1
|
Kieda J, Shakeri A, Landau S, Wang EY, Zhao Y, Lai BF, Okhovatian S, Wang Y, Jiang R, Radisic M. Advances in cardiac tissue engineering and heart-on-a-chip. J Biomed Mater Res A 2024; 112:492-511. [PMID: 37909362 PMCID: PMC11213712 DOI: 10.1002/jbm.a.37633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
Recent advances in both cardiac tissue engineering and hearts-on-a-chip are grounded in new biomaterial development as well as the employment of innovative fabrication techniques that enable precise control of the mechanical, electrical, and structural properties of the cardiac tissues being modelled. The elongated structure of cardiomyocytes requires tuning of substrate properties and application of biophysical stimuli to drive its mature phenotype. Landmark advances have already been achieved with induced pluripotent stem cell-derived cardiac patches that advanced to human testing. Heart-on-a-chip platforms are now commonly used by a number of pharmaceutical and biotechnology companies. Here, we provide an overview of cardiac physiology in order to better define the requirements for functional tissue recapitulation. We then discuss the biomaterials most commonly used in both cardiac tissue engineering and heart-on-a-chip, followed by the discussion of recent representative studies in both fields. We outline significant challenges common to both fields, specifically: scalable tissue fabrication and platform standardization, improving cellular fidelity through effective tissue vascularization, achieving adult tissue maturation, and ultimately developing cryopreservation protocols so that the tissues are available off the shelf.
Collapse
Affiliation(s)
- Jennifer Kieda
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Shira Landau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Erika Yan Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Fook Lai
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Richard Jiang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Mahdavi R, Hashemi-Najafabadi S, Ghiass MA, Adiels CB. Microfluidic design for in-vitro liver zonation-a numerical analysis using COMSOL Multiphysics. Med Biol Eng Comput 2024; 62:121-133. [PMID: 37733153 DOI: 10.1007/s11517-023-02936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
The liver is one of the most important organs, with a complex physiology. Current in-vitro approaches are not accurate for disease modeling and drug toxicity research. One of those features is liver zonation, where cells display different physiological states due to different levels of oxygen and nutrient supplements. Organ-on-a-chip technology employs microfluidic platforms that enable a controlled environment for in-vitro cell culture. In this study, we propose a microfluidic design embedding a gas channel (of ambient air), creating an oxygen gradient. We numerically simulate different flow rates and cell densities with the COMSOL Multiphysics package considering cell-specific consumption rates of oxygen and glucose. We establish the cell density and flow rate for optimum oxygen and glucose distribution in the cell culture chamber. Furthermore, we show that a physiologically relevant concentration of oxygen and glucose in the chip is reached after 24 h and 30 min, respectively. The proposed microfluidic design and optimal parameters we identify in this paper provide a tool for in-vitro liver zonation studies. However, the microfluidic design is not exclusively for liver cell experiments but is foreseen to be applicable in cell studies where different gas concentration gradients are critical, e.g., studying hypoxia or toxic gas impact.
Collapse
Affiliation(s)
- Reza Mahdavi
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-114, Iran
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-114, Iran.
| | - Mohammad Adel Ghiass
- Tissue Engineering Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-114, Iran
| | | |
Collapse
|
3
|
Lee JH, Chiu JHC, Ginga NJ, Ahmed T, Thouless MD, Liu Y, Takayama S. Super-resolution imaging of linearized chromatin in tunable nanochannels. NANOSCALE HORIZONS 2023; 8:1043-1053. [PMID: 37221952 DOI: 10.1039/d3nh00096f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanofluidic linearization and optical mapping of naked DNA have been reported in the research literature, and implemented in commercial instruments. However, the resolution with which DNA features can be resolved is still inherently limited by both Brownian motion and diffraction-limited optics. Direct analysis of native chromatin is further hampered by difficulty in electrophoretic manipulation, which is routinely used for DNA analysis. This paper describes the development of a three-layer, tunable, nanochannel system that enables non-electrophoretic linearization and immobilization of native chromatin. Furthermore, through careful selection of self-blinking fluorescent dyes and the design of the nanochannel system, we achieve direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging of the linearized chromatin. As an initial demonstration, rDNA chromatin extracted from Tetrahymena is analyzed by multi-color imaging of total DNA, newly synthesized DNA, and newly synthesized histone H3. Our analysis reveals a relatively even distribution of newly synthesized H3 across two halves of the rDNA chromatin with palindromic symmetry, supporting dispersive nucleosome segregation. As a proof-of-concept study, our work achieves super-resolution imaging of native chromatin fibers linearized and immobilized in tunable nanochannels. It opens up a new avenue for collecting long-range and high-resolution epigenetic information as well as genetic information.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joyce Han-Ching Chiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nicholas J Ginga
- Department of Mechanical and Aerospace Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Tasdiq Ahmed
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M D Thouless
- Department of Mechanical Engineering and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yifan Liu
- Department of Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Campigotto A, Campbell RJ, Lai Y. Correlation between corneal and contact lens deformation with changes in intraocular pressure for wearable monitoring systems. Eye (Lond) 2023; 37:2055-2060. [PMID: 36302975 PMCID: PMC10333185 DOI: 10.1038/s41433-022-02285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/11/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The aim of this work is to evaluate the extent to which the eye's curvature deformation, due to changes in the intraocular pressure (IOP), can be directly tracked by an overlying contact lens. METHOD In this experimental study, using 12 cadaveric eyes, the IOP was increased from 10 to 36 mmHg, while video imaging was used to capture the three experimental variations. The deformation of the bare eye was used as a control, while the deformation of an overlying silicone grided contact lens and an overlying microfluidic IOP-sensing contact lens were examined and compared. RESULTS The relation between the slope of the radius of corneal curvature versus the IOP for both the bare eye and the marker contact lens yielded a linear relationship with a R2 value of 0.83. The microfluidic contact lens resulted in an average performance of 0.40 mm indicator movement/mmHg (SD 0.006). Comparing the slope of the marker contact lens deformation, to the performance of the microfluidic contact lens resulted in a R2 value of 0.78. The strain map of the overlaying grided contact lens showed most deformation occurring along the outer edge of the lens with increased deformation as increase IOP occurs; as well as with some negative, compressive movement near the central points. CONCLUSION The deformation from the curvature of the eye is significant enough from 10 to 36 mmHg that a silicone contact lens can capture and mimic those changes. The results show promise for optimization in contact lens-based IOP monitoring.
Collapse
Affiliation(s)
- Angelica Campigotto
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada
| | - Robert J Campbell
- Department of Ophthalmology, Queen's University, Kingston, ON, Canada
- Department of Ophthalmology, Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Yongjun Lai
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
5
|
Dey P, Bradley TM, Boymelgreen A. The impact of selected abiotic factors on Artemia hatching process through real-time observation of oxygen changes in a microfluidic platform. Sci Rep 2023; 13:6370. [PMID: 37076493 PMCID: PMC10115827 DOI: 10.1038/s41598-023-32873-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
Current studies on abiotic impacts on Artemia, a crustacean which is widely used in aquaculture, and ecotoxicology, often focus on endpoint analysis (e.g., hatching rates, survival). Here, we demonstrate that a mechanistic understanding can be obtained through measurement of oxygen consumption in real-time over an extended time period in a microfluidic platform. The platform enables high level control of the microenvironment and direct observation of morphological changes. As a demonstration, temperature and salinity are chosen to represent critical abiotic parameters that are also threatened by climate change. The hatching process of Artemia consists of four different stages: hydration, differentiation, emergence, and hatching. Different temperatures (20, 35, and 30 °C) and salinities (0, 25, 50, and 75 ppt) are shown to significantly alter the duration of hatching stages, metabolic rates, and hatchability. Specifically, the metabolic resumption of dormant Artemia cysts was significantly enhanced at higher temperatures and moderate salinity, however, the time needed for this resumption was only dependent on higher temperatures. Hatchability was inversely related to the duration of the differentiation stage of hatching, which persisted longer at lower temperatures and salinities. The current approach of investigation of metabolism and corresponding physical changes can be employed to study hatching processes of other aquatic species, even those with low metabolic rate.
Collapse
Affiliation(s)
- Preyojon Dey
- Department of Mechanical and Materials Engineering, Florida International University, 10555 W Flagler St, Miami, FL, 33174, USA
| | - Terence M Bradley
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI, 02881, USA
| | - Alicia Boymelgreen
- Department of Mechanical and Materials Engineering, Florida International University, 10555 W Flagler St, Miami, FL, 33174, USA.
| |
Collapse
|
6
|
Liu D, Tian X, Bai J, Wang Y, Cheng Y, Ning W, Chan PKL, Wu K, Sun J, Zhang S. Intrinsically Stretchable Organic Electrochemical Transistors with Rigid-Device-Benchmarkable Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203418. [PMID: 35904088 PMCID: PMC9561867 DOI: 10.1002/advs.202203418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 05/29/2023]
Abstract
Intrinsically stretchable organic electrochemical transistors (OECTs) are being pursued as the next-generation tissue-like bioelectronic technologies to improve the interfacing with the soft human body. However, the performance of current intrinsically stretchable OECTs is far inferior to their rigid counterparts. In this work, for the first time, the authors report intrinsically stretchable OECTs with overall performance benchmarkable to conventional rigid devices. In particular, oxygen level in the stretchable substrate is revealed to have a significant impact on the on/off ratio. By employing stretchable substrates with low oxygen permeabilities, the on/off ratio is elevated from ≈10 to a record-high value of ≈104 , which is on par with a rigid OECT. The device remained functional after cyclic stretching tests. This work demonstrates that intrinsically stretchable OECTs have the potential to serve as a new building block for emerging soft bioelectronic applications such as electronic skin, soft implantables, and soft neuromorphic computing.
Collapse
Affiliation(s)
- Dingyao Liu
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong SARChina
| | - Xinyu Tian
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong SARChina
| | - Jing Bai
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong SARChina
| | - Yan Wang
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong SARChina
| | - Yixun Cheng
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong SARChina
| | - Weijie Ning
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong SARChina
| | - Paddy K. L. Chan
- Department of Mechanical EngineeringThe University of Hong KongHong Kong SARChina
| | - Kai Wu
- State Key Laboratory of Polymer Materials EngineeringCollege of Polymer Science and EngineeringSichuan UniversityChengdu610065China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Shiming Zhang
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong SARChina
| |
Collapse
|
7
|
Mancini V, McKeegan PJ, Schrimpe‐Rutledge AC, Codreanu SG, Sherrod SD, McLean JA, Picton HM, Pensabene V. Probing morphological, genetic and metabolomic changes of in vitro embryo development in a microfluidic device. Biotechnol Prog 2021; 37:e3194. [PMID: 34288603 PMCID: PMC11475506 DOI: 10.1002/btpr.3194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
Assisted reproduction technologies for clinical and research purposes rely on a brief in vitro embryo culture which, despite decades of progress, remain suboptimal in comparison to the physiological environment. One promising tool to improve this technique is the development of bespoke microfluidic chambers. Here we present and validate a new microfluidic device in polydimethylsiloxane (PDMS) for the culture of early mouse embryos. Device material and design resulted embryo compatible and elicit minimal stress. Blastocyst formation, hatching, attachment and outgrowth formation on fibronectin-coated devices were similar to traditional microdrop methods. Total blastocyst cell number and allocation to the trophectoderm and inner cell mass lineages were unaffected. The devices were designed for culture of 10-12 embryos. Development rates, mitochondrial polarization and metabolic turnover of key energy substrates glucose, pyruvate and lactate were consistent with groups of 10 embryos in microdrop controls. Increasing group size to 40 embryos per device was associated with increased variation in development rates and altered metabolism. Device culture did not perturb blastocyst gene expression but did elicit changes in embryo metabolome, which can be ascribed to substrate leaching from PDMS and warrant further investigation.
Collapse
Affiliation(s)
- Vanessa Mancini
- School of Electronic and Electrical EngineeringUniversity of LeedsLeedsUK
| | - Paul J. McKeegan
- Reproduction and Early Development Research Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of MedicineUniversity of LeedsUK
- Centre for Anatomical and Human Sciences, Hull York Medical SchoolUniversity of HullHullUK
| | | | - Simona G. Codreanu
- Center for Innovative Technology (CIT), Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| | - Stacy D. Sherrod
- Center for Innovative Technology (CIT), Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| | - John A. McLean
- Center for Innovative Technology (CIT), Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| | - Helen M. Picton
- Reproduction and Early Development Research Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of MedicineUniversity of LeedsUK
| | - Virginia Pensabene
- School of Electronic and Electrical EngineeringUniversity of LeedsLeedsUK
- Leeds Institute of Medical ResearchUniversity of LeedsUK
| |
Collapse
|
8
|
Assessing effectiveness of Komagataeibacter strains for producing surface-microstructured cellulose via guided assembly-based biolithography. Sci Rep 2021; 11:19311. [PMID: 34588564 PMCID: PMC8481549 DOI: 10.1038/s41598-021-98705-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023] Open
Abstract
In this study, a medical device made of surface microstructured bacterial cellulose was produced using cellulose-producing acetic acid bacteria wild-type strains in combination with guided assembly-based biolithography. The medical device aims at interfering with the cell's focal adhesion establishment and maturation around implantable devices placed in soft tissues by the symmetrical array on its surface. A total of 25 Komagataeibacter strains was evaluated over a three-step selection. In the first step, the ability of strains to produce a suitable bacterial cellulose layer with high production yield was examined, then nine strains, with a uniform and smooth layer of bacterial cellulose, were cultured in a custom-made silicone bioreactor and finally the characteristics of the symmetrical array of topographic features on the surface were analysed. Selected strains showed high inter and intra species variability in bacterial cellulose production. The devices obtained by K2G30, K1G4, DSM 46590 (Komagataeibacter xylinus), K2A8 (Komagataeibacter sp.) and DSM 15973T (Komagataeibacter sucrofermentas) strains were pouched-formed with hexagonal surface pattern required for reducing the formation of fibrotic tissue around devices, once they are implanted in soft tissues. Our findings revealed the effectiveness of the selected Komagataeibacter wild-type strains in producing surface microstructured bacterial cellulose pouches for making biomedical devices.
Collapse
|
9
|
Sové RJ, Milkovich S, Nikolov HN, Holdsworth DW, Ellis CG, Fraser GM. Localized Oxygen Exchange Platform for Intravital Video Microscopy Investigations of Microvascular Oxygen Regulation. Front Physiol 2021; 12:654928. [PMID: 34168569 PMCID: PMC8217830 DOI: 10.3389/fphys.2021.654928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Intravital microscopy has proven to be a powerful tool for studying microvascular physiology. In this study, we propose a gas exchange system compatible with intravital microscopy that can be used to impose gas perturbations to small localized regions in skeletal muscles or other tissues that can be imaged using conventional inverted microscopes. We demonstrated the effectiveness of this system by locally manipulating oxygen concentrations in rat extensor digitorum longus muscle and measuring the resulting vascular responses. A computational model of oxygen transport was used to partially validate the localization of oxygen changes in the tissue, and oxygen saturation of red blood cells flowing through capillaries were measured as a surrogate for local tissue oxygenation. Overall, we have demonstrated that this approach can be used to study dynamic and spatial responses to local oxygen challenges to the microenvironment of skeletal muscle.
Collapse
Affiliation(s)
- Richard J Sové
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stephanie Milkovich
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Hristo N Nikolov
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - David W Holdsworth
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.,Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Christopher G Ellis
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Graham M Fraser
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
10
|
Razavi M, Primavera R, Vykunta A, Thakor AS. Silicone-based bioscaffolds for cellular therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111615. [DOI: 10.1016/j.msec.2020.111615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 08/18/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
|
11
|
Jiang Y, Wang Y, He H, Feinerman A, Pan Y. Constrained Window Design in Projection Stereolithography for Continuous Three-Dimensional Printing. 3D PRINTING AND ADDITIVE MANUFACTURING 2020; 7:163-169. [PMID: 36654925 PMCID: PMC9586231 DOI: 10.1089/3dp.2019.0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Although continuous projection Stereolithography (SL) printing is one of the next-generation ultra-fast additive manufacturing (AM) processes, its current constrained window design of the resin vat is suffering from many challenges, such as the complex control mechanism and limited hardware lifetime. In this article, we investigate a novel constrained window design, namely Island Window (IW), for the continuous three-dimensional (3D) printing by using the projection SL process. The proposed IW window has a highly oxygen-permeable polydimethylsiloxane membrane onto the laser-machined acrylic vat frame, which allows the formation of an effective liquid interface (>200 μm oxygen inhibition layer) to enable the continuous projection SL process. Experimental results verified the feasibility of the window design for extending the maximum printing time (increased by up to 73%) due to the enhanced oxygen concentration. It was also found that the maximum printing speed for producing parts with a smooth surface (Rz <30 μm) can be as high as 90 mm/h, which is comparable to the speeds in recently reported continuous SL processes. In addition, a variety of parts were successfully fabricated through continuous 3D printing by using the proposed IW design, implying tremendous promise for future low-cost, high-resolution, easy-controlled, and ultra-fast AM processes.
Collapse
Affiliation(s)
- Yizhou Jiang
- Department of Mechanical and Industrial Engineering and University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yilong Wang
- Department of Mechanical and Industrial Engineering and University of Illinois at Chicago, Chicago, Illinois, USA
| | - Haiyang He
- Department of Mechanical and Industrial Engineering and University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alan Feinerman
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yayue Pan
- Department of Mechanical and Industrial Engineering and University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Li C, Yang W, Wang M, Yu X, Fan J, Xiong Y, Yang Y, Li L. A Review of Coating Materials Used to Improve the Performance of Optical Fiber Sensors. SENSORS 2020; 20:s20154215. [PMID: 32751265 PMCID: PMC7435462 DOI: 10.3390/s20154215] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 02/04/2023]
Abstract
In order to improve the performance of fiber sensors and fully tap the potential of optical fiber sensors, various optical materials have been selectively coated on optical fiber sensors under the background of the rapid development of various optical materials. On the basis of retaining the original characteristics of the optical fiber sensors, the coated sensors are endowed with new characteristics, such as high sensitivity, strong structure, and specific recognition. Many materials with a large thermal optical coefficient and thermal expansion coefficients are applied to optical fibers, and the temperature sensitivities are improved several times after coating. At the same time, fiber sensors have more intelligent sensing capabilities when coated with specific recognition materials. The same/different kinds of materials combined with the same/different fiber structures can produce different measurements, which is interesting. This paper summarizes and compares the fiber sensors treated by different coating materials.
Collapse
Affiliation(s)
- Changxu Li
- Department of Physics, School of Science, Harbin University of Science and Technology, Harbin 150080, China; (C.L.); (M.W.); (Y.X.); (Y.Y.)
| | - Wenlong Yang
- Department of Physics, School of Science, Harbin University of Science and Technology, Harbin 150080, China; (C.L.); (M.W.); (Y.X.); (Y.Y.)
- School of measurement and communication engineering, Harbin University of Science and Technology, Harbin 150080, China; (X.Y.); (J.F.); (L.L.)
- Correspondence: ; Tel.: +86-451-8639-2428
| | - Min Wang
- Department of Physics, School of Science, Harbin University of Science and Technology, Harbin 150080, China; (C.L.); (M.W.); (Y.X.); (Y.Y.)
| | - Xiaoyang Yu
- School of measurement and communication engineering, Harbin University of Science and Technology, Harbin 150080, China; (X.Y.); (J.F.); (L.L.)
| | - Jianying Fan
- School of measurement and communication engineering, Harbin University of Science and Technology, Harbin 150080, China; (X.Y.); (J.F.); (L.L.)
| | - Yanling Xiong
- Department of Physics, School of Science, Harbin University of Science and Technology, Harbin 150080, China; (C.L.); (M.W.); (Y.X.); (Y.Y.)
| | - Yuqiang Yang
- Department of Physics, School of Science, Harbin University of Science and Technology, Harbin 150080, China; (C.L.); (M.W.); (Y.X.); (Y.Y.)
| | - Linjun Li
- School of measurement and communication engineering, Harbin University of Science and Technology, Harbin 150080, China; (X.Y.); (J.F.); (L.L.)
| |
Collapse
|
13
|
Li Q, Ji MG, Kim J. Grayscale Nanopixel Printing at Sub-10-nanometer Vertical Resolution via Light-Controlled Nanocapillarity. ACS NANO 2020; 14:6058-6066. [PMID: 32336089 DOI: 10.1021/acsnano.0c01791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanotextures play increasingly important roles in nanotechnology. Recent studies revealed that their functionalities can be further enhanced by spatially modulating the height of their nanoscale pixels. Realizing the concept, however, is very challenging as it requires "grayscale" printing of the nanopixels in which their height is controlled within a few nanometers as a micrometric function of position. This work demonstrates such a high vertical and lateral resolution grayscale printing of polymeric nanopixels. We realize the height modulation by exploiting the discovery that the capillary rise of certain photopolymers can be optically controlled to stop at a predetermined height with sub-10-nm accuracy. Microscale spatial patterning of the control light directly extends the height modulation into a two-dimensionally patterned, grayscale nanopixel printing. Its utility is verified through readily reconfigurable, maskless printing of grayscale nanopixel arrays in dielectric and metallo-dielectric forms. This work also reveals the highly nonlinear and unstable nature of the polymeric nanocapillary effect, expanding its understanding and application scope.
Collapse
Affiliation(s)
- Qiang Li
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Myung Gi Ji
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jaeyoun Kim
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics Research Center, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
14
|
Wang Q, Steinbock O. Materials Synthesis and Catalysis in Microfluidic Devices: Prebiotic Chemistry in Mineral Membranes. ChemCatChem 2019. [DOI: 10.1002/cctc.201901495] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qingpu Wang
- Department of Chemistry and BiochemistryFlorida State University 102 Varsity Drive Tallahassee FL 32306-4390 USA
| | - Oliver Steinbock
- Department of Chemistry and BiochemistryFlorida State University 102 Varsity Drive Tallahassee FL 32306-4390 USA
| |
Collapse
|
15
|
Świerczek-Lasek B, Keremidarska-Markova M, Hristova-Panusheva K, Vladkova T, Ciemerych MA, Archacka K, Krasteva N. Polydimethylsiloxane materials with supraphysiological elasticity enable differentiation of myogenic cells. J Biomed Mater Res A 2019; 107:2619-2628. [PMID: 31376316 DOI: 10.1002/jbm.a.36768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 01/01/2023]
Abstract
Myogenic differentiation during muscle regeneration is guided by various physical and biochemical factors. Recently, substratum elasticity has gained attention as a physical signal that influences both cell differentiation and tissue regeneration. In this work, we investigated the influence of substratum elasticity on proliferation and differentiation of myogenic cells, mouse myoblasts of the C2C12 cell line and mouse primary myoblasts derived from satellite cells-muscle stem cells playing key role in muscle regeneration. Materials with different elastic moduli within the MPa scale based on polydimethylsiloxane (PDMS) were used as cell substratum and characterized for surface roughness, wettability, and micromechanical characteristics. We found that surface properties of PDMS substrates are alter nonlinearly with the increase of the material's elastic modulus. Using this system we provide an evidence that materials with elastic modulus higher than that of physiological skeletal muscle tissue do not perturb myogenic differentiation of both types of myoblasts; thus, can be used as biomaterials for muscle tissue engineering. PDMS materials with elasticity within the range of 2.5-4 MPa may transiently limit the proliferation of myoblasts, but not the efficiency of their differentiation. Direct correlation between substratum elasticity and myogenic differentiation efficiency was not observed but the other surface properties of the PDMS materials such as nanoroughness and wettability were also diverse.
Collapse
Affiliation(s)
- Barbara Świerczek-Lasek
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Milena Keremidarska-Markova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Kamelia Hristova-Panusheva
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Todorka Vladkova
- Department of Polymer Engineering, Faculty of Chemical Technology, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Maria Anna Ciemerych
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Natalia Krasteva
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
16
|
Wang J, Teo AJT, Tan SH, Evans GM, Nguyen NT, Nguyen AV. Influence of Interfacial Gas Enrichment on Controlled Coalescence of Oil Droplets in Water in Microfluidics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3615-3623. [PMID: 30747538 DOI: 10.1021/acs.langmuir.8b03486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Interfacial gas enrichment (IGE) of dissolved gases in water is shown to govern the strong attraction between solid hydrophobic surfaces of an atomic force microscopy (AFM) colloidal probe and solid substrate. However, the role of IGE in controlling the attraction between fluid-fluid interfaces of foam films and emulsion films is difficult to establish by AFM techniques because of the extremely fast coalescence. Here, we applied droplet-based microfluidics to capture the fast coalescence event under the creeping flow condition and quantify the effect of IGE on the drainage and stability of water films between coalescing oil droplets. The amount of dissolved gases is controlled by partially degassing the oil phase. When the amount of dissolved gases (oxygen) in oil decreases (from 7.89 to 4.59 mg/L), the average drainage time of coalescence significantly increases (from 19 to 50 ms). Our theoretical quantification of the coalescence by incorporating IGE into the multilayer van der Waals attraction theory confirms the acceleration of film drainage dynamics by the van der Waals attractive force generated by IGE. The thickness of the IGE layer decreases from 5.5 to 4.9 nm when the amount of dissolved gas decreases from 7.89 to 4.59 mg/L. All these results establish the universal role of dissolved gases in governing the strong attraction between particulate hydrophobic interfaces.
Collapse
Affiliation(s)
- Jianlong Wang
- School of Chemical Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Adrian J T Teo
- Queensland Micro- and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
| | - Say H Tan
- Queensland Micro- and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
| | - Geoffrey M Evans
- School of Engineering , The University of Newcastle , Callaghan , New South Wales 2308 , Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
| | - Anh V Nguyen
- School of Chemical Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
17
|
Replica moulded poly(dimethylsiloxane) microwell arrays induce localized endothelial cell immobilization for coculture with pancreatic islets. Biointerphases 2019; 14:011002. [PMID: 30700091 DOI: 10.1116/1.5087737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PolyJet three-dimensional (3D) printing allows for the rapid manufacturing of 3D moulds for the fabrication of cross-linked poly(dimethylsiloxane) microwell arrays (PMAs). As this 3D printing technique has a resolution on the micrometer scale, the moulds exhibit a distinct surface roughness. In this study, the authors demonstrate by optical profilometry that the topography of the 3D printed moulds can be transferred to the PMAs and that this roughness induced cell adhesive properties to the material. In particular, the topography facilitated immobilization of endothelial cells on the internal walls of the microwells. The authors also demonstrate that upon immobilization of endothelial cells to the microwells, a second population of cells, namely, pancreatic islets could be introduced, thus producing a 3D coculture platform.
Collapse
|
18
|
|
19
|
Monmeyran A, Thomen P, Jonquière H, Sureau F, Li C, Plamont MA, Douarche C, Casella JF, Gautier A, Henry N. The inducible chemical-genetic fluorescent marker FAST outperforms classical fluorescent proteins in the quantitative reporting of bacterial biofilm dynamics. Sci Rep 2018; 8:10336. [PMID: 29985417 PMCID: PMC6037777 DOI: 10.1038/s41598-018-28643-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/26/2018] [Indexed: 01/10/2023] Open
Abstract
To increase our understanding of bacterial biofilm complexity, real- time quantitative analyses of the living community functions are required. To reach this goal, accurate fluorescent reporters are needed. In this paper, we used the classical fluorescent genetic reporters of the GFP family and demonstrated their limits in the context of a living biofilm. We showed that fluorescence signal saturated after only a few hours of growth and related this saturation to the reduction of oxygen concentration induced by bacterial consumption. This behaviour prevents the use of GFP-like fluorescent proteins for quantitative measurement in living biofilms. To overcome this limitation, we propose the use of a recently introduced small protein tag, FAST, which is fluorescent in the presence of an exogenously applied fluorogenic dye, enabling to avoid the oxygen sensitivity issue. We compared the ability of FAST to report on biofilm growth with that of GFP and mCherry, and demonstrated the superiority of the FAST:fluorogen probes for investigating dynamics in the complex environment of a living biofilm.
Collapse
Affiliation(s)
- Amaury Monmeyran
- Laboratoire Jean Perrin, CNRS UMR 8237 Sorbonne Université & UPMC Université Paris 06, F-75005, Paris, France
| | - Philippe Thomen
- Laboratoire Jean Perrin, CNRS UMR 8237 Sorbonne Université & UPMC Université Paris 06, F-75005, Paris, France
- Institut de Physique de Nice, UMR 7010, Université Nice Sophia Antipolis, Nice, France
| | - Hugo Jonquière
- Laboratoire Jean Perrin, CNRS UMR 8237 Sorbonne Université & UPMC Université Paris 06, F-75005, Paris, France
| | - Franck Sureau
- Laboratoire Jean Perrin, CNRS UMR 8237 Sorbonne Université & UPMC Université Paris 06, F-75005, Paris, France
| | - Chenge Li
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Marie-Aude Plamont
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Carine Douarche
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Jean-François Casella
- Laboratoire Jean Perrin, CNRS UMR 8237 Sorbonne Université & UPMC Université Paris 06, F-75005, Paris, France
| | - Arnaud Gautier
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Nelly Henry
- Laboratoire Jean Perrin, CNRS UMR 8237 Sorbonne Université & UPMC Université Paris 06, F-75005, Paris, France.
| |
Collapse
|
20
|
Lee G, Jun Y, Jang H, Yoon J, Lee J, Hong M, Chung S, Kim DH, Lee S. Enhanced oxygen permeability in membrane-bottomed concave microwells for the formation of pancreatic islet spheroids. Acta Biomater 2018; 65:185-196. [PMID: 29101017 DOI: 10.1016/j.actbio.2017.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/22/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
Oxygen availability is a critical factor in regulating cell viability that ultimately contributes to the normal morphogenesis and functionality of human tissues. Among various cell culture platforms, construction of 3D multicellular spheroids based on microwell arrays has been extensively applied to reconstitute in vitro human tissue models due to its precise control of tissue culture conditions as well as simple fabrication processes. However, an adequate supply of oxygen into the spheroidal cellular aggregation still remains one of the main challenges to producing healthy in vitro spheroidal tissue models. Here, we present a novel design for controlling the oxygen distribution in concave microwell arrays. We show that oxygen permeability into the microwell is tightly regulated by varying the poly-dimethylsiloxane (PDMS) bottom thickness of the concave microwells. Moreover, we validate the enhanced performance of the engineered microwell arrays by culturing non-proliferated primary rat pancreatic islet spheroids on varying bottom thickness from 10 μm to 1050 μm. Morphological and functional analyses performed on the pancreatic islet spheroids grown for 14 days prove the long-term stability, enhanced viability, and increased hormone secretion under the sufficient oxygen delivery conditions. We expect our results could provide knowledge on oxygen distribution in 3-dimensional spheroidal cell structures and critical design concept for tissue engineering applications. STATEMENT OF SIGNIFICANCE In this study, we present a noble design to control the oxygen distribution in concave microwell arrays for the formation of highly functional pancreatic islet spheroids by engineering the bottom of the microwells. Our new platform significantly enhanced oxygen permeability that turned out to improve cell viability and spheroidal functionality compared to the conventional thick-bottomed 3-D culture system. Therefore, we believe that this could be a promising medical biotechnology platform to further develop high-throughput tissue screening system as well as in vivo-mimicking customised 3-D tissue culture systems.
Collapse
|
21
|
Narayanan K, Mishra S, Singh S, Pei M, Gulyas B, Padmanabhan P. Engineering Concepts in Stem Cell Research. Biotechnol J 2017; 12. [PMID: 28901712 DOI: 10.1002/biot.201700066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/07/2017] [Indexed: 12/15/2022]
Abstract
The field of regenerative medicine integrates advancements made in stem cells, molecular biology, engineering, and clinical methodologies. Stem cells serve as a fundamental ingredient for therapeutic application in regenerative medicine. Apart from stem cells, engineering concepts have equally contributed to the success of stem cell based applications in improving human health. The purpose of various engineering methodologies is to develop regenerative and preventive medicine to combat various diseases and deformities. Explosion of stem cell discoveries and their implementation in clinical setting warrants new engineering concepts and new biomaterials. Biomaterials, microfluidics, and nanotechnology are the major engineering concepts used for the implementation of stem cells in regenerative medicine. Many of these engineering technologies target the specific niche of the cell for better functional capability. Controlling the niche is the key for various developmental activities leading to organogenesis and tissue homeostasis. Biomimetic understanding not only helped to improve the design of the matrices or scaffolds by incorporating suitable biological and physical components, but also ultimately aided adoption of designs that helped these materials/devices have better function. Adoption of engineering concepts in stem cell research improved overall achievement, however, several important issues such as long-term effects with respect to systems biology needs to be addressed. Here, in this review the authors will highlight some interesting breakthroughs in stem cell biology that use engineering methodologies.
Collapse
Affiliation(s)
- Karthikeyan Narayanan
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, PO Box 9196, One Medical Center Drive, 2 Morgantown, WV 26505-9196, USA
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Satnam Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, PO Box 9196, One Medical Center Drive, 2 Morgantown, WV 26505-9196, USA
| | - Balazs Gulyas
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
22
|
Secchi E, Rusconi R, Buzzaccaro S, Salek MM, Smriga S, Piazza R, Stocker R. Intermittent turbulence in flowing bacterial suspensions. J R Soc Interface 2017; 13:rsif.2016.0175. [PMID: 27307513 DOI: 10.1098/rsif.2016.0175] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/25/2016] [Indexed: 02/06/2023] Open
Abstract
Dense suspensions of motile bacteria, possibly including the human gut microbiome, exhibit collective dynamics akin to those observed in classic, high Reynolds number turbulence with important implications for chemical and biological transport, yet this analogy has remained primarily qualitative. Here, we present experiments in which a dense suspension of Bacillus subtilis bacteria was flowed through microchannels and the velocity statistics of the flowing suspension were quantified using a recently developed velocimetry technique coupled with vortex identification methods. Observations revealed a robust intermittency phenomenon, whereby the average velocity profile of the suspension fluctuated between a plug-like flow and a parabolic flow profile. This intermittency is a hallmark of the onset of classic turbulence and Lagrangian tracking revealed that it here originates from the presence of transient vortices in the active, collective motion of the bacteria locally reinforcing the externally imposed flow. These results link together two entirely different manifestations of turbulence and show the potential of the microfluidic approach to mimic the environment characteristic of certain niches of the human microbiome.
Collapse
Affiliation(s)
- Eleonora Secchi
- Department of Chemistry (CMIC), Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA
| | - Roberto Rusconi
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA Department of Civil, Environmental and Geomatic Engineering, Institute for Environmental Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Stefano Buzzaccaro
- Department of Chemistry (CMIC), Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy
| | - M Mehdi Salek
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA Department of Civil, Environmental and Geomatic Engineering, Institute for Environmental Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Steven Smriga
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA Department of Civil, Environmental and Geomatic Engineering, Institute for Environmental Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Roberto Piazza
- Department of Chemistry (CMIC), Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy
| | - Roman Stocker
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA Department of Civil, Environmental and Geomatic Engineering, Institute for Environmental Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
23
|
Shinohara M, Komori K, Fujii T, Sakai Y. Enhanced self-organization of size-controlled hepatocyte aggregates on oxygen permeable honeycomb microwell sheets. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa7c3d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Thomen P, Robert J, Monmeyran A, Bitbol AF, Douarche C, Henry N. Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing. PLoS One 2017; 12:e0175197. [PMID: 28403171 PMCID: PMC5389662 DOI: 10.1371/journal.pone.0175197] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/22/2017] [Indexed: 02/02/2023] Open
Abstract
Bacterial communities attached to surfaces under fluid flow represent a widespread lifestyle of the microbial world. Through shear stress generation and molecular transport regulation, hydrodynamics conveys effects that are very different by nature but strongly coupled. To decipher the influence of these levers on bacterial biofilms immersed in moving fluids, we quantitatively and simultaneously investigated physicochemical and biological properties of the biofilm. We designed a millifluidic setup allowing to control hydrodynamic conditions and to monitor biofilm development in real time using microscope imaging. We also conducted a transcriptomic analysis to detect a potential physiological response to hydrodynamics. We discovered that a threshold value of shear stress determined biofilm settlement, with sub-piconewton forces sufficient to prevent biofilm initiation. As a consequence, distinct hydrodynamic conditions, which set spatial distribution of shear stress, promoted distinct colonization patterns with consequences on the growth mode. However, no direct impact of mechanical forces on biofilm growth rate was observed. Consistently, no mechanosensing gene emerged from our differential transcriptomic analysis comparing distinct hydrodynamic conditions. Instead, we found that hydrodynamic molecular transport crucially impacts biofilm growth by controlling oxygen availability. Our results shed light on biofilm response to hydrodynamics and open new avenues to achieve informed design of fluidic setups for investigating, engineering or fighting adherent communities.
Collapse
Affiliation(s)
- Philippe Thomen
- Sorbonne Universités, UPMC Univ Paris 06 & CNRS, UMR 8237, Laboratoire Jean Perrin, Paris, France
| | - Jérôme Robert
- Sorbonne Universités, UPMC Univ Paris 06 & CNRS, UMR 8237, Laboratoire Jean Perrin, Paris, France
| | - Amaury Monmeyran
- Sorbonne Universités, UPMC Univ Paris 06 & CNRS, UMR 8237, Laboratoire Jean Perrin, Paris, France
| | - Anne-Florence Bitbol
- Sorbonne Universités, UPMC Univ Paris 06 & CNRS, UMR 8237, Laboratoire Jean Perrin, Paris, France
| | - Carine Douarche
- Université Paris Sud, UMR 8502, Laboratoire de Physique des Solides, Orsay, France
| | - Nelly Henry
- Sorbonne Universités, UPMC Univ Paris 06 & CNRS, UMR 8237, Laboratoire Jean Perrin, Paris, France
| |
Collapse
|
25
|
Simulation-assisted design of microfluidic sample traps for optimal trapping and culture of non-adherent single cells, tissues, and spheroids. Sci Rep 2017; 7:245. [PMID: 28325895 PMCID: PMC5428016 DOI: 10.1038/s41598-017-00229-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/15/2017] [Indexed: 11/08/2022] Open
Abstract
This work focuses on modelling design and operation of "microfluidic sample traps" (MSTs). MSTs regroup a widely used class of microdevices that incorporate wells, recesses or chambers adjacent to a channel to individually trap, culture and/or release submicroliter 3D tissue samples ranging from simple cell aggregates and spheroids, to ex vivo tissue samples and other submillimetre-scale tissue models. Numerous MST designs employing various trapping mechanisms have been proposed in the literature, spurring the development of 3D tissue models for drug discovery and personalized medicine. Yet, there lacks a general framework to optimize trapping stability, trapping time, shear stress, and sample metabolism. Herein, the effects of hydrodynamics and diffusion-reaction on tissue viability and device operation are investigated using analytical and finite element methods with systematic parametric sweeps over independent design variables chosen to correspond to the four design degrees of freedom. Combining different results, we show that, for a spherical tissue of diameter d < 500 μm, the simplest, closest to optimal trap shape is a cube of dimensions w equal to twice the tissue diameter: w = 2d. Furthermore, to sustain tissues without perfusion, available medium volume per trap needs to be 100× the tissue volume to ensure optimal metabolism for at least 24 hours.
Collapse
|
26
|
Kim J, An H, Seo Y, Jung Y, Lee JS, Choi N, Bong KW. Flow lithography in ultraviolet-curable polydimethylsiloxane microfluidic chips. BIOMICROFLUIDICS 2017; 11:024120. [PMID: 28469763 PMCID: PMC5407903 DOI: 10.1063/1.4982698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/17/2017] [Indexed: 05/07/2023]
Abstract
Flow Lithography (FL) is the technique used for the synthesis of hydrogel microparticles with various complex shapes and distinct chemical compositions by combining microfluidics with photolithography. Although polydimethylsiloxane (PDMS) has been used most widely as almost the sole material for FL, PDMS microfluidic chips have limitations: (1) undesired shrinkage due to the thermal expansion of masters used for replica molding and (2) interfacial delamination between two thermally cured PDMS layers. Here, we propose the utilization of ultraviolet (UV)-curable PDMS (X-34-4184) for FL as an excellent alternative material of the conventional PDMS. Our proposed utilization of the UV-curable PDMS offers three key advantages, observed in our study: (1) UV-curable PDMS exhibited almost the same oxygen permeability as the conventional PDMS. (2) The almost complete absence of shrinkage facilitated the fabrication of more precise reverse duplication of microstructures. (3) UV-cured PDMS microfluidic chips were capable of much stronger interfacial bonding so that the burst pressure increased to ∼0.9 MPa. Owing to these benefits, we demonstrated a substantial improvement of productivity in synthesizing polyethylene glycol diacrylate microparticles via stop flow lithography, by applying a flow time (40 ms) an order of magnitude shorter. Our results suggest that UV-cured PDMS chips can be used as a general platform for various types of flow lithography and also be employed readily in other applications where very precise replication of structures on micro- or sub-micrometer scales and/or strong interfacial bonding are desirable.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
27
|
Jiang Z, Xia B, McBride R, Oakey J. A microfluidic-based cell encapsulation platform to achieve high long-term cell viability in photopolymerized PEGNB hydrogel microspheres. J Mater Chem B 2017; 5:173-180. [PMID: 28066550 PMCID: PMC5207045 DOI: 10.1039/c6tb02551j] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell encapsulation within photopolymerized polyethylene glycol (PEG)-based hydrogel scaffolds has been demonstrated as a robust strategy for cell delivery, tissue engineering, regenerative medicine, and developing in vitro platforms to study cellular behavior and fate. Strategies to achieve spatial and temporal control over PEG hydrogel mechanical properties, chemical functionalization, and cytocompatibility have advanced considerably in recent years. Recent microfluidic technologies have enabled the miniaturization of PEG hydrogels, thus enabling the fabrication of miniaturized cell-laden vehicles. However, rapid oxygen diffusive transport times on the microscale dramatically inhibit chain growth photopolymerization of polyethylene glycol diacrylate (PEGDA), thus decreasing the viability of cells encapsulated within these microstructures. Another promising PEG-based scaffold material, PEG norbornene (PEGNB), is formed by a step-growth photopolymerization and is not inhibited by oxygen. PEGNB has also been shown to be more cytocompatible than PEGDA and allows for orthogonal addition reactions. The step-growth kinetics, however, are slow and therefore challenging to fully polymerize within droplets flowing through microfluidic devices. Here, we describe a microfluidic-based droplet fabrication platform that generates consistently monodisperse cell-laden water-in-oil emulsions. Microfluidically generated PEGNB droplets are collected and photopolymerized under UV exposure in bulk emulsions. In this work, we compare this microfluidic-based cell encapsulation platform with a vortex-based method on the basis of microgel size, uniformity, post-encapsulation cell viability and long-term cell viability. Several factors that influence post-encapsulation cell viability were identified. Finally, long-term cell viability achieved by this platform was compared to a similar cell encapsulation platform using PEGDA. We show that this PEGNB microencapsulation platform is capable of generating cell-laden hydrogel microspheres at high rates with well-controlled size distributions and high long-term cell viability.
Collapse
Affiliation(s)
- Zhongliang Jiang
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
| | - Bingzhao Xia
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
| | - Ralph McBride
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
28
|
Mandal R, Anthony RJ. Aging of Silicon Nanocrystals on Elastomer Substrates: Photoluminescence Effects. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35479-35484. [PMID: 27983777 DOI: 10.1021/acsami.6b10155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanocrystalline silicon is widely known as an efficient and tunable optical emitter and is attracting great interest for applications such as light-emitting devices (LEDs), electronic displays, sensors, and solar-photovoltaics. To date, however, luminescent silicon nanocrystals have been used exclusively in traditional rigid devices, leaving a gap in knowledge regarding how they behave on elastomeric substrates. The present study shows how the optical and structural/morphological properties of plasma-synthesized silicon nanocrystals (SiNCs) change when they are deposited on stretchable substrates made from polydimethylsiloxane (PDMS). Our results indicate that SiNCs deposited directly from the gas phase onto PDMS exhibit morphological changes, as well as modified aging characteristics due to enhanced oxidation. These results begin to fill the knowledge gap and point to the potential of using luminescent SiNC layers for flexible and stretchable electronics such as LEDs, displays, and sensors.
Collapse
Affiliation(s)
- Rajib Mandal
- Department of Mechanical Engineering, Michigan State University , East Lansing, Michigan 48824, United States
| | - Rebecca J Anthony
- Department of Mechanical Engineering, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
29
|
Mäki AJ, Peltokangas M, Kreutzer J, Auvinen S, Kallio P. Modeling carbon dioxide transport in PDMS-based microfluidic cell culture devices. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.06.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Loiseau E, Massiera G, Mendez S, Martinez PA, Abkarian M. Microfluidic study of enhanced deposition of sickle cells at acute corners. Biophys J 2015; 108:2623-32. [PMID: 26039164 PMCID: PMC4457474 DOI: 10.1016/j.bpj.2015.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/03/2015] [Accepted: 04/14/2015] [Indexed: 02/02/2023] Open
Abstract
Sickle cell anemia is a blood disorder, known to affect the microcirculation and is characterized by painful vaso-occlusive crises in deep tissues. During the last three decades, many scenarios based on the enhanced adhesive properties of the membrane of sickle red blood cells have been proposed, all related to a final decrease in vessels lumen by cells accumulation on the vascular walls. Up to now, none of these scenarios considered the possible role played by the geometry of the flow on deposition. The question of the exact locations of occlusive events at the microcirculatory scale remains open. Here, using microfluidic devices where both geometry and oxygen levels can be controlled, we show that the flow of a suspension of sickle red blood cells around an acute corner of a triangular pillar or of a bifurcation, leads to the enhanced deposition and aggregation of cells. Thanks to our devices, we follow the growth of these aggregates in time and show that their length does not depend on oxygenation levels; instead, we find that their morphology changes dramatically to filamentous structures when using autologous plasma as a suspending fluid. We finally discuss the possible role played by such aggregates in vaso-occlusive events.
Collapse
Affiliation(s)
- Etienne Loiseau
- Centre National de la Recherche Scientifique UMR 5221, Laboratoire Charles Coulomb, Université de Montpellier, Montpellier, France
| | - Gladys Massiera
- Centre National de la Recherche Scientifique UMR 5221, Laboratoire Charles Coulomb, Université de Montpellier, Montpellier, France
| | - Simon Mendez
- Centre National de la Recherche Scientifique UMR 5149, Institut de Mathématiques et de Modélisation de Montpellier, Université de Montpellier, Montpellier, France
| | - Patricia Aguilar Martinez
- Faculté de Médecine, Laboratoire d'Hématologie, Hôpital Saint Eloi, The Cardiovascular Health Research Unit de Montpellier, Montpellier, France
| | - Manouk Abkarian
- Centre National de la Recherche Scientifique UMR 5221, Laboratoire Charles Coulomb, Université de Montpellier, Montpellier, France; Centre National de la Recherche Scientifique UMR 5048-UM-Institut National de la Santé et de la Recherche Médicale UMR 1054, Centre de Biochimie Structurale, Montpellier, France.
| |
Collapse
|
31
|
Heath DE, Sharif ARM, Ng CP, Rhoads MG, Griffith LG, Hammond PT, Chan-Park MB. Regenerating the cell resistance of micromolded PEG hydrogels. LAB ON A CHIP 2015; 15:2073-2089. [PMID: 25813089 DOI: 10.1039/c4lc01416b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polydimethylsiloxane stamp materials used during soft lithography undermine the non-fouling behaviour of bio-inert PEG-based hydrogels, resulting in increased protein adsorption and cell adhesion and migration on the gel. This previously unreported phenomenon undermines the function of lab-on-a-chip devices that require the device to be bio-inert, and slows the implementation of promising micromolding and imprinting methods for 3D culture and commercial cell culture systems. We illustrate that the degree of cell adhesion and protein adsorption to the gels correlates with the amount of residual stamp material remaining at the hydrogel interface after fabrication. After identifying this previously unreported phenomenon, we screened multiple polymer cleaning/fabrication techniques in order to maintain/restore the non-fouling properties of the gels including PDMS curing and extraction, use of other common soft lithography stamp materials, post-fabrication cleaning of the hydrogels, and changing the composition of the hydrogel. The optimal solution was determined to be incorporation of reactive sites into the hydrogel during micromolding followed by grafting of PEG macromers to these sites post-fabrication. This treatment resulted in micromolded hydrogels with robust cell resistant properties. Broadly, this work identifies and solves a previously unreported problem in hydrogel micromolding, and specifically reports the development of a cell culture platform that when combined with video microscopy enables high-resolution in situ study of single cell behaviour during in vitro culture.
Collapse
Affiliation(s)
- Daniel E Heath
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 3 Science Drive 2, Singapore 117543
| | | | | | | | | | | | | |
Collapse
|
32
|
Huang W, Arai F, Kawahara T. Egg-in-cube: design and fabrication of a novel artificial eggshell with functionalized surface. PLoS One 2015; 10:e0118624. [PMID: 25768929 PMCID: PMC4359160 DOI: 10.1371/journal.pone.0118624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/21/2015] [Indexed: 11/18/2022] Open
Abstract
An eggshell is a porous microstructure that regulates the passage of gases to allow respiration. The chick embryo and its circulatory system enclosed by the eggshell has become an important model for biomedical research such as the control of angiogenesis, cancer therapy, and drug delivery test, because the use of embryo is ethically acceptable and it is inexpensive and small. However, chick embryo and extra-embryonic blood vessels cannot be accessed freely and has poor observability because the eggshell is tough and cannot be seen through, which limits its application. In this study, a novel artificial eggshell with functionalized surface is proposed, which allows the total amount of oxygen to pass into the egg for the chick embryo culturing and has high observability and accessibility for embryo manipulation. First, a 40-mm enclosed cubic-shaped eggshell consisting of a membrane structure and a rigid frame structure is designed, and then the threshold of the membrane thickness suitable for the embryo survival is figured out according to the oxygen-permeability of the membrane structure. The designed artificial eggshell was actually fabricated by using polydimethylsiloxane (PDMS) and polycarbonate (PC) in the current study. Using the fabricated eggshell, chick embryo and extra-embryonic blood vessels can be observed from multiple directions. To test the effectiveness of the design, the cubic eggshells were used to culture chick embryos and survivability was confirmed when PDMS membranes with adequate oxygen permeability were used. Since the surface of the eggshell is transparent, chick embryo tissue development could be observed during the culture period. Additionally, the chick embryo tissues could be accessed and manipulated from outside the cubic eggshell, by using mechanical tools without breakage of the eggshell. The proposed "Egg-in-Cube" with functionalized surface has great potential to serve as a promising platform for biomedical research.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Wakamatsu-ku, Kitakyushu, Japan
| | - Fumihito Arai
- Department of Micro-Nano Systems Engineering, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Tomohiro Kawahara
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Wakamatsu-ku, Kitakyushu, Japan
- * E-mail:
| |
Collapse
|
33
|
An HZ, Eral HB, Chen L, Chen MB, Doyle PS. Synthesis of colloidal microgels using oxygen-controlled flow lithography. SOFT MATTER 2014; 10:7595-605. [PMID: 25119975 DOI: 10.1039/c4sm01400f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We report a synthesis approach based on stop-flow lithography (SFL) for fabricating colloidal microparticles with any arbitrary 2D-extruded shape. By modulating the degree of oxygen inhibition during synthesis, we achieved previously unattainable particle sizes. Brownian diffusion of colloidal discs in bulk suggests the out-of-plane dimension can be as small as 0.8 μm, which agrees with confocal microscopy measurements. We measured the hindered diffusion of microdiscs near a solid surface and compared our results to theoretical predictions. These colloidal particles can also flow through physiological microvascular networks formed by endothelial cells undergoing vasculogensis under minimal hydrostatic pressure (∼5 mm H2O). This versatile platform creates future opportunities for on-chip parametric studies of particle geometry effects on particle passage properties, distribution and cellular interactions.
Collapse
Affiliation(s)
- Harry Z An
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
34
|
Takano S, Shiomoto S, Inoue KY, Ino K, Shiku H, Matsue T. Electrochemical approach for the development of a simple method for detecting cell apoptosis based on caspase-3 activity. Anal Chem 2014; 86:4723-8. [PMID: 24798487 DOI: 10.1021/ac403394z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper reports a novel approach for the simple detection of cell apoptosis using an electrochemical technique. This method uses caspase-3 activity as an indicator of apoptosis. Caspase-3 activity was detected with differential plus voltammetry (DPV) as an alternative to conventional spectrometry. In this method, p-nitroaniline (pNA) released from Asp-Glu-Val-Asp-pNA by caspase-3 enzyme reaction was measured with DPV by using a glassy carbon electrode. Using this method, we successfully detected cell apoptosis occurring inside living HepG2 cells without the need for a cell lysis step. This method provides an easy assay procedure and, more importantly, allows a live cell apoptosis detection format. This novel electrochemical apoptosis assay using living cells instead of typically used cell lysates will expand the applicable range of the apoptosis assay to include cell activity assays for drug discovery and cell transplantation medicine.
Collapse
Affiliation(s)
- Shinichiro Takano
- Graduate School of Environmental Studies, Tohoku University , 6-6-11-604 Aramaki, Aoba, Sendai 980-8579, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Borysiak MD, Bielawski KS, Sniadecki NJ, Jenkel CF, Vogt BD, Posner JD. Simple replica micromolding of biocompatible styrenic elastomers. LAB ON A CHIP 2013; 13:2773-84. [PMID: 23670166 PMCID: PMC3799950 DOI: 10.1039/c3lc50426c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this work, we introduce a simple solvent-assisted micromolding technique for the fabrication of high-fidelity styrene-ethylene/butylene-styrene (SEBS) microfluidic devices with high polystyrene (PS) content (42 wt% PS, SEBS42). SEBS triblock copolymers are styrenic thermoplastic elastomers that exhibit both glassy thermoplastic and elastomeric properties resulting from their respective hard PS and rubbery ethylene/butylene segments. The PS fraction gives SEBS microdevices many of the appealing properties of pure PS devices, while the elastomeric properties simplify fabrication of the devices, similar to PDMS. SEBS42 devices have wettable, stable surfaces (both contact angle and zeta potential) that support cell attachment and proliferation consistent with tissue culture dish substrates, do not adsorb hydrophobic molecules, and have high bond strength to wide range of substrates (glass, PS, SEBS). Furthermore, SEBS42 devices are mechanically robust, thermally stable, as well as exhibit low auto-fluorescence and high transmissivity. We characterize SEBS42 surface properties by contact angle measurements, cell culture studies, zeta potential measurements, and the adsorption of hydrophobic molecules. The PS surface composition of SEBS microdevices cast on different substrates is determined by time-of-flight secondary ion mass spectrometry (ToF-SIMS). The attractive SEBS42 material properties, coupled with the simple fabrication method, make SEBS42 a quality substrate for microfluidic applications where the properties of PS are desired but the ease of PDMS micromolding is favoured.
Collapse
Affiliation(s)
- Mark D. Borysiak
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Kevin S. Bielawski
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Colin F. Jenkel
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Bryan D. Vogt
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA
| | - Jonathan D. Posner
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
36
|
Lee CY, Romanova EV, Sweedler JV. Laminar stream of detergents for subcellular neurite damage in a microfluidic device: a simple tool for the study of neuroregeneration. J Neural Eng 2013; 10:036020. [PMID: 23656702 DOI: 10.1088/1741-2560/10/3/036020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The regeneration and repair of damaged neuronal networks is a difficult process to study in vivo, leading to the development of multiple in vitro models and techniques for studying nerve injury. Here we describe an approach for generating a well-defined subcellular neurite injury in a microfluidic device. APPROACH A defined laminar stream of sodium dodecyl sulfate (SDS) was used to damage selected portions of neurites of individual neurons. The somata and neurites unaffected by the SDS stream remained viable, thereby enabling the study of neuronal regeneration. MAIN RESULTS By using well-characterized neurons from Aplysia californica cultured in vitro, we demonstrate that our approach is useful in creating neurite damage, investigating neurotrophic factors, and monitoring somata migration during regeneration. Supplementing the culture medium with acetylcholinesterase (AChE) or Aplysia hemolymph facilitated the regeneration of the peptidergic Aplysia neurons within 72 h, with longer (p < 0.05) and more branched (p < 0.05) neurites than in the control medium. After the neurons were transected, their somata migrated; intriguingly, for the control cultures, the migration direction was always away from the injury site (7/7). In the supplemented cultures, the number decreased to 6/8 in AChE and 4/8 in hemolymph, with reduced migration distances in both cases. SIGNIFICANCE The SDS transection approach is simple and inexpensive, yet provides flexibility in studying neuroregeneration, particularly when it is important to make sure there are no retrograde signals from the distal segments affecting regeneration. Neurons are known to not only be under tension but also balanced in terms of force, and the balance is obviously disrupted by transection. Our experimental platform, verified with Aplysia, can be extended to mammalian systems, and help us gain insight into the role that neurotrophic factors and mechanical tension play during neuronal regeneration.
Collapse
Affiliation(s)
- Chang Young Lee
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | | | | |
Collapse
|
37
|
Komori K, Udagawa M, Shinohara M, Montagne K, Tsuru T, Sakai Y. Formation and harvesting of thick pancreatic β-cell sheets on a highly O2-permeable plate modified with poly(N-isopropylacrylamide). Biomater Sci 2013; 1:510-518. [DOI: 10.1039/c3bm00123g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Fukuda J, Takahashi S, Osaki T, Mochizuki N, Suzuki H. Processing of nanolitre liquid plugs for microfluidic cell-based assays. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064201. [PMID: 27877528 PMCID: PMC5099761 DOI: 10.1088/1468-6996/13/6/064201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/09/2012] [Indexed: 06/06/2023]
Abstract
Plugs, i.e. droplets formed in a microchannel, may revolutionize microfluidic cell-based assays. This study describes a microdevice that handles nanolitre-scale liquid plugs for the preparation of various culture setups and subsequent cellular assays. An important feature of this mode of liquid operation is that the recirculation flow generated inside the plug promotes the rapid mixing of different solutions after plugs are merged, and it keeps cell suspensions homogeneous. Thus, serial dilutions of reagents and cell suspensions with different cell densities and cell types were rapidly performed using nanolitres of solution. Cells seeded through the plug processing grew well in the microdevice, and subsequent plug processing was used to detect the glucose consumption of cells and cellular responses to anticancer agents. The plug-based microdevice may provide a useful platform for cell-based assay systems in various fields, including fundamental cell biology and drug screening applications.
Collapse
Affiliation(s)
- Junji Fukuda
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305–8573, Japan
| | | | | | | | | |
Collapse
|
39
|
Hurth C, Gu J, Aboud M, Estes MD, Nordquist AR, McCord B, Zenhausern F. Direct loading of polymer matrices in plastic microchips for rapid DNA analysis: a comparative study. Electrophoresis 2012; 33:2604-11. [PMID: 22899270 DOI: 10.1002/elps.201200148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report the design and performance validation of microfluidic separation technologies for human identification using a disposable plastic device suitable for integration into an automated rapid DNA analysis system. A fabrication process for a 15-cm long hot-embossed plastic microfluidic devices with a smooth semielliptical cross section out of cyclic olefin copolymer is presented. We propose a mixed polymer solution of 95% w/v hydroxyethylcellulose and 5% w/v polyvinylpyrrolidone for a final polymer concentration of 2.5 or 3.0% to be used as coating and sieving matrix for DNA separation. This formulation allows preparing the microchip without pretreatment in a single-loading step and provides high-resolution separation (≈1.2 bp for fragments <200 bp), which is superior to existing commercial matrices under the same conditions. The hot-embossed device performance is characterized and compared to injection-molded devices made out of cyclic olefin copolymer based on their respective injector geometry, channel shape, and surface charges. Each device design is assessed by fluorescence videomicroscopy to evaluate the formation of injection plugs, then by comparing electropherograms for the separation of a DNA size standard relevant to human identification.
Collapse
Affiliation(s)
- Cedric Hurth
- Center for Applied Nanobioscience and Medicine, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Anada T, Fukuda J, Sai Y, Suzuki O. An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids. Biomaterials 2012; 33:8430-41. [DOI: 10.1016/j.biomaterials.2012.08.040] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/17/2012] [Indexed: 12/11/2022]
|
41
|
Pedraza E, Brady AC, Fraker CA, Stabler CL. Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:1041-56. [PMID: 23683037 DOI: 10.1080/09205063.2012.735097] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Macroporous, biostable scaffolds with controlled porous architecture were prepared from poly(dimethylsiloxane) (PDMS) using sodium chloride particles and a solvent casting and particulate leaching technique. The effect of particulate size range and overall porosity on the resulting structure was evaluated. Results found 90% v/v scaffolds and particulate ranges above 100 μm to have the most optimal open framework and porosity. Resulting hydrophobic PDMS scaffolds were coated with fibronectin and evaluated as a platform for adherent cell culture using human mesenchymal stem cells. Biocompatibility of PDMS scaffolds was also evaluated in a rodent model, where implants were found to be highly biocompatible and biostable, with positive extracellular matrix deposition throughout the scaffold. These results demonstrate the suitability of macroporous PDMS scaffolds for tissue engineering applications where strong integration with the host is desired.
Collapse
Affiliation(s)
- Eileen Pedraza
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, FL 33134, USA
| | | | | | | |
Collapse
|
42
|
Kniazeva T, Epshteyn AA, Hsiao JC, Kim ES, Kolachalama VB, Charest JL, Borenstein JT. Performance and scaling effects in a multilayer microfluidic extracorporeal lung oxygenation device. LAB ON A CHIP 2012; 12:1686-95. [PMID: 22418858 PMCID: PMC3320667 DOI: 10.1039/c2lc21156d] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microfluidic fabrication technologies are emerging as viable platforms for extracorporeal lung assist devices and oxygenators for cardiac surgical support and critical care medicine, based in part on their ability to more closely mimic the architecture of the human vasculature than existing technologies. In comparison with current hollow fiber oxygenator technologies, microfluidic systems have more physiologically-representative blood flow paths, smaller cross section blood conduits and thinner gas transfer membranes. These features can enable smaller device sizes and a reduced blood volume in the oxygenator, enhanced gas transfer efficiencies, and may also reduce the tendency for clotting in the system. Several critical issues need to be addressed in order to advance this technology from its current state and implement it in an organ-scale device for clinical use. Here we report on the design, fabrication and characterization of multilayer microfluidic oxygenators, investigating scaling effects associated with fluid mechanical resistance, oxygen transfer efficiencies, and other parameters in multilayer devices. Important parameters such as the fluidic resistance of interconnects are shown to become more predominant as devices are scaled towards many layers, while other effects such as membrane distensibility become less significant. The present study also probes the relationship between blood channel depth and membrane thickness on oxygen transfer, as well as the rate of oxygen transfer on the number of layers in the device. These results contribute to our understanding of the complexity involved in designing three-dimensional microfluidic oxygenators for clinical applications.
Collapse
|
43
|
Berthier E, Young EWK, Beebe D. Engineers are from PDMS-land, Biologists are from Polystyrenia. LAB ON A CHIP 2012; 12:1224-37. [PMID: 22318426 DOI: 10.1039/c2lc20982a] [Citation(s) in RCA: 453] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
As the integration of microfluidics into cell biology research proceeds at an ever-increasing pace, a critical question for those working at the interface of both disciplines is which device material to use for a given application. While PDMS and soft lithography methods offer the engineer rapid prototyping capabilities, PDMS as a material has characteristics that have known adverse effects on cell-based experiments. In contrast, while polystyrene (PS), the most commonly used thermoplastic for laboratory cultureware, has provided decades of grounded and validated research conclusions in cell behavior and function, PS as a material has posed significant challenges in microfabrication. These competing issues have forced microfluidics engineers and biologists to make compromises in how they approach specific research questions, and furthermore, have attenuated the impact of microfluidics on biological research. In this review, we provide a comparison of the attributes of PDMS and PS, and discuss reasons for their popularity in their respective fields. We provide a critical evaluation of the strengths and limitations of PDMS and PS in relation to the advancement and future impact on microfluidic cell-based studies and applications. We believe that engineers have a responsibility to overcome any challenges associated with microfabrication, whether with PS or other materials, and that engineers should provide options and solutions that assist biologists in their experimental design. Our goal is not to advocate for any specific material, but provide guidelines for researchers who desire to choose the most suitable material for their application, and suggest important research directions for engineers working at the interface between microfabrication technology and biological application.
Collapse
Affiliation(s)
- Erwin Berthier
- Department of Medical Microbiology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | |
Collapse
|
44
|
|
45
|
Martewicz S, Michielin F, Serena E, Zambon A, Mongillo M, Elvassore N. Reversible alteration of calcium dynamics in cardiomyocytes during acute hypoxia transient in a microfluidic platform. Integr Biol (Camb) 2011; 4:153-64. [PMID: 22158991 DOI: 10.1039/c1ib00087j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Heart disease is the leading cause of mortality in western countries. Apart from congenital and anatomical alterations, ischemia is the most common agent causing myocardial damage. During ischemia, a sudden decrease in oxygen concentration alters cardiomyocyte function and compromises cell survival. The calcium handling machinery, which regulates the main functional features of a cardiomyocyte, is heavily compromised during acute hypoxic events. Alterations in calcium dynamics have been linked to both short- and long-term consequences of ischemia, ranging from arrhythmias to heart failure. In this perspective, we aimed at investigating the calcium dynamics in functional cardiomyocytes during the early phase of a hypoxic event. For this purpose, we developed a microfluidic system specifically designed for controlling fast oxygen concentration dynamics through a gas micro-exchanger allowing in line analysis of intracellular calcium concentration by confocal microscopy. Experimental results show that exposure of Fluo-4 loaded neonatal rat cardiomyocytes to hypoxic conditions induced changes in intracellular Ca(2+) transients. Such behavior was reversible and was detected for hypoxic levels below 5% of oxygen partial pressure. The observed changes in Ca(2+) dynamics were mimicked using specific L-type Ca(2+) channel antagonists, suggesting that alterations in calcium channel function occur at low oxygen levels. Reversible alteration in ion channel function, that takes place in response to changes in cellular oxygen, might represent an adaptive mechanism of cardiopreservation during ischemia.
Collapse
Affiliation(s)
- S Martewicz
- Dipartimento di Principi e Impianti di Ingegneria Chimica, University of Padova, Via Marzolo, 9, 35131 Padova, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Zahorodny-Burke M, Nearingburg B, Elias A. Finite element analysis of oxygen transport in microfluidic cell culture devices with varying channel architectures, perfusion rates, and materials. Chem Eng Sci 2011. [DOI: 10.1016/j.ces.2011.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Inamdar NK, Griffith LG, Borenstein JT. Transport and shear in a microfluidic membrane bilayer device for cell culture. BIOMICROFLUIDICS 2011; 5:22213. [PMID: 21799719 PMCID: PMC3145238 DOI: 10.1063/1.3576925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/02/2011] [Indexed: 05/06/2023]
Abstract
Microfluidic devices have been established as useful platforms for cell culture for a broad range of applications, but challenges associated with controlling gradients of oxygen and other soluble factors and hemodynamic shear forces in small, confined channels have emerged. For instance, simple microfluidic constructs comprising a single cell culture compartment in a dynamic flow condition must handle tradeoffs between sustaining oxygen delivery and limiting hemodynamic shear forces imparted to the cells. These tradeoffs present significant difficulties in the culture of mesenchymal stem cells (MSCs), where shear is known to regulate signaling, proliferation, and expression. Several approaches designed to shield cells in microfluidic devices from excessive shear while maintaining sufficient oxygen concentrations and transport have been reported. Here we present the relationship between oxygen transport and shear in a "membrane bilayer" microfluidic device, in which soluble factors are delivered to a cell population by means of flow through a proximate channel separated from the culture channel by a membrane. We present an analytical model that describes the characteristics of this device and its ability to independently modulate oxygen delivery and hemodynamic shear imparted to the cultured cells. This bilayer configuration provides a more uniform oxygen concentration profile that is possible in a single-channel system, and it enables independent tuning of oxygen transport and shear parameters to meet requirements for MSCs and other cells known to be sensitive to hemodynamic shear stresses.
Collapse
|
48
|
Evenou F, Hamon M, Fujii T, Takeuchi S, Sakai Y. Gas-permeable membranes and co-culture with fibroblasts enable high-density hepatocyte culture as multilayered liver tissues. Biotechnol Prog 2011; 27:1146-53. [DOI: 10.1002/btpr.626] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/18/2011] [Indexed: 11/05/2022]
|
49
|
Schneider MH, Tran Y, Tabeling P. Benzophenone absorption and diffusion in poly(dimethylsiloxane) and its role in graft photo-polymerization for surface modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1232-40. [PMID: 21207954 DOI: 10.1021/la103345k] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Following the great success of traditional microfluidic devices across many disciplines, a new class of microfluidic systems emerged in recent years, which features finely tuned, localized surface modifications within the microstructures in order to keep up with the demand for devices of ever increasing complexity (lab on chip, assay on chip, etc.). Graft photopolymerization has become a powerful tool for such localized surface modifications particularly in combination with poly(dimethylsiloxane) (PDMS) devices, as it is compatible with many functional monomers and allows for high spatial resolution. However, application within enclosed PDMS microstructures and in particular well-controlled surface-directed polymerization remains challenging. Detailed understanding of the interaction between photoinitiator, benzophenone (BP), and polymer matrix is needed. We have developed a visualization technique, which allows for observation of reacted BP in situ within the PDMS matrix. We present a detailed study on solvent-driven BP diffusion providing results essential to successful surface treatment. We also identified and investigated photoinitiator inhibition by oxygen and provide appropriate mitigation strategies.
Collapse
Affiliation(s)
- Marc H Schneider
- Microfluidique, MEMS & Nanostructures, UMR 7083 Gulliver CNRS-ESPCI, Paris, France
| | | | | |
Collapse
|
50
|
Chowdhury S, Bhethanabotla VR, Sen R. Measurement of oxygen diffusivity and permeability in polymers using fluorescence microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2010; 16:725-734. [PMID: 20684800 DOI: 10.1017/s1431927610000401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A simple fluorescence microscopy technique is developed and presented to investigate heterogeneities in emission intensity and quenching responses of luminescence sensors and to measure diffusion and permeation coefficients of oxygen in polymers. Most luminescence oxygen sensors do not follow linearity of the Stern-Volmer (SV) equation due to heterogeneity of luminophore in the polymer matrix. To circumvent this limitation, inverted fluorescence microscopy is utilized in this work to investigate the SV response of the sensors at the micron scale. It was found that intensity is higher in regions where the luminophore is aggregated, but the response is poorer to oxygen concentration. In contrast, the nearly homogeneous regions exhibit linearity with high SV constants. In these diffusion experiments, oxygen concentration was measured by luminescence changes in regions with high SV constants and good linearity. Two diffusion experiments were performed-termed film-on-sensor and accumulation-in-volume techniques. A new Fick's law based quasi-steady-state diffusion model was developed and combined with the SV equation to obtain effective permeation coefficients for the accumulation-in-volume technique. Using these experimental techniques, oxygen diffusion properties in free-standing Teflon polymer films, cast silicon elastomers, and cast polydimethylsiloxane films containing different weight percentages of zeolite were determined with good precision.
Collapse
Affiliation(s)
- Sanchari Chowdhury
- Department of Chemical & Biomedical Engineering, University of South Florida, Tampa, FL 33620-5350, USA
| | | | | |
Collapse
|