1
|
Park SJ, Murphy KR, Ja WW. Energy Deficit is a Key Driver of Sleep Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596666. [PMID: 38979352 PMCID: PMC11230206 DOI: 10.1101/2024.05.30.596666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sleep and feeding are vital homeostatic behaviors, and disruptions in either can result in substantial metabolic consequences. Distinct neuronal manipulations in Drosophila can dissociate sleep loss from subsequent homeostatic rebound, offering an optimal platform to examine the precise interplay between these fundamental behaviors. Here, we investigate concomitant changes in sleep and food intake in individual animals, as well as respiratory metabolic expenditure, that accompany behavioral and genetic manipulations that induce sleep loss in Drosophila melanogaster. We find that sleep disruptions resulting in energy deficit through increased metabolic expenditure and manifested as increased food intake were consistently followed by rebound sleep. In contrast, "soft" sleep loss, which does not induce rebound sleep, is not accompanied by increased metabolism and food intake. Our results demonstrate that homeostatic sleep rebound is linked to energy deficit accrued during sleep loss. Collectively, these findings support the notion that sleep functions to conserve energy and highlight the need to examine the effects of metabolic therapeutics on sleep.
Collapse
Affiliation(s)
- Scarlet J. Park
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Jupiter, FL 33458, USA
- Current affiliation: Nova Southeastern University, Palm Beach Gardens, FL 33410, USA
| | - Keith R. Murphy
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
- Integrative Biology and Neuroscience Program, Florida Atlantic University, Jupiter FL 33458, USA
- Current affiliation: Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - William W. Ja
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Jupiter, FL 33458, USA
| |
Collapse
|
2
|
Nuñez KM, Catalano JL, Scaplen KM, Kaun KR. Ethanol Behavioral Responses in Drosophila. Cold Spring Harb Protoc 2023; 2023:719-24. [PMID: 37019606 PMCID: PMC10551053 DOI: 10.1101/pdb.top107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Drosophila melanogaster is a powerful genetic model for investigating the mechanisms underlying ethanol-induced behaviors, metabolism, and preference. Ethanol-induced locomotor activity is especially useful for understanding the mechanisms by which ethanol acutely affects the brain and behavior. Ethanol-induced locomotor activity is characterized by hyperlocomotion and subsequent sedation with increased exposure duration or concentration. Locomotor activity is an efficient, easy, robust, and reproducible behavioral screening tool for identifying underlying genes and neuronal circuits as well as investigating genetic and molecular pathways. We introduce a detailed protocol for performing experiments investigating how volatilized ethanol affects locomotor activity using the fly Group Activity Monitor (flyGrAM). We introduce installation, implementation, data collection, and subsequent data-analysis methods for investigating how volatilized stimuli affect activity. We also introduce a procedure for how to optogenetically probe neuronal activity to identify the neural mechanisms underlying locomotor activity.
Collapse
Affiliation(s)
- Kavin M Nuñez
- Molecular Pharmacology and Physiology Graduate Program, Brown University, Providence, Rhode Island 02912, USA
| | - Jamie L Catalano
- Molecular Pharmacology and Physiology Graduate Program, Brown University, Providence, Rhode Island 02912, USA
| | - Kristin M Scaplen
- Department of Psychology, Bryant University, Smithfield, Rhode Island 02917, USA
- Center for Health and Behavioral Sciences, Bryant University, Smithfield, Rhode Island 02917, USA
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
3
|
Nuñez KM, Catalano JL, Scaplen KM, Kaun KR. Methods for Exploring the Circuit Basis of Ethanol-Induced Changes in Drosophila Group Locomotor Activity. Cold Spring Harb Protoc 2023; 2023:108138. [PMID: 37019608 PMCID: PMC10551048 DOI: 10.1101/pdb.prot108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Locomotion is a behavioral readout that can be used to understand responses to specific stimuli or perturbations. The fly Group Activity Monitor (flyGrAM) provides a high-throughput and high-content readout of the acute stimulatory and sedative effects of ethanol. The flyGrAM system is adaptable and seamlessly introduces thermogenetic or optogenetic stimulation to dissect neural circuits underlying behavior and tests responses to other volatilized stimuli (humidified air, odorants, anesthetics, vaporized drugs of abuse, etc.). The automated quantification and readout of activity provide users with a real-time representation of the group activity within each chamber throughout the experiment, helping users to quickly determine proper ethanol doses and duration, run behavioral screens, and plan follow-up experiments.
Collapse
Affiliation(s)
- Kavin M Nuñez
- Molecular Pharmacology and Physiology Graduate Program, Brown University, Providence, Rhode Island 02912, USA
| | - Jamie L Catalano
- Molecular Pharmacology and Physiology Graduate Program, Brown University, Providence, Rhode Island 02912, USA
| | - Kristin M Scaplen
- Department of Psychology, Bryant University, Smithfield, Rhode Island 02917, USA
- Center for Health and Behavioral Sciences, Bryant University, Smithfield, Rhode Island 02917, USA
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
4
|
Scholz H. From Natural Behavior to Drug Screening: Invertebrates as Models to Study Mechanisms Associated with Alcohol Use Disorders. Curr Top Behav Neurosci 2023. [PMID: 36598738 DOI: 10.1007/7854_2022_413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Humans consume ethanol-containing beverages, which may cause an uncontrollable or difficult-to-control intake of ethanol-containing liquids and may result in alcohol use disorders. How the transition at the molecular level from "normal" ethanol-associated behaviors to addictive behaviors occurs is still unknown. One problem is that the components contributing to normal ethanol intake and their underlying molecular adaptations, especially in neurons that regulate behavior, are not clear. The fruit fly Drosophila melanogaster and the earthworm Caenorhabditis elegans show behavioral similarities to humans such as signs of intoxication, tolerance, and withdrawal. Underlying the phenotypic similarities, invertebrates and vertebrates share mechanistic similarities. For example in Drosophila melanogaster, the dopaminergic neurotransmitter system regulates the positive reinforcing properties of ethanol and in Caenorhabditis elegans, serotonergic neurons regulate feeding behavior. Since these mechanisms are fundamental molecular mechanisms and are highly conserved, invertebrates are good models for uncovering the basic principles of neuronal adaptation underlying the behavioral response to ethanol. This review will focus on the following aspects that might shed light on the mechanisms underlying normal ethanol-associated behaviors. First, the current status of what is required at the behavioral and cellular level to respond to naturally occurring levels of ethanol is summarized. Low levels of ethanol delay the development and activate compensatory mechanisms that in turn might be beneficial for some aspects of the animal's physiology. Repeated exposure to ethanol however might change brain structures involved in mediating learning and memory processes. The smell of ethanol is already a key component in the environment that is able to elicit behavioral changes and molecular programs. Minimal networks have been identified that regulate normal ethanol consumption. Other environmental factors that influence ethanol-induced behaviors include the diet, dietary supplements, and the microbiome. Second, the molecular mechanisms underlying neuronal adaptation to the cellular stressor ethanol are discussed. Components of the heat shock and oxidative stress pathways regulate adaptive responses to low levels of ethanol and in turn change behavior. The adaptive potential of the brain cells is challenged when the organism encounters additional cellular stressors caused by aging, endosymbionts or environmental toxins or excessive ethanol intake. Finally, to underline the conserved nature of these mechanisms between invertebrates and higher organisms, recent approaches to identify drug targets for ethanol-induced behaviors are provided. Already approved drugs regulate ethanol-induced behaviors and they do so in part by interfering with cellular stress pathways. In addition, invertebrates have been used to identify new compounds targeting molecules involved in the regulation in ethanol withdrawal-like symptoms. This review primarily highlights the advances of the last 5 years concerning Drosophila melanogaster, but also provides intriguing examples of Caenorhabditis elegans and Apis mellifera in support.
Collapse
Affiliation(s)
- Henrike Scholz
- Department of Biology, Institute for Zoology, University of Köln, Köln, Germany.
| |
Collapse
|
5
|
Yu G, Li Z, Zhao Y, Liu J, Peng Y. An Ant-Mimicking Jumping Spider Achieves Higher Predation Probability with Lower Success Rate When Exposed to Ethanol. INSECTS 2022; 13:1009. [PMID: 36354833 PMCID: PMC9694002 DOI: 10.3390/insects13111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Ethanol (ETOH) affects many animals' behaviour in nature; for example, honeybees become more aggressive after consuming ETOH. In previous studies, scientists have used honeybees and fruit flies as models to determine if they showed a strong preference to ETOH. Moreover, ETOH could affect their locomotion and learning abilities. However, whether and how ETOH affects spiders is unclear as of yet. In this study, we used empirical experiments to determine whether spiders showed preference for ETOH, as well as the potential benefits of spiders choosing ETOH, by using a common spider, Myrmarachne gisti, which has a high probability of contacting ETOH in their habitat. In our experiment, M. gisti showed a significant preference for ETOH. Although the success rate of the first attack was significantly decreased when M. gisti were exposed to ETOH, they had a significantly higher predation probability, since fruit flies also showed a significant preference for ETOH. Our findings suggested that ETOH could affect the prey capture efficiency of M. gisti, and indicated that spiders might evolve to use ETOH to locate a potential hunting place. Taken together, our findings suggested that M. gisti evolved to adapt to ETOH and could use it as a signal of the presence of food resources.
Collapse
Affiliation(s)
- Guocheng Yu
- Hubei Key Laboratory of Regional Development and Environmental Response, College of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering and Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zichang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, College of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering and Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering and Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jie Liu
- Hubei Key Laboratory of Regional Development and Environmental Response, College of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, College of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
6
|
Chandler JA, Innocent LV, Martinez DJ, Huang IL, Yang JL, Eisen MB, Ludington WB. Microbiome-by-ethanol interactions impact Drosophila melanogaster fitness, physiology, and behavior. iScience 2022; 25:104000. [PMID: 35313693 PMCID: PMC8933687 DOI: 10.1016/j.isci.2022.104000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/24/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota can affect how animals respond to ingested toxins, such as ethanol, which is prevalent in the diets of diverse animals and often leads to negative health outcomes in humans. Ethanol is a complex dietary factor because it acts as a toxin, behavioral manipulator, and nutritional source, with both direct effects on the host as well as indirect ones through the microbiome. Here, we developed a model for chronic, non-intoxicating ethanol ingestion in the adult fruit fly, Drosophila melanogaster, and paired this with the tractability of the fly gut microbiota, which can be experimentally removed. We linked numerous physiological, behavioral, and transcriptional variables to fly fitness, including a combination of intestinal barrier integrity, stored triglyceride levels, feeding behavior, and the immunodeficiency pathway. Our results reveal a complex tradeoff between lifespan and fecundity that is microbiome-dependent and modulated by dietary ethanol and feeding behavior.
Collapse
Affiliation(s)
- James Angus Chandler
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Lina Victoria Innocent
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | - Isaac Li Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jane Lani Yang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael Bruce Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - William Basil Ludington
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
7
|
Shell BC, Luo Y, Pletcher S, Grotewiel M. Expansion and application of dye tracers for measuring solid food intake and food preference in Drosophila. Sci Rep 2021; 11:20044. [PMID: 34625601 PMCID: PMC8501022 DOI: 10.1038/s41598-021-99483-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
The Drosophila model is used to investigate the effects of diet on physiology as well as the effects of genetic pathways, neural systems and environment on feeding behavior. We previously showed that Blue 1 works well as a dye tracer to track consumption of agar-based media in Drosophila in a method called Con-Ex. Here, we describe Orange 4 as a novel dye for use in Con-Ex studies that expands the utility of this method. Con-Ex experiments using Orange 4 detect the predicted effects of starvation, mating status, strain, and sex on feeding behavior in flies. Orange 4 is consumed and excreted into vials linearly with time in Con-Ex experiments, the number of replicates required to detect differences between groups when using Orange 4 is comparable to that for Blue 1, and excretion of the dye reflects the volume of consumed dye. In food preference studies using Orange 4 and Blue 1 as a dye pair, flies decreased their intake of food laced with the aversive tastants caffeine and NaCl as determined using Con-Ex or a more recently described modification called EX-Q. Our results indicate that Orange 4 is suitable for Con-Ex experiments, has comparable utility to Blue 1 in Con-Ex studies, and can be paired with Blue 1 to assess food preference via both Con-Ex and EX-Q.
Collapse
Affiliation(s)
- Brandon C Shell
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Yuan Luo
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mike Grotewiel
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
8
|
Abstract
Many animals rely on taste to identify nutritious foods and to avoid the consumption of harmful substances. The tastes of macronutrients, as well as of non-caloric micronutrients such as sodium and calcium, contribute to the regulation of ingestive behavior1,2. Whether vitamins also affect feeding behavior through taste is less clear. Here, we show that the fly Drosophila melanogaster has a strong preference for consuming a vitamin-containing diet: both sexes show a preference for folic acid, whereas only females show a preference for riboflavin. Females show a preference with vitamin concentrations as low as ∼10 nM - at least 50,000-fold lower than the concentration needed for sucrose preference. This female vitamin preference requires inputs from external and internal taste organs, suggesting that post-ingestive signals, in the absence of gustatory input, are insufficient to actuate preferential consumption of vitamin-containing diets. Our studies demonstrate that vitamin perception is an important determinant of feeding behavior.
Collapse
Affiliation(s)
- Qi Wu
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Scarlet J Park
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - William W Ja
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|