1
|
Díaz-Salazar AF, Garzón-Agudelo F, Smiley A, Cadena CD, Rico-Guevara A. Winging it: hummingbirds alter flying kinematics during molt. Biol Open 2024; 13:bio060370. [PMID: 39157922 PMCID: PMC11583918 DOI: 10.1242/bio.060370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Abstract
Hummingbirds are well known for their hovering flight, one of the most energetically expensive modes of locomotion among animals. Molt is a costly event in the annual cycle, in which birds replace their feathers, including all their primary feathers, which, in hummingbirds, comprise most of the area of the wing. Despite this, the effects of molt on hovering flight are not well known. Here, we examined high-speed videos (14 individuals of three species from the Colombian Andes recorded at 1200 frames per second) comparing molting and non-molting hummingbirds' wing kinematics and wingtip trajectories. We found that molting hummingbirds rotated their wings in more acute angles during both downstroke and upstroke compared to non-molting individuals (10° versus 20°, and 15° versus 29°, respectively), while other flight parameters remained unchanged. Our findings show that hummingbirds are capable of sustaining hovering flight and thereby maintaining their weight support even under impressive wing area reductions by adjusting their stroke amplitudes.
Collapse
Affiliation(s)
- Andrés F Díaz-Salazar
- Laboratorio de Biología Evolutiva de Vertebrados, Departamento de Ciencias Biológicas, Universidad de Los Andes, Carrera 1 No. 18 A 10, Bogotá 111711, Colombia
| | | | - Ashley Smiley
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Carlos Daniel Cadena
- Laboratorio de Biología Evolutiva de Vertebrados, Departamento de Ciencias Biológicas, Universidad de Los Andes, Carrera 1 No. 18 A 10, Bogotá 111711, Colombia
| | - Alejandro Rico-Guevara
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Burke Museum of Natural History and Culture , University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
2
|
Eshghi S, Rajabi H, Matushkina N, Claußen L, Poser J, Büscher TH, Gorb SN. WingAnalogy: a computer vision-based tool for automated insect wing asymmetry and morphometry analysis. Sci Rep 2024; 14:22155. [PMID: 39333336 PMCID: PMC11437043 DOI: 10.1038/s41598-024-73411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
WingAnalogy is a computer tool for automated insect wing morphology and asymmetry analysis. It facilitates project management, enabling users to import pairs of wing images obtained from individual insects, such as left and right, fore- and hindwings. WingAnalogy employs image processing and computer vision to segment wing structures and extract cell boundaries, and junctions. It quantifies essential metrics encompassing cell and wing characteristics, including area, length, width, circularity, and centroid positions. It enables users to scale and superimpose wing images utilizing Particle Swarm Optimization (PSO). WingAnalogy computes regression, Normalized Root Mean Square Error (NRMSE), various cell-based parameters, and distances between cell centroids and junctions. The software generates informative visualizations, aiding researchers in comprehending and interpreting asymmetry patterns. WingAnalogy allows for dividing wings into up to five distinct wing cell sets, facilitating localized comparisons. The software excels in report generation, providing detailed asymmetry measurements in PDF, CSV, and TXT formats.
Collapse
Affiliation(s)
- Shahab Eshghi
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118, Kiel, Germany.
| | - Hamed Rajabi
- Division of Mechanical Engineering and Design, School of Engineering, London South Bank University, London, UK
- Mechanical Intelligence Research Group, School of Engineering, London South Bank University, London, UK
| | - Natalia Matushkina
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Lisa Claußen
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118, Kiel, Germany
| | - Johannes Poser
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118, Kiel, Germany
| | - Thies H Büscher
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118, Kiel, Germany
| |
Collapse
|
3
|
Treidel LA, Deem KD, Salcedo MK, Dickinson MH, Bruce HS, Darveau CA, Dickerson BH, Ellers O, Glass JR, Gordon CM, Harrison JF, Hedrick TL, Johnson MG, Lebenzon JE, Marden JH, Niitepõld K, Sane SP, Sponberg S, Talal S, Williams CM, Wold ES. Insect Flight: State of the Field and Future Directions. Integr Comp Biol 2024; 64:icae106. [PMID: 38982327 PMCID: PMC11406162 DOI: 10.1093/icb/icae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight. Here, we revisit this history from an interdisciplinary perspective, discussing recent discoveries regarding the developmental origins, physiology, biomechanics, and neurobiology and sensory control of flight in a diverse set of insect models. We also identify major outstanding questions yet to be addressed and provide recommendations for overcoming current methodological challenges faced when studying insect flight, which will allow the field to continue to move forward in new and exciting directions. By integrating mechanistic work into ecological and evolutionary contexts, we hope that this synthesis promotes and stimulates new interdisciplinary research efforts necessary to close the many existing gaps about the causes and consequences of insect flight evolution.
Collapse
Affiliation(s)
- Lisa A Treidel
- School of Biological Sciences, University of Nebraska, Lincoln, Lincoln NE, 68588, USA
| | - Kevin D Deem
- Department of Biology, University of Rochester, Rochester NY, 14627, USA
| | - Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, 14853, USA
| | - Michael H Dickinson
- Department of Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | | | - Charles-A Darveau
- Department of Biology, University of Ottawa, Ottawa Ontario, K1N 6N5, Canada
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Olaf Ellers
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Jordan R Glass
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82070, USA
| | - Caleb M Gordon
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meredith G Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA 16803, USA
| | | | - Sanjay P Sane
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065 India
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stav Talal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - Ethan S Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Hooper ML, Scherl I, Gharib M. Bio-inspired compensatory strategies for damage to flapping robotic propulsors. J R Soc Interface 2024; 21:20240141. [PMID: 38955227 PMCID: PMC11335061 DOI: 10.1098/rsif.2024.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
Natural swimmers and flyers can fully recover from catastrophic propulsor damage by altering stroke mechanics: some fish can lose even 76% of their propulsive surface without loss of thrust. We consider applying these principles to enable robotic flapping propulsors to autonomously repair functionality. However, direct transference of these alterations from an organism to a robotic flapping propulsor may be suboptimal owing to irrelevant evolutionary pressures. Instead, we use machine learning techniques to compare these alterations with those optimal for a robotic system. We implement an online artificial evolution with hardware-in-the-loop, performing experimental evaluations with a flexible plate. To recoup thrust, the learned strategy increased amplitude, frequency and angle of attack (AOA) amplitude, and phase-shifted AOA by approximately 110°. Only amplitude increase is reported by most fish literature. When recovering side force, we find that force direction is correlated with AOA. No clear amplitude or frequency trend is found, whereas frequency increases in most insect literature. These results suggest that how mechanical flapping propulsors most efficiently adjust to damage may not align with natural swimmers and flyers.
Collapse
Affiliation(s)
- M. L. Hooper
- Graduate Aerospace Laboratories, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - I. Scherl
- Department of Mechanical and Civil Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - M. Gharib
- Graduate Aerospace Laboratories, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
5
|
Lehmann FO, Gorb S, Moussian B. Spatio-temporal distribution and genetic background of elastic proteins inside the chitin/chitosan matrix of insects including their functional significance for locomotion. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104089. [PMID: 38485097 DOI: 10.1016/j.ibmb.2024.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/26/2024]
Abstract
In insects, cuticle proteins interact with chitin and chitosan of the exoskeleton forming crystalline, amorphic or composite material structures. The biochemical and mechanical composition of the structure defines the cuticle's physical properties and thus how the insect cuticle behaves under mechanical stress. The tissue-specific ratio between chitin and chitosan and its pattern of deacetylation are recognized and interpreted by cuticle proteins depending on their local position in the body. Despite previous research, the assembly of the cuticle composites in time and space including its functional impact is widely unexplored. This review is devoted to the genetics underlying the temporal and spatial distribution of elastic proteins and the potential function of elastic proteins in insects with a focus on Resilin in the fruit fly Drosophila. The potential impact and function of localized patches of elastic proteins is discussed for movements in leg joints, locomotion and damage resistance of the cuticle. We conclude that an interdisciplinary research approach serves as an integral example for the molecular mechanisms of generation and interpretation of the chitin/chitosan matrix, not only in Drosophila but also in other arthropod species, and might help to synthesize artificial material composites.
Collapse
Affiliation(s)
- Fritz-Olaf Lehmann
- Fritz-Olaf Lehmann, Department of Animal Physiology, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany.
| | - Stanislav Gorb
- Stanislav Gorb, Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Bernard Moussian
- Bernard Moussian, Institute Sophia Agrobiotech, University of Nice Sophia Antipolis, 38 Av. Emile Henriot, 06000, Nice, France.
| |
Collapse
|
6
|
Zhou Y, Bai L, Wan C. The mechanical properties of different cross-veins in the hind wing of locust Locusta migratoria under uniaxial tensile and stress relaxation tests. Interface Focus 2024; 14:20230068. [PMID: 38618239 PMCID: PMC11008960 DOI: 10.1098/rsfs.2023.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 04/16/2024] Open
Abstract
Locust Locusta migratoria exhibits remarkable aerial performances, relying predominantly on its hind wings that generate most of lift and thrust for flight. The mechanical properties of the cross-veins determine the deformation of the hind wing, which greatly affect the aerodynamic performance of flapping flight. However, whether the mechanical behaviours of the locust cross-veins change with loading rate is still unknown. In this study, cross-veins in four physiological regions (anterior-medial, anterior-lateral, posterior-medial and posterior-lateral) of the hind wing from adult locusts were investigated using uniaxial tensile test, stress relaxation test and fluorescence microscopy. It was found that the cross-veins were a type of viscoelastic material (including rate-independent elastic modulus and obvious stress relaxation). The cross-veins in the two anterior regions of the hind wing had significantly higher elastic moduli and higher ultimate tensile stress than those of its two posterior regions. This difference might be attributed to different resilin distribution patterns in the cross-veins. These findings furnish new insights into the mechanical characteristics of the locust cross-veins, which might deepen our understanding of the aerodynamic mechanisms of locust flapping flight.
Collapse
Affiliation(s)
- Yizun Zhou
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Linxin Bai
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Chao Wan
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
7
|
Toofani A, Eraghi SH, Basti A, Rajabi H. Complexity biomechanics: a case study of dragonfly wing design from constituting composite material to higher structural levels. Interface Focus 2024; 14:20230060. [PMID: 38618231 PMCID: PMC11008961 DOI: 10.1098/rsfs.2023.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/25/2024] [Indexed: 04/16/2024] Open
Abstract
Presenting a novel framework for sustainable and regenerative design and development is a fundamental future need. Here we argue that a new framework, referred to as complexity biomechanics, which can be used for holistic analysis and understanding of natural mechanical systems, is key to fulfilling this need. We also present a roadmap for the design and development of intelligent and complex engineering materials, mechanisms, structures, systems, and processes capable of automatic adaptation and self-organization in response to ever-changing environments. We apply complexity biomechanics to elucidate how the different structural components of a complex biological system as dragonfly wings, from ultrastructure of the cuticle, the constituting bio-composite material of the wing, to higher structural levels, collaboratively contribute to the functionality of the entire wing system. This framework not only proposes a paradigm shift in understanding and drawing inspiration from natural systems but also holds potential applications in various domains, including materials science and engineering, biomechanics, biomimetics, bionics, and engineering biology.
Collapse
Affiliation(s)
- Arman Toofani
- Mechanical Intelligence (MI) Research Group, South Bank Applied BioEngineering Research (SABER), School of Engineering, London South Bank University, London, UK
- Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
| | - Sepehr H. Eraghi
- Mechanical Intelligence (MI) Research Group, South Bank Applied BioEngineering Research (SABER), School of Engineering, London South Bank University, London, UK
- Division of Mechanical Engineering and Design, School of Engineering, London South Bank University, London, UK
| | - Ali Basti
- Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
| | - Hamed Rajabi
- Mechanical Intelligence (MI) Research Group, South Bank Applied BioEngineering Research (SABER), School of Engineering, London South Bank University, London, UK
- Division of Mechanical Engineering and Design, School of Engineering, London South Bank University, London, UK
| |
Collapse
|
8
|
Cellini B, Ferrero M, Mongeau JM. Drosophila flying in augmented reality reveals the vision-based control autonomy of the optomotor response. Curr Biol 2024; 34:68-78.e4. [PMID: 38113890 DOI: 10.1016/j.cub.2023.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/03/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
For walking, swimming, and flying animals, the optomotor response is essential to stabilize gaze. How flexible is the optomotor response? Classic work in Drosophila has argued that flies adapt flight control under augmented visual feedback conditions during goal-directed bar fixation. However, whether the lower-level, reflexive optomotor response can similarly adapt to augmented visual feedback (partially autonomous) or not (autonomous) over long timescales is poorly understood. To address this question, we developed an augmented reality paradigm to study the vision-based control autonomy of the yaw optomotor response of flying fruit flies (Drosophila). Flies were placed in a flight simulator, which permitted free body rotation about the yaw axis. By feeding back body movements in real time to a visual display, we augmented and inverted visual feedback. Thus, this experimental paradigm caused a constant visual error between expected and actual visual feedback to study potential adaptive visuomotor control. By combining experiments with control theory, we demonstrate that the optomotor response is autonomous during augmented reality flight bouts of up to 30 min, which exceeds the reported learning epoch during bar fixation. Agreement between predictions from linear systems theory and experimental data supports the notion that the optomotor response is approximately linear and time invariant within our experimental assay. Even under positive visual feedback, which revealed the stability limit of flies in augmented reality, the optomotor response was autonomous. Our results support a hierarchical motor control architecture in flies with fast and autonomous reflexes at the bottom and more flexible behavior at higher levels.
Collapse
Affiliation(s)
- Benjamin Cellini
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Mechanical Engineering, University of Nevada, Reno, NV 89557, USA.
| | - Marioalberto Ferrero
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
9
|
Korkmaz R, Rajabi H, Eshghi S, Gorb SN, Büscher TH. The frequency of wing damage in a migrating butterfly. INSECT SCIENCE 2023; 30:1507-1517. [PMID: 36434816 DOI: 10.1111/1744-7917.13153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The ability to fly is crucial for migratory insects. Consequently, the accumulation of damage on the wings over time can affect survival, especially for species that travel long distances. We examined the frequency of irreversible wing damage in the migratory butterfly Vanessa cardui to explore the effect of wing structure on wing damage frequency, as well as the mechanisms that might mitigate wing damage. An exceptionally high migration rate driven by high precipitation levels in their larval habitats in the winter of 2018-2019 provided us with an excellent opportunity to collect data on the frequency of naturally occurring wing damage associated with long-distance flights. Digital images of 135 individuals of V. cardui were collected and analyzed in Germany. The results show that the hindwings experienced a greater frequency of damage than the forewings. Moreover, forewings experienced more severe damage on the lateral margin, whereas hindwings experienced more damage on the trailing margin. The frequency of wing margin damage was higher in the painted lady butterfly than in the migrating monarch butterfly and in the butterfly Pontia occidentalis following artificially induced wing collisions. The results of this study could be used in future comparative studies of patterns of wing damage in butterflies and other insects. Additional studies are needed to clarify whether the strategies for coping with wing damage differ between migratory and nonmigratory species.
Collapse
Affiliation(s)
- Rabiya Korkmaz
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Hamed Rajabi
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
- Division of Mechanical Engineering and Design, School of Engineering, London South Bank University, London, UK
| | - Shahab Eshghi
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Thies H Büscher
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
10
|
Salcedo MK, Jun BH, Socha JJ, Pierce NE, Vlachos PP, Combes SA. Complex hemolymph circulation patterns in grasshopper wings. Commun Biol 2023; 6:313. [PMID: 36959465 PMCID: PMC10036482 DOI: 10.1038/s42003-023-04651-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/02/2023] [Indexed: 03/25/2023] Open
Abstract
An insect's living systems-circulation, respiration, and a branching nervous system-extend from the body into the wing. Wing hemolymph circulation is critical for hydrating tissues and supplying nutrients to living systems such as sensory organs across the wing. Despite the critical role of hemolymph circulation in maintaining healthy wing function, wings are often considered "lifeless" cuticle, and flows remain largely unquantified. High-speed fluorescent microscopy and particle tracking of hemolymph in the wings and body of the grasshopper Schistocerca americana revealed dynamic flow in every vein of the fore- and hindwings. The global system forms a circuit, but local flow behavior is complex, exhibiting three distinct types: pulsatile, aperiodic, and "leaky" flow. Thoracic wing hearts pull hemolymph from the wing at slower frequencies than the dorsal vessel; however, the velocity of returning hemolymph (in the hindwing) is faster than in that of the dorsal vessel. To characterize the wing's internal flow mechanics, we mapped dimensionless flow parameters across the wings, revealing viscous flow regimes. Wings sustain ecologically important insect behaviors such as pollination and migration. Analysis of the wing circulatory system provides a template for future studies investigating the critical hemodynamics necessary to sustaining wing health and insect flight.
Collapse
Affiliation(s)
- Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Brian H Jun
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - John J Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Pavlos P Vlachos
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Stacey A Combes
- Department of Neurobiology, Physiology and Behavior, UC Davis, Davis, CA, USA
| |
Collapse
|
11
|
Meng X, Liu X, Chen Z, Wu J, Chen G. Wing kinematics measurement and aerodynamics of hovering droneflies with wing damage. BIOINSPIRATION & BIOMIMETICS 2023; 18:026013. [PMID: 36745924 DOI: 10.1088/1748-3190/acb97c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
In this study, we performed successive unilateral and bilateral wing shearing to simulate wing damage in droneflies (Eristalis tenax) and measured the wing kinematics using high-speed photography technology. Two different shearing types were considered in the artificial wing damage. The aerodynamic force and power consumption were obtained by numerical method. Our major findings are the following. Different shearing methods have little influence on the kinematics, forces and energy consumption of insects. Following wing damage, among the potential strategies to adjust the three Euler angles of the wing, adjusting stroke angle (φ) in isolation, or combing the adjustment of stroke angle (φ) with pitch angle (ψ), contributed most to the change in vertical force. The balance of horizontal thrust can be restored by the adjustment of deviation angle (θ) under the condition of unilateral wing damage. Considering zero elastic energy storage, the mass-specific power (P1) increases significantly following wing damage. However, the increase in mass-specific power with 100% elastic energy storage (P2) is very small. The extra cost of the unilateral wing damage is that the energy consumption of the damaged wing and intact wing is highly asymmetrical when zero elastic energy storage is considered. The insects may alleviate the problems of increasing power consumption and asymmetric power distribution by storage and reuse of the negative inertial work of the wing.
Collapse
Affiliation(s)
- Xueguang Meng
- Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, State key laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xinyu Liu
- Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, State key laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zengshuang Chen
- Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, State key laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jianghao Wu
- School of Transportation Science and Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Gang Chen
- Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, State key laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
12
|
Mentink-Vigier F, Eddy S, Gullion T. MAS-DNP enables NMR studies of insect wings. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101838. [PMID: 36410100 PMCID: PMC9722638 DOI: 10.1016/j.ssnmr.2022.101838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
NMR is a valuable tool for studying insects. Solid-state NMR has been used to obtain the chemical composition and gain insight into the sclerotization process of exoskeletons. There is typically little difficulty in obtaining sufficient sample quantity for exoskeletons. However, obtaining enough sample of other insect components for solid-state NMR experiments can be problematic while isotopically enriching them is near impossible. This is especially the case for insect wing membranes which is of interest to us. Issues with obtaining sufficient sample are the thickness of wing membranes is on the order of microns, each membrane region is surrounded by veins and occupies a small area, and the membranes are separated from the wing by physical dissection. Accordingly, NMR signal enhancement methods are needed. MAS-DNP has a track record of providing significant signal enhancements for a wide variety of materials. Here we demonstrate that MAS-DNP is useful for providing high quality one-dimensional and two-dimensional solid-state NMR spectra on cicada wing membrane at natural isotopic abundance.
Collapse
Affiliation(s)
- Frédéric Mentink-Vigier
- CIMAR/NMR National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL, 32310, USA.
| | - Samuel Eddy
- Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Terry Gullion
- Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
13
|
Salem W, Cellini B, Kabutz H, Hari Prasad HK, Cheng B, Jayaram K, Mongeau JM. Flies trade off stability and performance via adaptive compensation to wing damage. SCIENCE ADVANCES 2022; 8:eabo0719. [PMID: 36399568 PMCID: PMC9674276 DOI: 10.1126/sciadv.abo0719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Physical injury often impairs mobility, which can have dire consequences for survival in animals. Revealing mechanisms of robust biological intelligence to prevent system failure can provide critical insights into how complex brains generate adaptive movement and inspiration to design fault-tolerant robots. For flying animals, physical injury to a wing can have severe consequences, as flight is inherently unstable. Using a virtual reality flight arena, we studied how flying fruit flies compensate for damage to one wing. By combining experimental and mathematical methods, we show that flies compensate for wing damage by corrective wing movement modulated by closed-loop sensing and robust mechanics. Injured flies actively increase damping and, in doing so, modestly decrease flight performance but fly as stably as uninjured flies. Quantifying responses to injury can uncover the flexibility and robustness of biological systems while informing the development of bio-inspired fault-tolerant strategies.
Collapse
Affiliation(s)
- Wael Salem
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Benjamin Cellini
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Heiko Kabutz
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Bo Cheng
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kaushik Jayaram
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
14
|
An image based application in Matlab for automated modelling and morphological analysis of insect wings. Sci Rep 2022; 12:13917. [PMID: 35977980 PMCID: PMC9386019 DOI: 10.1038/s41598-022-17859-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
Despite extensive research on the biomechanics of insect wings over the past years, direct mechanical measurements on sensitive wing specimens remain very challenging. This is especially true for examining delicate museum specimens. This has made the finite element method popular in studies of wing biomechanics. Considering the complexities of insect wings, developing a wing model is usually error-prone and time-consuming. Hence, numerical studies in this area have often accompanied oversimplified models. Here we address this challenge by developing a new tool for fast, precise modelling of insect wings. This application, called WingGram, uses computer vision to detect the boundaries of wings and wing cells from a 2D image. The app can be used to develop wing models that include complex venations, corrugations and camber. WingGram can extract geometric features of the wings, including dimensions of the wing domain and subdomains and the location of vein junctions. Allowing researchers to simply model wings with a variety of forms, shapes and sizes, our application can facilitate studies of insect wing morphology and biomechanics. Being an open-access resource, WingGram has a unique application to expand how scientists, educators, and industry professionals analyse insect wings and similar shell structures in other fields, such as aerospace.
Collapse
|
15
|
Whalen MR, Chang KJ, Jones AB, Rivera G, Worthington AM. Fluctuating Asymmetry in the Polymorphic Sand Cricket ( Gryllus firmus): Are More Functionally Important Structures Always More Symmetric? INSECTS 2022; 13:insects13070640. [PMID: 35886816 PMCID: PMC9319220 DOI: 10.3390/insects13070640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Asymmetry in bilateral structures occurs when animals experience perturbations during development. This fluctuating asymmetry (FA) may serve as a reliable indicator of the functional importance of a structure. For example, locomotor structures often display lower levels of FA than other paired structures, highlighting that selection can maintain symmetry in traits important for survival or reproduction. Species that have multiple distinct morphs with unique behaviors and morphologies represent an attractive model for studying the relationship between symmetry and function. The sand field cricket (Gryllus firmus) has two separate morphs that allow us to directly test whether individuals maintain higher levels of symmetry in the structures most vital for maximizing fitness based on their specific life strategy. Longwing (LW) individuals can fly but postpone reproduction until after a dispersal event, whereas shortwing (SW) individuals cannot fly but begin reproducing in early adulthood. We quantified FA across a suite of key morphological structures indicative of investment in growth, reproduction, and flight capability for males and females across the morphs. Although we did not find significant differences in FA across traits, as predicted, locomotor compensation strategies may reduce selective pressures on symmetry or developmental patterns may limit the optimization between trait form and function. Abstract Fluctuating asymmetry (FA) may serve as a reliable indicator of the functional importance of structures within an organism. Primary locomotor structures often display lower levels of FA than other paired structures, highlighting that selection can maintain symmetry in fitness-enhancing traits. Polyphenic species represent an attractive model for studying the fine-scale relationship between trait form and function, because multiple morphs exhibit unique life history adaptations that rely on different traits to maximize fitness. Here, we investigated whether individuals of the wing polyphenic sand field cricket (Gryllus firmus) maintain higher levels of symmetry in the bilateral structures most vital for maximizing fitness based on their specific life history strategy. We quantified FA and directional asymmetry (DA) across a suite of key morphological structures indicative of investment in somatic growth, reproduction, and flight capability for males and females across the flight-capable longwing (LW) and flight-incapable shortwing (SW) morphs. Although we did not find significant differences in FA across traits, hindwings lacked DA that was found in all other structures. We predicted that functionally important traits should maintain a higher level of symmetry; however, locomotor compensation strategies may reduce the selective pressures on symmetry or developmental constraints may limit the optimization between trait form and function.
Collapse
|
16
|
Li Q, Ji A, Shen H, Han Q, Qin G. The forewing of a black cicada Cryptotympana atrata (Hemiptera, Homoptera: Cicadidae): Microscopic structures and mechanical properties. Microsc Res Tech 2022; 85:3153-3164. [PMID: 35656939 DOI: 10.1002/jemt.24173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022]
Abstract
Insects in nature flap their wings to generate lift force and driving torque to adjust their attitude and control stability. An insect wing is a biomaterial composed of flexible membranes and tough veins. In this paper, we study the microscopic structures and mechanical properties of the forewing of the black cicada, Cryptotympana atrata. The thickness of the wing membranes and the diameter of veins varied from the wing root to the tip. The thickness of the wing membranes ranged from 6.0 to 29.9 μm, and the diameter of the wing veins decreased in a gradient from the wing root to the tip, demonstrating that the forewing of the black cicada is a nonuniform biomaterial. The elastic modulus of the membrane near the wing root ranged from 4.45 to 5.03 GPa, which is comparable to that of some industrial membranes. The microstructure of the wing vein exhibited a hollow tubular structure with flocculent structure inside. The "fresh" sample stored more water than the "dry" sample, resulting in a significant difference in the elastic modulus between the fresh and dried veins. The different membrane thicknesses and elastic moduli of the wing veins near the root and tip resulted in varied degrees of deformation on both sides of the flexion line of the forewing during twisting. The measurements of the forewing of the cicada may serve as a guide for selecting airfoil materials for the bionic flapping-wing aircraft and promote the design and manufacture of more durable bionic wings in the future.
Collapse
Affiliation(s)
- Qian Li
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Aihong Ji
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Huan Shen
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qingfei Han
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Guodong Qin
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
17
|
Goyal P, van Leeuwen JL, Muijres FT. Bumblebees land rapidly by intermittently accelerating and decelerating toward the surface during visually guided landings. iScience 2022; 25:104265. [PMID: 35521517 PMCID: PMC9065724 DOI: 10.1016/j.isci.2022.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Many flying animals parse visual information to control their landing, whereby they can decelerate smoothly by flying at a constant radial optic expansion rate. Here, we studied how bumblebees (Bombus terrestris) use optic expansion information to control their landing, by analyzing 10,005 landing maneuvers on vertical platforms with various optic information, and at three dim light conditions. We showed that bumblebees both decelerate and accelerate during these landings. Bumblebees decelerate by flying at a constant optic expansion rate, but they mostly accelerate toward the surface each time they switched to a new, often higher, optic expansion rate set-point. These transient acceleration phases allow bumblebees to increase their approach speed, and thereby land rapidly and robustly, even in dim twilight conditions. This helps explain why bumblebees are such robust foragers in challenging environmental conditions. The here-proposed sensorimotor landing control system can serve as bio-inspiration for landing control in unmanned aerial vehicles. Bumblebees land by intermittently decelerating and accelerating toward a surface Acceleration and deceleration phases result from a single visual-motor controller The accelerations toward the surface allow bees to maximize their landing speed Bumblebees adjust their sensorimotor control response to fly slower in dim light
Collapse
Affiliation(s)
- Pulkit Goyal
- Experimental Zoology Group, Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
| | - Johan L van Leeuwen
- Experimental Zoology Group, Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
| | - Florian T Muijres
- Experimental Zoology Group, Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
| |
Collapse
|
18
|
Bonduriansky R, Creak C. Exoskeleton ageing and its relation to longevity and fecundity in female Australian leaf insects (. AUST J ZOOL 2022. [DOI: 10.1071/zo21052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Senescence is a decline in reproduction and survival rate with advancing age resulting from deterioration of somatic tissues and systems throughout the body. Age-related somatic changes (somatic ageing) have been studied extensively in vertebrates but are less well known in other animals, including insects. Since adult insects have very limited ability to repair their exoskeleton, somatic ageing could involve deterioration and discolouration of the cuticle. We investigated age-related changes in wing pigmentation and abdominal cuticle necrosis in females of the Australian leaf insect Phyllium monteithi. Adult females varied markedly in the extent and pattern of pigmentation on their bodies, and we found that pigment spots on the forewings increased in size with age in most individuals. As females aged, most individuals also exhibited increasing levels of abdominal cuticle necrosis, resulting in the loss of abdominal cuticle along the margin of the abdomen. Neither the extent of pigmentation nor cuticle loss were clearly associated with reduced fecundity or longevity in the protected laboratory environment, but it remains unknown whether these age-related changes have functional implications in the wild. Our results show that the P. monteithi exoskeleton undergoes complex changes with age, with potential implications for functional traits and fitness.
Collapse
|
19
|
Improving Polysaccharide-Based Chitin/Chitosan-Aerogel Materials by Learning from Genetics and Molecular Biology. MATERIALS 2022; 15:ma15031041. [PMID: 35160985 PMCID: PMC8839503 DOI: 10.3390/ma15031041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/26/2022]
Abstract
Improved wound healing of burnt skin and skin lesions, as well as medical implants and replacement products, requires the support of synthetical matrices. Yet, producing synthetic biocompatible matrices that exhibit specialized flexibility, stability, and biodegradability is challenging. Synthetic chitin/chitosan matrices may provide the desired advantages for producing specialized grafts but must be modified to improve their properties. Synthetic chitin/chitosan hydrogel and aerogel techniques provide the advantages for improvement with a bioinspired view adapted from the natural molecular toolbox. To this end, animal genetics provide deep knowledge into which molecular key factors decisively influence the properties of natural chitin matrices. The genetically identified proteins and enzymes control chitin matrix assembly, architecture, and degradation. Combining synthetic chitin matrices with critical biological factors may point to the future direction with engineering materials of specific properties for biomedical applications such as burned skin or skin blistering and extensive lesions due to genetic diseases.
Collapse
|
20
|
Wehmann HN, Engels T, Lehmann FO. Flight activity and age cause wing damage in house flies. J Exp Biol 2021; 225:273949. [PMID: 34904650 DOI: 10.1242/jeb.242872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022]
Abstract
Wing damage attenuates aerial performance in many flying animals such as birds, bats and insects. Especially insect wings are fragile and light in order to reduce inertial power requirements for flight at elevated wing flapping frequencies. There is a continuing debate on the factors causing wing damage in insects including collisions with objects, mechanical stress during flight activity, and aging. This experimental study is engaged with the reasons and significance of wing damage for flight in the house fly Musca domestica. We determined natural wing area loss under two housing conditions and recorded flight activity and flight ability throughout the animals' lifetime. Our data show that wing damage occurs on average after 6 h of flight, is sex-specific, and depends on housing conditions. Statistical tests show that both physiological age and flight activity have similar significance as predictors for wing damage. Tests on freely flying flies showed that minimum wing area for active flight is approximately 10-34% below the initial area and requires a left-right wing area asymmetry of less than approximately 25%. Our findings broadly confirm predictions from simple aerodynamic theory based on mean wing velocity and area, and are also consistent with previous wing damage measurements in other insect species.
Collapse
Affiliation(s)
| | - Thomas Engels
- Department of Animal Physiology, University of Rostock, Germany
| | | |
Collapse
|
21
|
Neil TR, Kennedy EE, Harris BJ, Holderied MW. Wingtip folds and ripples on saturniid moths create decoy echoes against bat biosonar. Curr Biol 2021; 31:4824-4830.e3. [PMID: 34506731 DOI: 10.1016/j.cub.2021.08.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Sensory coevolution has equipped certain moth species with passive acoustic defenses to counter predation by echolocating bats.1,2 Some large silkmoths (Saturniidae) possess curved and twisted biosonar decoys at the tip of elongated hindwing tails.3,4 These are thought to create strong echoes that deflect biosonar-guided bat attacks away from the moth's body to less essential parts of their anatomy. We found that closely related silkmoths lacking such hindwing decoys instead often possess intriguing ripples and folds on the conspicuously lobed tips of their forewings. The striking analogy of twisted shapes displayed far from the body suggests these forewing structures might function as alternative acoustic decoys. Here we reveal that acoustic reflectivity and hence detectability of such wingtips is higher than that of the body at ultrasonic frequencies used by hunting bats. Wingtip reflectivity is higher the more elaborate the structure and the further from the body. Importantly, wingtip reflectivity is often considerably higher than in a well-studied functional hindwing decoy. Such increased reflectivity would misdirect the bat's sonar-guided attack toward the wingtip, resulting in similar fitness benefits to hindwing acoustic decoys. Structurally, folded wingtips present echo-generating surfaces to many directions, and folds and ripples can act as retroreflectors that together create conspicuous targets. Phylogenetically, folds and ripples at wingtips have evolved multiple times independently within silkmoths and always as alternatives to hindwing decoys. We conclude that they function as acoustic wingtip decoys against bat biosonar. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Thomas R Neil
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ella E Kennedy
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Brogan J Harris
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Marc W Holderied
- School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
22
|
Li C, Gorb SN, Rajabi H. Biomechanical strategies to reach a compromise between stiffness and flexibility in hind femora of desert locusts. Acta Biomater 2021; 134:490-498. [PMID: 34293506 DOI: 10.1016/j.actbio.2021.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022]
Abstract
Insect cuticle can reach a wide range of material properties, which is thought to be the result of adaptations to applied mechanical stresses. Biomechanical mechanisms behind these property variations remain largely unknown. To fill this gap, here we performed a comprehensive study by simultaneous investigation of the microstructure, sclerotization and the elasticity modulus of the specialized cuticle of the femora of desert locusts. We hypothesized that, considering their different roles in jumping, the femora of fore-, mid- and hind legs should be equipped with cuticles that have different mechanical properties. Surprisingly, our results showed that the hind femur, which typically bears higher stresses, has a lower elasticity modulus than the fore and mid femora in the longitudinal direction. This is likely due to the lower sclerotization and different microstructure of the hind femur cuticle. This allows for some deformability in the femur wall and is likely to reduce the risk of mechanical failure. In contrast to both other femora, the hind femur is also equipped with a set of sclerotized ridges that are likely to provide it with the required stiffness to withstand the mechanical loads during walking and jumping. This paper is one of only a few comprehensive studies on insect cuticle, which advances the current understanding of the relationship between the structure, material property and function in this complex biological composite. STATEMENT OF SIGNIFICANCE: Insect cuticle is a biological composite with strong anisotropy and wide ranges of material properties. Using an example of the femoral cuticle of desert locusts, we measured the elasticity modulus, microstructure and sclerotization level of the cuticle. Our results show that, although the hind femur withstands most of the stress during locomotion, it has a lower elasticity modulus than the fore and mid femora. This is likely to be a functional adaption to jumping, in order to allow small deformations of the femur wall and reduce the risk of material failure. Our results deepen the current understanding of the structure-material-function relationship in the complex insect cuticle.
Collapse
Affiliation(s)
- Chuchu Li
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany.
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany
| | - Hamed Rajabi
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany; Division of Mechanical Engineering and Design, School of Engineering, London South Bank University, London, UK
| |
Collapse
|
23
|
Sugimoto K, Hayashi M, Kawarazaki I, Ito S. Versatile tensile and fracture behaviors of dual cross-linked elastomers by postpreparation photo tuning of local cross-link density. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Eraghi SH, Toofani A, Khaheshi A, Khorsandi M, Darvizeh A, Gorb S, Rajabi H. Wing Coupling in Bees and Wasps: From the Underlying Science to Bioinspired Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004383. [PMID: 34085417 PMCID: PMC8373159 DOI: 10.1002/advs.202004383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/22/2021] [Indexed: 05/07/2023]
Abstract
Wing-to-wing coupling mechanisms synchronize motions of insect wings and minimize their aerodynamic interference. Albeit they share the same function, their morphological traits appreciably vary across groups. Here the structure-material-function relationship of wing couplings of nine castes and species of Hymenoptera is investigated. It is shown that the springiness, robustness, and asymmetric behavior augment the functionality of the coupling by reducing stress concentrations and minimizing the impacts of excessive flight forces. A quantitative link is established between morphological variants of the coupling mechanisms and forces to which they are subjected. Inspired by the coupling mechanisms, a rotating-sliding mechanical joint that withstands tension and compression and can also be locked/unlocked is fabricated. This is the first biomimetic research of this type that integrates approaches from biology and engineering.
Collapse
Affiliation(s)
- Sepehr H. Eraghi
- Faculty of Mechanical EngineeringUniversity of GuilanRasht4199613776Iran
- Division of Mechanical EngineeringAhrar Institute of Technology and Higher EducationRasht4193163591Iran
| | - Arman Toofani
- Faculty of Mechanical EngineeringUniversity of GuilanRasht4199613776Iran
- Division of Mechanical EngineeringAhrar Institute of Technology and Higher EducationRasht4193163591Iran
| | - Ali Khaheshi
- Functional Morphology and BiomechanicsInstitute of ZoologyKiel UniversityKiel24118Germany
| | - Mohammad Khorsandi
- Faculty of Mechanical EngineeringUniversity of GuilanRasht4199613776Iran
- Division of Mechanical EngineeringAhrar Institute of Technology and Higher EducationRasht4193163591Iran
| | - Abolfazl Darvizeh
- Faculty of Mechanical EngineeringUniversity of GuilanRasht4199613776Iran
- Division of Mechanical EngineeringAhrar Institute of Technology and Higher EducationRasht4193163591Iran
| | - Stanislav Gorb
- Functional Morphology and BiomechanicsInstitute of ZoologyKiel UniversityKiel24118Germany
| | - Hamed Rajabi
- Functional Morphology and BiomechanicsInstitute of ZoologyKiel UniversityKiel24118Germany
| |
Collapse
|
25
|
The damping and structural properties of dragonfly and damselfly wings during dynamic movement. Commun Biol 2021; 4:737. [PMID: 34131288 PMCID: PMC8206215 DOI: 10.1038/s42003-021-02263-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023] Open
Abstract
For flying insects, stability is essential to maintain the orientation and direction of motion in flight. Flight instability is caused by a variety of factors, such as intended abrupt flight manoeuvres and unwanted environmental disturbances. Although wings play a key role in insect flight stability, little is known about their oscillatory behaviour. Here we present the first systematic study of insect wing damping. We show that different wing regions have almost identical damping properties. The mean damping ratio of fresh wings is noticeably higher than that previously thought. Flight muscles and hemolymph have almost no 'direct' influence on the wing damping. In contrast, the involvement of the wing hinge can significantly increase damping. We also show that although desiccation reduces the wing damping ratio, rehydration leads to full recovery of damping properties after desiccation. Hence, we expect hemolymph to influence the wing damping indirectly, by continuously hydrating the wing system.
Collapse
|
26
|
Sawyer SJ, Rusch TW, Tarone AM, Tomberlin JK. Wing buzzing as a potential antipredator defense against an invasive predator. FOOD WEBS 2021. [DOI: 10.1016/j.fooweb.2021.e00192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|