1
|
de Boo LW, Jóźwiak K, Ter Hoeve ND, van Diest PJ, Opdam M, Wang Y, Schmidt MK, de Jong V, Kleiterp S, Cornelissen S, Baars D, Koornstra RHT, Kerver ED, van Dalen T, Bins AD, Beeker A, van den Heiligenberg SM, de Jong PC, Bakker SD, Rietbroek RC, Konings IR, Blankenburgh R, Bijlsma RM, Imholz ALT, Stathonikos N, Vreuls W, Sanders J, Rosenberg EH, Koop EA, Varga Z, van Deurzen CHM, Mooyaart AL, Córdoba A, Groen E, Bart J, Willems SM, Zolota V, Wesseling J, Sapino A, Chmielik E, Ryska A, Broeks A, Voogd AC, van der Wall E, Siesling S, Salgado R, Dackus GMHE, Hauptmann M, Kok M, Linn SC. Prognostic value of histopathologic traits independent of stromal tumor-infiltrating lymphocyte levels in chemotherapy-naïve patients with triple-negative breast cancer. ESMO Open 2024; 9:102923. [PMID: 38452438 PMCID: PMC10937239 DOI: 10.1016/j.esmoop.2024.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 02/04/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND In the absence of prognostic biomarkers, most patients with early-stage triple-negative breast cancer (eTNBC) are treated with combination chemotherapy. The identification of biomarkers to select patients for whom treatment de-escalation or escalation could be considered remains an unmet need. We evaluated the prognostic value of histopathologic traits in a unique cohort of young, (neo)adjuvant chemotherapy-naïve patients with early-stage (stage I or II), node-negative TNBC and long-term follow-up, in relation to stromal tumor-infiltrating lymphocytes (sTILs) for which the prognostic value was recently reported. MATERIALS AND METHODS We studied all 485 patients with node-negative eTNBC from the population-based PARADIGM cohort which selected women aged <40 years diagnosed between 1989 and 2000. None of the patients had received (neo)adjuvant chemotherapy according to standard practice at the time. Associations between histopathologic traits and breast cancer-specific survival (BCSS) were analyzed with Cox proportional hazard models. RESULTS With a median follow-up of 20.0 years, an independent prognostic value for BCSS was observed for lymphovascular invasion (LVI) [adjusted (adj.) hazard ratio (HR) 2.35, 95% confidence interval (CI) 1.49-3.69], fibrotic focus (adj. HR 1.61, 95% CI 1.09-2.37) and sTILs (per 10% increment adj. HR 0.75, 95% CI 0.69-0.82). In the sTILs <30% subgroup, the presence of LVI resulted in a higher cumulative incidence of breast cancer death (at 20 years, 58%; 95% CI 41% to 72%) compared with when LVI was absent (at 20 years, 32%; 95% CI 26% to 39%). In the ≥75% sTILs subgroup, the presence of LVI might be associated with poor survival (HR 11.45, 95% CI 0.71-182.36, two deaths). We confirm the lack of prognostic value of androgen receptor expression and human epidermal growth factor receptor 2 -low status. CONCLUSIONS sTILs, LVI and fibrotic focus provide independent prognostic information in young women with node-negative eTNBC. Our results are of importance for the selection of patients for de-escalation and escalation trials.
Collapse
Affiliation(s)
- L W de Boo
- Department of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - K Jóźwiak
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - N D Ter Hoeve
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Opdam
- Department of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Y Wang
- Department of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M K Schmidt
- Department of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - V de Jong
- Department of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - S Kleiterp
- Department of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - S Cornelissen
- Core Facility Molecular Pathology and Biobanking, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - D Baars
- Department of Biometrics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - R H T Koornstra
- Department of Medical Oncology, Rijnstate Medical center, Arnhem, The Netherlands
| | - E D Kerver
- Department of Medical Oncology, OLVG, Amsterdam, The Netherlands
| | - T van Dalen
- Department of Surgery, Diakonessenhuis Utrecht, Utrecht, The Netherlands
| | - A D Bins
- Department of Medical Oncology, Amsterdam UMC, Amsterdam, The Netherlands
| | - A Beeker
- Department of Medical Oncology, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | | | - P C de Jong
- Department of Medical Oncology, Sint Antonius Hospital, Utrecht, The Netherlands
| | - S D Bakker
- Department of Internal Medicine, Zaans Medical Centre, Zaandam, The Netherlands
| | - R C Rietbroek
- Department of Medical Oncology, Rode Kruis Hospital, Beverwijk, The Netherlands
| | - I R Konings
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - R Blankenburgh
- Department of Medical Oncology, Saxenburgh Medical Center, Hardenberg, The Netherlands
| | - R M Bijlsma
- Department of Medical Oncology, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - A L T Imholz
- Department of Internal Medicine, Deventer Hospital, Deventer, The Netherlands
| | - N Stathonikos
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - W Vreuls
- Department of Pathology, Canisius Wilhelmina Ziekenhuis, Nijmegen, The Netherlands
| | - J Sanders
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - E H Rosenberg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - E A Koop
- Department of Pathology, Gelre Ziekenhuizen, Apeldoorn, The Netherlands
| | - Z Varga
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - C H M van Deurzen
- Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A L Mooyaart
- Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A Córdoba
- Department of Pathology, Complejo Hospitalaria de Navarra, Pamplona, Spain
| | - E Groen
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J Bart
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - S M Willems
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - V Zolota
- Department of Pathology, Rion University Hospital, Patras, Greece
| | - J Wesseling
- Department of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - A Sapino
- Department of Medical Sciences, University of Torino, Torino, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - E Chmielik
- Tumor Pathology Department, Maria Sklodowska-Curie Memorial National Research Institute of Oncology, Gliwice, Poland
| | - A Ryska
- Charles University Medical Faculty and University Hospital, Hradec Kralove, Czech Republic
| | - A Broeks
- Core Facility Molecular Pathology and Biobanking, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A C Voogd
- Department of Epidemiology, Maastricht University, Maastricht, The Netherlands; Department of Research and Development, Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, The Netherlands
| | - E van der Wall
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Siesling
- Department of Research and Development, Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, The Netherlands; Department of Health Technology and Services Research, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - R Salgado
- Division of Clinical Medicine and Research, Peter MacCallum Cancer Centre, Melbourne, Australia; Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
| | - G M H E Dackus
- Department of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - M Kok
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Tumorbiology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - S C Linn
- Department of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Limsakul P, Choochuen P, Jungrungrueang T, Charupanit K. Prognostic Markers in Tyrosine Kinases Specific to Basal-like 2 Subtype of Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:1405. [PMID: 38338684 PMCID: PMC10855431 DOI: 10.3390/ijms25031405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Triple-negative breast cancer (TNBC), a heterogeneous and therapeutically challenging subtype, comprises over 50% of patients categorized into basal-like 1 (BL1) and basal-like 2 (BL2) intrinsic molecular subtypes. Despite their shared basal-like classification, BL2 is associated with a poor response to neoadjuvant chemotherapy and reduced relapse-free survival compared to BL1. Here, the study focused on identifying subtype-specific markers for BL2 through transcriptomic analysis of TNBC patients using RNA-seq and clinical integration. Six receptor tyrosine kinase (TK) genes, including EGFR, EPHA4, EPHB2, PDGFRA, PDGFRB, and ROR1, were identified as potential differentiators for BL2. Correlations between TK mRNA expression and TNBC prognosis, particularly EGFR, PDGFRA, and PDGFRB, revealed potential synergistic interactions in pathways related to cell survival and proliferation. Our findings also suggest promising dual markers for predicting disease prognosis. Furthermore, RT-qPCR validation demonstrated that identified BL2-specific TKs were expressed at a higher level in BL2 than in BL1 cell lines, providing insights into unique characteristics. This study advances the understanding of TNBC heterogeneity within the basal-like subtypes, which could lead to novel clinical treatment approaches and the development of targeted therapies.
Collapse
Affiliation(s)
- Praopim Limsakul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
- Center of Excellence for Trace Analysis and Biosensor (TAB-CoE), Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.C.); (T.J.)
| | - Thawirasm Jungrungrueang
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.C.); (T.J.)
| | - Krit Charupanit
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.C.); (T.J.)
| |
Collapse
|
3
|
Saridogan T, Akcakanat A, Zhao M, Evans KW, Yuca E, Scott S, Kirby BP, Zheng X, Ha MJ, Chen H, Ng PKS, DiPeri TP, Mills GB, Rodon Ahnert J, Damodaran S, Meric-Bernstam F. Efficacy of futibatinib, an irreversible fibroblast growth factor receptor inhibitor, in FGFR-altered breast cancer. Sci Rep 2023; 13:20223. [PMID: 37980453 PMCID: PMC10657448 DOI: 10.1038/s41598-023-46586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023] Open
Abstract
Several alterations in fibroblast growth factor receptor (FGFR) genes have been found in breast cancer; however, they have not been well characterized as therapeutic targets. Futibatinib (TAS-120; Taiho) is a novel, selective, pan-FGFR inhibitor that inhibits FGFR1-4 at nanomolar concentrations. We sought to determine futibatinib's efficacy in breast cancer models. Nine breast cancer patient-derived xenografts (PDXs) with various FGFR1-4 alterations and expression levels were treated with futibatinib. Antitumor efficacy was evaluated by change in tumor volume and time to tumor doubling. Alterations indicating sensitization to futibatinib in vivo were further characterized in vitro. FGFR gene expression between patient tumors and matching PDXs was significantly correlated; however, overall PDXs had higher FGFR3-4 expression. Futibatinib inhibited tumor growth in 3 of 9 PDXs, with tumor stabilization in an FGFR2-amplified model and prolonged regression (> 110 days) in an FGFR2 Y375C mutant/amplified model. FGFR2 overexpression and, to a greater extent, FGFR2 Y375C expression in MCF10A cells enhanced cell growth and sensitivity to futibatinib. Per institutional and public databases, FGFR2 mutations and amplifications had a population frequency of 1.1%-2.6% and 1.5%-2.5%, respectively, in breast cancer patients. FGFR2 alterations in breast cancer may represent infrequent but highly promising targets for futibatinib.
Collapse
Affiliation(s)
- Turcin Saridogan
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- Department of Basic Oncology, Graduate School of Health Sciences, Hacettepe University, Ankara, 06100, Turkey
| | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Kurt W Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Erkan Yuca
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Stephen Scott
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Bryce P Kirby
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Jin Ha
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Biostatistics, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Patrick K S Ng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Timothy P DiPeri
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Precision Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Senthil Damodaran
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA.
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q, Wu K. Recent advances in targeted strategies for triple-negative breast cancer. J Hematol Oncol 2023; 16:100. [PMID: 37641116 PMCID: PMC10464091 DOI: 10.1186/s13045-023-01497-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Triple-negative breast cancer (TNBC), a highly aggressive subtype of breast cancer, negatively expresses estrogen receptor, progesterone receptor, and the human epidermal growth factor receptor 2 (HER2). Although chemotherapy is the main form of treatment for patients with TNBC, the effectiveness of chemotherapy for TNBC is still limited. The search for more effective therapies is urgent. Multiple targeted therapeutic strategies have emerged according to the specific molecules and signaling pathways expressed in TNBC. These include PI3K/AKT/mTOR inhibitors, epidermal growth factor receptor inhibitors, Notch inhibitors, poly ADP-ribose polymerase inhibitors, and antibody-drug conjugates. Moreover, immune checkpoint inhibitors, for example, pembrolizumab, atezolizumab, and durvalumab, are widely explored in the clinic. We summarize recent advances in targeted therapy and immunotherapy in TNBC, with the aim of serving as a reference for the development of individualized treatment of patients with TNBC in the future.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Lee H, Jung S, Gong G, Lim B, Lee HJ. Association of cyclooxygenase-2 expression with endoplasmic reticulum stress and autophagy in triple-negative breast cancer. PLoS One 2023; 18:e0289627. [PMID: 37540709 PMCID: PMC10403079 DOI: 10.1371/journal.pone.0289627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023] Open
Abstract
Cyclooxygenase-2 plays a role in oncogenesis and its overexpression is associated with triple-negative breast cancer. However, the mechanisms whereby cyclooxygenase-2 contribute to breast cancer are complex and not well understood. Cyclooxygenase-2 overexpression causes hypoxia, oxidative stress, and endoplasmic reticulum stress. The aim of this study is to investigate the correlations among cyclooxygenase-2 expression, endoplasmic reticulum stress-associated molecules, and autophagy-associated molecules in triple-negative breast cancer. Surgical specimens from two cohorts of triple-negative breast cancer patients without neoadjuvant systemic therapy were analyzed: cohorts 1 and 2 consisted of 218 cases from 2004 to 2006 and 221 cases from 2007 to 2009, respectively. Specimens were evaluated by immunohistochemical examination of cyclooxygenase-2, endoplasmic reticulum stress markers, and autophagy markers expression using tissue microarrays. Cyclooxygenase-2 was overexpressed in 29.8% and 23.9% of cases in cohorts 1 and 2, respectively; and it was positively correlated with two out of three endoplasmic reticulum stress-associated molecules (XBP1, p = 0.025 and p = 0.003 in cohort 1 and cohort 2, respectively; PERK, p < 0.001 in both cohorts). Cyclooxygenase-2 was also positively correlated with two out of three autophagy markers (p62, p = 0.002 and p = 0.003 in cohort 1 and cohort 2, respectively; beclin1, p < 0.001 in both cohorts). Although cyclooxygenase-2 was not an independent prognostic factor for distant metastasis free survival and overall survival, its expression was associated with the expression of endoplasmic reticulum stress and autophagy molecules in triple-negative breast cancer.
Collapse
Affiliation(s)
- Haechan Lee
- University of Ulsan College of Medicine, Seoul, Korea
| | - SungWook Jung
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bora Lim
- Department of Hematology and Oncology, Baylor College of Medicine, Houston, TX, United States of America
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Passalacqua MI, Rizzo G, Santarpia M, Curigliano G. 'Why is survival with triple negative breast cancer so low? insights and talking points from preclinical and clinical research'. Expert Opin Investig Drugs 2022; 31:1291-1310. [PMID: 36522800 DOI: 10.1080/13543784.2022.2159805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Triple negative breast cancer is typically related to poor prognosis, early metastasis, and high recurrence rate. Intrinsic and extrinsic biological features of TNBC and resistance mechanisms to conventional therapies can support its aggressive behavior, characterizing TNBC how extremely heterogeneous. Novel combination strategies are under investigation, including immunotherapeutic agents, anti-drug conjugates, PARP inhibitors, and various targeting agents, exploring, in the meanwhile, possible predictive biomarkers to correctly select patients for the optimal treatment for their specific subtype. AREAS COVERED This article examines the main malignity characteristics across different subtype, both histological and molecular, and the resistance mechanisms, both primary and acquired, to different drugs explored in the landscape of TNBC treatment, that lead TNBC to still has high mortality rate. EXPERT OPINION The complexity of TNBC is not only the main reason of its aggressivity, but its heterogeneity should be exploited in terms of therapeutics opportunities, combining agents with different mechanism of action, after a correct selection by biologic or molecular biomarkers. The main goal is to understand what TNBC really is and to act selectively on its characteristics, with a personalized anticancer treatment.
Collapse
Affiliation(s)
- Maria Ilenia Passalacqua
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Graziella Rizzo
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy
| |
Collapse
|
7
|
Lei JH, Lee M, Miao K, Huang Z, Yao Z, Zhang A, Xu J, Zhao M, Huang Z, Zhang X, Chen S, Jiaying NG, Feng Y, Xing F, Chen P, Sun H, Chen Q, Xiang T, Chen L, Xu X, Deng C. Activation of FGFR2 Signaling Suppresses BRCA1 and Drives Triple-Negative Mammary Tumorigenesis That is Sensitive to Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100974. [PMID: 34514747 PMCID: PMC8564435 DOI: 10.1002/advs.202100974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Fibroblast growth factor receptor 2 (FGFR2) is a membrane-spanning tyrosine kinase that mediates FGF signaling. Various FGFR2 alterations are detected in breast cancer, yet it remains unclear if activation of FGFR2 signaling initiates tumor formation. In an attempt to answer this question, a mouse model berrying an activation mutation of FGFR2 (FGFR2-S252W) in the mammary gland is generated. It is found that FGF/FGFR2 signaling drives the development of triple-negative breast cancer accompanied by epithelial-mesenchymal transition that is regulated by FGFR2-STAT3 signaling. It is demonstrated that FGFR2 suppresses BRCA1 via the ERK-YY1 axis and promotes tumor progression. BRCA1 knockout in the mammary gland of the FGFR2-S252W mice significantly accelerated tumorigenesis. It is also shown that FGFR2 positively regulates PD-L1 and that a combination of FGFR2 inhibition and immune checkpoint blockade kills cancer cells. These data suggest that the mouse models mimic human breast cancers and can be used to identify actionable therapeutic targets.
Collapse
|
8
|
Li Y, Qiu X, Wang X, Liu H, Geck RC, Tewari AK, Xiao T, Font-Tello A, Lim K, Jones KL, Morrow M, Vadhi R, Kao PL, Jaber A, Yerrum S, Xie Y, Chow KH, Cejas P, Nguyen QD, Long HW, Liu XS, Toker A, Brown M. FGFR-inhibitor-mediated dismissal of SWI/SNF complexes from YAP-dependent enhancers induces adaptive therapeutic resistance. Nat Cell Biol 2021; 23:1187-1198. [PMID: 34737445 DOI: 10.1038/s41556-021-00781-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022]
Abstract
How cancer cells adapt to evade the therapeutic effects of drugs targeting oncogenic drivers is poorly understood. Here we report an epigenetic mechanism leading to the adaptive resistance of triple-negative breast cancer (TNBC) to fibroblast growth factor receptor (FGFR) inhibitors. Prolonged FGFR inhibition suppresses the function of BRG1-dependent chromatin remodelling, leading to an epigenetic state that derepresses YAP-associated enhancers. These chromatin changes induce the expression of several amino acid transporters, resulting in increased intracellular levels of specific amino acids that reactivate mTORC1. Consistent with this mechanism, addition of mTORC1 or YAP inhibitors to FGFR blockade synergistically attenuated the growth of TNBC patient-derived xenograft models. Collectively, these findings reveal a feedback loop involving an epigenetic state transition and metabolic reprogramming that leads to adaptive therapeutic resistance and provides potential therapeutic strategies to overcome this mechanism of resistance.
Collapse
Affiliation(s)
- Yihao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xintao Qiu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaoqing Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hui Liu
- Department of Pathology, and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Renee C Geck
- Department of Pathology, and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alok K Tewari
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tengfei Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alba Font-Tello
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Klothilda Lim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kristen L Jones
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Boston, MA, USA
| | - Murry Morrow
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Boston, MA, USA
| | - Raga Vadhi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pei-Lun Kao
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Aliya Jaber
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Smitha Yerrum
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yingtian Xie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kin-Hoe Chow
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Quang-Dé Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Boston, MA, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - X Shirley Liu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alex Toker
- Department of Pathology, and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. .,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA. .,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Liu G, Chen T, Ding Z, Wang Y, Wei Y, Wei X. Inhibition of FGF-FGFR and VEGF-VEGFR signalling in cancer treatment. Cell Prolif 2021; 54:e13009. [PMID: 33655556 PMCID: PMC8016646 DOI: 10.1111/cpr.13009] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
The sites of targeted therapy are limited and need to be expanded. The FGF‐FGFR signalling plays pivotal roles in the oncogenic process, and FGF/FGFR inhibitors are a promising method to treat FGFR‐altered tumours. The VEGF‐VEGFR signalling is the most crucial pathway to induce angiogenesis, and inhibiting this cascade has already got success in treating tumours. While both their efficacy and antitumour spectrum are limited, combining FGF/FGFR inhibitors with VEGF/VEGFR inhibitors are an excellent way to optimize the curative effect and expand the antitumour range because their combination can target both tumour cells and the tumour microenvironment. In addition, biomarkers need to be developed to predict the efficacy, and combination with immune checkpoint inhibitors is a promising direction in the future. The article will discuss the FGF‐FGFR signalling pathway, the VEGF‐VEGFR signalling pathway, the rationale of combining these two signalling pathways and recent small‐molecule FGFR/VEGFR inhibitors based on clinical trials.
Collapse
Affiliation(s)
- Guihong Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Chen
- Cardiology Department, Chengdu NO.7 People's Hospital, Chengdu Tumor Hospital, Chengdu, China
| | - Zhenyu Ding
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Sukumar J, Gast K, Quiroga D, Lustberg M, Williams N. Triple-negative breast cancer: promising prognostic biomarkers currently in development. Expert Rev Anticancer Ther 2021; 21:135-148. [PMID: 33198517 PMCID: PMC8174647 DOI: 10.1080/14737140.2021.1840984] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer associated with poor prognosis and limited treatment options. Validated prognostic and predictive biomarkers are needed to guide treatment decisions and prognostication.Areas covered: In this review, we discuss established and developing prognostic and predictive biomarkers in TNBC and associated emerging and approved therapies. Biomarkers reviewed include epidermal growth factor receptor (EGFR), vascular endothelial growth factors (VEGF), fibroblast growth factor receptor (FGFR), human epidermal growth factor receptor 2 (HER2), androgen receptor, NOTCH signaling, oxidative stress/redox signaling, microRNAs, TP53 mutation, breast cancer susceptibility gene 1 or 2 (BRCA1/2) mutation/homologous recombination deficiency (HRD), NTRK gene fusion, PI3K/AKT/mTOR, immune biomarkers (programmed death-ligand 1 (PDL1), tumor-infiltrating lymphocytes (TILs), tumor mutational burden (TMB), neoantigens, defects in DNA mismatch repair proteins (dMMR)/microsatellite instability-high (MSI-H)), circulating tumor cells/cell-free DNA, novel targets of antibody-drug conjugates, and residual disease.Expert opinion: Biomarker-driven care in the management of TNBC is increasing and has helped expand options for patients diagnosed with this subtype of breast cancer. Research efforts are ongoing to identify additional biomarkers and targeted treatment options with the ultimate goal of improving clinical outcomes and survivorship.
Collapse
Affiliation(s)
- Jasmine Sukumar
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Kelly Gast
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Dionisia Quiroga
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Maryam Lustberg
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Nicole Williams
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| |
Collapse
|
11
|
Mouron S, Manso L, Caleiras E, Rodriguez-Peralto JL, Rueda OM, Caldas C, Colomer R, Quintela-Fandino M, Bueno MJ. FGFR1 amplification or overexpression and hormonal resistance in luminal breast cancer: rationale for a triple blockade of ER, CDK4/6, and FGFR1. Breast Cancer Res 2021; 23:21. [PMID: 33579347 PMCID: PMC7881584 DOI: 10.1186/s13058-021-01398-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/20/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND FGFR1 amplification, but not overexpression, has been related to adverse prognosis in hormone-positive breast cancer (HRPBC). Whether FGFR1 overexpression and amplification are correlated, what is their distribution among luminal A or B HRPBC, and if there is a potential different prognostic role for amplification and overexpression are currently unknown features. The role of FGFR1 inhibitors in HRPBC is also unclear. METHODS FGFR1 amplification (FISH) and overexpression (RNAscope) were investigated in a N = 251 HRPBC patients cohort and the METABRIC cohort; effects on survival and FISH-RNAscope concordance were determined. We generated hormonal deprivation resistant (LTED-R) and FGFR1-overexpressing cell line variants of the ER+ MCF7 and T47-D and the ER+, FGFR1-amplified HCC1428 cell lines. The role of ER, CDK4/6, and/or FGFR1 blockade alone or in combinations in Rb phosphorylation, cell cycle, and survival were studied. RESULTS FGFR1 overexpression and amplification was non-concordant in > 20% of the patients, but both were associated to a similar relapse risk (~ 2.5-fold; P < 0.05). FGFR1 amplification or overexpression occurred regardless of the luminal subtype, but the incidence was higher in luminal B (16.3%) than A (6.6%) tumors; P < 0.05. The Kappa index for overexpression and amplification was 0.69 (P < 0.001). Twenty-four per cent of the patients showed either amplification and/or overexpression of FGFR1, what was associated to a hazard ratio for relapse of 2.6 (95% CI 1.44-4.62, P < 0.001). In vitro, hormonal deprivation led to FGFR1 overexpression. Primary FGFR1 amplification, engineered mRNA overexpression, or LTED-R-acquired FGFR1 overexpression led to resistance against hormonotherapy alone or in combination with the CDK4/6 inhibitor palbociclib. Blocking FGFR1 with the kinase-inhibitor rogaratinib led to suppression of Rb phosphorylation, abrogation of the cell cycle, and resistance-reversion in all FGFR1 models. CONCLUSIONS FGFR1 amplification and overexpression are associated to similar adverse prognosis in hormone-positive breast cancer. Capturing all the patients with adverse prognosis-linked FGFR1 aberrations requires assessing both features. Hormonal deprivation leads to FGFR1 overexpression, and FGFR1 overexpression and/or amplification are associated with resistance to hormonal monotherapy or in combination with palbociclib. Both resistances are reverted with triple ER, CDK4/6, and FGFR1 blockade.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor
- Breast Neoplasms/diagnosis
- Breast Neoplasms/drug therapy
- Breast Neoplasms/etiology
- Cell Line, Tumor
- Cyclin-Dependent Kinase 4/antagonists & inhibitors
- Cyclin-Dependent Kinase 6/antagonists & inhibitors
- Cyclin-Dependent Kinase 6/genetics
- Disease Management
- Disease Susceptibility
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Female
- Gene Amplification
- Gene Expression
- Humans
- In Situ Hybridization, Fluorescence
- Middle Aged
- Molecular Targeted Therapy
- Neoplasm Staging
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptors, Estrogen/metabolism
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Silvana Mouron
- Breast Cancer Clinical Research Unit, CNIO - Spanish National Cancer Research Center, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - Luis Manso
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | - Oscar M Rueda
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Ramon Colomer
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- Medical Oncology Department, Hospital Universitario La Princesa, Madrid, Spain
- Endowed Chair of Personalized Precision Medicine, Universidad Autonoma de Madrid - Fundación Instituto Roche, Madrid, Spain
- Unidad de Investigación Clínica y Ensayos Clínicos (UICEC) of Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, CNIO - Spanish National Cancer Research Center, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain.
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain.
- Medical Oncology Department, Hospital Universitario de Fuenlabrada, Madrid, Spain.
- Medical Oncology Department, Hospital Universitario Quiron Pozuelo, Madrid, Spain.
| | - Maria J Bueno
- Breast Cancer Clinical Research Unit, CNIO - Spanish National Cancer Research Center, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
12
|
Ashraf-Uz-Zaman M, Shahi S, Akwii R, Sajib MS, Farshbaf MJ, Kallem RR, Putnam W, Wang W, Zhang R, Alvina K, Trippier PC, Mikelis CM, German NA. Design, synthesis and structure-activity relationship study of novel urea compounds as FGFR1 inhibitors to treat metastatic triple-negative breast cancer. Eur J Med Chem 2021; 209:112866. [PMID: 33039722 PMCID: PMC7744370 DOI: 10.1016/j.ejmech.2020.112866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of cancer characterized by higher metastatic and reoccurrence rates, where approximately one-third of TNBC patients suffer from the metastasis in the brain. At the same time, TNBC shows good responses to chemotherapy, a feature that fuels the search for novel compounds with therapeutic potential in this area. Recently, we have identified novel urea-based compounds with cytotoxicity against selected cell lines and with the ability to cross the blood-brain barrier in vivo. We have synthesized and analyzed a library of more than 40 compounds to elucidate the key features responsible for the observed activity. We have also identified FGFR1 as a molecular target that is affected by the presence of these compounds, confirming our data using in silico model. Overall, we envision that these compounds can be further developed for the potential treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sadisna Shahi
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Racheal Akwii
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | - Raja Reddy Kallem
- Clinical Pharmacology & Experimental Therapeutics Center, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - William Putnam
- Clinical Pharmacology & Experimental Therapeutics Center, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - Wei Wang
- College of Pharmacy, University of Houston, Houston, TX, USA
| | - Ruiwen Zhang
- College of Pharmacy, University of Houston, Houston, TX, USA
| | - Karina Alvina
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
13
|
Santolla MF, Maggiolini M. The FGF/FGFR System in Breast Cancer: Oncogenic Features and Therapeutic Perspectives. Cancers (Basel) 2020; 12:E3029. [PMID: 33081025 PMCID: PMC7603197 DOI: 10.3390/cancers12103029] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
One of the major challenges in the treatment of breast cancer is the heterogeneous nature of the disease. With multiple subtypes of breast cancer identified, there is an unmet clinical need for the development of therapies particularly for the less tractable subtypes. Several transduction mechanisms are involved in the progression of breast cancer, therefore making the assessment of the molecular landscape that characterizes each patient intricate. Over the last decade, numerous studies have focused on the development of tyrosine kinase inhibitors (TKIs) to target the main pathways dysregulated in breast cancer, however their effectiveness is often limited either by resistance to treatments or the appearance of adverse effects. In this context, the fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system represents an emerging transduction pathway and therapeutic target to be fully investigated among the diverse anti-cancer settings in breast cancer. Here, we have recapitulated previous studies dealing with FGFR molecular aberrations, such as the gene amplification, point mutations, and chromosomal translocations that occur in breast cancer. Furthermore, alterations in the FGF/FGFR signaling across the different subtypes of breast cancer have been described. Next, we discussed the functional interplay between the FGF/FGFR axis and important components of the breast tumor microenvironment. Lastly, we pointed out the therapeutic usefulness of FGF/FGFR inhibitors, as revealed by preclinical and clinical models of breast cancer.
Collapse
Affiliation(s)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
14
|
Sun Y, Li G, Zhu W, He Q, Liu Y, Chen X, Liu J, Lin J, Han-Zhang H, Yang Z, Lizaso A, Xiang J, Mao X, Liu H, Gao Y. A comprehensive pan-cancer study of fibroblast growth factor receptor aberrations in Chinese cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1290. [PMID: 33209870 PMCID: PMC7661893 DOI: 10.21037/atm-20-5118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background The prevalence and types of fibroblast growth factor receptor (FGFR) mutations vary significantly among different ethnic groups. The optimal application of FGFR inhibitors depends on these variations being comprehensively understood. However, such an analysis has yet to be conducted in Chinese patients. Methods We retrospectively screened the genomic profiling results of 10,582 Chinese cancer patients across 16 cancer types to investigate the frequency and distribution of FGFR aberrations. Results FGFR aberrations were identified in 745 patients, equating to an overall prevalence of 7.0%. A majority of the aberrations occurred on FGFR1 (56.8%), which was followed by FGFR3 (17.7%), FGFR2 (14.4%), and FGFR4 (2.8%). Further, 8.5% of patients had aberrations of more than 1 FGFR gene. The most common types of aberrations were amplification (53.7%), other mutations (38.8%), and fusions (5.6%). FGFR fusion and amplification occurred concurrently in 1.9% of the patients. FGFR aberrations were detected in 12 of the 16 cancers, with the highest prevalence belonging to colorectal cancer (CRC) (31%). Other FGFR-aberrant cancer types included stomach (16.8%), breast (14.3%), and esophageal (12.7%) cancer. Breast tumors were also more likely than other cancer types to have concurrent FGFR rearrangements and amplifications (P<0.001). In comparison with the public dataset, our cohort had a significantly higher number of FGFR aberrations in colorectal (P<0.001) and breast cancer (P=0.05). Conclusions Among the Chinese cancer patients in our study, the overall prevalence of FGFR aberrations was 7.0%. FGFR1 amplification was the most common genetic alteration in CRC, breast cancer, and lung cancer; while FGFR2 amplification was more commonly observed in gastric cancer than in other cancers in our cohort. Our study advances the understanding of the distribution of FGFR aberrations in various cancer types in the Chinese population, which will facilitate the further development of FGFR inhibitors.
Collapse
Affiliation(s)
- Yi Sun
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gao Li
- Department of Thoracic Surgery, Hainan General Hospital, Haikou, China
| | - Wei Zhu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuyan He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongchang Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianshan Chen
- Department of Thoracic Surgery, Hainan General Hospital, Haikou, China
| | - Juan Liu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital; Nanjing, China
| | - Jing Lin
- Burning Rock Biotech, Guangzhou, China
| | | | - Zheng Yang
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | | | | | - Xinru Mao
- Burning Rock Biotech, Guangzhou, China
| | - Hao Liu
- Burning Rock Biotech, Guangzhou, China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Braun M, Piasecka D, Tomasik B, Mieczkowski K, Stawiski K, Zielinska A, Kopczynski J, Nejc D, Kordek R, Sadej R, Romanska HM. Hormonal Receptor Status Determines Prognostic Significance of FGFR2 in Invasive Breast Carcinoma. Cancers (Basel) 2020; 12:cancers12092713. [PMID: 32971804 PMCID: PMC7564845 DOI: 10.3390/cancers12092713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary FGFR2-ER-PR crosstalk leads to hormone-independent progression of breast cancer. In vitro, FGFR2 stimulates PR transcriptional activity and mediates resistance to anti-ER therapies. The postulated poor prognostic effect of FGFR2 overexpression has not been confirmed at clinical level. Our clinical data show that, counterintuitively, low expression of FGFR is linked to poor prognosis in breast cancer and its prognostic value is dependent on the hormonal receptor status, but not PR transcriptional activity. This shows, that the role of FGFR in breast cancer is more complex, which may explain unsatisfactory results of the clinical trials with FGFR inhibitors. Abstract Interaction between fibroblast growth factor receptor 2 (FGFR2) and estrogen/progesterone receptors (ER/PR) affects resistance to anti-ER therapies, however the prognostic value of FGFR2 in breast cancer (BCa) remains largely unexplored. We have recently showed in vitro that FGFR2-mediated signaling alters PR activity and response to anti-ER treatment. Herein, prognostic significance of FGFR2 in BCa was evaluated in relation to both ER/PR protein status and a molecular signature designed to reflect PR transcriptional activity. FGFR2 was examined in 353 BCa cases using immunohistochemistry and Nanostring-based RNA quantification. FGFR2 expression was higher in ER+PR+ and ER+PR- compared to ER−PR− cases (p < 0.001). Low FGFR2 was associated with higher grade (p < 0.001), higher Ki67 proliferation index (p < 0.001), and worse overall and disease-free survival (HR = 2.34 (95% CI: 1.26–4.34), p = 0.007 and HR = 2.22 (95% CI: 1.25–3.93), p = 0.006, respectively). The poor prognostic value of low FGFR2 was apparent in ER+PR+, but not in ER+PR− patients, and it did not depend on the expression level of PR-dependent genes. Despite the functional link between FGFR2 and ER/PR revealed by preclinical studies, the data showed a link between FGFR2 expression and poor prognosis in BCa patients.
Collapse
Affiliation(s)
- Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (M.B.); (D.P.); (A.Z.); (R.K.)
| | - Dominika Piasecka
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (M.B.); (D.P.); (A.Z.); (R.K.)
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Bartlomiej Tomasik
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (B.T.); (K.S.)
| | - Kamil Mieczkowski
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (B.T.); (K.S.)
| | - Aleksandra Zielinska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (M.B.); (D.P.); (A.Z.); (R.K.)
| | - Janusz Kopczynski
- Department of Surgical Pathology, Holycross Cancer Centre, 25-734 Kielce, Poland;
| | - Dariusz Nejc
- Department of Surgical Oncology, Medical University of Lodz, 93-513 Lodz, Poland;
| | - Radzislaw Kordek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (M.B.); (D.P.); (A.Z.); (R.K.)
| | - Rafal Sadej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland;
- Correspondence: (R.S.); (H.M.R.); Tel.: +48-58-349-1469 (R.S.); +48-42-272-5605 (H.M.R.)
| | - Hanna M. Romanska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (M.B.); (D.P.); (A.Z.); (R.K.)
- Correspondence: (R.S.); (H.M.R.); Tel.: +48-58-349-1469 (R.S.); +48-42-272-5605 (H.M.R.)
| |
Collapse
|
16
|
Luo H, Zhang T, Cheng P, Li D, Ogorodniitchouk O, Lahmamssi C, Wang G, Lan M. Therapeutic implications of fibroblast growth factor receptor inhibitors in a combination regimen for solid tumors. Oncol Lett 2020; 20:2525-2536. [PMID: 32782571 DOI: 10.3892/ol.2020.11858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
A number of novel drugs targeting the fibroblast growth factor receptor (FGFR) signaling pathway have been developed, including mostly tyrosine kinase inhibitors, selective inhibitors or monoclonal antibodies. Multiple preclinical and clinical studies have been conducted worldwide to ascertain their effects on diverse solid tumors. Drugs, such as lenvatinib, dovitinib and other non-specific FGFR inhibitors, widely used in clinical practice, have been approved by the Food and Drug Administration for cancer therapy, although the majority of drugs remain in preclinical tests or clinical research. The resistance to a single agent for FGFR inhibition with synthetic lethal action may be overcome by a combination of therapeutic approaches and FGFR inhibitors, which could also enhance the sensitivity to other therapeutics. Therefore, the aim of the present review is to describe the pharmacological characteristics of FGFR inhibitors that may be combined with other therapeutic agents and the preclinical data supporting their combination. Additionally, their clinical implications and the remaining challenges for FGFR inhibitor combination regimens are discussed.
Collapse
Affiliation(s)
- Hong Luo
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Tao Zhang
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Peng Cheng
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Dong Li
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | | | - Chaimaa Lahmamssi
- Institut de Cancérologie Lucien Neuwirth, 42270 Saint Priest en Jarez, France
| | - Ge Wang
- Cancer Center, Institute of Surgical Research, Third Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, P.R. China
| | - Meiling Lan
- Cancer Center, The Third Affiliated Hospital of Chongqing Medical University (Jie Er Hospital), Chongqing 401120, P.R. China
| |
Collapse
|
17
|
Pozniak M, Sokolowska-Wedzina A, Jastrzebski K, Szymczyk J, Porebska N, Krzyscik MA, Zakrzewska M, Miaczynska M, Otlewski J, Opalinski L. FGFR1 clustering with engineered tetravalent antibody improves the efficiency and modifies the mechanism of receptor internalization. Mol Oncol 2020; 14:1998-2021. [PMID: 32511887 PMCID: PMC7463352 DOI: 10.1002/1878-0261.12740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) transmits signals through the plasma membrane regulating essential cellular processes like division, motility, metabolism, and death. Overexpression of FGFR1 is observed in numerous tumors and thus constitutes an attractive molecular target for selective cancer treatment. Targeted anti‐cancer therapies aim for the precise delivery of drugs into cancer cells, sparing the healthy ones and thus limiting unwanted side effects. One of the key steps in targeted drug delivery is receptor‐mediated endocytosis. Here, we show that the efficiency and the mechanism of FGFR1 internalization are governed by the spatial distribution of the receptor in the plasma membrane. Using engineered antibodies of different valency, we demonstrate that dimerization of FGFR1 with bivalent antibody triggers clathrin‐mediated endocytosis (CME) of the receptor. Clustering of FGFR1 into larger oligomers with tetravalent antibody stimulates fast and highly efficient uptake of the receptor that occurs via two distinct mechanisms: CME and dynamin‐dependent clathrin‐independent endocytic routes. Furthermore, we show that all endocytic pathways engaged in FGFR1 internalization do not require receptor activation. Our data provide novel insights into the mechanisms of intracellular trafficking of FGFR1 and constitute guidelines for development of highly internalizing antibody‐based drug carriers for targeted therapy of FGFR1‐overproducing cancers.
Collapse
Affiliation(s)
- Marta Pozniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | | | - Kamil Jastrzebski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Poland
| | - Jakub Szymczyk
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | - Natalia Porebska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | - Mateusz Adam Krzyscik
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland.,Faculty of Biotechnology, Department of Protein Biotechnology, University of Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | - Marta Miaczynska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | - Lukasz Opalinski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| |
Collapse
|
18
|
Bourrier C, Pierga JY, Xuereb L, Salaun H, Proudhon C, Speicher MR, Belic J, Heitzer E, Lockhart BP, Guigal-Stephan N. Shallow Whole-Genome Sequencing from Plasma Identifies FGFR1 Amplified Breast Cancers and Predicts Overall Survival. Cancers (Basel) 2020; 12:cancers12061481. [PMID: 32517171 PMCID: PMC7353062 DOI: 10.3390/cancers12061481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Focal amplification of fibroblast growth factor receptor 1 (FGFR1) defines a subgroup of breast cancers with poor prognosis and high risk of recurrence. We sought to demonstrate the potential of circulating cell-free DNA (cfDNA) analysis to evaluate FGFR1 copy numbers from a cohort of 100 metastatic breast cancer (mBC) patients. Methods: Formalin-fixed paraffin-embedded (FFPE) tissue samples were screened for FGFR1 amplification by FISH, and positive cases were confirmed with a microarray platform (OncoscanTM). Subsequently, cfDNA was evaluated by two approaches, i.e., mFAST-SeqS and shallow whole-genome sequencing (sWGS), to estimate the circulating tumor DNA (ctDNA) allele fraction (AF) and to evaluate the FGFR1 status. Results: Tissue-based analyses identified FGFR1 amplifications in 20/100 tumors. All cases with a ctDNA AF above 3% (n = 12) showed concordance for FGFR1 status between tissue and cfDNA. In one case, we were able to detect a high-level FGFR1 amplification, although the ctDNA AF was below 1%. Furthermore, high levels of ctDNA indicated an association with unfavorable prognosis based on overall survival. Conclusions: Screening for FGFR1 amplification in ctDNA might represent a viable strategy to identify patients eligible for treatment by FGFR inhibition, and mBC ctDNA levels might be used for the evaluation of prognosis in clinical drug trials.
Collapse
Affiliation(s)
- Chantal Bourrier
- Division of Biotechnology, Servier Research Institute, 125, Chemin de ronde, 78290 Croissy Sur-seine, France; (C.B.); (B.P.L.)
| | - Jean-Yves Pierga
- Department of Medical Oncology, Institut Curie, 26 rue d’Ulm, 75005 Paris, France; (J.-Y.P.); (H.S.)
- Circulating Tumor Biomarkers Laboratory, Institut Curie, PSL Research University, INSERM CIC 1428, 26 rue d’Ulm, 75005 Paris, France;
- Université de Paris, 75005 Paris, France
| | - Laura Xuereb
- Division of Methodology and Valorisation of Data, Servier Research and Development Institute, 50 rue carnot, 92150 Suresnes, France;
| | - Hélène Salaun
- Department of Medical Oncology, Institut Curie, 26 rue d’Ulm, 75005 Paris, France; (J.-Y.P.); (H.S.)
- Université de Paris, 75005 Paris, France
| | - Charlotte Proudhon
- Circulating Tumor Biomarkers Laboratory, Institut Curie, PSL Research University, INSERM CIC 1428, 26 rue d’Ulm, 75005 Paris, France;
| | - Michael R. Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (M.R.S.); (J.B.); (E.H.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Jelena Belic
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (M.R.S.); (J.B.); (E.H.)
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (M.R.S.); (J.B.); (E.H.)
- BioTechMed-Graz, 8010 Graz, Austria
- Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, 8010 Graz, Austria
| | - Brian Paul Lockhart
- Division of Biotechnology, Servier Research Institute, 125, Chemin de ronde, 78290 Croissy Sur-seine, France; (C.B.); (B.P.L.)
| | - Nolwen Guigal-Stephan
- Division of Biotechnology, Servier Research Institute, 125, Chemin de ronde, 78290 Croissy Sur-seine, France; (C.B.); (B.P.L.)
- Correspondence: ; Tel.: +33-155-722-532
| |
Collapse
|
19
|
Walsh L, Haley KE, Moran B, Mooney B, Tarrant F, Madden SF, Di Grande A, Fan Y, Das S, Rueda OM, Dowling CM, Varešlija D, Chin SF, Linn S, Young LS, Jirström K, Crown JP, Bernards R, Caldas C, Gallagher WM, O'Connor DP, Ní Chonghaile T. BET Inhibition as a Rational Therapeutic Strategy for Invasive Lobular Breast Cancer. Clin Cancer Res 2019; 25:7139-7150. [PMID: 31409615 DOI: 10.1158/1078-0432.ccr-19-0713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/13/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Invasive lobular carcinoma (ILC) is a subtype of breast cancer accounting for 10% of breast tumors. The majority of patients are treated with endocrine therapy; however, endocrine resistance is common in estrogen receptor-positive breast cancer and new therapeutic strategies are needed. Bromodomain and extraterminal inhibitors (BETi) are effective in diverse types of breast cancer but they have not yet been assessed in ILC. EXPERIMENTAL DESIGN We assessed whether targeting the BET proteins with JQ1 could serve as an effective therapeutic strategy in ILC in both 2D and 3D models. We used dynamic BH3 profiling and RNA-sequencing (RNA-seq) to identify transcriptional reprograming enabling resistance to JQ1-induced apoptosis. As part of the RATHER study, we obtained copy-number alterations and RNA-seq on 61 ILC patient samples. RESULTS Certain ILC cell lines were sensitive to JQ1, while others were intrinsically resistant to JQ1-induced apoptosis. JQ1 treatment led to an enhanced dependence on antiapoptotic proteins and a transcriptional rewiring inducing fibroblast growth factor receptor 1 (FGFR1). This increase in FGFR1 was also evident in invasive ductal carcinoma (IDC) cell lines. The combination of JQ1 and FGFR1 inhibitors was highly effective at inhibiting growth in both 2D and 3D models of ILC and IDC. Interestingly, we found in the RATHER cohort of 61 ILC patients that 20% had FGFR1 amplification and we showed that high BRD3 mRNA expression was associated with poor survival specifically in ILC. CONCLUSIONS We provide evidence that BETi either alone or in combination with FGFR1 inhibitors or BH3 mimetics may be a useful therapeutic strategy for recurrent ILC patients.
Collapse
Affiliation(s)
- Louise Walsh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kathryn E Haley
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Bruce Moran
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Brian Mooney
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Finbarr Tarrant
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Stephen F Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alessandra Di Grande
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Yue Fan
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Sudipto Das
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Oscar M Rueda
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Catríona M Dowling
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Sabine Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Karin Jirström
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Rene Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Carlos Caldas
- Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, England
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Darran P O'Connor
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Tríona Ní Chonghaile
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
20
|
Qi L, Zhou B, Chen J, Hu W, Bai R, Ye C, Weng X, Zheng S. Significant prognostic values of differentially expressed-aberrantly methylated hub genes in breast cancer. J Cancer 2019; 10:6618-6634. [PMID: 31777591 PMCID: PMC6856906 DOI: 10.7150/jca.33433] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/31/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: Abnormal status of gene expression plays an important role in tumorigenesis, progression and metastasis of breast cancer. Mechanisms of gene silence or activation were varied. Methylation of genes may contribute to alteration of gene expression. This study aimed to identify differentially expressed hub genes which may be regulated by DNA methylation and evaluate their prognostic value in breast cancer by bioinformatic analysis. Methods: GEO2R was used to obtain expression microarray data from GSE54002, GSE65194 and methylation microarray data from GSE20713, GSE32393. Differentially expressed-aberrantly methylated genes were identified by FunRich. Biological function and pathway enrichment analysis were conducted by DAVID. PPI network was constructed by STRING and hub genes was sorted by Cytoscape. Expression and DNA methylation of hub genes was validated by UALCAN and MethHC. Clinical outcome analysis of hub genes was performed by Kaplan Meier-plotter database for breast cancer. IHC was performed to analyze protein levels of EXO1 and Kaplan-Meier was used for survival analysis. Results: 677 upregulated-hypomethylated and 361 downregulated-hypermethylated genes were obtained from GSE54002, GSE65194, GSE20713 and GSE32393 by GEO2R and FunRich. The most significant biological process, cellular component, molecular function enriched and pathway for upregulated-hypomethylated genes were viral process, cytoplasm, protein binding and cell cycle respectively. For downregulated-hypermethylated genes, the result was peptidyl-tyrosine phosphorylation, plasma membrane, transmembrane receptor protein tyrosine kinase activity and Rap1 signaling pathway (All p< 0.05). 12 hub genes (TOP2A, MAD2L1, FEN1, EPRS, EXO1, MCM4, PTTG1, RRM2, PSMD14, CDKN3, H2AFZ, CCNE2) were sorted from 677 upregulated-hypomethylated genes. 4 hub genes (EGFR, FGF2, BCL2, PIK3R1) were sorted from 361 downregulated-hypermethylated genes. Differential expression of 16 hub genes was validated in UALCAN database (p<0.05). 7 in 12 upregulated-hypomethylated and 2 in 4 downregulated-hypermethylated hub genes were confirmed to be significantly hypomethylated or hypermethylated in breast cancer using MethHC database (p<0.05). Finally, 12 upregulated hub genes (TOP2A, MAD2L1, FEN1, EPRS, EXO1, MCM4, PTTG1, RRM2, PSMD14, CDKN3, H2AFZ, CCNE2) and 3 downregulated genes (FGF2, BCL2, PIK3R1) contributed to significant unfavorable clinical outcome in breast cancer (p<0.05). High expression level of EXO1 protein was significantly associated with poor OS in breast cancer patients (p=0.03). Conclusion: Overexpression of TOP2A, MAD2L1, FEN1, EPRS, EXO1, MCM4, PTTG1, RRM2, PSMD14, CDKN3, H2AFZ, CCNE2 and downregulation of FGF2, BCL2, PIK3R1 might serve as diagnosis and poor prognosis biomarkers in breast cancer by more research validation. EXO1 was identified as an individual unfavorable prognostic factor. Methylation might be one of the major causes leading to abnormal expression of those genes. Functional analysis and pathway enrichment analysis of those genes would provide novel ideas for breast cancer research.
Collapse
Affiliation(s)
- Lina Qi
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Department of Surgical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Biting Zhou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jiani Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Department of Surgical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Wangxiong Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Rui Bai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xingyue Weng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
21
|
Jafarian AH, Kooshkiforooshani M, Farzad F, Mohamadian Roshan N. The Relationship Between Fibroblastic Growth Factor Receptor-1 (FGFR1) Gene Amplification in Triple Negative Breast Carcinomas and Clinicopathological Prognostic Factors. IRANIAN JOURNAL OF PATHOLOGY 2019; 14:299-304. [PMID: 31754359 PMCID: PMC6824770 DOI: 10.30699/ijp.2019.96713.1952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/12/2019] [Indexed: 01/08/2023]
Abstract
Background & Objective: In Triple-Negative Breast Cancers (TNBCs), estrogen receptor (ER), progesterone receptor (PR) and HER2/neu genes are not expressed. Fibroblastic Growth Factor Receptor-1 (FGFR1) gene product is a protein that acts as a receptor of thyrosin kinase. It plays a role in the proliferation, differentiation, and migration of malignant cells. The objective was to evaluate the possible relation between FGFR1 over-expression and amplification in TNBCs and other clinicopathological variables. Methods: In this cross sectional study, purposive sampling was used to collect eighty-four TNBC specimens from mastectomy specimens collected between 2013 and 2017. Tissue microarrays were evaluated for FGFR1 over-expression and amplification respectively by immunohistochemistry (IHC) staining and real time Polymerase Chain Reaction (PCR). The needed clinical and paraclinical information were obtained from patients’ files. To analyze the correlation among prognostic factors, we used a wide range of different statistic methods, namely Chi-square test, independent t-test, Fisher's exact test, and ANOVA. Results: FGFR1 over-expression was found in 15 of the 84 samples (17.9%). FGFR1 gene amplification was observed in 33.3% (28 of 84) of the samples. We found no association between FGFR1 and clinicopathological parameters, including tumor grade, stage, and patient survival (P>0.005). Conclusion: FGFR1 over-expression and amplification may not be related to clinicopathological parameters, namely age, stage, and grade of the cancer not to mention TNBC survival. Using FGFR1 as a prognostic factor in TNBCs requires further study.
Collapse
Affiliation(s)
- Amir Hossein Jafarian
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Melika Kooshkiforooshani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzane Farzad
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nema Mohamadian Roshan
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Nakhjavani M, Hardingham JE, Palethorpe HM, Price TJ, Townsend AR. Druggable Molecular Targets for the Treatment of Triple Negative Breast Cancer. J Breast Cancer 2019; 22:341-361. [PMID: 31598336 PMCID: PMC6769384 DOI: 10.4048/jbc.2019.22.e39] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Breast cancer (BC) is still the most common cancer among women worldwide. Amongst the subtypes of BC, triple negative breast cancer (TNBC) is characterized by deficient expression of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. These patients are therefore not given the option of targeted therapy and have worse prognosis as a result. Consequently, much research has been devoted to identifying specific molecular targets that can be utilized for targeted cancer therapy, thereby limiting the progression and metastasis of this invasive tumor, and improving patient outcomes. In this review, we have focused on the molecular targets in TNBC, categorizing these into targets within the immune system such as immune checkpoint modulators, intra-nuclear targets, intracellular targets, and cell surface targets. The aim of this review is to introduce and summarize the known targets and drugs under investigation in phase II or III clinical trials, while introducing additional possible targets for future drug development. This review brings a tangible benefit to cancer researchers who seek a comprehensive comparison of TNBC treatment options.
Collapse
Affiliation(s)
- Maryam Nakhjavani
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Jennifer E Hardingham
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Helen M Palethorpe
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Tim J Price
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Medical Oncology, The Queen Elizabeth Hospital, Woodville South, Australia
| | - Amanda R Townsend
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Medical Oncology, The Queen Elizabeth Hospital, Woodville South, Australia
| |
Collapse
|
23
|
Kucińska M, Porębska N, Lampart A, Latko M, Knapik A, Zakrzewska M, Otlewski J, Opaliński Ł. Differential regulation of fibroblast growth factor receptor 1 trafficking and function by extracellular galectins. Cell Commun Signal 2019; 17:65. [PMID: 31208421 PMCID: PMC6572767 DOI: 10.1186/s12964-019-0371-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/14/2019] [Indexed: 01/18/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are integral membrane proteins that transmit signals through the plasma membrane. FGFRs signaling needs to be precisely adjusted as aberrant FGFRs function is associated with development of human cancers or severe metabolic diseases. The subcellular localization, trafficking and function of FGFRs rely on the formation of multiprotein complexes. In this study we revealed galectins, lectin family members implicated in cancer development and progression, as novel FGFR1 binding proteins. We demonstrated that galectin-1 and galectin-3 directly bind to the sugar chains of the glycosylated extracellular part of FGFR1. Although both galectins compete for the same binding sites on FGFR1, these proteins elicit different impact on FGFR1 function and cellular trafficking. Galectin-1 mimics fibroblast growth factor as it efficiently activates FGFR1 and receptor-downstream signaling pathways that result in cell proliferation and apoptotic evasion. In contrast, galectin-3 induces extensive clustering of FGFR1 on the cell surface that inhibits constitutive internalization of FGFR1. Our data point on the interplay between extracellular galectins and FGFRs in the regulation of cell fate.
Collapse
Affiliation(s)
- Marika Kucińska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Agata Lampart
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta Latko
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Agata Knapik
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
24
|
Fibroblast Growth Factor Receptor Signaling in Skin Cancers. Cells 2019; 8:cells8060540. [PMID: 31167513 PMCID: PMC6628025 DOI: 10.3390/cells8060540] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor (FGF)/Fibroblast growth factor receptor (FGFR) signaling regulates various cellular processes during the embryonic development and in the adult organism. In the skin, fibroblasts and keratinocytes control proliferation and survival of melanocytes in a paracrine manner via several signaling molecules, including FGFs. FGF/FGFR signaling contributes to the skin surface expansion in childhood or during wound healing, and skin protection from UV light damage. Aberrant FGF/FGFR signaling has been implicated in many disorders, including cancer. In melanoma cells, the FGFR expression is low, probably because of the strong endogenous mutation-driven constitutive activation of the downstream mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) signaling pathway. FGFR1 is exceptional as it is expressed in the majority of melanomas at a high level. Melanoma cells that acquired the capacity to synthesize FGFs can influence the neighboring cells in the tumor niche, such as endothelial cells, fibroblasts, or other melanoma cells. In this way, FGF/FGFR signaling contributes to intratumoral angiogenesis, melanoma cell survival, and development of resistance to therapeutics. Therefore, inhibitors of aberrant FGF/FGFR signaling are considered as drugs in combination treatment. The ongoing LOGIC-2 phase II clinical trial aims to find out whether targeting the FGF/FGFR signaling pathway with BGJ398 may be a good therapeutic strategy in melanoma patients who develop resistance to v-Raf murine sarcoma viral oncogene homolog B (BRAF)/MEK inhibitors.
Collapse
|
25
|
Chen Z, Tong LJ, Tang BY, Liu HY, Wang X, Zhang T, Cao XW, Chen Y, Li HL, Qian XH, Xu YF, Xie H, Ding J. C11, a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor, suppresses breast cancer metastasis and angiogenesis. Acta Pharmacol Sin 2019; 40:823-832. [PMID: 30487650 DOI: 10.1038/s41401-018-0191-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/22/2018] [Indexed: 11/09/2022] Open
Abstract
The fibroblast growth factor receptors (FGFRs) are increasingly considered attractive targets for therapeutic cancer intervention due to their roles in tumor metastasis and angiogenesis. Here, we identified a new selective FGFR inhibitor, C11, and assessed its antitumor activities. C11 was a selective FGFR1 inhibitor with an IC50 of 19 nM among a panel of 20 tyrosine kinases. C11 inhibited cell proliferation in various tumors, particularly bladder cancer and breast cancer. C11 also inhibited breast cancer MDA-MB-231 cell migration and invasion via suppression of FGFR1 phosphorylation and its downstream signaling pathway. Suppression of matrix metalloproteinases 2/9 (MMP2/9) was associated with the anti-motility activity of C11. Furthermore, the anti-angiogenesis activity of C11 was verified in endothelial cells and chicken chorioallantoic membranes (CAMs). C11 inhibited the migration and tube formation of HMEC-1 endothelial cells and inhibited angiogenesis in a CAM assay. In sum, C11 is a novel selective FGFR1 inhibitor that exhibits potent activity against breast cancer metastasis and angiogenesis.
Collapse
|
26
|
Importance of Copy Number Alterations of FGFR1 and C-MYC Genes in Triple Negative Breast Cancer. J Med Biochem 2019; 38:63-70. [PMID: 30820185 PMCID: PMC6298449 DOI: 10.2478/jomb-2018-0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/18/2018] [Indexed: 12/31/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is characterized by aggressive clinical course and is unresponsive to anti-HER2 and endocrine therapy. TNBC is difficult to treat and is often lethal. Given the need to find new targets for therapy we explored clinicopathological significance of copy number gain of FGFR1 and c-MYC. Our aim was to determine the impact of FGFR1 and c-MYC copy number gain on clinical course and outcome of TNBC. Methods FGFR1 and c-MYC gene copy number alterations were evaluated in 78 archive TNBC samples using TaqMan based quantitative real time PCR assays. Results 50% of samples had increased c-MYC copy number. c-MYC copy number gain was associated with TNBC in contrast to ER positive cancers. Our results showed significant correlation between c-MYC copy number gain and high grade of TNBCs. This suggests that c-MYC copy number could be an useful prognostic marker for TNBC patients. c-MYC copy number gain was associated with high pTNM stage as well as lobular and medullary tumor subtypes. 43% of samples had increased FGFR1 copy number. No correlations between FGFR1 copy number gain and clinicopathological variables were observed. Conclusions We identified c-MYC copy number gain as a prognostic marker for TNBC. Our results indicate that c- MYC may contribute to TNBC progression. We observed no significant association between c-MYC and/or FGFR1 copy number status and patient survival.
Collapse
|
27
|
Hwang SY, Park S, Kwon Y. Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol Ther 2019; 199:30-57. [PMID: 30825473 DOI: 10.1016/j.pharmthera.2019.02.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
Abstract
Breast cancer accounts for 25% of all types of cancer in women, and triple negative breast cancer (TNBC) comprises around 15~20% of breast cancers. Conventional chemotherapy and radiation are the primary systemic therapeutic strategies; no other FDA-approved targeted therapies are yet available as for TNBC. TNBC is generally characterized by a poor prognosis and high rates of proliferation and metastases. Due to these aggressive features and lack of targeted therapies, numerous attempts have been made to discover viable molecular targets for TNBC. Massive cohort studies, clinical trials, and in-depth analyses have revealed diverse molecular alterations in TNBC; however, controversy exists as to whether many of these changes are beneficial or detrimental in caner progression. Here we review the complicated tumorigenic processes and discuss critical findings and therapeutic trends in TNBC with a focus on promising therapeutic approaches, the clinical trials currently underway, and potent experimental compounds under preclinical and evaluation.
Collapse
Affiliation(s)
- Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
28
|
Porębska N, Latko M, Kucińska M, Zakrzewska M, Otlewski J, Opaliński Ł. Targeting Cellular Trafficking of Fibroblast Growth Factor Receptors as a Strategy for Selective Cancer Treatment. J Clin Med 2018; 8:jcm8010007. [PMID: 30577533 PMCID: PMC6352210 DOI: 10.3390/jcm8010007] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) in response to fibroblast growth factors (FGFs) transmit signals across the cell membrane, regulating important cellular processes, like differentiation, division, motility, and death. The aberrant activity of FGFRs is often observed in various diseases, especially in cancer. The uncontrolled FGFRs' function may result from their overproduction, activating mutations, or generation of FGFRs' fusion proteins. Besides their typical subcellular localization on the cell surface, FGFRs are often found inside the cells, in the nucleus and mitochondria. The intracellular pool of FGFRs utilizes different mechanisms to facilitate cancer cell survival and expansion. In this review, we summarize the current stage of knowledge about the role of FGFRs in oncogenic processes. We focused on the mechanisms of FGFRs' cellular trafficking-internalization, nuclear translocation, and mitochondrial targeting, as well as their role in carcinogenesis. The subcellular sorting of FGFRs constitutes an attractive target for anti-cancer therapies. The blocking of FGFRs' nuclear and mitochondrial translocation can lead to the inhibition of cancer invasion. Moreover, the endocytosis of FGFRs can serve as a tool for the efficient and highly selective delivery of drugs into cancer cells overproducing these receptors. Here, we provide up to date examples how the cellular sorting of FGFRs can be hijacked for selective cancer treatment.
Collapse
Affiliation(s)
- Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Marta Latko
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Marika Kucińska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Małgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
29
|
Hui Q, Jin Z, Li X, Liu C, Wang X. FGF Family: From Drug Development to Clinical Application. Int J Mol Sci 2018; 19:ijms19071875. [PMID: 29949887 PMCID: PMC6073187 DOI: 10.3390/ijms19071875] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/17/2018] [Accepted: 06/21/2018] [Indexed: 01/13/2023] Open
Abstract
Fibroblast growth factor (FGF) belongs to a large family of growth factors. FGFs use paracrine or endocrine signaling to mediate a myriad of biological and pathophysiological process, including angiogenesis, wound healing, embryonic development, and metabolism regulation. FGF drugs for the treatment of burn and ulcer wounds are now available. The recent discovery of the crucial roles of the endocrine-acting FGF19 subfamily in maintaining homeostasis of bile acid, glucose, and phosphate further extended the activity profile of this family. Here, the applications of recombinant FGFs for the treatment of wounds, diabetes, hypophosphatemia, the development of FGF receptor inhibitors as anti-neoplastic drugs, and the achievements of basic research and applications of FGFs in China are reviewed.
Collapse
Affiliation(s)
- Qi Hui
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
| | - Zi Jin
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
- Key Laboratory Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
| | - Changxiao Liu
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, 308 Anshan West Road, Tianjin 300193, China.
| | - Xiaojie Wang
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
- Key Laboratory Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
| |
Collapse
|
30
|
Park S, Lee M, Cho KJ, Kim SB, Roh JL, Choi SH, Nam SY, Kim SY, Song JS. Association Between Fibroblast Growth Factor Receptor 1 Gene Amplification and Human Papillomavirus Prevalence in Tonsillar Squamous Cell Carcinoma With Clinicopathologic Analysis. J Histochem Cytochem 2018; 66:511-522. [PMID: 29553868 DOI: 10.1369/0022155418761652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Amplification of fibroblast growth factor receptor 1 ( FGFR1) has been reported in many squamous cell carcinomas, and human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma has been characterized as a distinct subset with favorable prognosis. Here, we investigated the FGFR1 amplification and HPV status in tonsillar squamous cell carcinoma (TSCC) and analyzed the clinical characteristics. HPV in situ hybridization (HPV ISH) and FGFR1 fluorescence in situ hybridization (FISH) were performed using tissue microarray from 89 cases of TSCC. Fourteen of 89 (15.7%) TSCC cases had FGFR1 amplification, and HPV was detected in 59 of 89 (66.3%) cases. FGFR1 amplification status was not associated with HPV positivity ( p=0.765). Outcomes were not significantly different between FGFR1 amplified and non-amplified patients. Although FGFR1 amplified patients ( n=4) in the HPV ISH-negative group ( n=30) had a tendency for poorer overall survival, no statistical significance was identified ( p=0.150, log-rank). FGFR1 protein overexpression showed better disease-free survival ( p=0.031, log-rank) in HPV-negative TSCC. This study suggests FGFR1 amplification may be important in the pathogenesis of TSCC regardless of HPV status.
Collapse
Affiliation(s)
- Soonchan Park
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Miji Lee
- Department of Pathology, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Kyung-Ja Cho
- Departments of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sung Bae Kim
- Medical Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jong-Lyel Roh
- Head and Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Seung-Ho Choi
- Head and Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Soon Yuhl Nam
- Head and Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang Yoon Kim
- Head and Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Joon Seon Song
- Departments of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
31
|
Lee M, Song IH, Heo SH, Kim YA, Park IA, Bang WS, Park HS, Gong G, Lee HJ. Expression of Immunoproteasome Subunit LMP7 in Breast Cancer and Its Association with Immune-Related Markers. Cancer Res Treat 2018; 51:80-89. [PMID: 29510614 PMCID: PMC6333994 DOI: 10.4143/crt.2017.500] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/22/2018] [Indexed: 12/26/2022] Open
Abstract
Purpose In the presence of interferon, proteasome subunits are replaced by their inducible counterparts to form an immunoproteasome (IP) plays a key role in generation of antigenic peptides presented by MHC class I molecules, leading to elicitation of a T cell‒mediated immune response. Although the roles of IP in other cancers, and inflammatory diseases have been extensively studied, its significance in breast cancer is unclear. Materials and Methods We investigated the expression of LMP7, an IP subunit, and its relationship with immune system components in two breast cancer cohorts. Results In 668 consecutive breast cancer cohort, 40% of tumors showed high level of LMP7 expression, and tumors with high expression of LMP7 had more tumor-infiltrating lymphocytes (TILs) in each subtype of breast cancer. In another cohort of 681 triple-negative breast cancer patients cohort, the expression of LMP7 in tumor cells was significantly correlated with the amount of TILs and the expression of interferon-associated molecules (MxA [p < 0.001] and PKR [p < 0.001]), endoplasmic reticulum stress-associated molecules (PERK [p=0.012], p-eIF2a [p=0.001], and XBP1 [p < 0.001]), and damage-associated molecular patterns (HMGN1 [p < 0.001] and HMGB1 [p < 0.001]). Patients with higher LMP7 expression had better disease-free survival outcomes than those with no or low expression in the positive lymph node metastasis group (p=0.041). Conclusion Close association between the TIL levels and LMP7 expression in breast cancer indicates that better antigen presentation through greater LMP7 expression might be associated with more TILs.
Collapse
Affiliation(s)
- Miseon Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Hye Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun-Hee Heo
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Ae Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Ah Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Won Seon Bang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hye Seon Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Park IA, Heo SH, Song IH, Kim YA, Park HS, Bang WS, Park SY, Jo JH, Lee HJ, Gong G. Endoplasmic reticulum stress induces secretion of high-mobility group proteins and is associated with tumor-infiltrating lymphocytes in triple-negative breast cancer. Oncotarget 2018; 7:59957-59964. [PMID: 27494867 PMCID: PMC5312361 DOI: 10.18632/oncotarget.11010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022] Open
Abstract
Background Although the prognostic and predictive significance of tumor-infiltrating lymphocytes (TILs) in triple-negative breast cancer (TNBC) have been shown, the cause of the TIL influx is unclear. Here, we investigated whether extracellular secretion of HMGN1 is associated with TIL influx, as well as increased endoplasmic reticulum stress (ERS), in human TNBC. Methods We reviewed the slides of 767 patients with TNBC and evaluated the TIL levels. We also assessed the expression of HMGs and several ERS-associated molecules using immunohistochemical staining. Western blot analysis of human TNBC cell lines and pharmacological ERS inducers was used to determine if HMGN1 migrates from the nucleus to the extracellular space in response to ERS. Results On immunohistochemical staining, either higher nuclear or cytoplasmic expression of both HMGB1 and HMGN1 was significantly associated with ERS. TILs showed a positive correlation with the cytoplasmic expression of the HMGs. Western blot analysis of TNBC cell lines showed that ERS induction resulted in the secretion of HMG proteins. Conclusions This is the first study to elucidate the associations among ERS, secretion of HMGs, and degree of TILs in TNBCs. Understanding the mechanisms of TIL influx will help in the development of effective immunotherapeutic agents for TNBC.
Collapse
Affiliation(s)
- In Ah Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sun-Hee Heo
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - In Hye Song
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Young-Ae Kim
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hye Seon Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Won Seon Bang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Suk Young Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jeong-Hyon Jo
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hee Jin Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Gyungyub Gong
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
33
|
Differential expression of major histocompatibility complex class I in subtypes of breast cancer is associated with estrogen receptor and interferon signaling. Oncotarget 2017; 7:30119-32. [PMID: 27121061 PMCID: PMC5058668 DOI: 10.18632/oncotarget.8798] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/03/2016] [Indexed: 01/09/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) in triple-negative breast cancer (TNBC) have a strong prognostic and predictive significance. However, the mechanism of TIL influx in TNBC is unclear. Expression of major histocompatibility complex class I (MHC I) on the tumor cell is essential for the effective killing of tumor by cytotoxic TILs. In our current study, human leukocyte antigen (HLA) expression was inversely correlated with estrogen receptor (ER) expression in normal and cancerous breast tissue and positively correlated with TILs in breast cancer. The ER score was inversely correlated with TILs in breast cancer. HLA-A and CD8B gene expression was negatively correlated with ESR1 and positively correlated with interferon-associated gene expression in The Cancer Genome Atlas (TCGA) data. Negative correlation between ESR1 and HLA and positive correlation between interferon-associated and HLA gene expression were also confirmed in Cancer Cell Line Encyclopedia (CCLE) data. Taken together, our data suggest that a lower expression of HLA in luminal-type tumors might be associated with low level of TILs in those tumors. Further investigation of the mechanism of higher HLA expression and TIL influx in TNBC may help to boost the host immune response.
Collapse
|
34
|
Song IH, Kim YA, Heo SH, Park IA, Lee M, Bang WS, Park HS, Gong G, Lee HJ. ADAR1 expression is associated with tumour-infiltrating lymphocytes in triple-negative breast cancer. Tumour Biol 2017; 39:1010428317734816. [PMID: 29022489 DOI: 10.1177/1010428317734816] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Tumours with a high mutation burden exhibit considerable neoantigens and tumour-infiltrating lymphocytes. RNA editing by ADAR1 is a source of changes in epitope. However, ADAR1 expression in cancer cells and tumour-infiltrating lymphocyte levels in triple-negative breast cancer have not been well evaluated. We immunohistochemically examined ADAR1 expression in 681 triple-negative breast cancer patients and analysed their clinicopathological characteristics. We also analysed basal-like tumours using The Cancer Genome Atlas data. Among the 681 triple-negative breast cancer patients, 45.8% demonstrated high ADAR1 expression. Tumours with high ADAR1 expression exhibited high tumour-infiltrating lymphocyte levels, considerable CD8 + T lymphocyte infiltration, high histological grade and high expression of interferon-related proteins, including HLA-ABC, MxA and PKR. Among patients with lymph node metastasis, those with high tumour-infiltrating lymphocyte levels and low ADAR1 expression demonstrated the best disease-free survival. The Cancer Genome Atlas data analysis of basal-like tumours revealed significant positive correlation between ADAR1 and CD8B expression and positive association of high ADAR1 expression with immune responses and apoptosis pathways. We detected high ADAR1 expression in half of the triple-negative breast cancer patients. In addition to DNA mutations, RNA editing can be related to neoantigens; hence, we need to explore non-synonymous mutations exclusively found using RNA sequencing data to identify clinically relevant neoantigens.
Collapse
Affiliation(s)
- In Hye Song
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Young-Ae Kim
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,2 Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sun-Hee Heo
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,2 Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - In Ah Park
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Miseon Lee
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Won Seon Bang
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,2 Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hye Seon Park
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,2 Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Gyungyub Gong
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hee Jin Lee
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
35
|
Lei H, Deng CX. Fibroblast Growth Factor Receptor 2 Signaling in Breast Cancer. Int J Biol Sci 2017; 13:1163-1171. [PMID: 29104507 PMCID: PMC5666331 DOI: 10.7150/ijbs.20792] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/18/2017] [Indexed: 01/03/2023] Open
Abstract
Fibroblast growth factor receptor 2 (FGFR2) is a membrane-spanning tyrosine kinase that mediates signaling for FGFs. Recent studies detected various point mutations of FGFR2 in multiple types of cancers, including breast cancer, lung cancer, gastric cancer, uterine cancer and ovarian cancer, yet the casual relationship between these mutations and tumorigenesis is unclear. Here we will discuss possible interactions between FGFR2 signaling and several major pathways through which the aberrantly activated FGFR2 signaling may result in breast cancer development. We will also discuss some recent developments in the discovery and application of therapies and strategies for breast cancers by inhibiting FGFR2 activities.
Collapse
Affiliation(s)
- Haipeng Lei
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
36
|
Park IA, Hwang SH, Song IH, Heo SH, Kim YA, Bang WS, Park HS, Lee M, Gong G, Lee HJ. Expression of the MHC class II in triple-negative breast cancer is associated with tumor-infiltrating lymphocytes and interferon signaling. PLoS One 2017; 12:e0182786. [PMID: 28817603 PMCID: PMC5560630 DOI: 10.1371/journal.pone.0182786] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) have been known for their strong prognostic and predictive significance in triple-negative breast cancer (TNBC). Several mechanisms for TIL influx in TNBC have been elucidated. Major histocompatibility complex class II (MHC-II) is an essential component of the adaptive immune system and is generally restricted to the surface of antigen-presenting cells. However, it has been reported that interferon-gamma signaling may induce MHC-II in almost all cell types, including those derived from cancer. We aimed to examine the relationship between MHC-II expression in tumor cells and the amount of TILs in 681 patients with TNBC. Further, the prognostic significance of MHC-II and the association of MHC-II with a couple of molecules involved in the interferon signaling pathway were investigated using immunohistochemical staining. Higher MHC-II expression in tumor cells was associated with the absence of lymphovascular invasion (p = 0.042); larger amounts of TILs (p < 0.001); frequent formations of tertiary lymphoid structures (p < 0.001); higher expression of myxovirus resistance gene A, one of the main mediators of the interferon signaling pathway (p < 0.001); and higher expression of double-stranded RNA-activated protein kinase, which can be induced by interferons (p = 0.008). Moreover, tumors that showed high MHC class I expression and any positivity for MHC-II had larger amounts of CD4- and CD8-positive T lymphocytes (p < 0.001). Positive MHC-II expression in tumor cells was associated with better disease-free survival in patients who had lymph node metastasis (p = 0.009). In conclusion, MHC-II expression in tumor cells was closely associated with an increase in TIL number and interferon signaling in TNBC. Further studies are warranted to improve our understanding regarding TIL influx, as well as patients’ responses to immunotherapy.
Collapse
Affiliation(s)
- In Ah Park
- Departments of Pathology, Asan Medical Center, Seoul, Korea
| | - Seong-Hye Hwang
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - In Hye Song
- Departments of Pathology, Asan Medical Center, Seoul, Korea
| | - Sun-Hee Heo
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Young-Ae Kim
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Won Seon Bang
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hye Seon Park
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Miseon Lee
- Departments of Pathology, Asan Medical Center, Seoul, Korea
| | - Gyungyub Gong
- Departments of Pathology, Asan Medical Center, Seoul, Korea
| | - Hee Jin Lee
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- * E-mail:
| |
Collapse
|
37
|
Zhou J, He L, Pang Z, Appelman HD, Kuick R, Beer DG, Li M, Wang TD. Identification and validation of FGFR2 peptide for detection of early Barrett's neoplasia. Oncotarget 2017; 8:87095-87106. [PMID: 29152066 PMCID: PMC5675618 DOI: 10.18632/oncotarget.19764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
The incidence of esophageal adenocarcinoma (EAC) is rising rapidly, and early detection within the precursor state of Barrett's esophagus (BE) is challenged by flat premalignant lesions that are difficult detect with conventional endoscopic surveillance. Overexpression of cell surface fibroblast growth factor receptor 2 (FGFR2) is an early event in progression of BE to EAC, and is a promising imaging target. We used phage display to identify the peptide SRRPASFRTARE that binds specifically to the extracellular domain of FGFR2. We labeled this peptide with a near-infrared fluorophore Cy5.5, and validated the specific binding to FGFR2 overexpressed in cells in vitro. We found high affinity kd = 68 nM and rapid binding k = 0.16 min-1 (6.2 min). In human esophageal specimens, we found significantly greater peptide binding to high-grade dysplasia (HGD) versus either BE or normal squamous epithelium, and good correlation with anti-FGFR2 antibody. We also observed significantly greater peptide binding to excised specimens of esophageal squamous cell carcinoma and gastric cancer compared to normal mucosa. These results demonstrate potential for this FGFR2 peptide to be used as a clinical imaging agent to guide tissue biopsy and improve methods for early detection of EAC and potentially other epithelial-derived cancers.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Lei He
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhijun Pang
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Henry D Appelman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rork Kuick
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David G Beer
- Department of Surgery, Section of Thoracic Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Meng Li
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Thomas D Wang
- Department of Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
38
|
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate numerous cellular processes. Deregulation of FGFR signalling is observed in a subset of many cancers, making activated FGFRs a highly promising potential therapeutic target supported by multiple preclinical studies. However, early-phase clinical trials have produced mixed results with FGFR-targeted cancer therapies, revealing substantial complexity to targeting aberrant FGFR signalling. In this Review, we discuss the increasing understanding of the differences between diverse mechanisms of oncogenic activation of FGFR, and the factors that determine response and resistance to FGFR targeting.
Collapse
Affiliation(s)
- Irina S Babina
- Breast Cancer Now Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Nicholas C Turner
- Breast Cancer Now Research Centre, Institute of Cancer Research, London SW3 6JB, UK
- Breast Unit, The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| |
Collapse
|
39
|
Glutaminase expression is a poor prognostic factor in node-positive triple-negative breast cancer patients with a high level of tumor-infiltrating lymphocytes. Virchows Arch 2017; 470:381-389. [DOI: 10.1007/s00428-017-2083-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/15/2017] [Accepted: 01/30/2017] [Indexed: 02/04/2023]
|
40
|
Shi YJ, Tsang JYS, Ni YB, Chan SK, Chan KF, Tse GM. FGFR1 is an adverse outcome indicator for luminal A breast cancers. Oncotarget 2016; 7:5063-73. [PMID: 26673008 PMCID: PMC4826266 DOI: 10.18632/oncotarget.6563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/21/2015] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) has been suggested to be the candidate gene for 8p11-12 amplification in breast cancer and its therapeutic/ prognostic value is explored. Most previous studies focused on FGFR1 gene amplification, which may not necessarily lead to protein expression. Therefore, analysis of protein level may have more clinical relevance. We evaluated FGFR1 expression in a large cohort of breast cancer by immunohistochemistry, correlated with the tumor clinic-pathologic features, biomarkers expression, and patient's survival. FGFR1 expression was associated mainly with luminal cancers, particularly luminal B subtype (23.5%; p < 0.001), and it also showed adverse prognostic impact on luminal A cancers. FGFR1 expression was associated with higher pN (p = 0.023), pT (p = 0.003) stages, lymphovascular invasion (p = 0.010), p-cadherin (p = 0.028), synaptophysin (p = 0.009) and SOX2 expression (p = 0.034) in luminal A cancers. FGFR1 expressing luminal A cancers showed a similar outcome as luminal B cancers. Multivariate Cox regression analysis demonstrated FGFR1 positive luminal A cancers to be an independently poor prognosticator for disease free survival in luminal cancers (hazard ratio = 3.341, p = 0.008). Thus FGFR1 could be useful in identifying the aggressive cases amongst heterogeneous luminal A cancers. Given the relevance of FGFR pathway in treatment resistance in luminal cancers, FGFR1 could be an important tumor biomarker and adverse prognostic factor potentially exploitable in the clinical management of luminal cancers.
Collapse
Affiliation(s)
- Yu-Jie Shi
- Department of Pathology, Henan Province People's Hospital, Zhengzhou, Henan, China
| | - Julia Y S Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yun-Bi Ni
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Siu-Ki Chan
- Department of Pathology, Kwong Wah Hospital, Kowloon, Hong Kong
| | - Kui-Fat Chan
- Department of Pathology, Tuen Mun Hosiptal, Tuen Mun, Hong Kong
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| |
Collapse
|
41
|
Musashi RNA-binding protein 2 regulates estrogen receptor 1 function in breast cancer. Oncogene 2016; 36:1745-1752. [PMID: 27593929 DOI: 10.1038/onc.2016.327] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/03/2016] [Accepted: 07/28/2016] [Indexed: 12/27/2022]
Abstract
Musashi RNA-binding protein 2 (MSI2) has important roles in human cancer. However, the regulatory mechanisms by which MSI2 alters breast cancer pathophysiology have not been clearly identified. Here we demonstrate that MSI2 directly regulates estrogen receptor 1 (ESR1), which is a well-known therapeutic target and has been shown to reflect clinical outcomes in breast cancer. Based on gene expression data analysis, we found that MSI2 expression was highly enriched in estrogen receptor (ER)-positive breast cancer and that MSI2 expression was significantly correlated with ESR1 expression, including expression of ESR1 downstream target genes. In addition, MSI2 levels were associated with clinical outcomes. MSI2 influenced breast cancer cell growth by altering ESR1 function. MSI2 alters ESR1 by binding specific sites in ESR1 RNA and by increasing ESR1 protein stability. Taken together, our findings identified a novel regulatory mechanism of MSI2 as an upstream regulator of ESR1 and revealed the clinical relevance of the RNA-binding protein MSI2 in breast cancer.
Collapse
|
42
|
Akl MR, Nagpal P, Ayoub NM, Tai B, Prabhu SA, Capac CM, Gliksman M, Goy A, Suh KS. Molecular and clinical significance of fibroblast growth factor 2 (FGF2 /bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget 2016; 7:44735-44762. [PMID: 27007053 PMCID: PMC5190132 DOI: 10.18632/oncotarget.8203] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/10/2016] [Indexed: 12/30/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling is essential for normal and cancer biology. Mammalian FGF family members participate in multiple signaling pathways by binding to heparan sulfate and FGF receptors (FGFR) with varying affinities. FGF2 is the prototype member of the FGF family and interacts with its receptor to mediate receptor dimerization, phosphorylation, and activation of signaling pathways, such as Ras-MAPK and PI3K pathways. Excessive mitogenic signaling through the FGF/FGFR axis may induce carcinogenic effects by promoting cancer progression and increasing the angiogenic potential, which can lead to metastatic tumor phenotypes. Dysregulated FGF/FGFR signaling is associated with aggressive cancer phenotypes, enhanced chemotherapy resistance and poor clinical outcomes. In vitro experimental settings have indicated that extracellular FGF2 affects proliferation, drug sensitivity, and apoptosis of cancer cells. Therapeutically targeting FGF2 and FGFR has been extensively assessed in multiple preclinical studies and numerous drugs and treatment options have been tested in clinical trials. Diagnostic assays are used to quantify FGF2, FGFRs, and downstream signaling molecules to better select a target patient population for higher efficacy of cancer therapies. This review focuses on the prognostic significance of FGF2 in cancer with emphasis on therapeutic intervention strategies for solid and hematological malignancies.
Collapse
Affiliation(s)
- Mohamed R. Akl
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Poonam Nagpal
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Betty Tai
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Sathyen A. Prabhu
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Catherine M. Capac
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Matthew Gliksman
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Andre Goy
- Lymphoma Division, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - K. Stephen Suh
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
43
|
Kim YA, Lee HJ, Heo SH, Park HS, Park SY, Bang W, Song IH, Park IA, Gong G. MxA expression is associated with tumor-infiltrating lymphocytes and is a prognostic factor in triple-negative breast cancer. Breast Cancer Res Treat 2016; 156:597-606. [DOI: 10.1007/s10549-016-3786-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
|
44
|
Tomiguchi M, Yamamoto Y, Yamamoto-Ibusuki M, Goto-Yamaguchi L, Fujiki Y, Fujiwara S, Sueta A, Hayashi M, Takeshita T, Inao T, Iwase H. Fibroblast growth factor receptor-1 protein expression is associated with prognosis in estrogen receptor-positive/human epidermal growth factor receptor-2-negative primary breast cancer. Cancer Sci 2016; 107:491-8. [PMID: 26801869 PMCID: PMC4832856 DOI: 10.1111/cas.12897] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 01/14/2023] Open
Abstract
Recently, research into the development of new targeted therapies has focused on specific genetic alterations to create advanced, more personalized treatment. One of the target genes, fibroblast growth factor receptor‐1 (FGFR1), has been reported to be amplified in estrogen receptor (ER)‐positive subtype breast cancer, and is considered one possible mechanism of endocrine resistance through cross‐talk between ER and growth factor receptor signaling. We performed a comprehensive analysis of FGFR1 at the levels of gene copy number, transcript and protein expression, and examined the relationships between FGFR1 status and clinicopathological parameters, including prognosis in 307 ER‐positive/HER2‐negative primary breast cancer patients treated with standard care at our institute. Most notably, a high level of FGFR1 protein expression was observed in 85 patients (27.7%), and was positively associated with invasive tumor size (P = 0.039). Furthermore, univariate analysis revealed that high FGFR1 protein expression was significantly correlated with poor relapse‐free survival rate (P = 0.0019, HR: 2.63, 95% confidence interval: 1.17–5.98), and showed a tendency towards an increase in recurrent events if the observation period extended beyond the 5 years of the standard endocrine treatment term. FGFR1 gain/amplification was found in 43 (14.0%) patients, which was only associated with higher nuclear grade (P = 0.010). No correlation was found between FGFR1 mRNA expression levels and any clinicopathological factors. Overall, the level of FGFR1 protein expression may be a biomarker of ER‐positive/HER2‐negative primary breast cancer with possible resistance to standard treatment, and may be a useful tool to identify more specific patients who would benefit from FGFR‐1 targeted therapy.
Collapse
Affiliation(s)
- Mai Tomiguchi
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Yamamoto
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mutsuko Yamamoto-Ibusuki
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Molecular-Targeting Therapy for Breast Cancer, Kumamoto University Hospital, Kumamoto, Japan
| | - Lisa Goto-Yamaguchi
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshitaka Fujiki
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Saori Fujiwara
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Aiko Sueta
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuhiro Hayashi
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Takeshita
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Touko Inao
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotaka Iwase
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
45
|
Yoon G, Lee H, Kim JH, Hur K, Seo AN. Clinical significance of fibroblast growth factor receptor 2 expression in patients with residual rectal cancer after preoperative chemoradiotherapy: relationship with KRAS or BRAF mutations and MSI status. Tumour Biol 2016; 37:10209-18. [DOI: 10.1007/s13277-016-4899-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/20/2016] [Indexed: 12/18/2022] Open
|
46
|
Bi F, Yin H, Zheng S, Zhu Q, Yang H, Kang M, Gan F, Chen X. One-step synthesis of peptide conjugated gold nanoclusters for the high expression of FGFR2 tumor targeting and imaging. RSC Adv 2016. [DOI: 10.1039/c5ra20113f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An effective method to synthesize gold nanoclusters that can specifically recognize fibroblast growth factor receptor2 (FGFR2) was reported.
Collapse
Affiliation(s)
- Fengli Bi
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Huaqin Yin
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Shiyue Zheng
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Qihao Zhu
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Haofan Yang
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Ming Kang
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Feng Gan
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Xiaojia Chen
- Institute of Biomedicine & Cell Biology Department
- National Engineering Research Center of Genetic Medicine
- Guangdong Provincial Key Laboratory of Bioengineering Medicine
- Jinan University
- Guangzhou 510630
| |
Collapse
|
47
|
Lee HJ, Park IA, Song IH, Shin SJ, Kim JY, Yu JH, Gong G. Tertiary lymphoid structures: prognostic significance and relationship with tumour-infiltrating lymphocytes in triple-negative breast cancer. J Clin Pathol 2015; 69:422-30. [DOI: 10.1136/jclinpath-2015-203089] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/28/2015] [Indexed: 01/03/2023]
Abstract
BackgroundTumour-infiltrating lymphocytes (TILs) have a strong prognostic significance, particularly in triple-negative breast cancer (TNBC). One important source of TILs in breast cancer is tertiary lymphoid structures (TLSs).ObjectiveTo carry out a histological analysis of surgically resected TNBC to identify the location of TLSs, the relationship between TLSs and TILs and their prognostic significance in TNBC.MethodsWe retrospectively analysed 769 patients with TNBC.ResultsTILs were defined as the percentage of stroma of invasive carcinoma infiltrated by lymphocytes. TLSs were mainly present within adjacent terminal duct lobular units and around in situ components. TNBC with higher levels of TILs showed a higher nuclear grade, lower lymphovascular invasion, less accompanying in situ component, a homogeneous growth pattern, necrosis in invasive areas, low levels of tumour stroma, high levels of peritumoral lymphocytic infiltration and moderate to abundant TLSs in adjacent tissue. TILs, the degree of peritumoral lymphocytic infiltration and adjacent TLSs were prognostic factors for disease-free and overall survival. Although the TIL level did not have a prognostic value in stage I, it added significant prognostic information for stages II and III. Conversely, patients with high levels of TILs did not show prognostic differences according to the pTNM stage. Patients with high levels of TILs (>60%) and moderate to abundant TLSs had significantly better disease-free survival than those with high levels of TILs but none or few TLSs.ConclusionsTLSs are frequently present in TNBC and are closely associated with TILs. TILs provide additional prognostic information in patients with TNBC with a higher pTNM stage.
Collapse
|
48
|
Lee HJ, Kim JY, Song IH, Park IA, Yu JH, Gong G. Expression of NY-ESO-1 in Triple-Negative Breast Cancer Is Associated with Tumor-Infiltrating Lymphocytes and a Good Prognosis. Oncology 2015; 89:337-44. [DOI: 10.1159/000439535] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/13/2015] [Indexed: 11/19/2022]
|
49
|
Hierro C, Rodon J, Tabernero J. Fibroblast Growth Factor (FGF) Receptor/FGF Inhibitors: Novel Targets and Strategies for Optimization of Response of Solid Tumors. Semin Oncol 2015; 42:801-19. [PMID: 26615127 DOI: 10.1053/j.seminoncol.2015.09.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The fibroblast growth factor receptor (FGFR) pathway plays a major role in several biological processes, from organogenesis to metabolism homeostasis and angiogenesis. Several aberrations, including gene amplifications, point mutations, and chromosomal translocations have been described across solid tumors. Most of these molecular alterations promote multiple steps of carcinogenesis in FGFR oncogene-addicted cells, increasing cell proliferation, angiogenesis, and drug resistance. Data suggest that upregulation of FGFR signaling is a common event in many cancer types. The FGFR pathway thus arises as a potential promising target for cancer treatment. Several FGFR inhibitors are currently under development. Initial preclinical results have translated into limited successful clinical responses when first-generation, nonspecific FGFR inhibitors were evaluated in patients. The future development of selective and unselective FGFR inhibitors will rely on a better understanding of the tissue-specific role of FGFR signaling and identification of biomarkers to select those patients who will benefit the most from these drugs. Further studies are warranted to establish the predictive significance of the different FGFR-aberrations and to incorporate them into clinical algorithms, now that second-generation, selective FGFR inhibitors exist.
Collapse
Affiliation(s)
- Cinta Hierro
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jordi Rodon
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Josep Tabernero
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| |
Collapse
|
50
|
Cheng CL, Thike AA, Tan SYJ, Chua PJ, Bay BH, Tan PH. Expression of FGFR1 is an independent prognostic factor in triple-negative breast cancer. Breast Cancer Res Treat 2015; 151:99-111. [DOI: 10.1007/s10549-015-3371-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/03/2015] [Indexed: 12/20/2022]
|