1
|
Zhang J, Wang F, Sun Z, Ye J, Chu H. Multidimensional applications of prussian blue-based nanoparticles in cancer immunotherapy. J Nanobiotechnology 2025; 23:161. [PMID: 40033359 DOI: 10.1186/s12951-025-03236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/16/2025] [Indexed: 03/05/2025] Open
Abstract
Immunotherapy holds notable progress in the treatment of cancer. However, the clinical therapeutic effect remains a significant challenge due to immune-related side effects, poor immunogenicity, and immunosuppressive microenvironment. Nanoparticles have emerged as a revolutionary tool to surmount these obstacles and amplify the potency of immunotherapeutic agents. Prussian blue nanoparticles (PBNPs) exhibit multi-dimensional immune function in cancer immunotherapy, including acting as a nanocarrier to deliver immunotherapeutic agents, as a photothermal agent to improve the efficacy of immunotherapy through photothermal therapy, as a nanozyme to regulate tumor microenvironment, and as an iron donor to induce immune events related to ferroptosis and tumor-associated macrophages polarization. This review focuses on the advances and applications of PBNPs in cancer immunotherapy. First, the biomedical functions of PBNPs are introduced. Then, based on the immune function of PBNPs, we systematically reviewed the multidimensional application of PBNPs in cancer immunotherapy. Finally, the challenges and future developments of PBNPs-based cancer immunotherapy are highlighted.
Collapse
Affiliation(s)
- Jiayi Zhang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
2
|
Anil Kumar Y, Sana SS, Ramachandran T, Assiri MA, Srinivasa Rao S, Kim SC. From lab to field: Prussian blue frameworks as sustainable cathode materials. Dalton Trans 2024; 53:10770-10804. [PMID: 38859722 DOI: 10.1039/d4dt00905c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Prussian blue and Prussian blue analogues have attracted increasing attention as versatile framework materials with a wide range of applications in catalysis, energy conversion and storage, and biomedical and environmental fields. In terms of energy storage and conversion, Prussian blue-based materials have emerged as suitable candidates of growing interest for the fabrication of batteries and supercapacitors. Their outstanding electrochemical features such as fast charge-discharge rates, high capacity and prolonged cycling life make them favorable for energy storage application. Furthermore, Prussian blue and its analogues as rechargeable battery anodes can advance significantly by the precise control of their structure, morphology, and composition at the nanoscale. Their tunable structural and electronic properties enable the detection of many types of analytes with high sensitivity and specificity, and thus, they are ideal materials for the development of sensors for environmental detection, disease trend monitoring, and industrial safety. Additionally, Prussian blue-based catalysts display excellent photocatalytic performance for the degradation of pollutants and generation of hydrogen. Specifically, their excellent light capturing and charge separation capabilities make them stand out in photocatalytic processes, providing a sustainable option for environmental remediation and renewable energy production. Besides, Prussian blue coatings have been studied particularly for corrosion protection, forming stable and protective layers on metal surfaces, which extend the lifespan of infrastructural materials in harsh environments. Prussian blue and its analogues are highly valuable materials in healthcare fields such as imaging, drug delivery and theranostics because they are biocompatible and their further functionalization is possible. Overall, this review demonstrates that Prussian blue and related framework materials are versatile and capable of addressing many technical challenges in various fields ranging from power generation to healthcare and environmental management.
Collapse
Affiliation(s)
- Yedluri Anil Kumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| | - Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Tholkappiyan Ramachandran
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, P. O. Box 127788, United Arab Emirates
- Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore, 641 062, India
| | - Mohammed A Assiri
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Sunkara Srinivasa Rao
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Bowrampet, Hyderabad, 500 043, Telangana, India
| | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
3
|
Umapathy K, Muthamildevi M, Thiruvengadam D, Vijayarangan M, Rajan K, Jayabharathi J. Greenly Synthesized CoPBA@PANI as a Proficient Electrocatalyst for Oxygen Evolution Reaction and Its Green Sustainability Assessments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13102-13115. [PMID: 38864833 DOI: 10.1021/acs.langmuir.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Water electrolysis is a key factor to generate mobile and sustainable energy sources for H2 production. Cobalt-based Prussian Blue analogues encompassed with polymer support electrocatalysts CoPBAX@PANI (CoPBA@PANI-100, CoPBA@PANI-200, and CoPBA@PANI-300) have been synthesized and characterized. The well-designed CoPBA@PANI-200/GC shows a low overpotential (η10) of 301 mV with a small Tafel slope (56 mV dec-1), comapred to that of IrO2 (348 mV ; 98 mV dec-1) for OER. The conductivity with stability of CoPBAX@PANI have been increased due to the synergistic effect of CoPBA with PANI. PANI provides additional active sites and shows strong binding with Co ions, and the even distribution of CoPBA overcomes the sluggish kinetics. The turnover frequency (TOF) of CoPBA@PANI-200/GC (0.0212, s-1) was ∼15 times higher than IrO2 (0.0014 s-1) at 1.60 V. Furthermore, CoPBA@PANI-200/NF delivers low overpotential of 274 mV@10 mA cm-2 and exhibits a durability of >250 h with a potential loss of 4.2%. Benefiting from strong electronic interaction between polymer support and evenly distributed CoPBA, CoPBAx@PANI shows higher electrochemical active surface area (ECSA) of 53.08 mF cm-2. The solar-based water electrolysis confirmed the practical use of CoPBA@PANI-200/NF (1.57 V) for eco-benign industrial H2 production. The CoPBA@PANI-200 shows exceptional OER performances as well as favorable kinetics to resolve the sluggish water oxidation. Hence, the cost-effective CoPBA@PANI performances opens a prospective way to boost the efficiency of other cobalt-derived catalysts in renewable energy devices.
Collapse
Affiliation(s)
- Krishnan Umapathy
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India
| | - Murugan Muthamildevi
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India
| | - Dhanasingh Thiruvengadam
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India
| | - Murugan Vijayarangan
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India
| | - Kuppusamy Rajan
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India
| | - Jayaraman Jayabharathi
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India
| |
Collapse
|
4
|
Wang P, Sun S, Bai G, Zhang R, Liang F, Zhang Y. Nanosized Prussian blue and its analogs for bioimaging and cancer theranostics. Acta Biomater 2024; 176:77-98. [PMID: 38176673 DOI: 10.1016/j.actbio.2023.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Prussian blue (PB) nanoparticles (NPs) and Prussian blue analogs (PBAs) can form metal-organic frameworks through the programmable coordination of ferrous ions with cyanide. PB and PBAs represent a burgeoning class of hybrid functional nano-systems with a wide-ranging application spectrum encompassing biomedicine, cancer diagnosis, and therapy. A comprehensive overview of recent advancements is crucial for gaining insights for future research. In this context, we reviewed the synthesis techniques and surface modification strategies employed to tailor the dimensions, morphology, and attributes of PB NPs. Subsequently, we explored advanced biomedical utilities of PB NPs, encompassing photoacoustic imaging, magnetic resonance imaging, ultrasound (US) imaging, and multimodal imaging. In particular, the application of PB NPs-mediated photothermal therapy, photodynamic therapy, and chemodynamic therapy to cancer treatment was reviewed. Based on the literature, we envision an evolving trajectory wherein the future of Prussian blue-driven biological applications converge into an integrated theranostic platform, seamlessly amalgamating bioimaging and cancer therapy. STATEMENT OF SIGNIFICANCE: Prussian blue, an FDA-approved coordinative pigment with a centuries-long legacy, has paved the way for Prussian blue nanoparticles (PB NPs), renowned for their remarkable biocompatibility and biosafety. These PB NPs have found their niche in biomedicine, playing crucial roles in both diagnostics and therapeutic applications. The comprehensive review goes beyond PB NP-based cancer therapy. Alongside in-depth coverage of PB NP synthesis and surface modifications, the review delves into their cutting-edge applications in the realm of biomedical imaging, encompassing techniques such as photoacoustic imaging, magnetic resonance imaging, ultrasound imaging, and multimodal imaging.
Collapse
Affiliation(s)
- Pengfei Wang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Shaohua Sun
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Guosheng Bai
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Ruiqi Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Fei Liang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Yuezhou Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics of Zhejiang Province, 218 Qingyi Road, Ningbo, 315103, China.
| |
Collapse
|
5
|
Hegazy MBZ, Hassan F, Hu M. Hofmann-Type Cyanide Bridged Coordination Polymers for Advanced Functional Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306709. [PMID: 37890186 DOI: 10.1002/smll.202306709] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Since the discovery of Hofmann clathrates of inorganic cyanide bridged coordination polymers (Hofmann-type CN-CPs), extensive research is done to understand their behavior during spin transitions caused by guest molecules or external stimuli. Lately, research on their nanoscale architectures for sensors and switching devices is of interest. Their potential is reported for producing advanced functional inorganic materials in two-dimensional (2D) morphology using a scalable solid-state thermal treatment method. For instance, but not restricted to, alloys, carbides, chalcogenides, oxides, etc. Simultaneously, their in situ crystallization at graphene oxide (GO) nanosheet surfaces, followed by a subsequent self-assembly to build layered lamellar structures, is reported providing hybrid materials with a variety of uses. Hence, an overview of the most recent developments is presented here in the synthesis of nanoscale structures, including thin films and powders, using Hofmann-type CN-CPs. Also thoroughly demonstrated are the most recent synthetic ideas with the modest control over the size and shape of nanoscale particles. Additionally, in order to create new functional hybrid materials for electrical and energy applications, their thermal decomposition in various environments and hybridization with GO and other guest molecules is examined. This review article also conveyed their spin transition, astounding innovative versatile adhesives, and structure features.
Collapse
Affiliation(s)
- Mohamed Barakat Zakaria Hegazy
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, El-Gharbia, 31527, Egypt
- Alexander von Humboldt (AvH) Foundation, 53173, Bonn, Germany
| | - Fathy Hassan
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, El-Gharbia, 31527, Egypt
| | - Ming Hu
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
6
|
Zhang Y, Xing J, Zhang B, Tong L, Fu X. Element screening of metal sites in Fe-based Prussian blue framework materials for ammonium ion battery applications: a first-principles study. Phys Chem Chem Phys 2024; 26:2387-2394. [PMID: 38168687 DOI: 10.1039/d3cp04278b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Prussian blue framework materials are expected to be the next generation of electrode materials for commercial batteries because their three-dimensional framework structures facilitate the rapid transport and storage of ions and a variety of redox processes. This work compared the calculations of the model before and after the dispersion correction, and the model considering the effect of van der Waals force was more stable. In addition, the distances between H, C and N atoms were within the range of van der Waals force. Thus it was confirmed that NH4+ was adsorbed on the Ax site in the Prussian blue framework material (AxMa[Mb(CN)6]) by van der Waals interaction, and the charge transfer was mainly achieved by the interaction between the H atom in NH4+ and the N atom in the Prussian blue framework. On this basis, the properties of NH4+ batteries were theoretically screened for the Fe-based Prussian blue analogues (PBAs) with different Ma elements (Ma = Co, Cu, Fe, Mg, Mn, Ni, V or Zn). Considering the regulating effect of different metal elements on the electronic structures of PBAs, MgFe and ZnFe PBAs as the electrode materials of NH4+ batteries are expected to show excellent electrochemical energy storage performance in organic electrolytes.
Collapse
Affiliation(s)
- Yu Zhang
- School of Integrated Circuits, and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China.
| | - Junjie Xing
- School of Integrated Circuits, and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China.
| | - Bo Zhang
- School of Integrated Circuits, and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China.
| | - Likai Tong
- School of Integrated Circuits, and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China.
| | - Xiuli Fu
- School of Integrated Circuits, and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China.
| |
Collapse
|
7
|
Baharfar M, Lin J, Kilani M, Zhao L, Zhang Q, Mao G. Gas nanosensors for health and safety applications in mining. NANOSCALE ADVANCES 2023; 5:5997-6016. [PMID: 37941945 PMCID: PMC10629029 DOI: 10.1039/d3na00507k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
The ever-increasing demand for accurate, miniaturized, and cost-effective gas sensing systems has eclipsed basic research across many disciplines. Along with the rapid progress in nanotechnology, the latest development in gas sensing technology is dominated by the incorporation of nanomaterials with different properties and structures. Such nanomaterials provide a variety of sensing interfaces operating on different principles ranging from chemiresistive and electrochemical to optical modules. Compared to thick film and bulk structures currently used for gas sensing, nanomaterials are advantageous in terms of surface-to-volume ratio, response time, and power consumption. However, designing nanostructured gas sensors for the marketplace requires understanding of key mechanisms in detecting certain gaseous analytes. Herein, we provide an overview of different sensing modules and nanomaterials under development for sensing critical gases in the mining industry, specifically for health and safety monitoring of mining workers. The interactions between target gas molecules and the sensing interface and strategies to tailor the gas sensing interfacial properties are highlighted throughout the review. Finally, challenges of existing nanomaterial-based sensing systems, directions for future studies, and conclusions are discussed.
Collapse
Affiliation(s)
- Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| | - Jiancheng Lin
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| | - Mohamed Kilani
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| | - Liang Zhao
- Azure Mining Technology Pty Ltd Sydney New South Wales 2067 Australia
| | - Qing Zhang
- CCTEG Changzhou Research Institute Changzhou 213015 China
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| |
Collapse
|
8
|
Guan H, Li R, Lian R, Cui J, Ou M, Liu L, Chen X, Jiao C, Kuang S. A biomimetic design for efficient petrochemical spill disposal: CoFe-PBA modified superhydrophobic melamine sponge with mechanical/chemical durability and low fire risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132041. [PMID: 37487334 DOI: 10.1016/j.jhazmat.2023.132041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
Due to frequent petrochemical spills, environmental pollution and the threat of secondary marine fires have arisen, necessitating an urgent need for petrochemical spill treatment strategies with high-performance oil-water separation capabilities. To address the challenges of poor durability, instability in hydrophobic conditions, and difficulty in absorbing high-viscosity crude oil associated with hydrophobic absorbent materials, the authors of this study took inspiration from the unique micro and nanostructures of springtails' water-repellent skin. We engineered a superhydrophobic melamine sponge using interfacial assembly techniques designated as Si@PBA@PDA@MS. This material demonstrated improved mechanical and chemical durability, enhanced photothermal performance, and reduced fire risk. The metal-organic framework (MOF)-derived cobalt-iron Prussian blue analog (CoFe-PBA) was firmly anchored to the sponge framework by the chelation of cobalt ions using polydopamine (PDA). The results demonstrated that Si@PBA@PDA@MS demonstrated excellent superhydrophobicity (WCA=163.5°) and oil absorption capacity (53.4-97.5 g/g), maintaining high durability even after 20 cycles of absorption-squeezing. Additionally, it could still exhibit excellent mechanical properties, hydrophobic stability, and absorption performance across a wide temperature range (0-100 °C), pH range (1-14), and high compression strength (ε = 80%), with excellent mechanical/chemical durability. Furthermore, Si@PBA@PDA@MS demonstrated remarkable photothermal performance and low fire risk, offering efficient, safe, and sustainable practical value for effective petrochemical spill treatment.
Collapse
Affiliation(s)
- Haocun Guan
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Rongjia Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Richeng Lian
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Jiahui Cui
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Mingyu Ou
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Lei Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xilei Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Chuanmei Jiao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
9
|
Borges PH, Narciso LC, Miguel GFDS, de Oliveira GS, Junior MC, Machado AEDH, Muñoz RA, Nossol E. An experimental and theoretical approach to electrochemical sensing of hydrazine at silver and copper hexacyanoferrates electrodes. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Du X, Hou Y. Hotspots analysis and perspectives of Prussian blue analogues (PBAs) in environment and energy in recent 20 years by CiteSpace. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11141-11174. [PMID: 36508097 DOI: 10.1007/s11356-022-24600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/01/2022] [Indexed: 06/18/2023]
Abstract
Prussian blue analogs (PBAs), a type of metal-organic frameworks (MOFs), have attracted much attention because of their large specific surface area, high porosity, easy synthesis, and low cost. This paper presents the first review of PBAs by applying the bibliometric visualization software CiteSpace. The co-occurrence, co-citation, and clustering analysis of 2214 articles in the Web of Science database on the topic of "Prussian blue analogs" over the past 20 years were performed. The results provide a comprehensive overview of the evolution of the research hotspots for this material, and most importantly, it is identified that the research hotspots and trends for PBAs materials are concentrated in the environmental and energy fields. For example, the material is used as an adsorbent or catalyst to reduce pollutants, produce clean energy, or for energy storage applications such as batteries or supercapacitors. Finally, some outlooks are provided on the future research trends of this material in the environmental and energy fields, presenting the challenges faced by this material. For instance, the conductivity and corrosion resistance of the material needs to be improved and secondary contamination should be decreased or even avoided. It is believed that this paper would provide a comprehensive, systematic, and dynamic overview of the research of PBAs, and promote the future research of PBAs in the fields of environment and energy.
Collapse
Affiliation(s)
- Xiaohan Du
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province, 050018, People's Republic of China
| | - Yongjiang Hou
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province, 050018, People's Republic of China.
| |
Collapse
|
11
|
Lv L, Chen C, Hou H, Zhang X, Lan P. Structure analysis and cesium adsorption mechanism evaluation of sodium copper ferrocyanide. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Liu X, Verma G, Chen Z, Hu B, Huang Q, Yang H, Ma S, Wang X. Metal-organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications. Innovation (N Y) 2022; 3:100281. [PMID: 35880235 PMCID: PMC9307687 DOI: 10.1016/j.xinn.2022.100281] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022] Open
Abstract
Metal-organic frameworks (MOFs) have garnered multidisciplinary attention due to their structural tailorability, controlled pore size, and physicochemical functions, and their inherent properties can be exploited by applying them as precursors and/or templates for fabricating derived hollow porous nanomaterials. The fascinating, functional properties and applications of MOF-derived hollow porous materials primarily lie in their chemical composition, hollow character, and unique porous structure. Herein, a comprehensive overview of the synthetic strategies and emerging applications of hollow porous materials derived from MOF-based templates and/or precursors is given. Based on the role of MOFs in the preparation of hollow porous materials, the synthetic strategies are described in detail, including (1) MOFs as removable templates, (2) MOF nanocrystals as both self-sacrificing templates and precursors, (3) MOF@secondary-component core-shell composites as precursors, and (4) hollow MOF nanocrystals and their composites as precursors. Subsequently, the applications of these hollow porous materials for chemical catalysis, electrocatalysis, energy storage and conversion, and environmental management are presented. Finally, a perspective on the research challenges and future opportunities and prospects for MOF-derived hollow materials is provided. MOFs have garnered multi-disciplinary attention due to their unique inherent properties Various synthetic strategies of MOFs-derived hollow porous materials are summarized Emerging applications of MOFs-derived hollow porous materials are reviewed
Collapse
Affiliation(s)
- Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.,School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Gaurav Verma
- Department of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, TX 76201, USA
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, TX 76201, USA
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.,School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| |
Collapse
|
13
|
Liu X, Verma G, Chen Z, Hu B, Huang Q, Yang H, Ma S, Wang X. Metal-organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications. Innovation (N Y) 2022; 3:100281. [DOI: doi.org/10.1016/j.xinn.2022.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023] Open
|
14
|
Sakamoto R, Toyoda R, Jingyan G, Nishina Y, Kamiya K, Nishihara H, Ogoshi T. Coordination chemistry for innovative carbon-related materials. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Xia L, Wang Q, Hu M. Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:763-777. [PMID: 36051312 PMCID: PMC9379653 DOI: 10.3762/bjnano.13.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/26/2022] [Indexed: 05/09/2023]
Abstract
Various kinds of monocrystalline coordination polymers are available thanks to the rapid development of related synthetic strategies. The intrinsic properties of coordination polymers have been carefully investigated on the basis of the available monocrystalline samples. Regarding the great potential of coordination polymers in various fields, it becomes important to tailor the properties of coordination polymers to meet practical requirements, which sometimes cannot be achieved through molecular/crystal engineering. Nanoarchitectonics offer unique opportunities to manipulate the properties of materials through integration of the monocrystalline building blocks with other components. Recently, nanoarchitectonics has started to play a significant role in the field of coordination polymers. In this short review, we summarize recent advances in nanoarchitectures based on monocrystalline coordination polymers that are formed through confined assembly. We first discuss the crystallization of coordination polymer single crystals inside confined liquid networks or on substrates through assembly of nodes and ligands. Then, we discuss assembly of preformed coordination polymer single crystals inside confined liquid networks or on substrates. In each part, we discuss the properties of the coordination polymer single crystals as well as their performance in energy, environmental, and biomedical applications.
Collapse
Affiliation(s)
- Lingling Xia
- Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Qinyue Wang
- Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ming Hu
- Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
16
|
Guari Y, Cahu M, Félix G, Sene S, Long J, Chopineau J, Devoisselle JM, Larionova J. Nanoheterostructures based on nanosized Prussian blue and its Analogues: Design, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Enhanced capacitive removal of hardness ions by hierarchical porous carbon cathode with high mesoporosity and negative surface charges. J Colloid Interface Sci 2022; 612:277-286. [PMID: 34995864 DOI: 10.1016/j.jcis.2021.12.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022]
Abstract
Capacitive deionization (CDI), as a promising desalination technology, has been widely applied for water purification, heavy metal removal and water softening. In this study, the hierarchical porous carbon (HPC) with extremely large specific surface area (∼1636 m2 g-1), high mesoporosity and negative surface charges, was successfully prepared by one-step carbonization of magnesium citrate and acid etching. HPC carbonized at 800 ℃ exhibited an excellent specific capacitance (207.2 F g-1). The negative surface charge characteristic of HPC was demonstrated by potential of zero charge test. With HPC-800 as a CDI cathode, the super high adsorption capacity of hardness ions (Mg2+: 472 μmol g-1, Ca2+: 425 μmol g-1) with ultrafast adsorption rate was realized, attributed to its abundant mesoporous structure and negative surface charges. The priority order of ion adsorption on HPC in the multi-component salt solution was Mg2+ > Ca2+ > K+ ≈ Na+. The desalination and softening of the actual brackish water have been simultaneously achieved by three-cell CDI stack after four times of adsorption, with 63% decrease of total dissolved solids and 76% reduction of hardness. The current HPC material with outstanding adsorption performance for hardness ions shows great potential in brackish water purification.
Collapse
|
18
|
Peng J, Zhang W, Liu Q, Wang J, Chou S, Liu H, Dou S. Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present, and Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108384. [PMID: 34918850 DOI: 10.1002/adma.202108384] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Prussian blue analogues (PBAs) have attracted wide attention for their application in the energy storage and conversion field due to their low cost, facile synthesis, and appreciable electrochemical performance. At the present stage, most research on PBAs is focused on their material-level optimization, whereas their properties in practical battery systems are seldom considered. This review aims to first provide an overview of the history and parameters of PBA materials and analyze the fundamental principles toward rational design of PBAs, and then evaluate the prospects and challenges for PBAs for practical sodium-ion batteries, hoping to bridge the gap between laboratory research and commercial reality.
Collapse
Affiliation(s)
- Jian Peng
- Institute of Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Wang Zhang
- Institute of Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Qiannan Liu
- Institute of Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jiazhao Wang
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Shulei Chou
- Institute of Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Huakun Liu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| |
Collapse
|
19
|
Chen SS, Yang ZJ, Chang CH, Koh HU, Al-Saeedi SI, Tung KL, Wu KCW. Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:313-324. [PMID: 35386948 PMCID: PMC8965340 DOI: 10.3762/bjnano.13.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/10/2022] [Indexed: 05/09/2023]
Abstract
Metal-organic framework (MOF) membranes are potentially useful in gas separation applications. Conventional methods of MOF membrane preparation require multiple steps and high-pressure conditions. In this study, a reliable one-step interfacial synthesis method under atmospheric pressure has been developed to prepare zeolitic imidazolate framework-8 (ZIF-8) membranes supported on porous α-Al2O3 disks. To obtain optimal ZIF-8 membranes, three reaction parameters were investigated, namely, reaction temperature, reaction time, and concentration of the organic linker (i.e., 2-methylimidazole). The growth of ZIF-8 membranes under various parameters was evaluated by field-emission scanning electron microscopy, and the optimal synthesis conditions were determined (i.e., 80 °C for 12 h in 50 mM of 2-methylimidazole). The as-synthesized ZIF-8 membranes were then applied to CO2/N2 gas separation, which exhibited a maximum separation factor of 5.49 and CO2 gas permeance of 0.47 × 10-7 mol·m-2·s-1·Pa-1.
Collapse
Affiliation(s)
- Season S Chen
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Zhen-Jie Yang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chia-Hao Chang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hoong-Uei Koh
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Sameerah I Al-Saeedi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P.O.Box 84428. Riyadh 116711, Saudi Arabia
| | - Kuo-Lun Tung
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
20
|
Kajal N, Singh V, Gupta R, Gautam S. Metal organic frameworks for electrochemical sensor applications: A review. ENVIRONMENTAL RESEARCH 2022; 204:112320. [PMID: 34740622 DOI: 10.1016/j.envres.2021.112320] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/01/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) are broadly known as porous coordination polymers, synthesized by metal-based nodes and organic linkers. MOFs are used in various fields like catalysis, energy storage, sensors, drug delivery etc., due to their versatile properties (tailorable pore size, high surface area, and exposed active sites). This review presents a detailed discussion of MOFs as an electrochemical sensor and their enhancement in the selectivity and sensitivity of the sensor. These sensors are used for the detection of heavy metal ions like Cd2+, Pb2+, Hg2+, and Cu2+ from groundwater. Various types of organic pollutants are also detected from the water bodies using MOFs. Furthermore, electrochemical sensing of antibiotics, phenolic compounds, and pesticides has been explored. In addition to this, there is also a detailed discussion of metal nano-particles and metal-oxide based composites which can sense various compounds like glucose, amino acids, uric acid etc. The review will be helpful for young researchers, and an inspiration to future research as challenges and future opportunities of MOF-based electrochemical sensors are also reported.
Collapse
Affiliation(s)
- Navdeep Kajal
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - Vishavjeet Singh
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - Ritu Gupta
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - Sanjeev Gautam
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
21
|
Oliveira ON, Caseli L, Ariga K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 2022; 122:6459-6513. [PMID: 35113523 DOI: 10.1021/acs.chemrev.1c00754] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.
Collapse
Affiliation(s)
- Osvaldo N Oliveira
- São Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 Sao Carlos, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044 Tsukuba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
22
|
Chaikittisilp W, Yamauchi Y, Ariga K. Material Evolution with Nanotechnology, Nanoarchitectonics, and Materials Informatics: What will be the Next Paradigm Shift in Nanoporous Materials? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107212. [PMID: 34637159 DOI: 10.1002/adma.202107212] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/05/2021] [Indexed: 05/27/2023]
Abstract
Materials science and chemistry have played a central and significant role in advancing society. With the shift toward sustainable living, it is anticipated that the development of functional materials will continue to be vital for sustaining life on our planet. In the recent decades, rapid progress has been made in materials science and chemistry owing to the advances in experimental, analytical, and computational methods, thereby producing several novel and useful materials. However, most problems in material development are highly complex. Here, the best strategy for the development of functional materials via the implementation of three key concepts is discussed: nanotechnology as a game changer, nanoarchitectonics as an integrator, and materials informatics as a super-accelerator. Discussions from conceptual viewpoints and example recent developments, chiefly focused on nanoporous materials, are presented. It is anticipated that coupling these three strategies together will open advanced routes for the swift design and exploratory search of functional materials truly useful for solving real-world problems. These novel strategies will result in the evolution of nanoporous functional materials.
Collapse
Affiliation(s)
- Watcharop Chaikittisilp
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Katsuhiko Ariga
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
23
|
Avila Y, Acevedo-Peña P, Reguera L, Reguera E. Recent progress in transition metal hexacyanometallates: From structure to properties and functionality. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Je J, Lim H, Jung HW, Kim SO. Ultrafast and Ultrastable Heteroarchitectured Porous Nanocube Anode Composed of CuS/FeS 2 Embedded in Nitrogen-Doped Carbon for Use in Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105310. [PMID: 34854537 DOI: 10.1002/smll.202105310] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The enhancement of the structural stability of conversion-based metal sulfides at high current densities remains a major challenge in realizing the practical application of sodium-ion batteries (SIBs). The instability of metal sulfides is caused by the large volume variation and sluggish reaction kinetics upon sodiation/desodiation. To overcome this, herein, a heterostructured nanocube anode composed of CuS/FeS2 embedded in nitrogen-doped carbon (CuS/FeS2 @NC) is synthesized. Size- and shape-controlled porous carbon nanocubes containing metallic nanoparticles are synthesized by the two-step pyrolysis of a bimetallic Prussian blue analog (PBA) precursor. The simple sulfurization-induced formation of highly conductive CuS along with FeS2 facilitates sodium-ion diffusion and enhances the redox reversibility upon cycling. The mesoporous carbon structure provides excellent electrolyte impregnation, efficient charge transport pathways, and good volume expansion buffering. The CuS/FeS2 @NC nanocube anode exhibits excellent sodium storage characteristics including high desodiation capacity (608 mAh g-1 at 0.2 A g-1 ), remarkable long-term cycle life (99.1% capacity retention after 300 cycles at 5 A g-1 ), and good rate capability up to 5 A g-1 . The simple, facile synthetic route combined with the rational design of bimetallic PBA nanostructures can be widely utilized in the development of conversion-based metal sulfides and other high-capacity anode materials for high-performance SIBs.
Collapse
Affiliation(s)
- Junhwan Je
- Energy Storage Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyojun Lim
- Energy Storage Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyun Wook Jung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sang-Ok Kim
- Energy Storage Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| |
Collapse
|
25
|
Ishii Y, Al-Zubaidi A, Taniguchi Y, Jindo S, Kawasaki S. Single-walled carbon nanotubes as a reducing agent for the synthesis of a Prussian blue-based composite: a quartz crystal microbalance study. NANOSCALE ADVANCES 2022; 4:510-520. [PMID: 36132684 PMCID: PMC9417717 DOI: 10.1039/d1na00739d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/19/2021] [Indexed: 06/16/2023]
Abstract
We investigated the synthesis mechanism of Prussian blue (PB) crystals supported on single-walled carbon nanotubes (SWCNTs), by performing in situ quartz crystal microbalance (QCM) measurements to probe the change in the electrode mass during the reaction, and using photoirradiation at designated stages of the process. We found that in contrast to existing hypotheses, light irradiation played no role in the synthesis process of Prussian blue on SWCNTs. On the other hand, the number of electrons transferred per one mole of the obtained product, and the number of electrons transferrable from SWCNTs, calculated from the density of states (DOS) of the SWCNTs in the sample, both favor the hypothesis of the reaction being triggered by direct electron transfer from SWCNTs to Fe3+, which occurs because of the energy difference between the Fermi level of SWCNTs and redox potential of Fe3+ ions.
Collapse
Affiliation(s)
- Yosuke Ishii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Ayar Al-Zubaidi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Yoshimitsu Taniguchi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Shinya Jindo
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Shinji Kawasaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
26
|
Chu J, Fan Y, Sun L, Zhuang C, Li Y, Zou X, Min C, Liu X, Wang Y, Zhu G. Exploring the Zn-regulated function in Co–Zn catalysts for efficient hydrogenation of ethyl levulinate to γ-valerolactone. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00244b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A series of CoZn catalysts supported on N-doped porous carbon (CoxZny@NPC-T) prepared at different calcination temperatures are studied for catalytic hydrogenation of biomass-based ethyl levulinate to γ-valerolactone, in which Zn is introduced as a regulator.
Collapse
Affiliation(s)
- Jie Chu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Yafei Fan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Lu Sun
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Changfu Zhuang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Yunxian Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Chungang Min
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Xiaoteng Liu
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Ying Wang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
27
|
Ma X, Gong H, Ogino K, Yan X, Xing R. Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:284-291. [PMID: 35281632 PMCID: PMC8895033 DOI: 10.3762/bjnano.13.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/18/2022] [Indexed: 05/09/2023]
Abstract
Oxidative stress can lead to permanent and irreversible damage to cellular components and even cause cancer and other diseases. Therefore, the development of antioxidative reagents is an important strategy to alleviate chronic diseases and maintain the redox balance in cells. Small-molecule bioactive compounds have exhibited huge therapeutic potential as antioxidants and anti-inflammatory agents. Myricetin (Myr), a well-known natural flavonoid, has drawn wide attention because of its high antioxidant, anti-inflammatory, antimicrobial, and anticancer efficacy. Especially regarding antioxidation, Myr is capable of not only chelating intracellular transition metal ions for removing reactive oxygen species, but also of activating antioxidant enzymes and related signal pathways and, thus, of sustainably scavenging radicals. However, Myr is poorly soluble in water, which limits its bioavailability for biomedical applications, and even its clinical therapeutic potential. The antioxidant peptide glutathione (GSH) plays a role as antioxidant in cells and possesses good hydrophilicity and biocompatibility. However, it is easily metabolized by enzymes. To take advantages of their antioxidation activity and to overcome the abovementioned limitations, GSH, Zn2+, and Myr were selected to co-assemble into Myr-Zn2+-GSH nanoparticles or nanoarchitectonics. This study offers a new design to harness stable, sustainable antioxidant nanoparticles with high loading capacity, high bioavailability, and good biocompatibility as antioxidants.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
- State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Institute of Process Engineering, Beijing, P. R. China
| | - Haoning Gong
- State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Institute of Process Engineering, Beijing, P. R. China
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Institute of Process Engineering, Beijing, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Institute of Process Engineering, Beijing, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
28
|
Zheng W, Ma X, Sun H, Li X, Zhang Y, Yin Z, Chen W, Zhou Y. Fe–Ni–Co trimetallic oxide hierarchical nanospheres as high-performance bifunctional electrocatalysts for water electrolysis. NEW J CHEM 2022. [DOI: 10.1039/d2nj01762h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe–Ni–Co spheres were used as bifunctional catalysts exhibit high total water decomposition activity. Only a cell voltage of 1.61 V was required to attain a current density of 10 mA cm−2.
Collapse
Affiliation(s)
- Wenqing Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Xinzhi Ma
- Ministry of Education and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Han Sun
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Xinping Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Zhuoxun Yin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Wei Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yang Zhou
- College of Science, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
29
|
Wang H, Chen B, Liu DJ, Xu X, Osmieri L, Yamauchi Y. Nanoarchitectonics of Metal-Organic Frameworks for Capacitive Deionization via Controlled Pyrolyzed Approaches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102477. [PMID: 34585513 DOI: 10.1002/smll.202102477] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/08/2021] [Indexed: 05/12/2023]
Abstract
Next-generation desalination technologies are needed to meet the increasing demand for clean water. Capacitive deionization (CDI) is a thermodynamically efficient technique to treat non-potable water with relatively low salinity. The salt removal capacity and rate of CDI are highly dependent on the electrode materials, which are preferentially porous to store ions through electrosorption and/or redox reactions. Metal-organic frameworks (MOFs) with "infinite" combinations of transition metals and organic linkers simplify the production of carbonaceous materials often with redox-active components after pyrolysis. MOFs-derived materials show great tunability in both compositions and structures but require further refinement to improve CDI performance. This review article summarizes recent progress in derivatives of MOFs and MOF-like materials used as CDI electrodes, focusing on the structural and compositional material considerations as well as the processing parameters and electrode architectures of the device. Furthermore, the challenges and opportunities associated with this research area are also discussed.
Collapse
Affiliation(s)
- Hao Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Biaohua Chen
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Di-Jia Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Xingtao Xu
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Luigi Osmieri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
30
|
Alowasheeir A, Nara H, Eguchi M, Yamauchi Y. Ni–Fe nanoframes via a unique structural formation induced by sonochemical etching. Chem Commun (Camb) 2022; 58:12588-12591. [DOI: 10.1039/d2cc03253h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ni–Fe nanoframe exhibits unique structural merits including 3D open structure and high surface area, enhancing electrochemical properties for oxygen-evolution reaction (OER).
Collapse
Affiliation(s)
- Azhar Alowasheeir
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hiroki Nara
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Miharu Eguchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
31
|
Mamontova E, Salles F, Guari Y, Larionova J, Long J. Post-synthetic modification of Prussian blue type nanoparticles: tailoring the chemical and physical properties. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01068b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on recent advances in the post-synthetic modification of nano-sized Prussian blue and its analogues and compares them with the current strategies used in metal–organic frameworks to give future outlooks in this field.
Collapse
Affiliation(s)
| | - Fabrice Salles
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
32
|
Tripathy RK, Samantara AK, Behera JN. Electrochemically activated Co-Prussian blue analogue derived amorphous CoB nanostructures: Efficient electrocatalyst for oxygen evolution reaction. Dalton Trans 2022; 51:2782-2788. [DOI: 10.1039/d1dt03947d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxygen evolution reaction is a kinetically sluggish half-cell reaction plays an important role in tuning the efficiency of various electrochemical energy conversion systems. However, this process can be facilitated...
Collapse
|
33
|
Ariga K, Lvov Y, Decher G. There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices. Phys Chem Chem Phys 2021; 24:4097-4115. [PMID: 34942636 DOI: 10.1039/d1cp04669a] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoarchitectonics approaches can produce functional materials from tiny units through combination of various processes including atom/molecular manipulation, chemical conversion, self-assembly/self-organization, microfabrication, and bio-inspired procedures. Existing fabrication approaches can be regarded as fitting into the same concept. In particular, the so-called layer-by-layer (LbL) assembly method has huge potential for preparing applicable materials with a great variety of assembling mechanisms. LbL assembly is a multistep process where different components can be organized in planned sequences while simple alignment options provide access to superstructures, for example helical structures, and anisotropies which are important aspects of nanoarchitectonics. In this article, newly-featured examples are extracted from the literature on LbL assembly discussing trends for composite functional materials according to (i) principles and techniques, (ii) composite materials, and (iii) applications. We present our opinion on the present trends, and the prospects of LbL assembly. While this method has already reached a certain maturity, there is still plenty of room for expanding its usefulness for the fabrication of nanoarchitectonics-based materials and devices.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Gero Decher
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Université de Strasbourg, Faculté de Chimie and CNRS Institut Charles Sadron, F-67000 Strasbourg, France.,International Center for Frontier Research in Chemistry, F-67083 Strasbourg, France
| |
Collapse
|
34
|
Zhang W, Cai G, Wu R, He Z, Yao HB, Jiang HL, Yu SH. Templating Synthesis of Metal-Organic Framework Nanofiber Aerogels and Their Derived Hollow Porous Carbon Nanofibers for Energy Storage and Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004140. [PMID: 33522114 DOI: 10.1002/smll.202004140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/01/2020] [Indexed: 06/12/2023]
Abstract
A kind of metal-organic framework (MOF) aerogels are synthesized by the self-assembly of uniform and monodisperse MOF nanofibers. Such MOF nanofiber aerogels as carbon precursors can effectively avoid the aggregation of nanofibers during calcination, resulting in the formation of well-dispersed hollow porous carbon nanofibers (HPCNs). Moreover, HPCNs with well-dispersion are investigated as sulfur host materials for Li-S batteries and electrocatalysts for cathode oxygen reduction reaction (ORR). On the one hand, HPCNs act as hosts for the encapsulation of sulfur into their hierarchical micro- and mesopores as well as hollow nanostructures. The obtained sulfur cathode exhibits excellent electrochemical features, good cycling stability and high coulombic efficiency. On the other hand, HPCNs exhibit better electrocatalytic activity than aggregated counterparts for ORR. Furthermore, a highly active single atom electrocatalyst can be prepared by the carbonization of bimetallic MOF nanofiber aerogels. The results indicate that well-dispersed HPCNs show enhanced electrochemical properties in contrast to their aggregated counterparts, suggesting that the dispersion situation of nanomaterials significantly influence their final performance. The present concept of employing MOF nanofiber aerogels as precursors will provide a new strategy to the design of MOF-derived nanomaterials with well-dispersion for their applications in energy storage and conversion.
Collapse
Affiliation(s)
- Wang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Guorui Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Rui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhen He
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hong-Bin Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shu-Hong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
35
|
Shan Y, Zhang G, Yin W, Pang H, Xu Q. Recent Progress in Prussian Blue/Prussian Blue Analogue-Derived Metallic Compounds. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Shan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China (Y. Shan, G.X. Zhang, W. Yin, Prof. H. Pang, Prof. Q. Xu)
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China (Y. Shan, G.X. Zhang, W. Yin, Prof. H. Pang, Prof. Q. Xu)
| | - Wei Yin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China (Y. Shan, G.X. Zhang, W. Yin, Prof. H. Pang, Prof. Q. Xu)
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China (Y. Shan, G.X. Zhang, W. Yin, Prof. H. Pang, Prof. Q. Xu)
| | - Qiang Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China (Y. Shan, G.X. Zhang, W. Yin, Prof. H. Pang, Prof. Q. Xu)
- Department of Materials Science and Engineering, SUSTech Academy for Advanced Interdisciplinary Studies and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China. (Prof. Q. Xu)
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. (Prof. Q. Xu)
| |
Collapse
|
36
|
Xiao T, Fan L, Liu R, Huang X, Wang S, Xiao L, Pang Y, Li D, Liu J, Min Y. Fabrication of Dexamethasone-Loaded Dual-Metal-Organic Frameworks on Polyetheretherketone Implants with Bacteriostasis and Angiogenesis Properties for Promoting Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50836-50850. [PMID: 34689546 DOI: 10.1021/acsami.1c18088] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyetheretherketone (PEEK) is a biocompatible polymer, but its clinical application is largely limited due to its inert surface. To solve this problem, a multifunctional PEEK implant is urgently fabricated. In this work, a dual-metal-organic framework (Zn-Mg-MOF74) coating is bonded to PEEK using a mussel-inspired polydopamine interlayer to prepare the coating, and then, dexamethasone (DEX) is loaded on the coating surface. The PEEK surface with the multifunctional coating provides superior hydrophilicity and favorable stability and forms an alkaline microenvironment when Mg2+, Zn2+, 2,5-dihydroxyterephthalic acid, and DEX are released due to the coating degradation. In vitro results showed that the multifunctional coating has strong antibacterial ability against both Escherichia coli and Staphylococcus aureus; it also improves human umbilical vein endothelial cell angiogenic ability and enhances rat bone marrow mesenchymal stem cell osteogenic differentiation activity. Furthermore, the in vivo rat subcutaneous infection model, chicken chorioallantoic membrane model, and rat femoral drilling model verify that the PEEK implant coated with the multifunctional coating has strong antibacterial and angiogenic ability and promotes the formation of new bone around the implant with a stronger bone-implant interface. Our findings indicate that DEX loaded on the Zn-Mg-MOF74 coating-modified PEEK implant with bacteriostasis, angiogenesis, and osteogenesis properties has great clinical application potential as bone graft materials.
Collapse
Affiliation(s)
- Tianhua Xiao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Lei Fan
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rongtao Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingwen Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shihuan Wang
- Child Developmental & Behavioral Center, Third Affiliated Hospital of Sun Yat-sen University, No.600, Tianhe Road, Guangzhou 510630, China
| | - Liangang Xiao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiyu Pang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Da Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yonggang Min
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
37
|
Dang L, Guo J, Kong L. Design and Preparation of Lotus Root Knot Hierarchical Porous Carbon by Highly Efficient Chemistry Activation for Electric Double Layer Capacitors. ChemElectroChem 2021. [DOI: 10.1002/celc.202101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Le Dang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals Lanzhou University of Technology Lanzhou 730050 P.R. China
| | - Jia‐Kang Guo
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals Lanzhou University of Technology Lanzhou 730050 P.R. China
| | - Ling‐Bin Kong
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals Lanzhou University of Technology Lanzhou 730050 P.R. China
- School of Materials Science and Engineering Lanzhou University of Technology Lanzhou 730050 P.R. China
| |
Collapse
|
38
|
Sharma S, Masud MK, Kaneti YV, Rewatkar P, Koradia A, Hossain MSA, Yamauchi Y, Popat A, Salomon C. Extracellular Vesicle Nanoarchitectonics for Novel Drug Delivery Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102220. [PMID: 34216426 DOI: 10.1002/smll.202102220] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Extracellular vesicles (EVs) can transfer intercellular messages in various (patho)physiological processes and transport biomolecules to recipient cells. EVs possess the capacity to evade the immune system and remain stable over long periods, identifying them as natural carriers for drugs and biologics. However, the challenges associated with EVs isolation, heterogeneity, coexistence with homologous biomolecules, and lack of site-specific delivery, have impeded their potential. In recent years, the amalgamation of EVs with rationally engineered nanostructures has been proposed for achieving effective drug loading and site-specific delivery. With the advancement of nanotechnology and nanoarchitectonics, different nanostructures with tunable size, shapes, and surface properties can be integrated with EVs for drug loading, target binding, efficient delivery, and therapeutics. Such integration may enable improved cellular targeting and the protection of encapsulated drugs for enhanced and specific delivery to target cells. This review summarizes the recent development of nanostructure amalgamated EVs for drug delivery, therapeutics, and real-time monitoring of disease progression. With a specific focus on the exosomal cargo, diverse drug delivery system, and biomimetic nanostructures based on EVs for selective drug delivery, this review also chronicles the needs and challenges of EV-based biomimetic nanostructures and provides a future outlook on the strategies posed.
Collapse
Affiliation(s)
- Shayna Sharma
- Exosome Biology Laboratory, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Herston, Brisbane City, QLD, 4029, Australia
| | - Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science & Technology, Sylhet, 3114, Bangladesh
| | - Yusuf Valentino Kaneti
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Prarthana Rewatkar
- School of Pharmacy, The University of Queensland, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Aayushi Koradia
- School of Pharmacy, The University of Queensland, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Md Shahriar A Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, Brisbane, QLD, 4102, Australia
- Mater Research Institute-The University of Queensland and Translational Research Institute, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Herston, Brisbane City, QLD, 4029, Australia
- Faculty of Health Sciences, University of Queensland, Building 71/918, Royal Brisbane Hospital, Herston, Brisbane, QLD, 4029, Australia
| |
Collapse
|
39
|
Fang X, Fan A, Wang Z, Wang Y, Li Y, Li S, Wang Y, Dong C, Sun H, Liu Y, Zhang X, Han Y, Dai X. Multicomponent Pt-based catalyst for highly efficient chemoselective hydrogenation of 4-carboxybenzaldehyde. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Mansas C, Rey C, Deschanels X, Causse J. Scattering techniques to probe the templating effect in the synthesis of copper hexacyanoferrate nanoparticles via reverse microemulsions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Xing Y, Zhou S, Wu G, Wang C, Yuan X, Feng Q, Zhu X, Qu J. A sensitive electrochemical sensor for bisphenol F detection and its application in evaluating cytotoxicity. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Bimetallic CoZn Nanocrystals Embedded in N-Doped Graphene Layers as Electrocatalysts for Oxygen Reduction Reaction. Catal Letters 2021. [DOI: 10.1007/s10562-021-03781-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Maji S, Shrestha LK, Ariga K. Nanoarchitectonics for Hierarchical Fullerene Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2146. [PMID: 34443975 PMCID: PMC8400563 DOI: 10.3390/nano11082146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
Nanoarchitectonics is a universal concept to fabricate functional materials from nanoscale building units. Based on this concept, fabrications of functional materials with hierarchical structural motifs from simple nano units of fullerenes (C60 and C70 molecules) are described in this review article. Because fullerenes can be regarded as simple and fundamental building blocks with mono-elemental and zero-dimensional natures, these demonstrations for hierarchical functional structures impress the high capability of the nanoarchitectonics approaches. In fact, various hierarchical structures such as cubes with nanorods, hole-in-cube assemblies, face-selectively etched assemblies, and microstructures with mesoporous frameworks are fabricated by easy fabrication protocols. The fabricated fullerene assemblies have been used for various applications including volatile organic compound sensing, microparticle catching, supercapacitors, and photoluminescence systems.
Collapse
Affiliation(s)
- Subrata Maji
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
44
|
Teng XL, Zhu XY, Lu JY, Cheng T, Liu M. A new Cu(II)-based coordination polymer: structural determination and anti-rectal cancer activity. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1813174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xiang-Long Teng
- Department of Anorectal Surgery, Lishui City People’s Hospital Anorectal surgery, Lishui, Zhejiang, China
| | - Xi-Yuan Zhu
- Department of Anorectal Surgery, Lishui City People’s Hospital Anorectal surgery, Lishui, Zhejiang, China
| | - Ji-Ying Lu
- Department of Anorectal Surgery, Lishui City People’s Hospital Anorectal surgery, Lishui, Zhejiang, China
| | - Tao Cheng
- Department of Anorectal Surgery, Lishui City People’s Hospital Anorectal surgery, Lishui, Zhejiang, China
| | - Ming Liu
- Department of Gastrointestinal Surgery, Lishui City People’s Hospital Anorectal surgery, Lishui, Zhejiang, China
| |
Collapse
|
45
|
Dual functional fluorosensors based on flexible bis(pyridylbenzimidazole) derivatives with highly selective and sensitive detection of acetylacetone and Fe3+ ions. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Boosting supercapacitive performance of flexible carbon via surface engineering. J Colloid Interface Sci 2021; 602:636-645. [PMID: 34147754 DOI: 10.1016/j.jcis.2021.06.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/29/2021] [Accepted: 06/06/2021] [Indexed: 11/20/2022]
Abstract
The relatively low specific capacitance of flexible carbons hinders their practical application for fabricating high-performance flexible supercapacitors. In this work, a surface engineering method is proposed to boost the supercapacitive performance of the flexible carbon. In this method, a flexible carbon was fabricated from carbon felt via co-activation with potassium argininate and potassium hydroxide (KOH) as activators, and the resulting material is abbreviated as AKCF. Unlike traditional KOH activation processes, the addition of potassium argininate can produce a micro-graphitized carbon layer to be the outer layer of AKCF fibers for achieving better electronic transfer. Due to the improved conductivity and lower charge transfer resistance endowed by a thin micro-graphitized carbon layer, the capacitance of the AKCF-0.1 (0.1 M arginine was used) electrode obtained by the co-activation process is elevated to a 1.8-fold higher value of 403 C·g-1 (2583 mC·cm-2) relative to the AKCF-0 (0 M arginine was used) electrode prepared by KOH activation alone (222 C·g-1 or 1369 mC·cm-2). Moreover, this AKCF-0.1 electrode also displays satisfactory rate capability (66% capacitance retention after a 20-fold current increase) and highly stable cycling performance (no capacitance decline after 20,000 cycles). In addition, the asymmetric supercapacitors constructed with this AKCF-0.1 electrode as the flexible negative electrode expresses high energy densities of 68.4 Wh·kg-1 and 0.139 mWh·cm-2 in aqueous and gel electrolytes, respectively.
Collapse
|
47
|
Zhang Y, Liu Y, Zhang T, Wang Q, Huang L, Zhong Z, Lin J, Hu K, Xin H, Wang X. Targeted Thrombolytic Therapy with Metal-Organic-Framework-Derived Carbon Based Platforms with Multimodal Capabilities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24453-24462. [PMID: 34008940 DOI: 10.1021/acsami.1c03134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A dual-response (near-infrared, alternating magnetic field) multifunctional nanoplatform was developed based on urokinase plasminogen activators (uPA)-loaded metal-organic-framework (MOF)-derived carbon nanomaterials (referred to uPA@CFs below) for thrombolytic therapy. uPA loaded in mesoporous CFs could be released under the action of near-infrared (NIR)-mediated photothermy to achieve superficial thrombolysis. More importantly, with the assistance of alternating magnetic field (AMF), this system could also precisely heat the thrombosis in the deep tissue area. Quantitative experiments proved that the thrombolytic efficiency of this dual-response system at deep venous thrombosis was nearly 6 times than that of NIR alone. This is the first application that MOF-derived carbon nanomaterials in the field of targeted thrombolysis. To our delight, the MOF-derived carbon nanomaterials (CFs) not only maintained the drug-carrying capacity, but also endowed CFs with reliable magnetic targeting ability. More encouragingly, the CFs also showed extraordinary angiogenic performance, thus opening up the prospect of its clinical application.
Collapse
Affiliation(s)
- Yini Zhang
- the National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P.R. China
| | - Yu Liu
- College of Mechanical & Electronic Engineering, Nanchang University, Nanchang, Jiangxi 330088, P.R. China
| | - Teng Zhang
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Qingqing Wang
- the National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P.R. China
| | - Ling Huang
- the National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P.R. China
| | - Zhiwei Zhong
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Jiarui Lin
- the National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P.R. China
| | - Kaigeng Hu
- the National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P.R. China
| | - Hongbo Xin
- the National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P.R. China
| | - Xiaolei Wang
- the National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P.R. China
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330088, P.R. China
| |
Collapse
|
48
|
Choi WH, Kim K, Lee H, Choi JW, Park DG, Kim GH, Choi KM, Kang JK. Metal-Organic Fragments with Adhesive Excipient and Their Utilization to Stabilize Multimetallic Electrocatalysts for High Activity and Robust Durability in Oxygen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100044. [PMID: 34105280 PMCID: PMC8188218 DOI: 10.1002/advs.202100044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Multimetallic electrocatalysts have shown great potential to improve electrocatalytic performance, but their deteriorations in activity and durability are yet to be overcome. Here, metal-organic fragments with adhesive excipient to realize high activity with good durability in oxygen evolution reaction (OER) are developed. First, a leaf-like zeolitic-imidazolate framework (ZIF-L) is synthesized. Then, ionized species in hydrogen plasma attack preferentially the organic linkers of ZIF-L to derive cobalt-imidazole fragments (CIFs) as adhesive excipient, while they are designed to retain the coordinated cobalt nodes. Moreover, the vacant coordination sites at cobalt nodes and the unbound nitrogen at organic linkers induce high porosity and conductivity. The CIFs serve to stably impregnate trimetallic FeNiMo electrocatalysts (CIF:FeNiMo), and CIF:FeNiMo containing Fe contents of 22% and hexavalent Mo contents show to enable high activity with low overpotentials (203 mV at 10 mA cm-2 and 238 mV at 100 mA cm-2 ) in OER. The near O K-edge extended X-ray absorption fine structure proves further that high activity for OER originates from the partially filled eg orbitals. Additionally, CIF:FeNiMo exhibit good durability, as demonstrated by high activity retention during at least 45 days in OER.
Collapse
Affiliation(s)
- Won Ho Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Keon‐Han Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Heebin Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jae Won Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Dong Gyu Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Gi Hwan Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological EngineeringSookmyung Women's UniversityCheongpa‐ro 47‐gil 100, Yongsan‐guSeoul04310Republic of Korea
| | - Jeung Ku Kang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
49
|
Gunday ST, Qahtan T, Cevik E, Anil I, Alagha O, Bozkurt A. Highly Flexible and Tailorable Cobalt-Doped Cross-Linked Polyacrylamide-Based Electrolytes for Use in High-Performance Supercapacitors. Chem Asian J 2021; 16:1438-1444. [PMID: 33834630 DOI: 10.1002/asia.202100276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Indexed: 11/11/2022]
Abstract
A novel hydrogel polymer electrolyte was prepared by incorporation of 1,4-butanediol diglycidyl ether (BG) to cross-linked polyacrylamide (PAM). The electrolyte (PAMBG) was modified with cobalt (II) sulfate with various doping ratios (PAMBGCoX) to increase the capacitance by increasing faradaic reactions. The supercapacitor device assembly was performed by using active carbon (AC) electrodes and hydrogel polymer electrolytes. The specific capacitance of the PAMBGCo5 device indicated 130 F g-1 , which is at least a seven-fold improvement due to the insertion of Co as a redox component. The electrolyte device, PAMBGCo5, displays superior performance having an energy density of 38 Wh kg-1 at a power density of 500 W kg-1 . Additionally, with the same hydrogel, the device performed 10,000 galvanostatic charge-discharge cycles via retaining 91% of the initial capacitance. A cost-effective electrolyte, PAMBGCo5, was tested in a carbon-based supercapacitor under bent and twisted conditions at various angles, confirming the robustness of the device.
Collapse
Affiliation(s)
- Seyda Tugba Gunday
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, West Campus, PO Box:1982, Dammam, 31441, Saudi Arabia
| | - Talal Qahtan
- Department of Mechanical Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Emre Cevik
- Department of Genetics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, West Campus, PO Box:1982, Dammam, 31441, Saudi Arabia
| | - Ismail Anil
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, East Campus, PO Box:1982, Dammam, 31441, Saudi Arabia
| | - Omar Alagha
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, East Campus, PO Box:1982, Dammam, 31441, Saudi Arabia
| | - Ayhan Bozkurt
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, West Campus, PO Box:1982, Dammam, 31441, Saudi Arabia
| |
Collapse
|
50
|
Estelrich J, Busquets MA. Prussian Blue: A Nanozyme with Versatile Catalytic Properties. Int J Mol Sci 2021; 22:ijms22115993. [PMID: 34206067 PMCID: PMC8198601 DOI: 10.3390/ijms22115993] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Nanozymes, nanomaterials with enzyme-like activities, are becoming powerful competitors and potential substitutes for natural enzymes because of their excellent performance. Nanozymes offer better structural stability over their respective natural enzymes. In consequence, nanozymes exhibit promising applications in different fields such as the biomedical sector (in vivo diagnostics/and therapeutics) and the environmental sector (detection and remediation of inorganic and organic pollutants). Prussian blue nanoparticles and their analogues are metal–organic frameworks (MOF) composed of alternating ferric and ferrous irons coordinated with cyanides. Such nanoparticles benefit from excellent biocompatibility and biosafety. Besides other important properties, such as a highly porous structure, Prussian blue nanoparticles show catalytic activities due to the iron atom that acts as metal sites for the catalysis. The different states of oxidation are responsible for the multicatalytic activities of such nanoparticles, namely peroxidase-like, catalase-like, and superoxide dismutase-like activities. Depending on the catalytic performance, these nanoparticles can generate or scavenge reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Joan Estelrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain;
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Avda. Diagonal 645, 08028 Barcelona, Catalonia, Spain
- Correspondence:
| | - M. Antònia Busquets
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain;
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Avda. Diagonal 645, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|