1
|
Mahmood S, Iqbal MW, Tang X, Zabed HM, Chen Z, Zhang C, Ravikumar Y, Zhao M, Qi X. A comprehensive review of recent advances in the characterization of L-rhamnose isomerase for the biocatalytic production of D-allose from D-allulose. Int J Biol Macromol 2024; 254:127859. [PMID: 37924916 DOI: 10.1016/j.ijbiomac.2023.127859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
D-Allose and D-allulose are two important rare natural monosaccharides found in meager amounts. They are considered to be the ideal substitutes for table sugar (sucrose) for, their significantly lower calorie content with around 80 % and 70 % of the sweetness of sucrose, respectively. Additionally, both monosaccharides have gained much attention due to their remarkable physiological properties and excellent health benefits. Nevertheless, D-allose and D-allulose are rare in nature and difficult to produce by chemical methods. Consequently, scientists are exploring bioconversion methods to convert D-allulose into D-allose, with a key enzyme, L-rhamnose isomerase (L-RhIse), playing a remarkable role in this process. This review provides an in-depth analysis of the extractions, physiological functions and applications of D-allose from D-allulose. Specifically, it provides a detailed description of all documented L-RhIse, encompassing their biochemical properties including, pH, temperature, stabilities, half-lives, metal ion dependence, molecular weight, kinetic parameters, specific activities and specificities of the substrates, conversion ratio, crystal structure, catalytic mechanism as well as their wide-ranging applications across diverse fields. So far, L-RhIses have been discovered and characterized experimentally by numerous mesophilic and thermophilic bacteria. Furthermore, the crystal forms of L-RhIses from E. coli and Stutzerimonas/Pseudomonas stutzeri have been previously cracked, together with their catalytic mechanism. However, there is room for further exploration, particularly the molecular modification of L-RhIse for enhancing its catalytic performance and thermostability through the directed evolution or site-directed mutagenesis.
Collapse
Affiliation(s)
- Shahid Mahmood
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Muhammad Waheed Iqbal
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Xinrui Tang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Ziwei Chen
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Cunsheng Zhang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yuvaraj Ravikumar
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Mei Zhao
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Xianghui Qi
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China; School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
2
|
Qi H, Wang T, Li H, Li C, Guan L, Liu W, Wang J, Lu F, Mao S, Qin HM. Sequence- and Structure-Based Mining of Thermostable D-Allulose 3-Epimerase and Computer-Guided Protein Engineering To Improve Enzyme Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18431-18442. [PMID: 37970673 DOI: 10.1021/acs.jafc.3c07204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
D-Allulose, a functional sweetener, can be synthesized from fructose using D-allulose 3-epimerase (DAEase). Nevertheless, a majority of the reported DAEases have inadequate stability under harsh industrial reaction conditions, which greatly limits their practical applications. In this study, big data mining combined with a computer-guided free energy calculation strategy was employed to discover a novel DAEase with excellent thermostability. Consensus sequence analysis of flexible regions and comparison of binding energies after substrate docking were performed using phylogeny-guided big data analyses. TtDAE from Thermogutta terrifontis was the most thermostable among 358 candidate enzymes, with a half-life of 32 h at 70 °C. Subsequently, structure-guided virtual screening and a customized strategy based on a combinatorial active-site saturation test/iterative saturation mutagenesis were utilized to engineer TtDAE. Finally, the catalytic activity of the M4 variant (P105A/L14C/T63G/I65A) was increased by 5.12-fold. Steered molecular dynamics simulations indicated that M4 had an enlarged substrate-binding pocket, which enhanced the fit between the enzyme and the substrate. The approach presented here, combining DAEases mining with further rational modification, provides guidance for obtaining promising catalysts for industrial-scale production.
Collapse
Affiliation(s)
- Hongbin Qi
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Tong Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Huimin Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Lijun Guan
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jianwen Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| |
Collapse
|
3
|
Kamitori S. X-ray structures of Enterobacter cloacae allose-binding protein in complexes with monosaccharides demonstrate its unique recognition mechanism for high affinity to allose. Biochem Biophys Res Commun 2023; 682:187-192. [PMID: 37820454 DOI: 10.1016/j.bbrc.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
d-Allose is an aldohexose of the C3-epimer of d-glucose, existing in very small amounts in nature, called a rare sugar. The operon responsible for d-allose metabolism, the allose operon, was found in several bacteria, which consists of seven genes: alsR, alsB, alsA, alsC, alsE, alsK, and rpiB. To understand the biological implication of the allose operon utilizing a rare sugar of d-allose as a carbon source, it is important to clarify whether the allose operon functions specifically for d-allose or also functions for other ligands. It was proposed that the allose operon can function for d-ribose, which is essential as a component of nucleotides and abundant in nature. Allose-binding protein, AlsB, coded in the allose operon, is thought to capture a ligand outside the cell, and is expected to show high affinity for the specific ligand. X-ray structure determinations of Enterobacter cloacae AlsB (EtcAlsB) in ligand-free form, and in complexes with d-allose, d-ribose, and d-allulose, and measurements of the thermal parameters of the complex formation using an isothermal titration calorimeter were performed. The results demonstrated that EtcAlsB has a unique recognition mechanism for high affinity to d-allose by changing its conformation from an open to a closed form depending on d-allose-binding, and that the binding of d-ribose to EtcAlsB could not induce a completely closed form but an intermediate form, explaining the low affinity for d-ribose.
Collapse
Affiliation(s)
- Shigehiro Kamitori
- Research Facility Center for Science & Technology and Faculty of Medicine, International Institute of Rare Sugar Research and Education, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| |
Collapse
|
4
|
Li C, Gao X, Qi H, Zhang W, Li L, Wei C, Wei M, Sun X, Wang S, Wang L, Ji Y, Mao S, Zhu Z, Tanokura M, Lu F, Qin HM. Substantial Improvement of an Epimerase for the Synthesis of D-Allulose by Biosensor-Based High-Throughput Microdroplet Screening. Angew Chem Int Ed Engl 2023; 62:e202216721. [PMID: 36658306 DOI: 10.1002/anie.202216721] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Biosynthesis of D-allulose has been achieved using ketose 3-epimerases (KEases), but its application is limited by poor catalytic performance. In this study, we redesigned a genetically encoded biosensor based on a D-allulose-responsive transcriptional regulator for real-time monitoring of D-allulose. An ultrahigh-throughput droplet-based microfluidic screening platform was further constructed by coupling with this D-allulose-detecting biosensor for the directed evolution of the KEases. Structural analysis of Sinorhizobium fredii D-allulose 3-epimerase (SfDAE) revealed that a highly flexible helix/loop region exposes or occludes the catalytic center as an essential lid conformation regulating substrate recognition. We reprogrammed SfDAE using structure-guided rational design and directed evolution, in which a mutant M3-2 was identified with 17-fold enhanced catalytic efficiency. Our research offers a paradigm for the design and optimization of a biosensor-based microdroplet screening platform.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, China
| | - Xin Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, China
| | - Hongbin Qi
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, China
| | - Wei Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, China
| | - Lei Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, China
| | - Cancan Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, China
| | - Meijing Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, China
| | - Xiaoxuan Sun
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, China
| | - Shusen Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, China
| | - Liyan Wang
- Luoyang BIO-Industry Technology Innovation Center, Luoyang, 471000, Henan, China
| | - Yingbin Ji
- Luoyang BIO-Industry Technology Innovation Center, Luoyang, 471000, Henan, China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, China
| | - Zhangliang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, China
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, China
| |
Collapse
|
5
|
Improved thermostability of D-allulose 3-epimerase from Clostridium bolteae ATCC BAA-613 by proline residue substitution. Protein Expr Purif 2022; 199:106145. [PMID: 35863720 DOI: 10.1016/j.pep.2022.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
d-allulose, a rare sugar that is scarce in nature, exerts several beneficial effects and has commercial potential. d-allulose 3-epimerase (DAEase) plays a vital role in catalyzing the isomerization from d-fructose to d-allulose. However, the industrial application of DAEase for d-allulose production is hindered by its poor long-term thermostability. In the present research, we introduced a proline residue (i) to restrict its spatial conformation and (ii) to reduce the entropy of the unfolded state of DAEase. The t1/2 value of the double-site Clostridium bolteae DAEase mutant Cb-51P/89P was prolonged to 58 min at 55 °C, a 2.32-fold increase compared with wild-type DAEase. The manipulation did not cause obvious changes in the enzymatic properties, including optimum pH, optimal temperature, optimum metal ion, and enzymatic activity. As the accumulation of multiple small effects through proline substitution could dramatically improve the thermostability of the mutant protein, our method to improve the thermostability while roughly retaining the original enzymatic properties is promising.
Collapse
|
6
|
Investigation of the Hydration Behavior of Different Sugars by Time Domain-NMR. Foods 2022; 11:foods11081148. [PMID: 35454735 PMCID: PMC9031088 DOI: 10.3390/foods11081148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
The hydration behavior of sugars varies from each other and examining the underlying mechanism is challenging. In this study, the hydration behavior of glucose, fructose, allulose (aka rare sugar), and sucrose have been explored using different Time Domain Nuclear Magnetic Resonance (TD-NMR) approaches (relaxation times, self-diffusion, and Magic Sandwich Echo (MSE)). For that purpose, the effects of different sugar concentrations (2.5%, 5%, 10%, 15%, 20%, 30%, and 40%) (w/v) and hydration at different times for 1 day were investigated by T2 relaxation times and self-diffusion coefficients. Crystallinity values of the solid and hydrated sugars were also determined with MSE. Change in T2 relaxation times with concentration showed that the fastest binding with water (parallel with the shortest T2 values) was observed for sucrose for all concentrations followed by glucose, fructose, and allulose. Furthermore, dependency of T2 relaxation times with hydration time showed that sucrose was the fastest in binding with water followed by glucose, fructose, and allulose. The study showed that allulose, one of the most famous rare sugars that is known to be a natural low-calorie sugar alternative, had the lowest interaction with water than the other sugars. TD-NMR was suggested as a practical, quick, and accurate technique to determine the hydration behavior of sugars.
Collapse
|
7
|
Suzuki Y, Hashimoto T, Hayashita T. Ratiometric fluorescence sensing of d-allulose using an inclusion complex of γ-cyclodextrin with a benzoxaborole-based probe. RSC Adv 2022; 12:12145-12151. [PMID: 35481078 PMCID: PMC9021936 DOI: 10.1039/d2ra00749e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
Because d-allulose has been attracting attention as a zero-calorie sugar, the selective sensing of d-allulose is desired to investigate its health benefits. We report herein a novel fluorescence chemosensor that is based on an inclusion complex of γ-cyclodextrin (γ-CyD) with a benzoxaborole-based probe. Two inclusion complexes, 1/γCyD and 2/γCyD, were prepared by mixing γ-CyD with their corresponding probes in a water-rich solvent, where γ-CyD encapsulates two molecules of the probes inside its cavity to form a pyrene dimer. Both 1/γCyD and 2/γCyD exhibit monomeric and dimeric fluorescence from the pyrene moieties. By the reaction of 1/γCyD with saccharides, the intensities of monomeric and dimeric fluorescence remained unchanged and decreased, respectively. We have demonstrated that 1/γCyD has much higher affinity for d-allulose than for the other saccharides (d-fructose, d-glucose, and d-galactose). The conditional equilibrium constants for the reaction systems were determined to be 498 ± 35 M-1 for d-fructose, 48.4 ± 25.3 M-1 for d-glucose, 15.0 ± 3.3 M-1 for d-galactose, and (8.05 ± 0.59) × 103 M-1 for d-allulose. These features of 1/γCyD enable ratiometric fluorescence sensing with high sensitivity and selectivity for d-allulose. The limits of detection and quantification of 1/γCyD for d-allulose at pH 8.0 were determined to be 6.9 and 21 μM, respectively. Induced circular dichroism spectral study has shown that the reaction of 1/γCyD with d-allulose causes the monomerisation of the dimer of probe 1 that is encapsulated by γ-CyD, which leads to the diminishment of the dimeric fluorescence.
Collapse
Affiliation(s)
- Yota Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1, Kioi-cho Chiyoda-ku Tokyo 102-8554 Japan
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1, Kioi-cho Chiyoda-ku Tokyo 102-8554 Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1, Kioi-cho Chiyoda-ku Tokyo 102-8554 Japan
| |
Collapse
|
8
|
Chen X, Wang F, Yu Q, Liu S, Wang W, Zhang Y, Wang Z, Yuan Z. One pot cascade biosynthesis of d-allulose from d-glucose and its kinetic modelling. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Zhang W, Chen D, Chen J, Xu W, Chen Q, Wu H, Guang C, Mu W. D-allulose, a versatile rare sugar: recent biotechnological advances and challenges. Crit Rev Food Sci Nutr 2021; 63:5661-5679. [PMID: 34965808 DOI: 10.1080/10408398.2021.2023091] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
D-Allulose is the C-3 epimer of D-fructose, and widely regarded as a promising substitute for sucrose. It's an excellent low-calorie sweetener, with 70% sweetness of sucrose, 0.4 kcal/g dietary energy, and special physiological functions. It has been approved as GRAS by the U.S. Food and Drug Administration, and is allowed to be excluded from total and added sugar counts on the food labels. Therefore, D-allulose gradually attracts more public attention. Owing to scarcity in nature, the bioproduction of D-allulose by using ketose 3-epimerase (KEase) has become the research hotspot. Herein, we give a summary of the physicochemical properties, physiological function, applications, and the chemical and biochemical synthesis methods of D-allulose. In addition, the recent progress in the D-allulose bioproduction using KEases, and the possible solutions for existing challenges in the D-allulose industrial production are comprehensively discussed, focusing on the molecular modification, immobilization, food-grade expression, utilizing low-cost biomass as feedstock, overcoming thermodynamic limitation, as well as the downstream separation and purification. Finally, Prospects for further development are also proposed.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ding Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Hu M, Li M, Jiang B, Zhang T. Bioproduction of D-allulose: Properties, applications, purification, and future perspectives. Compr Rev Food Sci Food Saf 2021; 20:6012-6026. [PMID: 34668314 DOI: 10.1111/1541-4337.12859] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022]
Abstract
D-allulose is the C-3 epimer of D-fructose, which rarely exists in nature, and can be biosynthesized from D-fructose by the catalysis of D-psicose 3-epimerase. D-allulose is safe for human consumption and was recently approved by the United States Food and Drug Administration for food applications. It is not only able be used in food and dietary supplements as a low-calorie sweetener, but also modulates a variety of physiological functions. D-allulose has gained increasing attention owing to its excellent properties. This article presents a review of recent progress on the properties, applications, and bioproduction progress of D-allulose.
Collapse
Affiliation(s)
- Mengying Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
11
|
Li C, Zhang W, Wei C, Gao X, Mao S, Lu F, Qin HM. Continuous Spectrophotometric Assay for High-Throughput Screening of Predominant d-Allulose 3-Epimerases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11637-11645. [PMID: 34569239 DOI: 10.1021/acs.jafc.1c04716] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
d-Allulose is an attractive noncaloric sugar substitute with numerous health benefits, which can be biosynthesized by d-allulose 3-epimerases (DAEases). However, enzyme instability under harsh industrial reaction conditions hampered its practical applications. Here, we developed a continuous spectrophotometric assay (CSA) for the efficient analysis of d-allulose in a mixture. Furthermore, a high-throughput screening strategy for DAEases was developed using CSA by coupling DAEase with a NADH-dependent ribitol dehydrogenase, enabling high-throughput screening of DAEase variants with desired properties. The variant M15S/P40N/S209N exhibited a half-life of 22 h at 60 °C and an 8.7 °C increase of the T5060 value, with a 1.2-fold increase of activity. Structural modeling and molecular dynamics simulations indicated that the improvement of thermostability and activity was due to some new hydrogen bonds between chains at the dimer interface and between the residue and the substrate d-fructose. This work offers a robust tool and theoretical basis for the improvement of DAEases, which will benefit the enzymatic biosynthesis of d-allulose and promote its industrial application.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Wei Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Cancan Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Xin Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| |
Collapse
|
12
|
Xia Y, Cheng Q, Mu W, Hu X, Sun Z, Qiu Y, Liu X, Wang Z. Research Advances of d-allulose: An Overview of Physiological Functions, Enzymatic Biotransformation Technologies, and Production Processes. Foods 2021; 10:2186. [PMID: 34574296 PMCID: PMC8467252 DOI: 10.3390/foods10092186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 02/02/2023] Open
Abstract
d-allulose has a significant application value as a sugar substitute, not only as a food ingredient and dietary supplement, but also with various physiological functions, such as improving insulin resistance, anti-obesity, and regulating glucolipid metabolism. Over the decades, the physiological functions of d-allulose and the corresponding mechanisms have been studied deeply, and this product has been applied to various foods to enhance food quality and prolong shelf life. In recent years, biotransformation technologies for the production of d-allulose using enzymatic approaches have gained more attention. However, there are few comprehensive reviews on this topic. This review focuses on the recent research advances of d-allulose, including (1) the physiological functions of d-allulose; (2) the major enzyme families used for the biotransformation of d-allulose and their microbial origins; (3) phylogenetic and structural characterization of d-allulose 3-epimerases, and the directed evolution methods for the enzymes; (4) heterologous expression of d-allulose ketose 3-epimerases and biotransformation techniques for d-allulose; and (5) production processes for biotransformation of d-allulose based on the characterized enzymes. Furthermore, the future trends on biosynthesis and applications of d-allulose in food and health industries are discussed and evaluated in this review.
Collapse
Affiliation(s)
- Yu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qianqian Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing 100833, China;
| | - Zhen Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Yangyu Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Ximing Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
|
14
|
Arimitsu K, Iwasaki H, Kimura H, Yasui H. Strong Binding Affinity of d-Allulose and Allulosides to Boronic Acids and the Structural Characterization of Their Sugar-boronate Complexes. CHEM LETT 2021. [DOI: 10.1246/cl.210181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kenji Arimitsu
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroki Iwasaki
- Department of Pharmaceutical Manufacturing Chemistry, Division of Organic and Medicinal Chemistry, Kyoto Pharmaceutical University, 1 Shichono-cho, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
15
|
A review on l-ribose isomerases for the biocatalytic production of l-ribose and l-ribulose. Food Res Int 2021; 145:110409. [PMID: 34112412 DOI: 10.1016/j.foodres.2021.110409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/08/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022]
Abstract
Presently, because of the extraordinary roles and potential applications, rare sugars turn into a focus point for countless researchers in the field of carbohydrates. l-ribose and l-ribulose are rare sugars and isomers of each other. This aldo and ketopentose are expensive but can be utilized as an antecedent for the manufacturing of various rare sugars and l-nucleoside analogue. The bioconversion approach turns into an excellent alternative method to l-ribulose and l-ribose production, as compared to the complex and lengthy chemical methods. The basic purpose of this research was to describe the importance of rare sugars in various fields and their easy production by using enzymatic methods. l-Ribose isomerase (L-RI) is an enzyme discovered by Tsuyoshi Shimonishi and Ken Izumori in 1996 from Acinetobacter sp. strain DL-28. L-RI structure was cupin-type-β-barrel shaped with a catalytic site between two β-sheets surrounded by metal ions. The crystal structures of the L-RI showed that it contains a homotetramer structure. Current review have concentrated on the sources, characteristics, applications, conclusions and future prospects including the potentials of l-ribose isomerase for the commercial production of l-ribose and l-ribulose. The MmL-RIse and CrL-RIse have the potential to produce the l-ribulose up to 32% and 31%, respectively. The CrL-RIse is highly stable as compared to other L-RIs. The results explained that the L-RIs have great potential in the production of rare sugars especially, l-ribose and l-ribulose, while the immobilization technique can enhance its functionality and properties. The present study precises the applications of L-RIs acquired from various sources for l-ribose and l-ribulose production.
Collapse
|
16
|
Zhu Z, Li L, Zhang W, Li C, Mao S, Lu F, Qin HM. Improving the enzyme property of D-allulose 3-epimerase from a thermophilic organism of Halanaerobium congolense through rational design. Enzyme Microb Technol 2021; 149:109850. [PMID: 34311887 DOI: 10.1016/j.enzmictec.2021.109850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 01/14/2023]
Abstract
The rare sugar d-allulose is an attractive sucrose substitute due to its sweetness and ultra-low caloric value. It can be produced from D-fructose using d-allulose 3-epimerase (DAE) as the biocatalyst. However, most of the reported DAEs show low catalytic efficiency and poor thermostability, which limited their further use in food industrial. Here, a putative d-allulose 3-epimerase from a thermophilic organism of Halanaerobium congolense (HcDAE) was characterized, showing optimal activity at pH 8.0 and 70 °C in the presence of Mg2+. Saturation mutagenesis of Y7, C66, and I108, the putative residues responsible for substrate recognition at the O-4, -5, and -6 atoms of D-fructose was performed, and it yielded the triple mutant Y7H/C66L/I108A with improved activity toward D-fructose (345 % of wild-type enzyme). The combined mutant Y7H/C66L/I108A/R156C/K260C exhibited a half-half (t1/2) of 5.2 h at 70 °C and an increase of the Tm value by 6.5 °C due to the introduction of disulfide bridges between intersubunit with increased interface interactions. The results indicate that mutants could be used as industrial biocatalysts for d-allulose production.
Collapse
Affiliation(s)
- Zhangliang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Lei Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Wei Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| |
Collapse
|
17
|
Mijailovic N, Nesler A, Perazzolli M, Aït Barka E, Aziz A. Rare Sugars: Recent Advances and Their Potential Role in Sustainable Crop Protection. Molecules 2021; 26:molecules26061720. [PMID: 33808719 PMCID: PMC8003523 DOI: 10.3390/molecules26061720] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Rare sugars are monosaccharides with a limited availability in the nature and almost unknown biological functions. The use of industrial enzymatic and microbial processes greatly reduced their production costs, making research on these molecules more accessible. Since then, the number of studies on their medical/clinical applications grew and rare sugars emerged as potential candidates to replace conventional sugars in human nutrition thanks to their beneficial health effects. More recently, the potential use of rare sugars in agriculture was also highlighted. However, overviews and critical evaluations on this topic are missing. This review aims to provide the current knowledge about the effects of rare sugars on the organisms of the farming ecosystem, with an emphasis on their mode of action and practical use as an innovative tool for sustainable agriculture. Some rare sugars can impact the plant growth and immune responses by affecting metabolic homeostasis and the hormonal signaling pathways. These properties could be used for the development of new herbicides, plant growth regulators and resistance inducers. Other rare sugars also showed antinutritional properties on some phytopathogens and biocidal activity against some plant pests, highlighting their promising potential for the development of new sustainable pesticides. Their low risk for human health also makes them safe and ecofriendly alternatives to agrochemicals.
Collapse
Affiliation(s)
- Nikola Mijailovic
- Induced Resistance and Plant Bioprotection, USC RIBP 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France; (N.M.); (E.A.B.)
- Bi-PA nv, Londerzee l1840, Belgium;
| | | | - Michele Perazzolli
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
- Center Agriculture Food Environment (C3A), University of Trento, 38098 San Michele all’Adige, Italy
| | - Essaid Aït Barka
- Induced Resistance and Plant Bioprotection, USC RIBP 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France; (N.M.); (E.A.B.)
| | - Aziz Aziz
- Induced Resistance and Plant Bioprotection, USC RIBP 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France; (N.M.); (E.A.B.)
- Correspondence: ; Tel.: +33-326-918-525
| |
Collapse
|
18
|
Ogawa M, Hayakawa S. Application of the Rare Sugar D-Psicose to Food Processing. J JPN SOC FOOD SCI 2021. [DOI: 10.3136/nskkk.68.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Shigeru Hayakawa
- General Incorporated Association Rare Sugar Promotion Association
| |
Collapse
|
19
|
|
20
|
Jiang S, Xiao W, Zhu X, Yang P, Zheng Z, Lu S, Jiang S, Zhang G, Liu J. Review on D-Allulose: In vivo Metabolism, Catalytic Mechanism, Engineering Strain Construction, Bio-Production Technology. Front Bioeng Biotechnol 2020; 8:26. [PMID: 32117915 PMCID: PMC7008614 DOI: 10.3389/fbioe.2020.00026] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/13/2020] [Indexed: 01/23/2023] Open
Abstract
Rare sugar D-allulose as a substitute sweetener is produced through the isomerization of D-fructose by D-tagatose 3-epimerases (DTEases) or D-allulose 3-epimerases (DAEases). D-Allulose is a kind of low energy monosaccharide sugar naturally existing in some fruits in very small quantities. D-Allulose not only possesses high value as a food ingredient and dietary supplement, but also exhibits a variety of physiological functions serving as improving insulin resistance, antioxidant enhancement, and hypoglycemic controls, and so forth. Thus, D-allulose has an important development value as an alternative to high-energy sugars. This review provided a systematic analysis of D-allulose characters, application, enzymatic characteristics and molecular modification, engineered strain construction, and processing technologies. The existing problems and its proposed solutions for D-allulose production are also discussed. More importantly, a green and recycling process technology for D-allulose production is proposed for low waste formation, low energy consumption, and high sugar yield.
Collapse
Affiliation(s)
- Suwei Jiang
- Department of Biological, Food and Environment Engineering, Hefei University, Hefei, China
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wei Xiao
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xingxing Zhu
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peizhou Yang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhi Zheng
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shuhua Lu
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shaotong Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Guochang Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - Jingjing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| |
Collapse
|
21
|
ÖZGÜR M, UÇAR A. Karbonhidrat ve Yağ Metabolizmasında D-alluloz (D-psikoz). DÜZCE ÜNIVERSITESI SAĞLIK BILIMLERI ENSTITÜSÜ DERGISI 2019. [DOI: 10.33631/duzcesbed.469828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Role of 'D-allulose' in a starch based composite gel matrix. Carbohydr Polym 2019; 228:115373. [PMID: 31635735 DOI: 10.1016/j.carbpol.2019.115373] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/25/2019] [Accepted: 09/22/2019] [Indexed: 11/21/2022]
Abstract
Type of sugar and gelling agents used in confectionery formulations have vital importance since they directly influence physicochemical properties during storage. In this study, the effect of a non-caloric rare sugar, D-allulose (formerly called D-psicose) on the starch based confectionery gels were investigated in the presence and absence of soy protein isolate (SPI) using different experimental techniques for 28 days. For characterization of the formulized gel systems, common techniques were used (SEM, DSC, XRD, moisture content, water activity, hardness and color). Time Domain Nuclear Magnetic Resonance (TD-NMR) technique was also employed to explain dynamics in the systems. Sugar type was found to be a very significant factor affecting gel characteristics and retrogradation. Results showed that D-allulose containing formulations were less prone to retrogradation and showed smaller changes upon storage by supporting presence of better gel network. According to X-ray results, sucrose containing formulations were more susceptible to crystallization. T2 relaxation spectra obtained from NMR experiments showed that number of distinct peaks reduced with the addition of SPI while relaxation times of peaks changed when different type of sugar.
Collapse
|
23
|
Pocan P, Ilhan E, Oztop MH. Effect of d-psicose substitution on gelatin based soft candies: A TD-NMR study. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:661-673. [PMID: 30729566 DOI: 10.1002/mrc.4847] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 05/08/2023]
Abstract
Confectionary gels are considered as composite gel systems composed of high amount of sugar and gelling agent such as gelatin or starch. d-Psicose is classified as a type of rare sugar, which is a C-3 epimer of fructose and has 70% of the sweetness of sucrose with a caloric value of 0.39 kcal/g. Utilization of d-psicose in food products is gaining particular interest due to its low caloric value. In this study, gelatin-based soft candies were formulated, and the effect of d-psicose substitution was explored on the quality of the products. For characterization of the soft candies, moisture content, water activity, color, hardness, and glass transition temperature of samples were investigated. X-ray diffraction analysis was also performed to explain the crystallization tendency of jelly candies. Results showed that, the softest sample with the highest moisture content and the smallest crystallization tendency was the sample that included the highest amount of d-psicose. Time domain (TD) NMR relaxometry experiments were also conducted on gel samples, and three distinct proton populations were observed in the relaxation spectrum for all formulations. Spin-lattice relaxation times obtained through monoexponential fitting (T1 ) were also obtained to explain some quality parameters.
Collapse
Affiliation(s)
- Pelin Pocan
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | - Esmanur Ilhan
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | - Mecit Halil Oztop
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
24
|
Zhu J, Li Y, Wang J, Yu Z, Liu Y, Tong Y, Han W. Adaptive Steered Molecular Dynamics Combined With Protein Structure Networks Revealing the Mechanism of Y68I/G109P Mutations That Enhance the Catalytic Activity of D-psicose 3-Epimerase From Clostridium Bolteae. Front Chem 2018; 6:437. [PMID: 30320068 PMCID: PMC6166005 DOI: 10.3389/fchem.2018.00437] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
The scarcity, richness, and other important physiological functions of D-psicose make it crucial to increase the yield of D-psicose. The production of D-psicose can be accomplished by D-psicose 3-epimerase (DPEase) from Clostridium bolteae (CbDPEase) catalyzing the substrate D-fructose. Although the catalytic efficiency of the CbDPEase has been raised via using the site-directed mutagenesis (Y68I/G109P) technique, structure-activity relationship in the wild-type CbDPEase and Y68I/G109P mutant is currently poorly understood. In our study, a battery of molecular modeling methods [homology modeling, adaptive steered molecular dynamics (ASMD) simulations, and Molecular Mechanics/Generalized Born Surface Area (MM-GB/SA)], combined with protein structure networks, were employed to theoretically characterize the reasons for the differences in the abilities of the D-fructose catalyzed by the wild-type CbDPEase and Y68I/G109P mutant. Protein structure networks demonstrated that site-directed mutagenesis enhanced the connectivity between D-fructose and CbDPEase, leading to the increased catalytic efficiency mediated by the functional residues with high betweenness. During the dissociation of the D-fructose from the Y68I/G109P mutant, planes of benzene rings of F248 and W114 could be continuously parallel to the stretching direction of D-fructose. It made the tunnel have an open state and resulted in the stable donor-π interactions between D-fructose and the benzene rings around 18Å. The stronger substrate-protein interactions were detected in the Y68I/G109P mutant, instead of in the wild-type CbDPEase, which were consistent with the binding free energy and Potential Mean of Force (PMF) results. The theoretical results illustrated the reasons that Y68I/G109P mutations increased the catalytic efficiency of CbDPEase and could be provided the new clue for further DPEase engineering.
Collapse
Affiliation(s)
- Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Yi Li
- COFCO (Jilin) Bio-Chemical Technology Co., Ltd, Changchun, China
| | - Jinzhi Wang
- COFCO (Jilin) Bio-Chemical Technology Co., Ltd, Changchun, China
| | - Zhengfei Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Ye Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Yi Tong
- COFCO (Jilin) Bio-Chemical Technology Co., Ltd, Changchun, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| |
Collapse
|
25
|
Mossine VV, Barnes CL, Mawhinney TP. Molecular and crystal structure and the Hirshfeld surface analysis of 1-amino-1-deoxy-α-d-sorbopyranose and 1-amino-1-deoxy-α-d-psicopyranose (“d-sorbosamine” and “d-psicosamine”) derivatives. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Nakagawa Y, Tateno H, Ebara M. Investigation of Selective Recognition of Sugars Using Lectin-inspired Temperature-responsive Polymers. CHEM LETT 2018. [DOI: 10.1246/cl.170967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yasuhiro Nakagawa
- Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hiroaki Tateno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Mitsuhiro Ebara
- Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
27
|
Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X. Metabolic engineering pathways for rare sugars biosynthesis, physiological functionalities, and applications-a review. Crit Rev Food Sci Nutr 2018; 58:2768-2778. [PMID: 28662355 DOI: 10.1080/10408398.2017.1341385] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biomolecules like rare sugars and their derivatives are referred to as monosaccharides particularly uncommon in nature. Remarkably, many of them have various known physiological functions and biotechnological applications in cosmetics, nutrition, and pharmaceutical industries. Also, they can be exploited as starting materials for synthesizing fascinating natural bioproducts with significant biological activities. Regrettably, most of the rare sugars are quite expensive, and their synthetic chemical routes are both limited and economically unfeasible due to expensive raw materials. On the other hand, their production by enzymatic means often suffers from low space-time yields and high catalyst costs due to hasty enzyme denaturation/degradation. In this context, biosynthesis of rare sugars with industrial importance is receiving renowned scientific attention, across the globe. Moreover, the utilization of renewable resources as energy sources via microbial fermentation or microbial metabolic engineering has appeared a new tool. This article presents a comprehensive review of physiological functions and biotechnological applications of rare ketohexoses and aldohexoses, including D-psicose, D-tagatose, L-tagatose, D-sorbose, L-fructose, D-allose, L-glucose, D-gulose, L-talose, L-galactose, and L-fucose. Novel in-vivo recombination pathways based on aldolase and phosphatase for the biosynthesis of rare sugars, particularly D-psicose and D-sorbose using robust microbial strains are also deliberated.
Collapse
Affiliation(s)
- Muhammad Bilal
- a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Hafiz M N Iqbal
- b School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey , Ave. Eugenio Garza Sada 2501, Monterrey , N.L., CP , Mexico
| | - Hongbo Hu
- a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
- c National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Wei Wang
- a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Xuehong Zhang
- a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
28
|
Bermúdez C, Peña I, Mata S, Alonso JL. Sweet Structural Signatures Unveiled in Ketohexoses. Chemistry 2016; 22:16829-16837. [DOI: 10.1002/chem.201603223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Celina Bermúdez
- Grupo de Espectroscopía Molecular (GEM); Edificio Quifima; Laboratorios de Espectroscopia y Bioespectroscopia; Unidad Asociada CSIC; Parque Científico Uva; Universidad de Valladolid; Paseo de Belén 5 47011 Valladolid Spain
| | - Isabel Peña
- Grupo de Espectroscopía Molecular (GEM); Edificio Quifima; Laboratorios de Espectroscopia y Bioespectroscopia; Unidad Asociada CSIC; Parque Científico Uva; Universidad de Valladolid; Paseo de Belén 5 47011 Valladolid Spain
| | - Santiago Mata
- Grupo de Espectroscopía Molecular (GEM); Edificio Quifima; Laboratorios de Espectroscopia y Bioespectroscopia; Unidad Asociada CSIC; Parque Científico Uva; Universidad de Valladolid; Paseo de Belén 5 47011 Valladolid Spain
| | - José L. Alonso
- Grupo de Espectroscopía Molecular (GEM); Edificio Quifima; Laboratorios de Espectroscopia y Bioespectroscopia; Unidad Asociada CSIC; Parque Científico Uva; Universidad de Valladolid; Paseo de Belén 5 47011 Valladolid Spain
| |
Collapse
|
29
|
Zhang W, Yu S, Zhang T, Jiang B, Mu W. Recent advances in d -allulose: Physiological functionalities, applications, and biological production. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Zhang W, Jia M, Yu S, Zhang T, Zhou L, Jiang B, Mu W. Improving the Thermostability and Catalytic Efficiency of the d-Psicose 3-Epimerase from Clostridium bolteae ATCC BAA-613 Using Site-Directed Mutagenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3386-3393. [PMID: 27082657 DOI: 10.1021/acs.jafc.6b01058] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
d-Psicose is a highly valuable rare sugar because of its excellent physiological properties and commercial potential. d-Psicose 3-epimerase (DPEase) is the key enzyme catalyzing the isomerization of d-fructose to d-psicose. However, the poor thermostability and low catalytic efficiency are serious constraints on industrial application. To address these issues, site-directed mutagenesis of Tyr68 and Gly109 of the Clostridium bolteae DPEase was performed. Compared with the wild-type enzyme, the Y68I variant displayed the highest substrate-binding affinity and catalytic efficiency, and the G109P variant showed the highest thermostability. Furthermore, the double-site Y68I/G109P variant was generated and exhibited excellent enzyme characteristics. The Km value decreased by 17.9%; the kcat/Km increased by 1.2-fold; the t1/2 increased from 156 to 260 min; and the melting temperature (Tm) increased by 2.4 °C. Moreover, Co(2+) enhanced the thermostability significantly, including the t1/2 and Tm values. All of these indicated that the Y68I/G109P variant would be appropriate for the industrial production of d-psicose.
Collapse
Affiliation(s)
| | | | | | | | - Leon Zhou
- Roquette America , 1003 Commercial Street, Keokuk, Iowa 52632, United States
| | | | | |
Collapse
|
31
|
Yoshihara A, Sato M, Fukada K. Evaluation of the Equilibrium Content of Tautomers of Deoxy-ketohexoses and Their Molar Absorption Coefficient of the Carbonyl Group in Aqueous Solution. CHEM LETT 2016. [DOI: 10.1246/cl.150953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Masashi Sato
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University
| | - Kazuhiro Fukada
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University
| |
Collapse
|
32
|
Zhang W, Zhang T, Jiang B, Mu W. Biochemical characterization of a D-psicose 3-epimerase from Treponema primitia ZAS-1 and its application on enzymatic production of D-psicose. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:49-56. [PMID: 25809188 DOI: 10.1002/jsfa.7187] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/17/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The rare sugar D-psicose is a hexoketose monosaccharide and a C-3 epimer of D-fructose. D-Psicose is a novel functional sweetener with 70% of the sweetness but only 0.3% of the energy content of sucrose. Generally, the industrial production of D-psicose involves a bioconversion from D-fructose induced by ketose 3-epimerases. RESULTS The D-psicose 3-epimerase (DPEase) gene from Treponema primitia ZAS-1 (Trpr-DPEase) was cloned and overexpressed in Escherichia coli BL21 (DE3). The recombinant enzyme was purified with a molecular mass of 33 kDa. Trpr-DPEase exhibited optimal activity at pH 8.0 and 70 °C and was sensitive to temperature, with relative thermal stability below 50 °C. It was strictly metal-dependent and displayed maximum catalytic activity with 450 µmol L(-1) Co(2+). The Km values of the enzyme for D-psicose and D-fructose were 209 and 279 mmol L(-1) respectively. The D-psicose/D-fructose equilibrium ratio of Trpr-DPEase was 28:72. CONCLUSION A novel DPEase from T. primitia ZAS-1 was characterized that could catalyze the formation of D-psicose from D-fructose. D-Psicose was produced at a yield of 137.5 g L(-1) from 500 g L(-1) D-fructose, suggesting that Trpr-DPEase might be appropriate for the industrial production of D-psicose.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
33
|
Yoshihara A, Ishii T, Kamakura T, Taguchi H, Fukada K. Crystal structure of 6-de-oxy-α-l-psico-furan-ose. Acta Crystallogr E Crystallogr Commun 2015; 71:o993-4. [PMID: 26870568 PMCID: PMC4719940 DOI: 10.1107/s2056989015022215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/20/2015] [Indexed: 11/11/2022]
Abstract
The title compound, C6H12O5, was crystallized from an aqueous solution of 6-de-oxy-l-psicose (6-de-oxy-l-allulose, (3S,4S,5S)-1,3,4,5-tetra-hydroxy-hexan-2-one), and the mol-ecule was confirmed as α-furan-ose with a (3) T 4 (or E 4) conformation, which is a predominant tautomer in solution. This five-membered furan-ose ring structure is the second example in the field of the 6-de-oxy-ketohexose family. The cell volume of the title compound [742.67 (7) Å(3), Z = 4 at room temperature] is only 1.4% smaller than that of β-d-psico-pyran-ose, C6H12O6 (753.056 Å(3), Z = 4 at room temperature).
Collapse
Affiliation(s)
- Akihide Yoshihara
- Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan
| | - Tomohiko Ishii
- Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| | - Tatsuya Kamakura
- Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| | - Hiroaki Taguchi
- Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| | - Kazuhiro Fukada
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan
| |
Collapse
|
34
|
Ishii T, Sakane G, Yoshihara A, Fukada K, Senoo T. Crystal structure of β-d,l-psicose. Acta Crystallogr E Crystallogr Commun 2015; 71:o289-90. [PMID: 25995909 PMCID: PMC4420085 DOI: 10.1107/s2056989015006623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/02/2015] [Indexed: 11/18/2022]
Abstract
The title compound, C6H12O6, a C-3 position epimer of fructose, was crystallized from an aqueous solution of equimolar mixture of d- and l-psicose (1,3,4,5,6-penta-hydroxy-hexan-2-one, ribo-2-hexulose, allulose), and it was confirmed that d-psicose (or l-psicose) formed β-pyran-ose with a (2) C 5 (or (5) C 2) conformation. In the crystal, an O-H⋯O hydrogen bond between the hy-droxy groups at the C-3 and C-2 positions connects homochiral mol-ecules into a column along the b axis. The columns are linked by other O-H⋯O hydrogen bonds between d- and l-psicose mol-ecules, forming a three-dimensional network. An intra-molecular O-H⋯O hydrogen bond is also observed. The cell volume of racemic β-d,l-psicose [763.21 (6) Å(3)] is almost the same as that of chiral β-d-psicose [753.06 Å(3)].
Collapse
Affiliation(s)
- Tomohiko Ishii
- Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| | - Genta Sakane
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Akihide Yoshihara
- Rare Sugar Research Center, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan
| | - Kazuhiro Fukada
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan
| | - Tatsuya Senoo
- Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| |
Collapse
|
35
|
Kozakai T, Fukada K, Kuwatori R, Ishii T, Senoo T, Izumori K. Aqueous Phase Behavior of the Rare Monosaccharide D-Allose and X-ray Crystallographic Analysis of D-Allose Dihydrate. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20140337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Taro Kozakai
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University
| | - Kazuhiro Fukada
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University
| | - Ryu Kuwatori
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University
| | - Tomohiko Ishii
- Department of Advanced Materials Science, Faculty of Engineering, Kagawa University
| | - Tatsuya Senoo
- Department of Advanced Materials Science, Faculty of Engineering, Kagawa University
| | - Ken Izumori
- Rare Sugar Research Center, Kagawa University
| |
Collapse
|
36
|
O'Charoen S, Hayakawa S, Matsumoto Y, Ogawa M. Effect ofd-Psicose Used as Sucrose Replacer on the Characteristics of Meringue. J Food Sci 2014; 79:E2463-9. [DOI: 10.1111/1750-3841.12699] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/30/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Siwaporn O'Charoen
- Dept. of Applied Biological Science; Faculty of Agriculture; Kagawa Univ; 2393 Ikenobe Miki Kagawa 761-0795 Japan
| | - Shigeru Hayakawa
- Dept. of Applied Biological Science; Faculty of Agriculture; Kagawa Univ; 2393 Ikenobe Miki Kagawa 761-0795 Japan
| | - Yoshiki Matsumoto
- Dept. of Applied Biological Science; Faculty of Agriculture; Kagawa Univ; 2393 Ikenobe Miki Kagawa 761-0795 Japan
| | - Masahiro Ogawa
- Dept. of Applied Biological Science; Faculty of Agriculture; Kagawa Univ; 2393 Ikenobe Miki Kagawa 761-0795 Japan
| |
Collapse
|
37
|
Ikeda S, Furuta C, Fujita Y, Gohtani S. Effects ofD-psicose on gelatinization and retrogradation of rice flour. STARCH-STARKE 2014. [DOI: 10.1002/star.201300259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shinya Ikeda
- Department of Applied Biological Science, Faculty of Agriculture; Kagawa University; Kagawa Japan
| | - Chiharu Furuta
- Department of Applied Biological Science, Faculty of Agriculture; Kagawa University; Kagawa Japan
| | - Yoko Fujita
- Department of Applied Biological Science, Faculty of Agriculture; Kagawa University; Kagawa Japan
| | - Shoichi Gohtani
- Department of Applied Biological Science, Faculty of Agriculture; Kagawa University; Kagawa Japan
| |
Collapse
|
38
|
Ishii T, Ohga S, Fukada K, Morimoto K, Sakane G. β-d-Gulose. Acta Crystallogr Sect E Struct Rep Online 2014; 70:o569. [PMID: 24860374 PMCID: PMC4011222 DOI: 10.1107/s1600536814008046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/10/2014] [Indexed: 11/24/2022]
Abstract
The title compound, C6H12O6, a C-3 position epimer of d-galactose, crystallized from an aqueous solution, was confirmed as β-d-pyranose with a 4C1 (C1) conformation. In the crystal, O—H⋯O hydrogen bonds between the hydroxy groups at the C-1 and C-6 positions connect molecules into a tape structure with an R33(11) ring motif running along the a-axis direction. The tapes are connected by further O—H⋯O hydrogen bonds, forming a three-dimensional network.
Collapse
Affiliation(s)
- Tomohiko Ishii
- Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| | - Shunsuke Ohga
- Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| | - Kazuhiro Fukada
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan
| | - Kenji Morimoto
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan
| | - Genta Sakane
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
39
|
MIURA D, FUJIMOTO T, TASHIRO M, MACHINAMI T. Crystal Structure of 1,3,4,5-Tetra-<i>O</i>-acetyl-<i>α</i>-<font size=-1>D</font>-tagatopyranose. X-RAY STRUCTURE ANALYSIS ONLINE 2014. [DOI: 10.2116/xraystruct.30.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Daisuke MIURA
- Department of Chemistry, College of Science and Technology, Meisei University
| | - Takashi FUJIMOTO
- Department of Chemistry, College of Science and Technology, Meisei University
| | - Mitsuru TASHIRO
- Department of Chemistry, College of Science and Technology, Meisei University
| | - Tomoya MACHINAMI
- Department of Chemistry, College of Science and Technology, Meisei University
| |
Collapse
|
40
|
Zhang W, Fang D, Zhang T, Zhou L, Jiang B, Mu W. Characterization of a metal-dependent D-psicose 3-epimerase from a novel strain, Desmospora sp. 8437. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11468-11476. [PMID: 24199681 DOI: 10.1021/jf4035817] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The rare sugar d-psicose is an ideal sucrose substitute for food products, due to having 70% of the relative sweetness but 0.3% of the energy of sucrose. It also shows important physiological functions. d-Tagatose 3-epimerase (DTEase) family enzymes can produce d-psicose from d-fructose. In this paper, a new member of the DTEase family of enzymes was characterized from Desmospora sp. 8437 (GenBank accession no. WP_009711885 ) and was named Desmospora sp. d-psicose 3-epimerase (DPEase) due to its highest substrate specificity toward d-psicose. Desmospora sp. DPEase was strictly metal-dependent and displayed maximum activity in the presence of Co(2+). The optimum pH and temperature were 7.5 and 60 °C, respectively. The enzyme was relatively thermostable below 50 °C, but easily lost initial activity when preincubated at 60 °C. The thermostability property was almost not affected by the addition of Co(2+). Desmospora sp. DPEase had relatively high catalysis efficiency for the substrates d-psicose and d-fructose, which were measured to be 327 and 116 mM(-1) min(-1), respectively. The equilibrium ratio between d-psicose and d-fructose of Desmospora sp. DPEase was 30:70. The enzyme could produce 142.5 g/L d-psicose from 500 g/L of d-fructose, suggesting that the enzyme is a potential d-psicose producer for industrial production.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University , 214122 Wuxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Hishiike T, Ogawa M, Hayakawa S, Nakajima D, O'Charoen S, Ooshima H, Sun Y. Transepithelial transports of rare sugar D-psicose in human intestine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7381-7386. [PMID: 23844903 DOI: 10.1021/jf401449m] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
D-Psicose (Psi), the C3-epimer of D-fructose (Fru), is a noncalorie sugar with a lower glycemic response. The trans-cellular pathway of Psi in human enterocytes was investigated using a Caco-2 cell monolayer. The permeation rate of Psi across the monolayer was not affected by the addition of phlorizin, an inhibitor of sugar transporter SGLT1, whereas it was accelerated by treatment with forskolin, a GLUT5-gene inducer, clearly showing that GLUT5 is involved in the transport of Psi. The permeability of Psi was suppressed in the presence of D-glucose (Glc) and Fru, suggesting that the three monosaccharides are transported via the same transporter. Since GLUT2, the predominant sugar transporter on the basolateral membrane of enterocytes, mediates the transport of Glc and Fru, Psi might be mediated by GLUT2. The present study shows that Psi is incorporated from the intestinal lumen into enterocytes via GLUT5 and is released to the lamina propria via GLUT2.
Collapse
Affiliation(s)
- Takashi Hishiike
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kita-gun, Kagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Fukada K, Okamitsu M, Sato M. Evaluation of Acyclic Form Content and Molar Absorption Coefficient of Carbonyl Group of Ketohexoses in Aqueous Solution. CHEM LETT 2012. [DOI: 10.1246/cl.2012.1686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kazuhiro Fukada
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University
| | - Masakazu Okamitsu
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University
| | - Masashi Sato
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University
| |
Collapse
|
43
|
Mu W, Zhang W, Feng Y, Jiang B, Zhou L. Recent advances on applications and biotechnological production of D-psicose. Appl Microbiol Biotechnol 2012; 94:1461-7. [PMID: 22569636 DOI: 10.1007/s00253-012-4093-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 12/01/2022]
Abstract
D-Psicose is a hexoketose monosaccharide sweetener, which is a C-3 epimer of D-fructose and is rarely found in nature. It has 70 % relative sweetness but 0.3 % energy of sucrose, and is suggested as an ideal sucrose substitute for food products. It shows important physiological functions, such as blood glucose suppressive effect, reactive oxygen species scavenging activity, and neuroprotective effect. It also improves the gelling behavior and produces good flavor during food process. This article presents a review of recent studies on the properties, physiological functions, and food application of D-psicose. In addition, the biochemical properties of D-tagatose 3-epimerase family enzymes and the D-psicose-producing enzyme are compared, and the biotechnological production of D-psicose from D-fructose is reviewed.
Collapse
Affiliation(s)
- Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | | | | | | | | |
Collapse
|
44
|
Kamitori S, Ueda A, Tahara Y, Yoshida H, Ishii T, Uenishi J. Crystal structures of rare disaccharides, α-d-glucopyranosyl β-d-psicofuranoside, and α-d-galactopyranosyl β-d-psicofuranoside. Carbohydr Res 2011; 346:1182-5. [DOI: 10.1016/j.carres.2011.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/24/2011] [Accepted: 04/03/2011] [Indexed: 11/24/2022]
|