reports have shown temperature effects and other environmental variables on cephalopod mitochondria activity because of the lack of a method to evaluate mitochondrial respiratory parameters in those species’ groups. In this sense and for the first time, this study developed a method to obtain mitochondrial respirometry data of adult Octopus maya’s heart. This protocol illustrates a step-by-step procedure to get high yield and functional mitochondria of cephalopod heart and procedure for determining the corresponding respiratory parameters. The procedure described in this paper takes approximately 3 to 4 hours from isolation of intact mitochondria to measurement of mitochondrial oxygen consumption.
Collapse
Affiliation(s)
- Ana Karen Meza-Buendia
- Laboratorio de Ecofisiología de Organismos Acuáticos, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Fernando Díaz
- Laboratorio de Ecofisiología de Organismos Acuáticos, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Claudia Caamal-Monsreal
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Mexico
- Laboratorio de Resilencia Costera LANRESC, CONACYT, Sisal, Mexico
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carolina Álvarez-Delgado
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, Mexico
| | - Kurt Paschke
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
- Centro FONDAP de Investigación de AltasLatitudes (IDEAL), Punta Arenas, Chile
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Mexico
- Laboratorio de Resilencia Costera LANRESC, CONACYT, Sisal, Mexico
- * E-mail:
| |
Collapse
|
12
|
Rees BB, Reemeyer JE, Irving BA. Interindividual variation in maximum aerobic metabolism varies with gill morphology and myocardial bioenergetics. J Exp Biol 2022; 225:275636. [DOI: 10.1242/jeb.243680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/27/2022] [Indexed: 11/20/2022]
Abstract
This study asked whether interindividual variation in maximum and standard aerobic metabolic rates of the Gulf killifish, Fundulus grandis, correlate with gill morphology and cardiac mitochondrial bioenergetics, traits reflecting critical steps in the O2 transport cascade from the environment to the tissues. Maximum metabolic rate (MMR) was positively related to body mass, total gill filament length, and myocardial oxygen consumption during maximum oxidative phosphorylation (multiple R2=0.836). Standard metabolic rate (SMR) was positively related to body mass, total gill filament length, and myocardial oxygen consumption during maximum electron transport system activity (multiple R2=0.717). After controlling for body mass, individuals with longer gill filaments, summed over all gill arches, or greater cardiac respiratory capacity had higher whole-animal metabolic rates. The overall model fit and the explanatory power of individual predictor variables were better for MMR than for SMR, suggesting that gill morphology and myocardial bioenergetics are more important in determining active rather than resting metabolism. After accounting for body mass, heart ventricle mass was not related to variation in MMR or SMR, indicating that the quality of the heart (i.e., the capacity for mitochondrial metabolism) was more influential than heart size. Finally, the myocardial oxygen consumption required to offset the dissipation of the transmembrane proton gradient in the absence of ATP synthesis was not correlated with either MMR or SMR. The results support the idea that interindividual variation in aerobic metabolism, particularly maximum metabolic rate, is associated with variation in specific steps in the O2 transport cascade.
Collapse
Affiliation(s)
- Bernard B. Rees
- 1 Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Jessica E. Reemeyer
- 2 Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Brian A. Irving
- 3 School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA
- 4 Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| |
Collapse
|
13
|
Storz JF, Bautista NM. Altitude acclimatization, hemoglobin-oxygen affinity, and circulatory oxygen transport in hypoxia. Mol Aspects Med 2022; 84:101052. [PMID: 34879970 PMCID: PMC8821351 DOI: 10.1016/j.mam.2021.101052] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/01/2023]
Abstract
In mammals and other air-breathing vertebrates that live at high altitude, adjustments in convective O2 transport via changes in blood hemoglobin (Hb) content and/or Hb-O2 affinity can potentially mitigate the effects of arterial hypoxemia. However, there are conflicting views about the optimal values of such traits in hypoxia, partly due to the intriguing observation that hypoxia-induced acclimatization responses in humans and other predominantly lowland mammals are frequently not aligned in the same direction as evolved phenotypic changes in high-altitude natives. Here we review relevant theoretical and empirical results and we highlight experimental studies of rodents and humans that provide insights into the combination of hematological changes that help attenuate the decline in aerobic performance in hypoxia. For a given severity of hypoxia, experimental results suggest that optimal values for hematological traits are conditional on the states of other interrelated phenotypes that govern different steps in the O2-transport pathway.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA.
| | - Naim M Bautista
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
14
|
Wearing OH, Nelson D, Ivy CM, Crossley DA, Scott GR. Adrenergic control of the cardiovascular system in deer mice native to high altitude. Curr Res Physiol 2022; 5:83-92. [PMID: 35169714 PMCID: PMC8829085 DOI: 10.1016/j.crphys.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 01/23/2022] [Indexed: 12/26/2022] Open
Abstract
Studies of animals native to high altitude can provide valuable insight into physiological mechanisms and evolution of performance in challenging environments. We investigated how mechanisms controlling cardiovascular function may have evolved in deer mice (Peromyscus maniculatus) native to high altitude. High-altitude deer mice and low-altitude white-footed mice (P. leucopus) were bred in captivity at sea level, and first-generation lab progeny were raised to adulthood and acclimated to normoxia or hypoxia. We then used pharmacological agents to examine the capacity for adrenergic receptor stimulation to modulate heart rate (fH) and mean arterial pressure (Pmean) in anaesthetized mice, and used cardiac pressure-volume catheters to evaluate the contractility of the left ventricle. We found that highlanders had a consistently greater capacity to increase fH via pharmacological stimulation of β1-adrenergic receptors than lowlanders. Also, whereas hypoxia acclimation reduced the capacity for increasing Pmean in response to α-adrenergic stimulation in lowlanders, highlanders exhibited no plasticity in this capacity. These differences in highlanders may help augment cardiac output during locomotion or cold stress, and may preserve their capacity for α-mediated vasoconstriction to more effectively redistribute blood flow to active tissues. Highlanders did not exhibit any differences in some measures of cardiac contractility (maximum pressure derivative, dP/dtmax, or end-systolic elastance, Ees), but ejection fraction was highest in highlanders after hypoxia acclimation. Overall, our results suggest that evolved changes in sensitivity to adrenergic stimulation of cardiovascular function may help deer mice cope with the cold and hypoxic conditions at high altitude. High-altitude deer mice have evolved increased aerobic capacity in hypoxia. Cardiovascular regulation was examined in normoxia and chronic hypoxia. Highland mice had increased capacity for β1-adrenergic stimulation of heart rate. Hypoxia reduced vascular α-adrenergic sensitivity in lowland but not highland mice. Cardiac ejection fraction was elevated in highland mice in chronic hypoxia.
Collapse
Affiliation(s)
- Oliver H. Wearing
- Department of Biology, McMaster University, Hamilton, ON, Canada
- Corresponding author.
| | - Derek Nelson
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Catherine M. Ivy
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Graham R. Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|