1
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
2
|
Nonoyama S, Maeno S, Gotoh Y, Sugimoto R, Tanaka K, Hayashi T, Masuda S. Increased intracellular H 2S levels enhance iron uptake in Escherichia coli. mBio 2024; 15:e0199124. [PMID: 39324809 PMCID: PMC11481527 DOI: 10.1128/mbio.01991-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
We investigated the impact of intracellular hydrogen sulfide (H2S) hyperaccumulation on the transcriptome of Escherichia coli. The wild-type (WT) strain overexpressing mstA, encoding 3-mercaptopyruvate sulfur transferase, produced significantly higher H2S levels than the control WT strain. The mstA-overexpressing strain exhibited increased resistance to antibiotics, supporting the prior hypothesis that intracellular H2S contributes to oxidative stress responses and antibiotic resistance. RNA-seq analysis revealed that over 1,000 genes were significantly upregulated or downregulated upon mstA overexpression. The upregulated genes encompassed those associated with iron uptake, including siderophore synthesis and iron import transporters. The mstA-overexpressing strain showed increased levels of intracellular iron content, indicating that H2S hyperaccumulation affects iron availability within cells. We found that the H2S-/supersulfide-responsive transcription factor YgaV is required for the upregulated expression of iron uptake genes in the mstA-overexpression conditions. These findings indicate that the expression of iron uptake genes is regulated by intracellular H2S, which is crucial for oxidative stress responses and antibiotic resistance in E. coli. IMPORTANCE H2S is recognized as a second messenger in bacteria, playing a vital role in diverse intracellular and extracellular activities, including oxidative stress responses and antibiotic resistance. Both H2S and iron serve as essential signaling molecules for gut bacteria. However, the intricate intracellular coordination between them, governing bacterial physiology, remains poorly understood. This study unveils a close relationship between intracellular H2S accumulation and iron uptake activity, a relationship critical for antibiotic resistance. We present additional evidence expanding the role of intracellular H2S synthesis in bacterial physiology.
Collapse
Affiliation(s)
- Shouta Nonoyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shintaro Maeno
- Department of Biological Chemistry, College of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryota Sugimoto
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
3
|
Benedict B, Kristensen SM, Duxin JP. What are the DNA lesions underlying formaldehyde toxicity? DNA Repair (Amst) 2024; 138:103667. [PMID: 38554505 DOI: 10.1016/j.dnarep.2024.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/01/2024]
Abstract
Formaldehyde is a highly reactive organic compound. Humans can be exposed to exogenous sources of formaldehyde, but formaldehyde is also produced endogenously as a byproduct of cellular metabolism. Because formaldehyde can react with DNA, it is considered a major endogenous source of DNA damage. However, the nature of the lesions underlying formaldehyde toxicity in cells remains vastly unknown. Here, we review the current knowledge of the different types of nucleic acid lesions that are induced by formaldehyde and describe the repair pathways known to counteract formaldehyde toxicity. Taking this knowledge together, we discuss and speculate on the predominant lesions generated by formaldehyde, which underly its natural toxicity.
Collapse
Affiliation(s)
- Bente Benedict
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Stella Munkholm Kristensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark.
| |
Collapse
|
4
|
Wang S, Fang R, Wang H, Li X, Xing J, Li Z, Song N. The role of transcriptional regulators in metal ion homeostasis of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2024; 14:1360880. [PMID: 38529472 PMCID: PMC10961391 DOI: 10.3389/fcimb.2024.1360880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Metal ions are essential trace elements for all living organisms and play critical catalytic, structural, and allosteric roles in many enzymes and transcription factors. Mycobacterium tuberculosis (MTB), as an intracellular pathogen, is usually found in host macrophages, where the bacterium can survive and replicate. One of the reasons why Tuberculosis (TB) is so difficult to eradicate is the continuous adaptation of its pathogen. It is capable of adapting to a wide range of harsh environmental stresses, including metal ion toxicity in the host macrophages. Altering the concentration of metal ions is the common host strategy to limit MTB replication and persistence. This review mainly focuses on transcriptional regulatory proteins in MTB that are involved in the regulation of metal ions such as iron, copper and zinc. The aim is to offer novel insights and strategies for screening targets for TB treatment, as well as for the development and design of new therapeutic interventions.
Collapse
Affiliation(s)
- Shuxian Wang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Ren Fang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Hui Wang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Xiaotian Li
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Jiayin Xing
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Zhaoli Li
- Drug Innovation Research Center, SAFE Pharmaceutical Technology Co. Ltd., Beijing, China
| | - Ningning Song
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
5
|
Igbaria-Jaber Y, Hofmann L, Gevorkyan-Airapetov L, Shenberger Y, Ruthstein S. Revealing the DNA Binding Modes of CsoR by EPR Spectroscopy. ACS OMEGA 2023; 8:39886-39895. [PMID: 37901548 PMCID: PMC10601412 DOI: 10.1021/acsomega.3c06336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
In pathogens, a unique class of metalloregulator proteins, called gene regulatory proteins, sense specific metal ions that initiate gene transcription of proteins that export metal ions from the cell, thereby preventing toxicity and cell death. CsoR is a metalloregulator protein found in various bacterial systems that "sense" Cu(I) ions with high affinity. Upon copper binding, CsoR dissociates from the DNA promoter region, resulting in initiation of gene transcription. Crystal structures of CsoR in the presence and absence of Cu(I) from various bacterial systems have been reported, suggesting either a dimeric or tetrameric structure of these helical proteins. However, structural information about the CsoR-DNA complex is missing. Here, we applied electron paramagnetic resonance (EPR) spectroscopy to follow the conformational and dynamical changes that Mycobacterium tuberculosis CsoR undergoes upon DNA binding in solution. We showed that the quaternary structure is predominantly dimeric in solution, and only minor conformational and dynamical changes occur in the DNA bound state. Also, labeling of the unresolved C- terminus revealed no significant change in dynamics upon DNA binding. These observations are unique, since for other bacterial copper metalloregulators, such as the MerR and CopY families, major conformational changes were observed upon DNA binding, indicating a different mode of action for this protein family.
Collapse
Affiliation(s)
- Yasmin Igbaria-Jaber
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Lukas Hofmann
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yulia Shenberger
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Sharon Ruthstein
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
6
|
Giedroc DP, Antelo GT, Fakhoury JN, Capdevila DA. Sensing and regulation of reactive sulfur species (RSS) in bacteria. Curr Opin Chem Biol 2023; 76:102358. [PMID: 37399745 PMCID: PMC10526684 DOI: 10.1016/j.cbpa.2023.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 07/05/2023]
Abstract
The infected host deploys generalized oxidative stress caused by small inorganic reactive molecules as antibacterial weapons. An emerging consensus is that hydrogen sulfide (H2S) and forms of sulfur with sulfur-sulfur bonds termed reactive sulfur species (RSS) provide protection against oxidative stressors and antibiotics, as antioxidants. Here, we review our current understanding of RSS chemistry and its impact on bacterial physiology. We start by describing the basic chemistry of these reactive species and the experimental approaches developed to detect them in cells. We highlight the role of thiol persulfides in H2S-signaling and discuss three structural classes of ubiquitous RSS sensors that tightly regulate cellular H2S/RSS levels in bacteria, with a specific focus on the chemical specificity of these sensors.
Collapse
Affiliation(s)
- David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Giuliano T Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Argentina
| | - Joseph N Fakhoury
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
7
|
Barrows JK, Van Dyke MW. A CsoR family transcriptional regulator, TTHA1953, controls the sulfur oxidation pathway in Thermus thermophilus HB8. J Biol Chem 2023; 299:104759. [PMID: 37116710 DOI: 10.1016/j.jbc.2023.104759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
Transcription regulation is a critical means by which microorganisms sense and adapt to their environments. Bacteria contain a wide range of highly conserved families of transcription factors that have evolved to regulate diverse sets of genes. It is increasingly apparent that structural similarities between transcription factors do not always equate to analogous transcription regulatory networks. For example, transcription factors within the CsoR/RcnR family have been found to repress a wide range of gene targets, including various metal efflux genes, as well as genes involved in sulfide and formaldehyde detoxification machinery. In this study, we identify the preferred DNA binding sequence for the CsoR-like protein, TTHA1953, from the model extremophile Thermus thermophilus HB8 using the iterative selection approach, restriction endonuclease, protection, selection and amplification (REPSA). By mapping significant DNA motifs to the T. thermophilus HB8 genome, we identify potentially regulated genes that we validate with in vitro and in vivo methodologies. We establish TTHA1953 as a master regulator of the sulfur oxidation (Sox) pathway, providing the first link between CsoR-like proteins and Sox regulation.
Collapse
Affiliation(s)
- John K Barrows
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, USA
| | - Michael W Van Dyke
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, USA.
| |
Collapse
|
8
|
Klein VJ, Irla M, Gil López M, Brautaset T, Fernandes Brito L. Unravelling Formaldehyde Metabolism in Bacteria: Road towards Synthetic Methylotrophy. Microorganisms 2022; 10:microorganisms10020220. [PMID: 35208673 PMCID: PMC8879981 DOI: 10.3390/microorganisms10020220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Formaldehyde metabolism is prevalent in all organisms, where the accumulation of formaldehyde can be prevented through the activity of dissimilation pathways. Furthermore, formaldehyde assimilatory pathways play a fundamental role in many methylotrophs, which are microorganisms able to build biomass and obtain energy from single- and multicarbon compounds with no carbon–carbon bonds. Here, we describe how formaldehyde is formed in the environment, the mechanisms of its toxicity to the cells, and the cell’s strategies to circumvent it. While their importance is unquestionable for cell survival in formaldehyde rich environments, we present examples of how the modification of native formaldehyde dissimilation pathways in nonmethylotrophic bacteria can be applied to redirect carbon flux toward heterologous, synthetic formaldehyde assimilation pathways introduced into their metabolism. Attempts to engineer methylotrophy into nonmethylotrophic hosts have gained interest in the past decade, with only limited successes leading to the creation of autonomous synthetic methylotrophy. Here, we discuss how native formaldehyde assimilation pathways can additionally be employed as a premise to achieving synthetic methylotrophy. Lastly, we discuss how emerging knowledge on regulation of formaldehyde metabolism can contribute to creating synthetic regulatory circuits applied in metabolic engineering strategies.
Collapse
|
9
|
Fakhoury JN, Zhang Y, Edmonds KA, Bringas M, Luebke JL, Gonzalez-Gutierrez G, Capdevila DA, Giedroc DP. Functional asymmetry and chemical reactivity of CsoR family persulfide sensors. Nucleic Acids Res 2021; 49:12556-12576. [PMID: 34755876 PMCID: PMC8643695 DOI: 10.1093/nar/gkab1040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
CstR is a persulfide-sensing member of the functionally diverse copper-sensitive operon repressor (CsoR) superfamily. While CstR regulates the bacterial response to hydrogen sulfide (H2S) and more oxidized reactive sulfur species (RSS) in Gram-positive pathogens, other dithiol-containing CsoR proteins respond to host derived Cu(I) toxicity, sometimes in the same bacterial cytoplasm, but without regulatory crosstalk in cells. It is not clear what prevents this crosstalk, nor the extent to which RSS sensors exhibit specificity over other oxidants. Here, we report a sequence similarity network (SSN) analysis of the entire CsoR superfamily, which together with the first crystallographic structure of a CstR and comprehensive mass spectrometry-based kinetic profiling experiments, reveal new insights into the molecular basis of RSS specificity in CstRs. We find that the more N-terminal cysteine is the attacking Cys in CstR and is far more nucleophilic than in a CsoR. Moreover, our CstR crystal structure is markedly asymmetric and chemical reactivity experiments reveal the functional impact of this asymmetry. Substitution of the Asn wedge between the resolving and the attacking thiol with Ala significantly decreases asymmetry in the crystal structure and markedly impacts the distribution of species, despite adopting the same global structure as the parent repressor. Companion NMR, SAXS and molecular dynamics simulations reveal that the structural and functional asymmetry can be traced to fast internal dynamics of the tetramer. Furthermore, this asymmetry is preserved in all CstRs and with all oxidants tested, giving rise to markedly distinct distributions of crosslinked products. Our exploration of the sequence, structural, and kinetic features that determine oxidant-specificity suggest that the product distribution upon RSS exposure is determined by internal flexibility.
Collapse
Affiliation(s)
- Joseph N Fakhoury
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| | - Yifan Zhang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405 USA
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| | - Mauro Bringas
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Justin L Luebke
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| | - Giovanni Gonzalez-Gutierrez
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405 USA
| | - Daiana A Capdevila
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA.,Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405 USA
| |
Collapse
|
10
|
Zoolkefli FIRM, Moriguchi K, Cho Y, Kiyokawa K, Yamamoto S, Suzuki K. Isolation and Analysis of Donor Chromosomal Genes Whose Deficiency Is Responsible for Accelerating Bacterial and Trans-Kingdom Conjugations by IncP1 T4SS Machinery. Front Microbiol 2021; 12:620535. [PMID: 34093458 PMCID: PMC8174662 DOI: 10.3389/fmicb.2021.620535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Conjugal transfer is a major driving force of genetic exchange in eubacteria, and the system in IncP1-type broad-host-range plasmids transfers DNA even to eukaryotes and archaea in a process known as trans-kingdom conjugation (TKC). Although conjugation factors encoded on plasmids have been extensively analyzed, those on the donor chromosome have not. To identify the potential conjugation factor(s), a genome-wide survey on a comprehensive collection of Escherichia coli gene knockout mutants (Keio collection) as donors to Saccharomyces cerevisiae recipients was performed using a conjugal transfer system mediated by the type IV secretion system (T4SS) of the IncP1α plasmid. Out of 3,884 mutants, three mutants (ΔfrmR, ΔsufA, and ΔiscA) were isolated, which showed an increase by one order of magnitude in both E. coli-E. coli and E. coli-yeast conjugations without an increase in the mRNA accumulation level for the conjugation related genes examined. The double-knockout mutants for these genes (ΔfrmRΔsufA and ΔiscAΔfrmR) did not show synergistic effects on the conjugation efficiency, suggesting that these factors affect a common step in the conjugation machinery. The three mutants demonstrated increased conjugation efficiency in IncP1β-type but not in IncN- and IncW-type broad-host-range plasmid transfers, and the homologous gene knockout mutants against the three genes in Agrobacterium tumefaciens also showed increased TKC efficiency. These results suggest the existence of a specific regulatory system in IncP1 plasmids that enables the control of conjugation efficiency in different hosts, which could be utilized for the development of donor strains as gene introduction tools into bacteria, eukaryotes, and archaea.
Collapse
Affiliation(s)
| | - Kazuki Moriguchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Yunjae Cho
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashihiroshima, Japan
| | - Kazuya Kiyokawa
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | - Katsunori Suzuki
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
11
|
Antelo GT, Vila AJ, Giedroc DP, Capdevila DA. Molecular Evolution of Transition Metal Bioavailability at the Host-Pathogen Interface. Trends Microbiol 2021; 29:441-457. [PMID: 32951986 PMCID: PMC7969482 DOI: 10.1016/j.tim.2020.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
The molecular evolution of the adaptive response at the host-pathogen interface has been frequently referred to as an 'arms race' between the host and bacterial pathogens. The innate immune system employs multiple strategies to starve microbes of metals. Pathogens, in turn, develop successful strategies to maintain access to bioavailable metal ions under conditions of extreme restriction of transition metals, or nutritional immunity. However, the processes by which evolution repurposes or re-engineers host and pathogen proteins to perform or refine new functions have been explored only recently. Here we review the molecular evolution of several human metalloproteins charged with restricting bacterial access to transition metals. These include the transition metal-chelating S100 proteins, natural resistance-associated macrophage protein-1 (NRAMP-1), transferrin, lactoferrin, and heme-binding proteins. We examine their coevolution with bacterial transition metal acquisition systems, involving siderophores and membrane-spanning metal importers, and the biological specificity of allosteric transcriptional regulatory proteins tasked with maintaining bacterial metallostasis. We also discuss the evolution of metallo-β-lactamases; this illustrates how rapid antibiotic-mediated evolution of a zinc metalloenzyme obligatorily occurs in the context of host-imposed nutritional immunity.
Collapse
Affiliation(s)
- Giuliano T Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Abstract
The increasing frequency of antibiotic resistance poses myriad challenges to modern medicine. Environmental survival of multidrug-resistant bacteria in health care facilities, including hospitals, creates reservoirs for transmission of these difficult to treat pathogens. To prevent bacterial colonization, these facilities deploy an array of infection control measures, including bactericidal metals on surfaces, as well as implanted devices. Although antibiotics are routinely used in these health care environments, it is unknown whether and how antibiotic exposure affects metal resistance. We identified a multidrug-resistant Enterobacter clinical isolate that displayed heteroresistance to the antibiotic colistin, where only a minor fraction of cells within the population resist the drug. When this isolate was grown in the presence of colistin, a 9-kb DNA region was duplicated in the surviving resistant subpopulation, but surprisingly, was not required for colistin heteroresistance. Instead, the amplified region included a three-gene locus (ncrABC) that conferred resistance to the bactericidal metal, nickel. ncrABC expression alone was sufficient to confer nickel resistance to E. coli K-12. Due to its selection for the colistin-resistant subpopulation harboring the duplicated 9-kb region that includes ncrABC, colistin treatment led to enhanced nickel resistance. Taken together, these data suggest that the use of antibiotics may inadvertently promote enhanced resistance to antimicrobial metals, with potentially profound implications for bacterial colonization and transmission in the health care environment.
Collapse
|
13
|
Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. The requirement for cobalt in vitamin B 12: A paradigm for protein metalation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118896. [PMID: 33096143 PMCID: PMC7689651 DOI: 10.1016/j.bbamcr.2020.118896] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Vitamin B12, cobalamin, is a cobalt-containing ring-contracted modified tetrapyrrole that represents one of the most complex small molecules made by nature. In prokaryotes it is utilised as a cofactor, coenzyme, light sensor and gene regulator yet has a restricted role in assisting only two enzymes within specific eukaryotes including mammals. This deployment disparity is reflected in another unique attribute of vitamin B12 in that its biosynthesis is limited to only certain prokaryotes, with synthesisers pivotal in establishing mutualistic microbial communities. The core component of cobalamin is the corrin macrocycle that acts as the main ligand for the cobalt. Within this review we investigate why cobalt is paired specifically with the corrin ring, how cobalt is inserted during the biosynthetic process, how cobalt is made available within the cell and explore the cellular control of cobalt and cobalamin levels. The partitioning of cobalt for cobalamin biosynthesis exemplifies how cells assist metalation.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Anastasia Cooke
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
14
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|
15
|
Structural biology of DNA abasic site protection by SRAP proteins. DNA Repair (Amst) 2020; 94:102903. [PMID: 32663791 DOI: 10.1016/j.dnarep.2020.102903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/24/2022]
Abstract
Abasic (AP) sites are one of the most frequently occurring types of DNA damage. They lead to DNA strand breaks, interstrand DNA crosslinks, and block transcription and replication. Mutagenicity of AP sites arises from translesion synthesis (TLS) by error-prone bypass polymerases. Recently, a new cellular response to AP sites was discovered, in which the protein HMCES (5-hydroxymethlycytosine (5hmC) binding, embryonic stem cell-specific) forms a stable, covalent DNA-protein crosslink (DPC) to AP sites at stalled replication forks. The stability of the HMCES-DPC prevents strand cleavage by endonucleases and mutagenic bypass by TLS polymerases. Crosslinking is carried out by a unique SRAP (SOS Response Associated Peptidase) domain conserved across all domains of life. Here, we review the collection of recently reported SRAP crystal structures from human HMCES and E. coli YedK, which provide a unified basis for SRAP specificity and a putative chemical mechanism of AP site crosslinking. We discuss the structural and chemical basis for the stability of the SRAP DPC and how it differs from covalent protein-DNA intermediates in DNA lyase catalysis of strand scission.
Collapse
|
16
|
Abideen ZU, Ahmad A, Usman M, Majaz S, Ali W, Noreen S, Mahmood T, Nouroz F. Dynamics and conformational propensities of staphylococcal CntA. J Biomol Struct Dyn 2020; 39:4923-4935. [PMID: 32573341 DOI: 10.1080/07391102.2020.1782263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Enzymes use transition metals as co-factors for catalytic roles in biological processes. Notably, manganese, iron, cobalt, nickel, copper and zinc are abundantly used. Staphylococcus aureus, a commensal bacterium asymptomatically, lies on the human body causing variety of infections. S. aureus is equipped by advanced virulence-regulatory circuits of metal acquisition like Cnt that acquires metals at infection sites by utilizing a nicotianamine-like metallophore staphylopine. Despite significant growth in structural studies, how CntA of Cnt system transmits conformational signal upon staphylopine recognition remains elusive. Here, we analyzed the structural changes adopted by CntA during close-to-open transition by computational approaches. CntA uses a bi-domain architectural form of domain II which performed 37° rigid body rotation and 1.1 Å translation assisted by inter-domain hinge cluster residues. Important clustered communities were found regulating the conformational changes in CntA where communities 4 and 5 are found crucial. Besides open and close states, the fluctuating regions sampled two additional intermediate states which were considered close or open previously. CntA prefers fluctuating the non-conserved regions rather than conserved where domain II turned out to be rigid and maintains a stable fold. Overall, the CntA system is a potential target for structural biologist to hamper such conformational behaviors at family level.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zain Ul Abideen
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Ashfaq Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Muhammad Usman
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Sidra Majaz
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Waqar Ali
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Shumaila Noreen
- Department of Zoology, University of Peshawar, Peshawar, KPK, Pakistan
| | - Tariq Mahmood
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan.,Department of Agriculture, Hazara University, Mansehra, KPK, Pakistan
| | - Faisal Nouroz
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan.,Department of Botany, Hazara University, Mansehra, KPK, Pakistan
| |
Collapse
|
17
|
Genetic Regulation of Metal Ion Homeostasis in Staphylococcus aureus. Trends Microbiol 2020; 28:821-831. [PMID: 32381454 DOI: 10.1016/j.tim.2020.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
Abstract
The acquisition of metal ions and the proper maturation of holo-metalloproteins are essential processes for all organisms. However, metal ion homeostasis is a double-edged sword. A cytosolic accumulation of metal ions can lead to mismetallation of proteins and cell death. Therefore, maintenance of proper concentrations of intracellular metals is essential for cell fitness and pathogenesis. Staphylococcus aureus, like all bacterial pathogens, uses transcriptional metalloregulatory proteins to aid in the detection and the genetic response to changes in metal ion concentrations. Herein, we review the mechanisms by which S. aureus senses and responds to alterations in the levels of cellular zinc, iron, heme, and copper. The interplay between metal ion sensing and metal-dependent expression of virulence factors is also discussed.
Collapse
|
18
|
Baksh KA, Zamble DB. Allosteric control of metal-responsive transcriptional regulators in bacteria. J Biol Chem 2020; 295:1673-1684. [PMID: 31857375 PMCID: PMC7008368 DOI: 10.1074/jbc.rev119.011444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many transition metals are essential trace nutrients for living organisms, but they are also cytotoxic in high concentrations. Bacteria maintain the delicate balance between metal starvation and toxicity through a complex network of metal homeostasis pathways. These systems are coordinated by the activities of metal-responsive transcription factors-also known as metal-sensor proteins or metalloregulators-that are tuned to sense the bioavailability of specific metals in the cell in order to regulate the expression of genes encoding proteins that contribute to metal homeostasis. Metal binding to a metalloregulator allosterically influences its ability to bind specific DNA sequences through a variety of intricate mechanisms that lie on a continuum between large conformational changes and subtle changes in internal dynamics. This review summarizes recent advances in our understanding of how metal sensor proteins respond to intracellular metal concentrations. In particular, we highlight the allosteric mechanisms used for metal-responsive regulation of several prokaryotic single-component metalloregulators, and we briefly discuss current open questions of how metalloregulators function in bacterial cells. Understanding the regulation and function of metal-responsive transcription factors is a fundamental aspect of metallobiochemistry and is important for gaining insights into bacterial growth and virulence.
Collapse
Affiliation(s)
- Karina A Baksh
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Deborah B Zamble
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
19
|
Li C, Vavra JW, Carr CE, Huang HT, Maroney MJ, Wilmot CM. Complexation of the nickel and cobalt transcriptional regulator RcnR with DNA. Acta Crystallogr F Struct Biol Commun 2020; 76:25-30. [PMID: 31929183 PMCID: PMC6957110 DOI: 10.1107/s2053230x19017084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/20/2019] [Indexed: 11/10/2022] Open
Abstract
RcnR is a transcription factor that regulates the homeostasis of cobalt and nickel in bacterial cells. Escherichia coli RcnR was crystallized with DNA that encompasses the DNA-binding site. X-ray diffraction data were collected to 2.9 Å resolution. The crystal belonged to space group P6122 or P6522, with unit-cell parameters a = b = 73.59, c = 157.66 Å, α = β = 90, γ = 120°.
Collapse
Affiliation(s)
- Chao Li
- Department of Biochemistry, Molecular Biology, and Biophysics and the BioTechnology Institute, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St Paul, MN 55108, USA
| | - Joseph W. Vavra
- Department of Biochemistry, Molecular Biology, and Biophysics and the BioTechnology Institute, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St Paul, MN 55108, USA
| | - Carolyn E. Carr
- Department of Chemistry, University of Massachusetts, N373 Life Science Laboratory, Amherst, MA 01003, USA
| | - Hsin-Ting Huang
- Department of Chemistry, University of Massachusetts, N373 Life Science Laboratory, Amherst, MA 01003, USA
| | - Michael J. Maroney
- Department of Chemistry, University of Massachusetts, N373 Life Science Laboratory, Amherst, MA 01003, USA
| | - Carrie M. Wilmot
- Department of Biochemistry, Molecular Biology, and Biophysics and the BioTechnology Institute, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St Paul, MN 55108, USA
| |
Collapse
|
20
|
Molecular Modelling of the Ni(II)-Responsive Synechocystis PCC 6803 Transcriptional Regulator InrS in the Metal Bound Form. INORGANICS 2019. [DOI: 10.3390/inorganics7060076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
InrS (internal nickel-responsive sensor) is a transcriptional regulator found in cyanobacteria that represses the transcription of the nickel exporter NrsD in the apo form and de-represses expression of the exporter upon Ni(II) binding. Although a crystal structure of apo-InrS from Synechocystis PCC 6803 has been reported, no structure of the protein with metal ions bound is available. Here we report the results of a computational study aimed to reconstruct the metal binding site by taking advantage of recent X-ray absorption spectroscopy (XAS) data and to envisage the structural rearrangements occurring upon Ni(II) binding. The modelled Ni(II) binding site shows a square planar geometry consistent with experimental data. The structural details of the conformational changes occurring upon metal binding are also discussed in the framework of trying to rationalize the different affinity of the apo- and holo-forms of the protein for DNA.
Collapse
|
21
|
Huang HT, Maroney MJ. Ni(II) Sensing by RcnR Does Not Require an FrmR-Like Intersubunit Linkage. Inorg Chem 2019; 58:13639-13653. [PMID: 31247878 DOI: 10.1021/acs.inorgchem.9b01096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
E. coli RcnR (resistance to cobalt and nickel regulator) is a homotetrameric DNA binding protein that regulates the expression of a Ni(II) and Co(II) exporter (RcnAB) by derepressing expression of rcnA and rcnB in response to binding Co(II) or Ni(II). Prior studies have shown that the cognate metal ions, Ni(II) and Co(II), bind in six-coordinate sites at subunit interfaces and are distinguished from noncognate metals (Cu(I), Cu(II), and Zn(II)) by coordination number and ligand selection. In analogy with FrmR, a formaldehyde-responsive transcriptional regulator in the RcnR/CsoR family, the interfacial site allows the metal ions to "cross-link" the N-terminal domain of one subunit with the invariant Cys35 residue in another, which has been deemed to be key to mediating the allosteric response of the tetrameric protein to metal binding. Through the use of mutagenesis to disconnect one subunit from the metal-mediated cross-link, X-ray absorption spectroscopy (XAS) as a structural probe, LacZ reporter assays, and metal binding studies using isothermal titration calorimetry (ITC), the work presented here shows that neither the interfacial binding site nor the coordination number of Ni(II) is important to the allosteric response to binding of this cognate metal ion. The opposite is found for the other cognate metal ion, Co(II), with respect to the interfacial binding site, suggesting that the molecular mechanisms for transcriptional regulation by the two ions are distinct. The metal binding studies reveal that tight metal binding is maintained in the variant. XAS is further used to demonstrate that His33 is not a ligand for Co(II), Ni(II), or Zn(II) in WT-RcnR. The results are discussed in the context of the overall understanding of the molecular mechanisms of metallosensors.
Collapse
|
22
|
Carr CE, Foster AW, Maroney MJ. An XAS investigation of the nickel site structure in the transcriptional regulator InrS. J Inorg Biochem 2017; 177:352-358. [PMID: 28844329 PMCID: PMC5741488 DOI: 10.1016/j.jinorgbio.2017.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/10/2017] [Accepted: 08/05/2017] [Indexed: 12/29/2022]
Abstract
InrS (Internal nickel-responsive Sensor) is a transcriptional repressor of the nickel exporter NrsD and de-represses expression of the exporter upon binding Ni(II) ions. Although a crystal structure of apo-InrS has been reported, no structure of the protein with metal ions bound is available. Herein we report the results of metal site structural investigations of Ni(II) and Cu(II) complexes of InrS using X-ray absorption spectroscopy (XAS) that are complementary to data available from the apo-InrS crystal structure, and are consistent with a planar four-coordinate [Ni(His)2(Cys)2] structure, where the ligands are derived from the side chains of His21, Cys53, His78, and Cys82. Coordination of Cu(II) to InrS forms a nearly identical planar four-coordinate complex that is consistent with a simple replacement of the Ni(II) center by Cu(II).
Collapse
Affiliation(s)
- Carolyn E Carr
- Chemistry Department, University of Massachusetts Amherst, MA 01003, USA
| | - Andrew W Foster
- Department of Biosciences, Durham University, Durham, UK; Department of Chemistry, Durham University, Durham, UK
| | - Michael J Maroney
- Chemistry Department, University of Massachusetts Amherst, MA 01003, USA; Program in Molecular and Cellular Biology, University of Massachusetts Amherst, MA 01003, USA.
| |
Collapse
|
23
|
Giedroc DP. A new player in bacterial sulfide-inducible transcriptional regulation. Mol Microbiol 2017; 105:347-352. [PMID: 28612383 DOI: 10.1111/mmi.13726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/28/2022]
Abstract
Although hydrogen sulfide (H2 S) is perhaps best known as a toxic gas, the electron-rich H2 S functions as an energy source and electron donor for chemolithotrophic and photosynthetic bacteria, via sulfide oxidation, and is a universal substrate for cysteine biosynthesis. These distinct harmful and beneficial roles of H2 S suggest the need to 'sense' prevailing concentrations of sulfide and downstream reactive sulfur species (RSS) and regulate the expression of genes mediating sulfide homeostasis. The paper by Li et al. in this issue of Molecular Microbiology adds Cupriavidus FisR to an expanding repertoire of regulatory mechanisms that bacteria have evolved to sense cellular RSS and mitigate their deleterious effects.
Collapse
Affiliation(s)
- David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| |
Collapse
|
24
|
Carr CE, Musiani F, Huang HT, Chivers PT, Ciurli S, Maroney MJ. Glutamate Ligation in the Ni(II)- and Co(II)-Responsive Escherichia coli Transcriptional Regulator, RcnR. Inorg Chem 2017; 56:6459-6476. [PMID: 28517938 DOI: 10.1021/acs.inorgchem.7b00527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Escherichia coli RcnR (resistance to cobalt and nickel regulator, EcRcnR) is a metal-responsive repressor of the genes encoding the Ni(II) and Co(II) exporter proteins RcnAB by binding to PRcnAB. The DNA binding affinity is weakened when the cognate ions Ni(II) and Co(II) bind to EcRcnR in a six-coordinate site that features a (N/O)5S ligand donor-atom set in distinct sites: while both metal ions are bound by the N terminus, Cys35, and His64, Co(II) is additionally bound by His3. On the other hand, the noncognate Zn(II) and Cu(I) ions feature a lower coordination number, have a solvent-accessible binding site, and coordinate protein ligands that do not include the N-terminal amine. A molecular model of apo-EcRcnR suggested potential roles for Glu34 and Glu63 in binding Ni(II) and Co(II) to EcRcnR. The roles of Glu34 and Glu63 in metal binding, metal selectivity, and function were therefore investigated using a structure/function approach. X-ray absorption spectroscopy was used to assess the structural changes in the Ni(II), Co(II), and Zn(II) binding sites of Glu → Ala and Glu → Cys variants at both positions. The effect of these structural alterations on the regulation of PrcnA by EcRcnR in response to metal binding was explored using LacZ reporter assays. These combined studies indicate that while Glu63 is a ligand for both metal ions, Glu34 is a ligand for Co(II) but possibly not for Ni(II). The Glu34 variants affect the structure of the cognate metal sites, but they have no effect on the transcriptional response. In contrast, the Glu63 variants affect both the structure and transcriptional response, although they do not completely abolish the function of EcRcnR. The structure of the Zn(II) site is not significantly perturbed by any of the glutamic acid variations. The spectroscopic and functional data obtained on the mutants were used to calculate models of the metal-site structures of EcRcnR bound to Ni(II), Co(II), and Zn(II). The results are interpreted in terms of a switch mechanism, in which a subset of the metal-binding ligands is responsible for the allosteric response required for DNA release.
Collapse
Affiliation(s)
- Carolyn E Carr
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna , Bologna 40126, Italy
| | - Hsin-Ting Huang
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Peter T Chivers
- Departments of Biosciences and Chemistry, Durham University , Durham DH1 3LE, United Kingdom
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna , Bologna 40126, Italy
| | - Michael J Maroney
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
25
|
Metallochaperones and metalloregulation in bacteria. Essays Biochem 2017; 61:177-200. [PMID: 28487396 DOI: 10.1042/ebc20160076] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
Bacterial transition metal homoeostasis or simply 'metallostasis' describes the process by which cells control the intracellular availability of functionally required metal cofactors, from manganese (Mn) to zinc (Zn), avoiding both metal deprivation and toxicity. Metallostasis is an emerging aspect of the vertebrate host-pathogen interface that is defined by a 'tug-of-war' for biologically essential metals and provides the motivation for much recent work in this area. The host employs a number of strategies to starve the microbial pathogen of essential metals, while for others attempts to limit bacterial infections by leveraging highly competitive metals. Bacteria must be capable of adapting to these efforts to remodel the transition metal landscape and employ highly specialized metal sensing transcriptional regulators, termed metalloregulatory proteins,and metallochaperones, that allocate metals to specific destinations, to mediate this adaptive response. In this essay, we discuss recent progress in our understanding of the structural mechanisms and metal specificity of this adaptive response, focusing on energy-requiring metallochaperones that play roles in the metallocofactor active site assembly in metalloenzymes and metallosensors, which govern the systems-level response to metal limitation and intoxication.
Collapse
|
26
|
Entropy redistribution controls allostery in a metalloregulatory protein. Proc Natl Acad Sci U S A 2017; 114:4424-4429. [PMID: 28348247 DOI: 10.1073/pnas.1620665114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Allosteric communication between two ligand-binding sites in a protein is a central aspect of biological regulation that remains mechanistically unclear. Here we show that perturbations in equilibrium picosecond-nanosecond motions impact zinc (Zn)-induced allosteric inhibition of DNA binding by the Zn efflux repressor CzrA (chromosomal zinc-regulated repressor). DNA binding leads to an unanticipated increase in methyl side-chain flexibility and thus stabilizes the complex entropically; Zn binding redistributes these motions, inhibiting formation of the DNA complex by restricting coupled fast motions and concerted slower motions. Allosterically impaired CzrA mutants are characterized by distinct nonnative fast internal dynamics "fingerprints" upon Zn binding, and DNA binding is weakly regulated. We demonstrate the predictive power of the wild-type dynamics fingerprint to identify key residues in dynamics-driven allostery. We propose that driving forces arising from dynamics can be harnessed by nature to evolve new allosteric ligand specificities in a compact molecular scaffold.
Collapse
|
27
|
Shimizu T, Shen J, Fang M, Zhang Y, Hori K, Trinidad JC, Bauer CE, Giedroc DP, Masuda S. Sulfide-responsive transcriptional repressor SqrR functions as a master regulator of sulfide-dependent photosynthesis. Proc Natl Acad Sci U S A 2017; 114:2355-2360. [PMID: 28196888 PMCID: PMC5338557 DOI: 10.1073/pnas.1614133114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sulfide was used as an electron donor early in the evolution of photosynthesis, with many extant photosynthetic bacteria still capable of using sulfur compounds such as hydrogen sulfide (H2S) as a photosynthetic electron donor. Although enzymes involved in H2S oxidation have been characterized, mechanisms of regulation of sulfide-dependent photosynthesis have not been elucidated. In this study, we have identified a sulfide-responsive transcriptional repressor, SqrR, that functions as a master regulator of sulfide-dependent gene expression in the purple photosynthetic bacterium Rhodobacter capsulatus SqrR has three cysteine residues, two of which, C41 and C107, are conserved in SqrR homologs from other bacteria. Analysis with liquid chromatography coupled with an electrospray-interface tandem-mass spectrometer reveals that SqrR forms an intramolecular tetrasulfide bond between C41 and C107 when incubated with the sulfur donor glutathione persulfide. SqrR is oxidized in sulfide-stressed cells, and tetrasulfide-cross-linked SqrR binds more weakly to a target promoter relative to unmodified SqrR. C41S and C107S R. capsulatus SqrRs lack the ability to respond to sulfide, and constitutively repress target gene expression in cells. These results establish that SqrR is a sensor of H2S-derived reactive sulfur species that maintain sulfide homeostasis in this photosynthetic bacterium and reveal the mechanism of sulfide-dependent transcriptional derepression of genes involved in sulfide metabolism.
Collapse
Affiliation(s)
- Takayuki Shimizu
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Jiangchuan Shen
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Mingxu Fang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Yixiang Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
- Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, IN 47405-7102
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
- Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, IN 47405-7102
| | - Carl E Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Kanagawa 226-8501, Japan;
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| |
Collapse
|
28
|
Denby KJ, Iwig J, Bisson C, Westwood J, Rolfe MD, Sedelnikova SE, Higgins K, Maroney MJ, Baker PJ, Chivers PT, Green J. The mechanism of a formaldehyde-sensing transcriptional regulator. Sci Rep 2016; 6:38879. [PMID: 27934966 PMCID: PMC5146963 DOI: 10.1038/srep38879] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/15/2016] [Indexed: 01/12/2023] Open
Abstract
Most organisms are exposed to the genotoxic chemical formaldehyde, either from endogenous or environmental sources. Therefore, biology has evolved systems to perceive and detoxify formaldehyde. The frmRA(B) operon that is present in many bacteria represents one such system. The FrmR protein is a transcriptional repressor that is specifically inactivated in the presence of formaldehyde, permitting expression of the formaldehyde detoxification machinery (FrmA and FrmB, when the latter is present). The X-ray structure of the formaldehyde-treated Escherichia coli FrmR (EcFrmR) protein reveals the formation of methylene bridges that link adjacent Pro2 and Cys35 residues in the EcFrmR tetramer. Methylene bridge formation has profound effects on the pattern of surface charge of EcFrmR and combined with biochemical/biophysical data suggests a mechanistic model for formaldehyde-sensing and derepression of frmRA(B) expression in numerous bacterial species.
Collapse
Affiliation(s)
- Katie J Denby
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jeffrey Iwig
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Claudine Bisson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jodie Westwood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Matthew D Rolfe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Svetlana E Sedelnikova
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Khadine Higgins
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | - Michael J Maroney
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | - Patrick J Baker
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Peter T Chivers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.,Departments of Biosciences and Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
29
|
Abstract
Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. In response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface.
Collapse
Affiliation(s)
- Lauren D Palmer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212;
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212;
- Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, Tennessee 37212
| |
Collapse
|
30
|
Osman D, Piergentili C, Chen J, Sayer LN, Usón I, Huggins TG, Robinson NJ, Pohl E. The Effectors and Sensory Sites of Formaldehyde-responsive Regulator FrmR and Metal-sensing Variant. J Biol Chem 2016; 291:19502-16. [PMID: 27474740 PMCID: PMC5016687 DOI: 10.1074/jbc.m116.745174] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/21/2016] [Indexed: 11/29/2022] Open
Abstract
The DUF156 family of DNA-binding transcriptional regulators includes metal sensors that respond to cobalt and/or nickel (RcnR, InrS) or copper (CsoR) plus CstR, which responds to persulfide, and formaldehyde-responsive FrmR. Unexpectedly, the allosteric mechanism of FrmR from Salmonella enterica serovar Typhimurium is triggered by metals in vitro, and variant FrmR(E64H) gains responsiveness to Zn(II) and cobalt in vivo Here we establish that the allosteric mechanism of FrmR is triggered directly by formaldehyde in vitro Sensitivity to formaldehyde requires a cysteine (Cys(35) in FrmR) conserved in all DUF156 proteins. A crystal structure of metal- and formaldehyde-sensing FrmR(E64H) reveals that an FrmR-specific amino-terminal Pro(2) is proximal to Cys(35), and these residues form the deduced formaldehyde-sensing site. Evidence is presented that implies that residues spatially close to the conserved cysteine tune the sensitivities of DUF156 proteins above or below critical thresholds for different effectors, generating the semblance of specificity within cells. Relative to FrmR, RcnR is less responsive to formaldehyde in vitro, and RcnR does not sense formaldehyde in vivo, but reciprocal mutations FrmR(P2S) and RcnR(S2P), respectively, impair and enhance formaldehyde reactivity in vitro Formaldehyde detoxification by FrmA requires S-(hydroxymethyl)glutathione, yet glutathione inhibits formaldehyde detection by FrmR in vivo and in vitro Quantifying the number of FrmR molecules per cell and modeling formaldehyde modification as a function of [formaldehyde] demonstrates that FrmR reactivity is optimized such that FrmR is modified and frmRA is derepressed at lower [formaldehyde] than required to generate S-(hydroxymethyl)glutathione. Expression of FrmA is thereby coordinated with the accumulation of its substrate.
Collapse
Affiliation(s)
- Deenah Osman
- From the Department of Chemistry, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Cecilia Piergentili
- From the Department of Chemistry, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Junjun Chen
- Procter and Gamble, Mason Business Center, Cincinnati, Ohio 45040
| | | | - Isabel Usón
- the Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona Science Park, 08028 Barcelona, Spain, and the Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Thomas G Huggins
- Procter and Gamble, Mason Business Center, Cincinnati, Ohio 45040
| | - Nigel J Robinson
- From the Department of Chemistry, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom,
| | - Ehmke Pohl
- From the Department of Chemistry, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
31
|
Couñago RM, Chen NH, Chang CW, Djoko KY, McEwan AG, Kobe B. Structural basis of thiol-based regulation of formaldehyde detoxification in H. influenzae by a MerR regulator with no sensor region. Nucleic Acids Res 2016; 44:6981-93. [PMID: 27307602 PMCID: PMC5001606 DOI: 10.1093/nar/gkw543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 06/03/2016] [Indexed: 01/04/2023] Open
Abstract
Pathogenic bacteria such as Haemophilus influenzae, a major cause of lower respiratory tract diseases, must cope with a range of electrophiles generated in the host or by endogenous metabolism. Formaldehyde is one such compound that can irreversibly damage proteins and DNA through alkylation and cross-linking and interfere with redox homeostasis. Its detoxification operates under the control of HiNmlR, a protein from the MerR family that lacks a specific sensor region and does not bind metal ions. We demonstrate that HiNmlR is a thiol-dependent transcription factor that modulates H. influenzae response to formaldehyde, with two cysteine residues (Cys54 and Cys71) identified to be important for its response against a formaldehyde challenge. We obtained crystal structures of HiNmlR in both the DNA-free and two DNA-bound forms, which suggest that HiNmlR enhances target gene transcription by twisting of operator DNA sequences in a two-gene operon containing overlapping promoters. Our work provides the first structural insights into the mechanism of action of MerR regulators that lack sensor regions.
Collapse
Affiliation(s)
- Rafael M Couñago
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld 4072, Australia Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld 4072, Australia
| | - Nathan H Chen
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld 4072, Australia
| | - Chiung-Wen Chang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld 4072, Australia Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld 4072, Australia
| | - Karrera Y Djoko
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld 4072, Australia
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld 4072, Australia Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
32
|
Chen NH, Djoko KY, Veyrier FJ, McEwan AG. Formaldehyde Stress Responses in Bacterial Pathogens. Front Microbiol 2016; 7:257. [PMID: 26973631 PMCID: PMC4776306 DOI: 10.3389/fmicb.2016.00257] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/16/2016] [Indexed: 12/18/2022] Open
Abstract
Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR, and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed.
Collapse
Affiliation(s)
- Nathan H Chen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia QLD, Australia
| | - Karrera Y Djoko
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia QLD, Australia
| | - Frédéric J Veyrier
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval QC, Canada
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia QLD, Australia
| |
Collapse
|
33
|
Mancini S, Kumar R, Abicht HK, Fischermeier E, Solioz M. Copper resistance and its regulation in the sulfate-reducing bacterium Desulfosporosinus sp. OT. MICROBIOLOGY-SGM 2016; 162:684-693. [PMID: 26873027 DOI: 10.1099/mic.0.000256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Desulfosporosinus sp. OT is a Gram-positive, acidophilic sulfate-reducing firmicute isolated from copper tailings sediment in the Norilsk mining-smelting area in Siberia and represents the first Desulfosporosinus species whose genome has been sequenced. Desulfosporosinus sp. OT is exceptionally copper resistant, which made it of interest to study the resistance mechanism. It possesses a copUAZ operon which is shown here to be involved in copper resistance. The copU gene encodes a CsoR-type homotetrameric repressor. By electrophoretic mobility shift assay, it was shown that CopU binds to the operator/promoter region of the copUAZ operon in the absence of copper and is released from the DNA by Cu+ or Ag+, implying that CopU regulates the operon in a copper/silver-dependent manner. DOT_CopA is a P1B-type ATPase related to other characterized, bacterial copper ATPases. When expressed in a copper-sensitive Escherichia coli ΔcopA mutant, it restores copper resistance to WT levels. His-tagged DOT_CopA was expressed from a plasmid in E. coli and purified by Ni-NTA affinity chromatography. The purified enzyme was most active in the presence of Cu(I) and bacterial phospholipids. These findings indicate that the copUAZ operon confers copper resistance to Desulfosporosinus sp. OT, but do not per se explain the basis of the high copper resistance of this strain.
Collapse
Affiliation(s)
- Stefano Mancini
- Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Ranjeet Kumar
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Helge K Abicht
- Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | | | - Marc Solioz
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia.,Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
34
|
Jacobs AD, Chang FMJ, Morrison L, Dilger JM, Wysocki VH, Clemmer DE, Giedroc DP. Resolution of Stepwise Cooperativities of Copper Binding by the Homotetrameric Copper-Sensitive Operon Repressor (CsoR): Impact on Structure and Stability. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Jacobs AD, Chang FMJ, Morrison L, Dilger JM, Wysocki VH, Clemmer DE, Giedroc DP. Resolution of Stepwise Cooperativities of Copper Binding by the Homotetrameric Copper-Sensitive Operon Repressor (CsoR): Impact on Structure and Stability. Angew Chem Int Ed Engl 2015; 54:12795-9. [PMID: 26332992 DOI: 10.1002/anie.201506349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/06/2015] [Indexed: 12/11/2022]
Abstract
The cooperativity of ligand binding is central to biological regulation and new approaches are needed to quantify these allosteric relationships. Herein, we exploit a suite of mass spectrometry (MS) experiments to provide novel insights into homotropic Cu-binding cooperativity, gas-phase stabilities and conformational ensembles of the D2 -symmetric, homotetrameric copper-sensitive operon repressor (CsoR) as a function of Cu(I) ligation state. Cu(I) binding is overall positively cooperative, but is characterized by distinct ligation state-specific cooperativities. Structural transitions occur upon binding the first and fourth Cu(I) , with the latter occurring with significantly higher cooperativity than previous steps; this results in the formation of a holo-tetramer that is markedly more resistant than apo-, and partially ligated CsoR tetramers toward surface-induced dissociation (SID).
Collapse
Affiliation(s)
- Alexander D Jacobs
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102 (USA)
| | | | - Lindsay Morrison
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 (USA)
| | - Jonathan M Dilger
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102 (USA)
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 (USA)
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102 (USA)
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102 (USA).
| |
Collapse
|
36
|
Osman D, Piergentili C, Chen J, Chakrabarti B, Foster AW, Lurie-Luke E, Huggins TG, Robinson NJ. Generating a Metal-responsive Transcriptional Regulator to Test What Confers Metal Sensing in Cells. J Biol Chem 2015; 290:19806-22. [PMID: 26109070 PMCID: PMC4528141 DOI: 10.1074/jbc.m115.663427] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 11/06/2022] Open
Abstract
FrmR from Salmonella enterica serovar typhimurium (a CsoR/RcnR-like transcriptional de-repressor) is shown to repress the frmRA operator-promoter, and repression is alleviated by formaldehyde but not manganese, iron, cobalt, nickel, copper, or Zn(II) within cells. In contrast, repression by a mutant FrmRE64H (which gains an RcnR metal ligand) is alleviated by cobalt and Zn(II). Unexpectedly, FrmR was found to already bind Co(II), Zn(II), and Cu(I), and moreover metals, as well as formaldehyde, trigger an allosteric response that weakens DNA affinity. However, the sensory metal sites of the cells' endogenous metal sensors (RcnR, ZntR, Zur, and CueR) are all tighter than FrmR for their cognate metals. Furthermore, the endogenous metal sensors are shown to out-compete FrmR. The metal-sensing FrmRE64H mutant has tighter metal affinities than FrmR by approximately 1 order of magnitude. Gain of cobalt sensing by FrmRE64H remains enigmatic because the cobalt affinity of FrmRE64H is substantially weaker than that of the endogenous cobalt sensor. Cobalt sensing requires glutathione, which may assist cobalt access, conferring a kinetic advantage. For Zn(II), the metal affinity of FrmRE64H approaches the metal affinities of cognate Zn(II) sensors. Counter-intuitively, the allosteric coupling free energy for Zn(II) is smaller in metal-sensing FrmRE64H compared with nonsensing FrmR. By determining the copies of FrmR and FrmRE64H tetramers per cell, then estimating promoter occupancy as a function of intracellular Zn(II) concentration, we show how a modest tightening of Zn(II) affinity, plus weakened DNA affinity of the apoprotein, conspires to make the relative properties of FrmRE64H (compared with ZntR and Zur) sufficient to sense Zn(II) inside cells.
Collapse
Affiliation(s)
- Deenah Osman
- From the School of Biological and Biomedical Sciences and Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Cecilia Piergentili
- From the School of Biological and Biomedical Sciences and Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Junjun Chen
- Procter and Gamble, Mason Business Centre, Cincinnati, Ohio 45040, and
| | - Buddhapriya Chakrabarti
- From the School of Biological and Biomedical Sciences and Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Andrew W Foster
- From the School of Biological and Biomedical Sciences and Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Elena Lurie-Luke
- Life Sciences Open Innovation, London Innovation Centre, Procter and Gamble Technical Centres, Ltd., Egham TW20 9NW, United Kingdom
| | - Thomas G Huggins
- Procter and Gamble, Mason Business Centre, Cincinnati, Ohio 45040, and
| | - Nigel J Robinson
- From the School of Biological and Biomedical Sciences and Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom,
| |
Collapse
|
37
|
Luebke JL, Giedroc DP. Cysteine sulfur chemistry in transcriptional regulators at the host-bacterial pathogen interface. Biochemistry 2015; 54:3235-49. [PMID: 25946648 DOI: 10.1021/acs.biochem.5b00085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hosts employ myriad weapons to combat invading microorganisms as an integral feature of the host-bacterial pathogen interface. This interface is dominated by highly reactive small molecules that collectively induce oxidative stress. Successful pathogens employ transcriptional regulatory proteins that sense these small molecules directly or indirectly via a change in the ratio of reduced to oxidized low-molecular weight (LMW) thiols that collectively comprise the redox buffer in the cytoplasm. These transcriptional regulators employ either a prosthetic group or reactive cysteine residue(s) to effect changes in the transcription of genes that encode detoxification and repair systems that is driven by regulator conformational switching between high-affinity and low-affinity DNA-binding states. Cysteine harbors a highly polarizable sulfur atom that readily undergoes changes in oxidation state in response to oxidative stress to produce a range of regulatory post-translational modifications (PTMs), including sulfenylation (S-hydroxylation), mixed disulfide bond formation with LMW thiols (S-thiolation), di- and trisulfide bond formation, S-nitrosation, and S-alkylation. Here we discuss several examples of structurally characterized cysteine thiol-specific transcriptional regulators that sense changes in cellular redox balance, focusing on the nature of the cysteine PTM itself and the interplay of small molecule oxidative stressors in mediating a specific transcriptional response.
Collapse
Affiliation(s)
- Justin L Luebke
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
38
|
Chang FMJ, Martin JE, Giedroc DP. Electrostatic occlusion and quaternary structural ion pairing are key determinants of Cu(I)-mediated allostery in the copper-sensing operon repressor (CsoR). Biochemistry 2015; 54:2463-72. [PMID: 25798654 DOI: 10.1021/acs.biochem.5b00154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The copper-sensing operon repressor (CsoR) is an all-α-helical disc-shaped D2-symmetric homotetramer that forms a 2:1 tetramer/DNA operator complex and represses the expression of copper-resistance genes in a number of bacteria. A previous bioinformatics analysis of CsoR-family repressors distributes Cu(I)-sensing CsoRs in four of seven distinct clades on the basis of global sequence similarity. In this work, we define energetically important determinants of DNA binding in the apo-state (ΔΔGbind), and for allosteric negative coupling of Cu(I) binding to DNA binding (ΔΔGc) in a model clade IV CsoR from Geobacillus thermodenitrificans (Gt) of known structure, by selectively targeting for mutagenesis those charged residues uniquely conserved in clade IV CsoRs. These include a folded N-terminal "tail" and a number of Cu(I)-sensor and clade-specific residues that when mapped onto a model of Cu(I)-bound Gt CsoR define a path across one face of the tetramer. We find that Cu(I)-binding prevents formation of the 2:1 "sandwich" complex rather than DNA binding altogether. Folding of the N-terminal tail (residues R18, E22, R74) upon Cu-binding to the periphery of the tetramer inhibits assembly of the 2:1 apoprotein-DNA complex. In contrast, Ala substitution of residues that surround the central "hole" (R65, K101) in the tetramer, as well R48, impact DNA binding. We also identify a quaternary structural ion-pair, E73-K101″, that crosses the tetramer interface, charge-reversal of which restores DNA binding activity, allosteric regulation by Cu(I), and transcriptional derepression by Cu(I) in cells. These findings suggest an "electrostatic occlusion" model, in which basic residues important for DNA binding and/or allostery become sequestered via ion-pairing specifically in the Cu(I)-bound state, and this aids in copper-dependent disassembly of a repression complex.
Collapse
Affiliation(s)
- Feng-Ming James Chang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Julia E Martin
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
39
|
Furnholm TR, Tisa LS. The ins and outs of metal homeostasis by the root nodule actinobacterium Frankia. BMC Genomics 2014; 15:1092. [PMID: 25495525 PMCID: PMC4531530 DOI: 10.1186/1471-2164-15-1092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frankia are actinobacteria that form a symbiotic nitrogen-fixing association with actinorhizal plants, and play a significant role in actinorhizal plant colonization of metal contaminated areas. Many Frankia strains are known to be resistant to several toxic metals and metalloids including Pb(2+), Al(+3), SeO2, Cu(2+), AsO4, and Zn(2+). With the availability of eight Frankia genome databases, comparative genomics approaches employing phylogeny, amino acid composition analysis, and synteny were used to identify metal homeostasis mechanisms in eight Frankia strains. Characterized genes from the literature and a meta-analysis of 18 heavy metal gene microarray studies were used for comparison. RESULTS Unlike most bacteria, Frankia utilize all of the essential trace elements (Ni, Co, Cu, Se, Mo, B, Zn, Fe, and Mn) and have a comparatively high percentage of metalloproteins, particularly in the more metal resistant strains. Cation diffusion facilitators, being one of the few known metal resistance mechanisms found in the Frankia genomes, were strong candidates for general divalent metal resistance in all of the Frankia strains. Gene duplication and amino acid substitutions that enhanced the metal affinity of CopA and CopCD proteins may be responsible for the copper resistance found in some Frankia strains. CopA and a new potential metal transporter, DUF347, may be involved in the particularly high lead tolerance in Frankia. Selenite resistance involved an alternate sulfur importer (CysPUWA) that prevents sulfur starvation, and reductases to produce elemental selenium. The pattern of arsenate, but not arsenite, resistance was achieved by Frankia using the novel arsenite exporter (AqpS) previously identified in the nitrogen-fixing plant symbiont Sinorhizobium meliloti. Based on the presence of multiple tellurite resistance factors, a new metal resistance (tellurite) was identified and confirmed in Frankia. CONCLUSIONS Each strain had a unique combination of metal import, binding, modification, and export genes that explain differences in patterns of metal resistance between strains. Frankia has achieved similar levels of metal and metalloid resistance as bacteria from highly metal-contaminated sites. From a bioremediation standpoint, it is important to understand mechanisms that allow the endosymbiont to survive and infect actinorhizal plants in metal contaminated soils.
Collapse
Affiliation(s)
- Teal R Furnholm
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
| | - Louis S Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
40
|
Luebke JL, Shen J, Bruce KE, Kehl-Fie TE, Peng H, Skaar EP, Giedroc DP. The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in Staphylococcus aureus. Mol Microbiol 2014; 94:1343-60. [PMID: 25318663 DOI: 10.1111/mmi.12835] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 12/20/2022]
Abstract
How cells regulate the bioavailability of utilizable sulfur while mitigating the effects of hydrogen sulfide toxicity is poorly understood. CstR [Copper-sensing operon repressor (CsoR)-like sulfurtransferase repressor] represses the expression of the cst operon encoding a putative sulfide oxidation system in Staphylococcus aureus. Here, we show that the cst operon is strongly and transiently induced by cellular sulfide stress in an acute phase and specific response and that cst-encoded genes are necessary to mitigate the effects of sulfide toxicity. Growth defects are most pronounced when S. aureus is cultured in chemically defined media with thiosulfate (TS) as a sole sulfur source, but are also apparent when cystine is used or in rich media. Under TS growth conditions, cells fail to grow as a result of either unregulated expression of the cst operon in a ΔcstR strain or transformation with a non-inducible C31A/C60A CstR that blocks cst induction. This suggests that the cst operon contributes to cellular sulfide homeostasis. Tandem high-resolution mass spectrometry reveals derivatization of CstR by both inorganic tetrasulfide and an organic persulfide, glutathione persulfide, to yield a mixture of Cys31-Cys60' interprotomer cross-links, including di-, tri- and tetrasulfide bonds, which allosterically inhibit cst operator DNA binding by CstR.
Collapse
Affiliation(s)
- Justin L Luebke
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Chang FMJ, Coyne HJ, Cubillas C, Vinuesa P, Fang X, Ma Z, Ma D, Helmann JD, García-de los Santos A, Wang YX, Dann CE, Giedroc DP. Cu(I)-mediated allosteric switching in a copper-sensing operon repressor (CsoR). J Biol Chem 2014; 289:19204-17. [PMID: 24831014 DOI: 10.1074/jbc.m114.556704] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The copper-sensing operon repressor (CsoR) is representative of a major Cu(I)-sensing family of bacterial metalloregulatory proteins that has evolved to prevent cytoplasmic copper toxicity. It is unknown how Cu(I) binding to tetrameric CsoRs mediates transcriptional derepression of copper resistance genes. A phylogenetic analysis of 227 DUF156 protein members, including biochemically or structurally characterized CsoR/RcnR repressors, reveals that Geobacillus thermodenitrificans (Gt) CsoR characterized here is representative of CsoRs from pathogenic bacilli Listeria monocytogenes and Bacillus anthracis. The 2.56 Å structure of Cu(I)-bound Gt CsoR reveals that Cu(I) binding induces a kink in the α2-helix between two conserved copper-ligating residues and folds an N-terminal tail (residues 12-19) over the Cu(I) binding site. NMR studies of Gt CsoR reveal that this tail is flexible in the apo-state with these dynamics quenched upon Cu(I) binding. Small angle x-ray scattering experiments on an N-terminally truncated Gt CsoR (Δ2-10) reveal that the Cu(I)-bound tetramer is hydrodynamically more compact than is the apo-state. The implications of these findings for the allosteric mechanisms of other CsoR/RcnR repressors are discussed.
Collapse
Affiliation(s)
- Feng-Ming James Chang
- From the Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - H Jerome Coyne
- From the Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - Ciro Cubillas
- the Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, México, 04510
| | - Pablo Vinuesa
- the Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, México, 04510
| | - Xianyang Fang
- the Structural Biophysics Laboratory, Center for Cancer Research, NCI-National Institutes of Health, Frederick, Maryland 21702-1201, and
| | - Zhen Ma
- the Department of Microbiology, Cornell University, Ithaca, New York 14853-8101
| | - Dejian Ma
- From the Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - John D Helmann
- the Department of Microbiology, Cornell University, Ithaca, New York 14853-8101
| | - Alejandro García-de los Santos
- the Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, México, 04510
| | - Yun-Xing Wang
- the Structural Biophysics Laboratory, Center for Cancer Research, NCI-National Institutes of Health, Frederick, Maryland 21702-1201, and
| | - Charles E Dann
- From the Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - David P Giedroc
- From the Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102,
| |
Collapse
|
42
|
Braymer JJ, Giedroc DP. Recent developments in copper and zinc homeostasis in bacterial pathogens. Curr Opin Chem Biol 2014; 19:59-66. [PMID: 24463765 DOI: 10.1016/j.cbpa.2013.12.021] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/20/2013] [Accepted: 12/29/2013] [Indexed: 11/24/2022]
Abstract
Copper and zinc homeostasis systems in pathogenic bacteria are required to resist host efforts to manipulate the availability and toxicity of these metal ions. Central to this microbial adaptive response is the involvement of metal-trafficking and metal-sensing proteins that ultimately exercise control of metal speciation in the cell. Cu-specific and Zn-specific metalloregulatory proteins regulate the transcription of metal-responsive genes while metallochaperones and related proteins ensure that these metals are appropriately buffered by the intracellular milieu and delivered to correct intracellular targets. In this review, we summarize recent findings on how bacterial pathogens mount a metal-specific response to derail host efforts to win the 'fight over metals.'
Collapse
Affiliation(s)
- Joseph J Braymer
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.
| |
Collapse
|