1
|
Paseban T, Alavi MS, Etemad L, Roohbakhsh A. The role of the ATP-Binding Cassette A1 (ABCA1) in neurological disorders: a mechanistic review. Expert Opin Ther Targets 2023; 27:531-552. [PMID: 37428709 DOI: 10.1080/14728222.2023.2235718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/09/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Cholesterol homeostasis is critical for normal brain function. It is tightly controlled by various biological elements. ATP-binding cassette transporter A1 (ABCA1) is a membrane transporter that effluxes cholesterol from cells, particularly astrocytes, into the extracellular space. The recent studies pertaining to ABCA1's role in CNS disorders were included in this study. AREAS COVERED In this comprehensive literature review, preclinical and human studies showed that ABCA1 has a significant role in the following diseases or disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, neuropathy, anxiety, depression, psychosis, epilepsy, stroke, and brain ischemia and trauma. EXPERT OPINION ABCA1 via modulating normal and aberrant brain functions such as apoptosis, phagocytosis, BBB leakage, neuroinflammation, amyloid β efflux, myelination, synaptogenesis, neurite outgrowth, and neurotransmission promotes beneficial effects in aforementioned diseases. ABCA1 is a key molecule in the CNS. By boosting its expression or function, some CNS disorders may be resolved. In preclinical studies, liver X receptor agonists have shown promise in treating CNS disorders via ABCA1 and apoE enhancement.
Collapse
Affiliation(s)
- Tahere Paseban
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Chen HL, Yang L, Zhang XLN, Jia QY, Duan ZD, Li JJ, Zheng LY, Liu TT, Qi Z, Yuan Y, Wu CY. Scutellarin Acts via MAPKs Pathway to Promote M2 Polarization of Microglial Cells. Mol Neurobiol 2023:10.1007/s12035-023-03338-3. [PMID: 37086342 DOI: 10.1007/s12035-023-03338-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Scutellarin, an herbal agent, is known to possess anti-oxidant and anti-inflammatory properties. In activated microglia, it has been reported that this is achieved through acting on the MAPKs, a key pathway that regulates microglia activation. This study sought to determine if scutellarin would affect the commonly described microglia phenotypes, namely, M1 and M2, thought to contribute to pro- and anti-inflammatory roles, respectively. This is in consideration of its potential effect on the polarization of microglia phenotypes that are featured prominently in cerebral ischemia. For this purpose, we have used an experimentally induced cerebral ischemia rat model and LPS-stimulated BV-2 cell model. Thus, by Western blot and immunofluorescence, we show here a noticeable increase in expression of M2 microglia markers, namely, CD206, Arg1, YM1/2, IL-4 and IL-10 in activated microglia both in vivo and in vitro. Besides, we have confirmed that Scutellarin upregulated expression of Arg1, IL-10 and IL-4 in medium supernatants of BV-2 microglia. Remarkably, scutellarin treatment markedly augmented the increased expression of the respective markers in activated microglia. It is therefore suggested scutellarin can exert the polarization of activated microglia from M1 to M2 phenotype. Because M1 microglia are commonly known to be proinflammatory, while M2 microglia are anti-inflammatory and neuroprotective effect, it stands to reason therefore that with the increase of M2 microglia which became predominant by scutellarin, the local inflammatory response is ameliorated. More importantly, we have found that scutellarin promotes the M2 polarization through inhibiting the JNK and p38 signaling pathways, and concomitantly augmenting the ERK1/2 signaling pathway. This lends its strong support from observations in LPS activated BV-2 microglia treated with p38 and JNK inhibitors in which expression of M2 markers was increased; on the other hand, in cells subjected to ERK1/2 inhibitor treatment, the expression was suppressed. In light of the above, MAPKs pathway is deemed to be a potential therapeutic target of scutellarin in mitigating microglia mediated neuroinflammation in activated microglia.
Collapse
Affiliation(s)
- Hao-Lun Chen
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Li Yang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Xiao-Li-Na Zhang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
- Department of Pain Management, No.1 Affiliated Hospital, Kunming Medical University, 295 Xichang Road, Kunming, 650101, People's Republic of China
| | - Qiu-Ye Jia
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Zhao-Da Duan
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Juan-Juan Li
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Li-Yang Zheng
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Teng-Teng Liu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Zhi Qi
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
- School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Yun Yuan
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China.
| | - Chun-Yun Wu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China.
| |
Collapse
|
3
|
Medicinal Herbs and Their Derived Ingredients Protect against Cognitive Decline in In Vivo Models of Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms231911311. [PMID: 36232612 PMCID: PMC9569503 DOI: 10.3390/ijms231911311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) has pathological hallmarks including amyloid beta (Aβ) plaque formation. Currently approved single-target drugs cannot effectively ameliorate AD. Medicinal herbs and their derived ingredients (MHDIs) have multitarget and multichannel properties, engendering exceptional AD treatment outcomes. This review delineates how in in vivo models MHDIs suppress Aβ deposition by downregulating β- and γ-secretase activities; inhibit oxidative stress by enhancing the antioxidant activities and reducing lipid peroxidation; prevent tau hyperphosphorylation by upregulating protein phosphatase 2A expression and downregulating glycogen synthase kinase-3β expression; reduce inflammatory mediators partly by upregulating brain-derived neurotrophic factor/extracellular signal-regulated protein kinase 1/2-mediated signaling and downregulating p38 mitogen-activated protein kinase (p38 MAPK)/c-Jun N-terminal kinase (JNK)-mediated signaling; attenuate synaptic dysfunction by increasing presynaptic protein, postsynaptic protein, and acetylcholine levels and preventing acetylcholinesterase activity; and protect against neuronal apoptosis mainly by upregulating Akt/cyclic AMP response element-binding protein/B-cell lymphoma 2 (Bcl-2)-mediated anti-apoptotic signaling and downregulating p38 MAPK/JNK/Bcl-2-associated x protein (Bax)/caspase-3-, Bax/apoptosis-inducing factor-, C/EBP homologous protein/glucose-regulated protein 78-, and autophagy-mediated apoptotic signaling. Therefore, MHDIs listed in this review protect against Aβ-induced cognitive decline by inhibiting Aβ accumulation, oxidative stress, tau hyperphosphorylation, inflammation, synaptic damage, and neuronal apoptosis in the cortex and hippocampus during the early and late AD phases.
Collapse
|
4
|
Sehati F, Ahmadi I, Farivar N, Ranjbaran M, Sadat-Shirazi MS, Nabavizadeh F, Mahla Shavakandi S, Ashabi G. Tannic acid protects aged brain against cerebral hypoperfusion via modulation of Nrf2 and inflammatory pathways. Neurosci Lett 2021; 765:136263. [PMID: 34562517 DOI: 10.1016/j.neulet.2021.136263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/01/2023]
Abstract
Current study purposed to investigate the neuroprotective effects of Tannic Acid (TA) on mild chronic cerebral hypoperfusion model in rats. Male Wistar rats were subjected to permanent Unilateral Common Carotid Artery Occlusion (UCCAO), followed by TA treatment (0.05% w/v) in drinking water for one month. Nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H: quinone oxidoreductase 1 (NQO-1), heme oxygenase-1 (HO-1), factor kappa-light-chain-enhancer of activated B cells (NF-κB), tumor necrosis factor-α (TNF-α), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, blood triglyceride, blood glucose, and liver enzymes' activity were detected after the experimental period. Also, behavioral tests, hematoxylin and eosin (H&E) staining, and PET scan were performed after treatment. Post-treatment of TA improved locomotion and memory function (P < 0.001), and reduced neural cell death (P < 0.001) in the treatment group compared to UCCAO rats. Furthermore, long-term TA treatment significantly increased the levels of Nrf2 (P < 0.001), NQO-1 (P < 0.001), and HO-1 (P < 0.001) in the hippocampus of the treatment group compared to the UCCAO group. TA consumption in the treatment group applied its anti-inflammatory effects via reducing the activity of NF-κB and TNF-α in comparison with the UCCAO group (P < 0.001 for both). Blood triglyceride, blood glucose, and liver enzymes did not change considerably in the groups (P > 0.05). The current results indicate that long-term post-treatment of TA exhibits protective effects against memory deficit and motor dysfunction. The cellular mechanism of TA in hypoperfused rats might be associated with the activation of antioxidant pathways, especially the Nrf2 pathway, and suppressing inflammatory factors like NF-κB and TNF-α.
Collapse
Affiliation(s)
- Fardin Sehati
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ahmadi
- Department of Physiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Nika Farivar
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Ranjbaran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra-Sadat Sadat-Shirazi
- Department of Genetic, Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ghorbangol Ashabi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Fan H, Lin P, Kang Q, Zhao ZL, Wang J, Cheng JY. Metabolism and Pharmacological Mechanisms of Active Ingredients in Erigeron breviscapus. Curr Drug Metab 2021; 22:24-39. [PMID: 33334284 DOI: 10.2174/1389200221666201217093255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/14/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Erigeron breviscapus (Vant.) Hand-Mazz. is a plant species in the Compositae family. More than ten types of compounds-such as flavonoids, caffeinate esters, and volatile oils-have been identified in Erigeron breviscapus; however, it remains unknown as to which compounds are associated with clinical efficacy. In recent years, flavonoids and phenolic acids have been considered as the main effective components of Erigeron breviscapus. The metabolism and mechanisms of these compounds in vivo have been extensively studied to improve our understanding of the drug. METHODS In the present review, we summarize the relationships among these compounds, their metabolites, and their pharmacodynamics. Many methods have been implemented to improve the separation and bioavailability of these compounds from Erigeron breviscapus. RESULTS In China, Erigeron breviscapus has been used for many years. In recent years, through the study of its metabolism and the mechanisms of its effective components, the effects of Erigeron breviscapus in the treatment of various diseases have been extensively studied. Findings have indicated that Erigeron breviscapus improves cardiovascular and cerebrovascular function and that one of its ingredients, scutellarin, has potential value in the treatment of Alzheimer's disease, cancer, diabetic vascular complications, and other conditions. In addition, phenolic acid compounds and their metabolites also play an important role in anti-oxidation, anti-inflammation, and improving blood lipids. CONCLUSION Erigeron breviscapus plays an important role in the prevention and treatment of cardiovascular/ cerebrovascular diseases, neuroprotection, and cancer through many different mechanisms of action. Further investigation of its efficacious components and metabolites may provide more possibilities for the clinical application of traditional Chinese medicine and the development of novel drugs.
Collapse
Affiliation(s)
- Hua Fan
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Peng Lin
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Qiang Kang
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Zhi-Long Zhao
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Ji Wang
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Jia-Yi Cheng
- Liaoning University of Traditional Chinese Medicine, Shenyang110847, China
| |
Collapse
|
6
|
Li Y, Li S, Li D. Breviscapine Alleviates Cognitive Impairments Induced by Transient Cerebral Ischemia/Reperfusion through Its Anti-Inflammatory and Anti-Oxidant Properties in a Rat Model. ACS Chem Neurosci 2020; 11:4489-4498. [PMID: 33270442 DOI: 10.1021/acschemneuro.0c00697] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cerebral ischemia/reperfusion (I/R)-induced injury is a common phenomenon of stroke, and the effective treatment for I/R-induced brain tissue damage is limited. Breviscapine has been widely used in China as herbal medicine to treat cardiovascular diseases for hundreds of years and has been demonstrated to possess potent cardiovascular pharmacological effects. This study aims to investigate the neuroprotective effect of breviscapine on cerebral I/R-induced injury. The rat model of middle cerebral artery occlusion (MCAO) was applied in our study. The cerebral I/R rats received multiple injections of breviscapine. All rats were subject to neurological behavior tests by open field test and Morris water maze test. The pro-inflammatory cytokines and oxidative stress marker levels were determined by ELISA and colorimetric analysis, respectively. We demonstrated that administration of breviscapine dose-dependently ameliorated cerebral I/R-induced injury and improved the neurological performance of cerebral I/R rats. Further studies illustrated that breviscapine treatment effectively attenuated inflammatory cytokine expression, reduced oxidative stress, and pro-apoptosis protein expression and inhibited the activation of NF-κB signaling and microglia in the I/R injury tissues. Breviscapine may serve as a single drug or a promising adjuvant that can be used in conjunction with other medicine for the treatment of cerebral I/R-induced injury.
Collapse
Affiliation(s)
- Yinghua Li
- Hangzhou Women’s Hospital, No. 369 Kunpeng Road, Hangzhou 310008, Zhejiang, China
| | - Songyi Li
- Hangzhou Women’s Hospital, No. 369 Kunpeng Road, Hangzhou 310008, Zhejiang, China
| | - Dingheng Li
- Hangzhou Women’s Hospital, No. 369 Kunpeng Road, Hangzhou 310008, Zhejiang, China
| |
Collapse
|
7
|
Yan F, Feng J, Li W, Wu L, Li J. A Preliminary Study on the Effect and Mechanism of Breviscapine for Improving Insulin Resistance in HepG2 Cells. J Cardiovasc Pharmacol 2020; 76:216-226. [PMID: 32398476 DOI: 10.1097/fjc.0000000000000848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Insulin resistance (IR) is known to be a critical factor, which can lead to the onset of type 2 diabetes. Traditional Chinese medicine (TCM) has special advantages in treating IR, but the active components and action mechanisms of most TCM remain unclear. Therefore, the elucidation of the potential mechanisms is a major challenge in TCM research. In the study, we tried to elucidate the potential pharmacological efficacy and mechanism of breviacapine for improving IR through network analysis and validate the possible biological target for its quality evaluation. We computationally recognized the active components, potential targets, and the targets closely related to IR by using integrative analysis based on network pharmacology approach. We also established the active components-targets network, protein interactions network and analyzing the biological functions and pathways of targets to evaluate the links between components and pharmacological actions to help explain the action mechanisms of breviscapine. Based on the network analysis, our experimental data preliminarily confirmed that breviscapine could improve IR in HepG2 cells, which may be associated with the dynamic regulation of the PTP1B. This study combined network pharmacology with partial experiment validation to clarify the underlying mechanism of breviscapine in improving IR and thus laid the experimental foundation for the depth exploration of its functional mechanism.
Collapse
Affiliation(s)
- Fangyan Yan
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China; and.,Department of Pharmacology, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Jibo Feng
- Department of Pharmacology, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Weiping Li
- Department of Pharmacology, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Li Wu
- Department of Pharmacology, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Jinping Li
- Department of Pharmacology, Fenyang College of Shanxi Medical University, Fenyang, China
| |
Collapse
|
8
|
Scutellarin Exerts Anti-Inflammatory Effects in Activated Microglia/Brain Macrophage in Cerebral Ischemia and in Activated BV-2 Microglia Through Regulation of MAPKs Signaling Pathway. Neuromolecular Med 2019; 22:264-277. [PMID: 31792810 DOI: 10.1007/s12017-019-08582-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/18/2019] [Indexed: 01/04/2023]
|
9
|
Wang L, Ma Q. Clinical benefits and pharmacology of scutellarin: A comprehensive review. Pharmacol Ther 2018; 190:105-127. [PMID: 29742480 DOI: 10.1016/j.pharmthera.2018.05.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Ye S, Yang R, Xiong Q, Yang Y, Zhou L, Gong Y, Li C, Ding Z, Ye G, Xiong Z. Acute stress enhances learning and memory by activating acid-sensing ion channels in rats. Biochem Biophys Res Commun 2018; 498:1078-1084. [PMID: 29555470 DOI: 10.1016/j.bbrc.2018.03.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022]
Abstract
Acute stress has been shown to enhance learning and memory ability, predominantly through the action of corticosteroid stress hormones. However, the valuable targets for promoting learning and memory induced by acute stress and the underlying molecular mechanisms remain unclear. Acid-sensing ion channels (ASICs) play an important role in central neuronal systems and involves in depression, synaptic plasticity and learning and memory. In the current study, we used a combination of electrophysiological and behavioral approaches in an effort to explore the effects of acute stress on ASICs. We found that corticosterone (CORT) induced by acute stress caused a potentiation of ASICs current via glucocorticoid receptors (GRs) not mineralocorticoid receptors (MRs). Meanwhile, CORT did not produce an increase of ASICs current by pretreated with GF109203X, an antagonist of protein kinase C (PKC), whereas CORT did result in a markedly enhancement of ASICs current by bryostatin 1, an agonist of PKC, suggesting that potentiation of ASICs function may be depended on PKC activating. More importantly, an antagonist of ASICs, amiloride (10 μM) reduced the performance of learning and memory induced by acute stress, which is further suggesting that ASICs as the key components involves in cognitive processes induced by acute stress. These results indicate that acute stress causes the enhancement of ASICs function by activating PKC signaling pathway, which leads to potentiated learning and memory.
Collapse
Affiliation(s)
- Shunjie Ye
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China; 2013 Grade Student of Traditional Chinese Medicine, Medical College, Jianghan University, Wuhan 430056, China
| | - Rong Yang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Qiuju Xiong
- Department of Pain Management, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Youhua Yang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Lianying Zhou
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Yeli Gong
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Changlei Li
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Zhenhan Ding
- Department of Pharmacy, HuiZhou First Hospital, Guangdong, 516003, China
| | - Guohai Ye
- 2013 Grade Student of Traditional Chinese Medicine, Medical College, Jianghan University, Wuhan 430056, China
| | - Zhe Xiong
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
11
|
Han JY, Kim JK, Kim JH, Oh BS, Cho WJ, Jung YD, Lee SG. Neurorestorative effects of epigallocatechin-3-Gallate on cognitive function in a chronic cerebral hypoperfusion rat model. Restor Neurol Neurosci 2018; 34:367-77. [PMID: 27080069 DOI: 10.3233/rnn-150586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE This study investigated whether (-)-epigallocatechin-3-gallate (EGCG) can enhance cognition by a neurorestorative effect in a rat model of bilateral common carotid artery occlusion (BCCAO). METHODS Forty-eight male, 8-week-old Sprague-Dawley rats were randomly allocated to four groups 6 weeks after BCCAO or sham operation: EGCG-single intravenous injection (25 mg/kg/day; SIV group), EGCG-multiple intraperitoneal injection (50 mg/kg/day for 5 days; MIP group), untreated BCCAO group (untreated group), and sham-operated group (sham group). RESULTS Escape latency was significantly shorter in the SIV and MIP groups than in the untreated group. SIV and MIP groups were significantly different from the untreated group in the activity of superoxide dismutase and the content of malondialdehyde (p < 0.05). Protein expression level of brain-derived neurotrophic factor was not significantly different between groups (p > 0.05), while protein expression of vascular endothelial growth factor was significantly lower in the SIV group than in the untreated group (p < 0.05). Protein expression of N-methyl-D-aspartate receptor subunits NR1 and NR2B was significantly higher in the MIP group than in the untreated group (p < 0.05). CONCLUSIONS EGCG administration at 6 weeks after BCCAO is neurorestorative via an anti-oxidant effect and synaptogenesis, except for angiogenesis.
Collapse
Affiliation(s)
- Jae-Young Han
- Department of Physical & Rehabilitation Medicine, Chonnam National University Medical School & Hospital, Gwangju City, Republic of Korea
| | - Jung-Kook Kim
- Department of Rehabilitation Standard & Policy, National Rehabilitation Center Research Institute, Seoul City, Republic of Korea
| | - Jae-Hong Kim
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Dong-Shin University, Naju City, Republic of Korea
| | - Bong-Seok Oh
- Department of Sports and Leisure Science, Sunchon National University, Sunchon City, Republic of Korea
| | - Wan-Ju Cho
- Department of Physical Education, Chosun University, Gwangju City, Republic of Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju City, Republic of Korea
| | - Sam-Gyu Lee
- Department of Physical & Rehabilitation Medicine, Chonnam National University Medical School & Hospital, Gwangju City, Republic of Korea
| |
Collapse
|
12
|
Gong Y, Yang Y, Chen X, Yang M, Huang D, Yang R, Zhou L, Li C, Xiong Q, Xiong Z. Hyperoside protects against chronic mild stress-induced learning and memory deficits. Biomed Pharmacother 2017; 91:831-840. [PMID: 28501772 DOI: 10.1016/j.biopha.2017.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022] Open
Abstract
Hyperoside (quercetin-3-O-b-d-galactosidepyranose) is a plant-derived flavonoid mainly found in fruits, fruit juices (most notably flavanols, flavanones, and anthocyanins) and Chinese traditional medicines. It has been applied to relieve pain and improve cardiovascular functions in clinic. However, the effects of hyperoside on cognitive impairment induced by chronic stress and the underlying molecular mechanisms remain unclear. In the current study, we used chronic mild stress (CMS) rats to investigate the effects of hyperoside on learning and memory and further explore the possible mechanisms. Our results demonstrated that hyperoside reduced the escape latency and the swimming distance of CMS rats in Morris water maze test and reversed depressive symptoms in forced swim test (FST) and sucrose preference test. In addition, hyperoside increased the expression of brain-derived neurotrophic factor (BDNF) in hippocampus of CMS rats without influencing the corticosterone (CORT) level in blood plasma. Furthermore, K252a, an inhibitor of the BDNF receptor TrkB, prevented the protective effects of hyperoside on learning and memory in CMS rats. Taken together, these results indicate that hyperoside reverses the cognitive impairment induced by CMS, which is associated with the regulation of BDNF signaling pathway.
Collapse
Affiliation(s)
- Yeli Gong
- Department of Immunology, Medical College, Jianghan University, Wuhan 430056, China
| | - Youhua Yang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Xiaoqing Chen
- Experimental Centre, Medical College, Jianghan University, Wuhan 430056, China
| | - Min Yang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Dan Huang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Rong Yang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Lianying Zhou
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Changlei Li
- Experimental Centre, Medical College, Jianghan University, Wuhan 430056, China
| | - Qiuju Xiong
- Department of Pain Management, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Zhe Xiong
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
13
|
Study on Antitumour Activity of Scutellarin and Its Metabolite Scutellarein by Combining Activity Screening, Target Tissue Distribution and Pharmacokinetics. Chromatographia 2017. [DOI: 10.1007/s10337-017-3260-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Zhang L, Dan Q, Zou Y, Xia Q, Yuan H. Breviscapine promotes functional recovery in rats with traumatic brain injury associated with netrin‐1 upregulation. IBRAIN 2017. [DOI: 10.1002/j.2769-2795.2017.tb00017.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lang‐Chun Zhang
- Center of Experimental Animals, Kunming Medical UniversityKunmingYunnanChina
| | - Qi‐Qin Dan
- Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yu Zou
- Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Qing‐Jie Xia
- Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Hao Yuan
- Department of Spinal SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
15
|
Hemanth Kumar B, Arun Reddy R, Mahesh Kumar J, Dinesh Kumar B, Diwan PV. Effects of fisetin on hyperhomocysteinemia-induced experimental endothelial dysfunction and vascular dementia. Can J Physiol Pharmacol 2016; 95:32-42. [PMID: 27901381 DOI: 10.1139/cjpp-2016-0147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to investigate the effects of fisetin (FST) on hyperhomocysteinemia (HHcy)-induced experimental endothelial dysfunction (ED) and vascular dementia (VaD) in rats. Wistar rats were randomly divided into 8 groups: control, vehicle control, l-methionine, FST (5, 10, and 25 mg/kg, p.o.), FST-per se (25 mg/kg, p.o.), and donepezil (0.1 mg/kg, p.o.). l-Methionine administration (1.7 g/kg, p.o.) for 32 days induced HHcy. ED and VaD induced by HHcy were determined by vascular reactivity measurements, behavioral analysis using Morris water maze and Y-maze, along with a biochemical and histological evaluation of thoracic aorta and brain tissues. Administration of l-methionine developed behavioral deficits; triggered brain lipid peroxidation (LPO); compromised brain acetylcholinesterase activity (AChE); and reduced the levels of brain superoxide dismutase (SOD), brain catalase (CAT), brain reduced glutathione (GSH), and serum nitrite; and increased serum homocysteine and cholesterol levels. These effects were accompanied by decreased vascular NO bioavailability, marked intimal thickening of the aorta, and multiple necrotic foci in brain cortex. HHcy-induced alterations in the activities of SOD, CAT, GSH, AChE, LPO, behavioral deficits, ED, and histological aberrations were significantly attenuated by treatment with fisetin in a dose-dependent manner. Collectively, our results indicate that fisetin exerts endothelial and neuroprotective effects against HHcy-induced ED and VaD.
Collapse
Affiliation(s)
- Boyina Hemanth Kumar
- a Department of Pharmacology, Anurag Group of Institutions (Formerly Lalitha College of Pharmacy), Hyderabad, Telangana, India.,b Center for Pharmaceutical Sciences and Research and Development Cell, Jawaharlal Nehru Technological University, Hyderabad, Telangana, India
| | - Ravula Arun Reddy
- a Department of Pharmacology, Anurag Group of Institutions (Formerly Lalitha College of Pharmacy), Hyderabad, Telangana, India.,c Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Jerald Mahesh Kumar
- d Animal House Facility, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India
| | - B Dinesh Kumar
- e National Institute of Nutrition (ICMR), Food & Drug Toxicology Research Centre (FDTRC), Hyderabad, Telangana 500007, India
| | - Prakash V Diwan
- a Department of Pharmacology, Anurag Group of Institutions (Formerly Lalitha College of Pharmacy), Hyderabad, Telangana, India.,f Maratha Mandal Central Research Laboratory, Belagavi-590010, Karnataka, India
| |
Collapse
|
16
|
Lv YL, Wu ZZ, Chen LX, Wu BX, Chen LL, Qin GC, Gui B, Zhou JY. Neuroprotective effects of tetrandrine against vascular dementia. Neural Regen Res 2016; 11:454-9. [PMID: 27127485 PMCID: PMC4829011 DOI: 10.4103/1673-5374.179058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Tetrandrine is one of the major active ingredients in Menispermaceae Stephania tetrandra S. Moore, and has specific therapeutic effects in ischemic cerebrovascular disease. Its use in vascular dementia has not been studied fully. Here, we investigated whether tetrandrine would improve behavioral and cellular impairments in a two-vessel occlusion rat model of chronic vascular dementia. Eight weeks after model establishment, rats were injected intraperitoneally with 10 or 30 mg/kg tetrandrine every other day for 4 weeks. Behavioral assessment in the Morris water maze showed that model rats had longer escape latencies in training trials, and spent less time swimming in the target quadrant in probe trials, than sham-operated rats. However, rats that had received tetrandrine showed shorter escape latencies and longer target quadrant swimming time than untreated model rats. Hematoxylin-eosin and Nissl staining revealed less neuronal necrosis and pathological damage, and more living cells, in the hippocampus of rats treated with tetrandrine than in untreated model rats. Western blot assay showed that interleukin-1β expression, and phosphorylation of the N-methyl-D-aspartate 2B receptor at tyrosine 1472, were lower in model rats that received tetrandrine than in those that did not. The present findings suggest that tetrandrine may be neuroprotective in chronic vascular dementia by reducing interleukin-1β expression, N-methyl-D-aspartate receptor 2B phosphorylation at tyrosine 1472, and neuronal necrosis.
Collapse
Affiliation(s)
- Yan-Ling Lv
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ze-Zhi Wu
- Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Li-Xue Chen
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bai-Xue Wu
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lian-Lian Chen
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guang-Cheng Qin
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bei Gui
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ji-Ying Zhou
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Lin YZ, Lu ZY, Liang XH, Li K, Peng B, Gong J. Effect of breviscapine against hepatic ischemia reperfusion injury. J Surg Res 2016; 203:268-74. [PMID: 27363631 DOI: 10.1016/j.jss.2016.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/29/2016] [Accepted: 02/11/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Breviscapine is an active ingredient extracted from traditional Chinese medicine Erigeron breviscapus. The purpose of this study was to investigate the effect of breviscapine injection on hepatic ischemia and/or reperfusion injury. METHODS Forty rats were randomly divided into five groups (n = 8): Sham group, Ischemia reperfusion 1 (I/R1) + normal saline (NS) group, I/R1 + breviscapine (Bre), I/R2 + NS group, and I/R2 + Bre group. Group1 and group2 represent ischemia time for 10 min and 30 min, respectively. Breviscapine or normal saline was administered to rats (single dose of 10 mg/Kg, intravenously) 30 min before hepatic ischemia. Serum transaminases, histopathologic changes, malondialdehyde (MDA), and superoxide dismutase (SOD) in liver tissues were evaluated. The expression level of mitochondrial fusion 2 (Mfn2) was also investigated. RESULTS After 24-h reperfusion, based on the histopathologic analysis, compared with NS control group, the liver function was improved in breviscapine group. Liver enzymes aspartate and alanine aminotransferase levels were significantly lower in the I/R + Bre group, when compared with the I/R + NS group. Pretreatment with breviscapine reduced MDA level (P < 0.05) and increased SOD activity significantly in I/R + Bre compared with I/R + NS group. Western blot and RT-q polymerase chain reaction showed that Mfn2 was significantly downregulated in breviscapine preconditioning group as compared to normal saline control group. CONCLUSIONS Breviscapine preconditioning attenuates liver ischemia reperfusion injury via inhibiting liver oxidative stress reaction. The protective mechanism probably inhibits Mfn2 protein and mRNA expression.
Collapse
Affiliation(s)
- Yan-Zhu Lin
- Clinical Medicine, International School, Jinan University, Guangzhou, China; Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhi-Yuan Lu
- Department of Stomatology, Medical College, Jinan University, Guangzhou, China
| | - Xiao-Hui Liang
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Kang Li
- Department of Gastrointestinal Surgery, YueBei People'Hospital, Shaoguan, China
| | - Bo Peng
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jin Gong
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
18
|
Ma Y, Li H, Guan S. Enhancement of the oral bioavailability of breviscapine by nanoemulsions drug delivery system. Drug Dev Ind Pharm 2014; 41:177-82. [DOI: 10.3109/03639045.2014.947510] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Li G, Yan W, Cai F, Li C, Chen N, Wang J. Spatial learning and memory impairment and pathological change in rats induced by acute exposure to microcystin-LR. ENVIRONMENTAL TOXICOLOGY 2014; 29:261-268. [PMID: 22223477 DOI: 10.1002/tox.21754] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 12/01/2011] [Accepted: 12/03/2011] [Indexed: 05/31/2023]
Abstract
Microcystin-LR (MCLR) is a commonly encountered blue-green algal hepatotoxin and a known inhibitor of cellular protein phosphatase. However, little is known about its neurotoxicity. By using Morris water maze, histopathological and biochemical analysis, we investigated MCLR-induced neurotoxicity on the hippocampus of rat brain. After rats were intrahippocampally injected with MCLR (1 and 10 μg/L), their learning and memory function was greatly impaired, suggesting the neurotoxic potential of MCLR. Meanwhile, obvious histological and ultrastructural injuries and serious oxidative damage were also observed in the hippocampus. These results suggested that oxidative stress might be involved in the MCLR-induced pathological damage in hippocampus, subsequently leading to the spatial learning and memory deficit of rat. Taken together, our results highlighted the MCLR-induced neurotoxicity in the rat, as well as the importance of oxidative stress and pathological impairment in this procedure.
Collapse
Affiliation(s)
- Guangyu Li
- Fisheries College, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
20
|
Zhou Y, Ning Q, Yu DN, Li WG, Deng J. Improved oral bioavailability of breviscapine via a Pluronic P85-modified liposomal delivery system. J Pharm Pharmacol 2014; 66:903-11. [DOI: 10.1111/jphp.12215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/07/2013] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
Breviscapine, a hydrophobic drug used for treating cardiovascular disease, was encapsulated in liposomes to improve its pharmaceutical characteristics. This study describes a novel liposome composition approach to specifically inhibit the P-glycoprotein efflux system.
Methods
Breviscapine-loaded Pluronic P85-coated liposomes were prepared by the thin film hydration technique. The particle size, zeta potential and encapsulation efficiency of the formulations were characterized. In-vitro drug release and permeability of Caco-2 cells were investigated. In-vitro characteristics and pharmacokinetics of the liposomes were evaluated in rat studies.
Key findings
The Pluronic P85-modified liposomes dispersed individually and had an approximate diameter of 118.8 ± 4.9 nm and a zeta potential of −35.4 ± 1.5 mV. Encapsulation efficiency was more than 90%. The use of the P85-coated liposomes resulted in significantly (P < 0.05) increased absorption of breviscapine in Caco-2 cells and in 5.6-fold enhancement in its oral bioavailability in rats.
Conclusion
The P85-modified liposomes for the oral delivery of breviscapine were prepared using l-α-phosphatidylcholine (soy-hydrogenated) and cholesterol with a narrow size distribution. This method seems to effectively enhance the bioavailability of breviscapine in rats.
Collapse
Affiliation(s)
- Yue Zhou
- Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Lianyungang, China
| | - Qing Ning
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, China
| | - Dan-ni Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wei-guang Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jin Deng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
21
|
Chen X, Shi X, Zhang X, Lei H, Long S, Su H, Pei Z, Huang R. Scutellarin attenuates hypertension-induced expression of brain Toll-like receptor 4/nuclear factor kappa B. Mediators Inflamm 2013; 2013:432623. [PMID: 24223475 PMCID: PMC3800634 DOI: 10.1155/2013/432623] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/13/2013] [Indexed: 01/24/2023] Open
Abstract
Hypertension is associated with low-grade inflammation, and Toll-like receptor 4 (TLR4) has been shown to be linked to the development and maintenance of hypertension. This study aimed to investigate the effects of scutellarin (administered by oral gavage daily for 2 weeks) on brain TLR4/nuclear factor kappa B-(NF- κ B-) mediated inflammation and blood pressure in renovascular hypertensive (using the 2-kidney, 2-clip method) rats. Immunofluorescence and western immunoblot analyses revealed that hypertension contributed to the activation of TLR4 and NF- κ B, accompanied by significantly enhanced expression of proinflammatory mediators, such as tumor necrosis factor- α (TNF- α ), interleukin-1 β (IL-1 β ), and interleukin-18 (IL-18). Furthermore, expression of the antiapoptotic protein, myeloid cell leukemia-1 (Mcl1), was decreased, and the pro-apoptotic proteins, Bax and cleavedcaspase-3 p17 were increased in combined cerebral cortical/striatal soluble lysates. Scutellarin significantly lowered blood pressure and attenuated the number of activated microglia and macrophages in brains of hypertensive rats. Furthermore, scutellarin significantly reduced the expression of TLR4, NF- κ B p65, TNF- α , IL-1 β , IL-18, Bax and cleaved-caspase-3 p17, and increased the expression of Mcl1. Overall, these results revealed that scutellarin exhibits anti-inflammatory and anti-apoptotic properties and decreases blood pressure in hypertensive rats. Therefore, scutellarin may be a potential therapeutic agent in hypertension-associated diseases.
Collapse
Affiliation(s)
- Xingyong Chen
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou 510080, China
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaogeng Shi
- Department of Neurology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xu Zhang
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, China
| | - Huixin Lei
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, China
| | - Simei Long
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huanxing Su
- Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruxun Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
22
|
LI WEIZU, WU WANGYANG, HUANG HUAN, WU YANGYANG, YIN YANYAN. Protective effect of bilobalide on learning and memory impairment in rats with vascular dementia. Mol Med Rep 2013; 8:935-41. [DOI: 10.3892/mmr.2013.1573] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 06/24/2013] [Indexed: 11/06/2022] Open
|
23
|
Wu WN, Wu PF, Chen XL, Zhang Z, Gu J, Yang YJ, Xiong QJ, Ni L, Wang F, Chen JG. Sinomenine protects against ischaemic brain injury: involvement of co-inhibition of acid-sensing ion channel 1a and L-type calcium channels. Br J Pharmacol 2012; 164:1445-59. [PMID: 21585344 DOI: 10.1111/j.1476-5381.2011.01487.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Sinomenine (SN), a bioactive alkaloid, has been utilized clinically to treat rheumatoid arthritis in China. Our preliminary experiments indicated that it could protect PC12 cells from oxygen-glucose deprivation-reperfusion (OGD-R), we thus investigated the possible effects of SN on cerebral ischaemia and the related mechanism. EXPERIMENTAL APPROACH Middle cerebral artery occlusion in rats was used as an animal model of ischaemic stroke in vivo. The mechanisms of the effects of SN were investigated in vitro using whole-cell patch-clamp recording, calcium imaging in PC12 cells and rat cortical neurons subjected to OGD-R. KEY RESULTS Pretreatment with SN (10 and 30 mg·kg(-1) , i.p.) significantly decreased brain infarction and the overactivation of calcium-mediated events in rats subjected to 2 h ischaemia followed by 24 h reperfusion. Extracellular application of SN inhibited the currents mediated by acid-sensing ion channel 1a and L-type voltage-gated calcium channels, in the rat cultured neurons, in a concentration-dependent manner. These inhibitory effects contribute to the neuroprotection of SN against OGD-R and extracellular acidosis-induced cytotoxicity. More importantly, administration of SN (30 mg·kg(-1) , i.p.) at 1 and 2 h after cerebral ischaemia also decreased brain infarction and improved functional recovery. CONCLUSION AND IMPLICATIONS SN exerts potent protective effects against ischaemic brain injury when administered before ischaemia or even after the injury. The inhibitory effects of SN on acid-sensing ion channel 1a and L-type calcium channels are involved in this neuroprotection.
Collapse
Affiliation(s)
- Wen-Ning Wu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Guo LL, Guan ZZ, Wang YL. Scutellarin protects against Aβ-induced learning and memory deficits in rats: involvement of nicotinic acetylcholine receptors and cholinesterase. Acta Pharmacol Sin 2011; 32:1446-53. [PMID: 21986571 PMCID: PMC4010214 DOI: 10.1038/aps.2011.115] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/22/2011] [Indexed: 01/14/2023]
Abstract
AIM To examine the protective effects of scutellarin (Scu) on rats with learning and memory deficit induced by β-amyloid peptide (Aβ). METHODS Fifty male Wistar rats were randomly divided into 5 groups: control, sham operation, Aβ, Aβ+Scu, and Aβ+piracetam groups. Aβ(25-35) was injected into the lateral ventricle (10 μg each side). Scu (10 mg/2 mL) or piracetam (10 mg/2 mL was intragastrically administered per day for 20 consecutive days following Aβ treatment. Learning and memory was assessed with Morris water maze test. The protein and mRNA levels of nicotinic acetylcholine receptor (nAChR) α4, α7, and β2 subunits in the brain were examined using Western blotting and real-time PCR, respectively. The activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the brain and plasma were measured using Ellman's colorimetric method. RESULTS In Aβ group, the escape latency period and first platform cross was significantly increased, and the total number of platform crossings was significantly decreased, as compared with the control and the sham operation groups. Both Scu and piracetam treatment significantly reduced the escape latency period and time to cross platform, and increased the number of platform crosses, but there were no significant differences between Aβ+Scu and Aβ+piracetam groups. In Aβ group, the protein levels of nAChR α4 and α7 subunits in the cerebral cortex were significantly decreased by 42%-47% and 58%-61%, respectively, as compared to the control and the sham operation groups. Scu treatment caused upregulation of α4 and α7 subunit proteins by around 24% and 30%, respectively, as compared to Aβ group, but there were no significant differences between Aβ+Scu and Aβ+piracetam groups. The protein level of nAChR β2 subunit had no significant difference among different groups. The mRNA levels of nAChR α4, α7, and β2 subunits were not significantly changed. In Aβ group, the activities of AChE and BuChE in the brain were significantly increased, but were significantly decreased in the plasma, as compared to the control and the sham operation groups. Scu or piracetam treatment restored the activities in brain and plasma nearly to the levels in the control group. CONCLUSION The results suggest that Scu may rescue some of the deleterious effects of Aβ, possibly by stimulating nAChR protein translation and regulating cholinesterase activity.
Collapse
Affiliation(s)
- Li-li Guo
- Pathological Department of Affiliated Hospital, Guiyang Medical College, Guiyang 550004, China
| | - Zhi-zhong Guan
- Pathological Department of Affiliated Hospital, Guiyang Medical College, Guiyang 550004, China
- Key Lab of Molecular Biology, Guiyang Medical College, Guiyang 550004, China
| | - Yong-lin Wang
- Department of Pharmacology Guiyang Medical College, Guiyang 550004, China
| |
Collapse
|
25
|
Chronic brain hypoperfusion causes early glial activation and neuronal death, and subsequent long-term memory impairment. Brain Res Bull 2011; 87:109-16. [PMID: 22040859 DOI: 10.1016/j.brainresbull.2011.10.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 10/15/2011] [Accepted: 10/17/2011] [Indexed: 11/22/2022]
Abstract
Reduction of cerebral blood flow is an important risk factor for dementia states and other brain dysfunctions. In present study, the effects of permanent occlusion of common carotid arteries (2VO), a well established experimental model of brain ischemia, on memory function were investigated, as assessed by reference and working spatial memory protocols and the object recognition task; cell damage to the hippocampus, as measured through changes in immunoreactivity for GFAP and the neuronal marker NeuN was also studied. The working hypothesis is that metabolic impairment following hypoperfusion will affect neuron and glial function and result in functional damage. Adult male Wistar rats were submitted to the modified 2VO method, with the right common carotid artery being occluded first and the left one week later, and tested seven days, three and six months after the ischemic event. A significant cognitive deficit was found in both reference and working spatial memory, as well as in the object recognition task, three and six months after surgery. Neuronal death and reactive astrogliosis were already present at 7 days and continued for up to 3 months after the occlusion; interestingly, there was no significant reduction in hippocampal volume. Present data suggests that cognitive impairment caused by brain hypoperfusion is long - lasting and persists beyond the time point of recovery from glial activation and neuronal loss.
Collapse
|
26
|
Neuroprotection of Scutellarin is mediated by inhibition of microglial inflammatory activation. Neuroscience 2011; 185:150-60. [DOI: 10.1016/j.neuroscience.2011.04.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/11/2011] [Accepted: 04/02/2011] [Indexed: 11/21/2022]
|
27
|
Wang W, Zheng LL, Wang F, Hu ZL, Wu WN, Gu J, Chen JG. Tanshinone IIA attenuates neuronal damage and the impairment of long-term potentiation induced by hydrogen peroxide. JOURNAL OF ETHNOPHARMACOLOGY 2011; 134:147-155. [PMID: 21134432 DOI: 10.1016/j.jep.2010.11.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/25/2010] [Accepted: 11/28/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY Tanshinone IIA (Tan IIA) is one of the key components of Salvia miltiorrhiza Bunge that has been widely used for various cardiovascular and cerebrovascular disorders in Asian countries. Many studies have reported that Tan IIA has antioxidative properties, but whether Tan IIA can rescue neurons from oxidative insult has never been reported. The present study was undertaken to evaluate the possible neuroprotective effects of Tan IIA on hydrogen peroxide (H(2)O(2))-induced oxidative stress in rats. MATERIALS AND METHODS H(2)O(2)-induced cytotoxicity was evaluated by the cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and flow cytometry with PI staining. Calcium imaging experiments were carried out to measure intracellular free calcium concentration. Western blotting was used to determine the expression of Bax and Bcl-2 protein. Electrophysiological studies in hippocampal slices were performed to investigate the effect of Tan IIA on synaptic function and cognitive impairment caused by H(2)O(2). RESULTS It was found that pretreatment with Tan IIA protected primary rat cortical neurons against H(2)O(2)-induced cytotoxicity. Furthermore, Tan IIA markedly reduced the elevation of [Ca(2+)](i) evoked by H(2)O(2). Western blot analysis indicated that pretreatment with Tan IIA prevented the increase in Bax/Bcl-2 ratio induced by H(2)O(2). In addition, preincubation of Tan IIA 20 min prior to H(2)O(2) exposure could reverse H(2)O(2)-induced hippocampal LTP impairment, but without significant alteration in basal synaptic transmission and LTP induction. CONCLUSIONS These findings demonstrate that Tan IIA might serve as a novel promising therapeutic agent for oxidative stress injury in neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Tong J, Wu WN, Kong X, Wu PF, Tian L, Du W, Fang M, Zheng F, Chen JG, Tan Z, Gong F. Acid-sensing ion channels contribute to the effect of acidosis on the function of dendritic cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:3686-92. [PMID: 21321108 DOI: 10.4049/jimmunol.1001346] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As an H(+)-gated subgroup of the degenerin/epithelial Na(+) channel family, acid-sensing ion channels (ASICs) were reported to be involved in various physiological and pathological processes in neurons. However, little is known about the role of ASICs in the function of dendritic cells (DCs). In this study, we investigated the expression of ASICs in mouse bone marrow-derived DCs and their possible role in the function of DCs. We found that ASIC1, ASIC2, and ASIC3 are expressed in DCs at the mRNA and protein levels, and extracellular acid can evoke ASIC-like currents in DCs. We also demonstrated that acidosis upregulated the expression of CD11c, MHC class II, CD80, and CD86 and enhanced the Ag-presenting ability of DCs via ASICs. Moreover, the effect of acidosis on DCs can be abolished by the nonsteroidal anti-inflammatory drugs ibuprofen and diclofenac. These results suggest that ASICs are involved in the acidosis-mediated effect on DC function.
Collapse
Affiliation(s)
- Jing Tong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xiong Z, Jiang B, Wu PF, Tian J, Shi LL, Gu J, Hu ZL, Fu H, Wang F, Chen JG. Antidepressant Effects of a Plant-Derived Flavonoid Baicalein Involving Extracellular Signal-Regulated Kinases Cascade. Biol Pharm Bull 2011; 34:253-9. [DOI: 10.1248/bpb.34.253] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhe Xiong
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
| | - Bo Jiang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
| | - Peng-Fei Wu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
| | - Jia Tian
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
| | - Liang-Liang Shi
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
| | - Jun Gu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
| | - Zhuang-Li Hu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education, China
- Hubei Key Laboratory of Natural Drug Chemistry and Evaluation (HUST)
| | - Hui Fu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education, China
- Hubei Key Laboratory of Natural Drug Chemistry and Evaluation (HUST)
| | - Fang Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education, China
- Hubei Key Laboratory of Natural Drug Chemistry and Evaluation (HUST)
| | - Jian-Guo Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education, China
- Hubei Key Laboratory of Natural Drug Chemistry and Evaluation (HUST)
| |
Collapse
|
30
|
Wang M, Zhang WB, Zhu JH, Fu GS, Zhou BQ. Breviscapine ameliorates cardiac dysfunction and regulates the myocardial Ca(2+)-cycling proteins in streptozotocin-induced diabetic rats. Acta Diabetol 2010; 47 Suppl 1:209-18. [PMID: 19882101 DOI: 10.1007/s00592-009-0164-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 10/08/2009] [Indexed: 01/11/2023]
Abstract
To investigate the influence of breviscapine on the cardiac structure and function in diabetic cardiomyopathy rats as well as the expression of protein kinase C (PKC) and Ca(2+)-cycling proteins expression. Diabetes was induced in male Sprague-Dawley rats by a single intraperitoneal injection of streptozotocin and the control rats were injected with saline. After the induction of diabetes for 4 weeks, the animals were divided into different groups: (1) normal rats as control; (2) diabetic rats; (3) diabetic rats with administration of breviscapine (10 or 25 mg kg(-1) day(-2)). After treatment with breviscapine for 6 weeks, the invasive cardiac function and echocardiographic parameters were measured, and heart tissue was obtained for electron microscope study. The expression of protein kinase C (PKC) and calcium handling regulators, such as protein phosphatase inhibitor-1 (PPI-1), phospholamban (PLB) and Ca(2+)-ATPase (SERCA-2), ryanodine receptor (RyR) were detected by western blot or RT-PCR. The activity of SERCA-2 was measured using Ca(2+)-ATPase kit. Diabetic rats showed impaired cardiac structure and function compared with control rats. The expression of PKC, PLB increased significantly, while the PPI-1, SERCA-2 and RyR expression decreased. Treatment with breviscapine could reverse the cardiac dysfunction and structure changes in diabetic cardiomyopathy rats, and decrease the expression of PKC and PLB, as well as increase the expression of PPI-1, SERCA-2 and RyR. The protective effect of breviscapine was dose related. This study showed that breviscapine could regulate the expression of PKC, PPI-1, PLB and SERCA-2 and have protective effect on diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Biotherapy of Zhejiang Province, Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, 310016, Hangzhou, Zhejiang Province, People's Republic of China.
| | | | | | | | | |
Collapse
|
31
|
Cechetti F, Worm PV, Pereira LO, Siqueira IR, A Netto C. The modified 2VO ischemia protocol causes cognitive impairment similar to that induced by the standard method, but with a better survival rate. Braz J Med Biol Res 2010; 43:1178-83. [PMID: 21085899 DOI: 10.1590/s0100-879x2010007500124] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 10/29/2010] [Indexed: 11/21/2022] Open
Abstract
Permanent bilateral occlusion of the common carotid arteries (2VO) in the rat has been established as a valid experimental model to investigate the effects of chronic cerebral hypoperfusion on cognitive function and neurodegenerative processes. Our aim was to compare the cognitive and morphological outcomes following the standard 2VO procedure, in which there is concomitant artery ligation, with those of a modified protocol, with a 1-week interval between artery occlusions to avoid an abrupt reduction of cerebral blood flow, as assessed by animal performance in the water maze and damage extension to the hippocampus and striatum. Male Wistar rats (N = 47) aged 3 months were subjected to chronic hypoperfusion by permanent bilateral ligation of the common carotid arteries using either the standard or the modified protocol, with the right carotid being the first to be occluded. Three months after the surgical procedure, rat performance in the water maze was assessed to investigate long-term effects on spatial learning and memory and their brains were processed in order to estimate hippocampal volume and striatal area. Both groups of hypoperfused rats showed deficits in reference (F(₈,₁₇₂) = 7.0951, P < 0.00001) and working spatial memory [2nd (F(₂,₄₄) = 7.6884, P < 0.001), 3rd (F(₂,₄₄) = 21.481, P < 0.00001) and 4th trials (F(₂,₄₄) = 28.620, P < 0.0001)]; however, no evidence of tissue atrophy was found in the brain structures studied. Despite similar behavioral and morphological outcomes, the rats submitted to the modified protocol showed a significant increase in survival rate, during the 3 months of the experiment (P < 0.02).
Collapse
Affiliation(s)
- F Cechetti
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.
| | | | | | | | | |
Collapse
|
32
|
Cheng J, Wang F, Yu DF, Wu PF, Chen JG. The cytotoxic mechanism of malondialdehyde and protective effect of carnosine via protein cross-linking/mitochondrial dysfunction/reactive oxygen species/MAPK pathway in neurons. Eur J Pharmacol 2010; 650:184-94. [PMID: 20868662 DOI: 10.1016/j.ejphar.2010.09.033] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/25/2010] [Accepted: 09/14/2010] [Indexed: 11/25/2022]
Abstract
The accumulation of malondialdehyde (MDA), a lipid peroxidation by-product that has been used as an indicator of cellular oxidation status, is significantly increased in many neurological diseases such as brain ischemia/reperfusion, Alzheimer's disease and Parkinson's disease in vivo. In the present study, we found that MDA treatment in vitro reduced cortical neuronal viability in a time- and dose-dependent manner and induced cellular apoptosis as well as necrosis simultaneously. Furthermore, exposure to MDA led to accumulation of intracellular reactive oxygen species, dysfunction of mitochondria (denoted by the loss of mitochondrial transmembrane potential (Δψm)) and activation of JNK and ERK. Carnosine exhibited better protection against MDA-induced cell injury than antioxidant N-acetyl-cysteine (NAC) with its multi-potency, which alleviated MDA-induced protein cross-linking, Δψm decrease, reactive oxygen species burst, JNK and ERK activation. In conclusion, our results suggest that MDA induced cell injury in vitro via protein cross-linking and successive mitochondrial dysfunction, and the activation of reactive oxygen species-dependent MAPK signaling pathway. Carnosine alleviated all these alterations induced by MDA, but NAC merely inhibited Bcl-2 family-related activation of JNK and ERK. These results prompt the possibility that carnosine, but not other conventional antioxidants, can protect neurons against MDA-induced injury through decomposition of protein cross-linking toxicity and may serve as a novel agent in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | | | | | |
Collapse
|
33
|
Yan L, Huang H, Tang QZ, Zhu LH, Wang L, Liu C, Bian ZY, Li H. Breviscapine protects against cardiac hypertrophy through blocking PKC-alpha-dependent signaling. J Cell Biochem 2010; 109:1158-71. [PMID: 20127712 DOI: 10.1002/jcb.22495] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Breviscapine is a mixture of flavonoid glycosides extracted from the Chinese herbs. Previous studies have shown that breviscapine possesses comprehensive pharmacological functions. However, very little is known about whether breviscapine have protective role on cardiac hypertrophy. The aim of the present study was to determine whether breviscapine attenuates cardiac hypertrophy induced by angiotensin II (Ang II) in cultured neonatal rat cardiac myocytes in vitro and pressure-overload-induced cardiac hypertrophy in mice in vivo. Our data demonstrated that breviscapine (2.5-15 microM) dose-dependently blocked cardiac hypertrophy induced by Ang II (1 microM) in vitro. The results further revealed that breviscapine (50 mg/kg/day) prevented cardiac hypertrophy induced by aortic banding as assessed by heart weight/body weight and lung weight/body weight ratios, echocardiographic parameters, and gene expression of hypertrophic markers. The inhibitory effect of breviscapine on cardiac hypertrophy is mediated by disrupting PKC-alpha-dependent ERK1/2 and PI3K/AKT signaling. Further studies showed that breviscapine inhibited inflammation by blocking NF-kappaB signaling, and attenuated fibrosis and collagen synthesis through abrogating Smad2/3 signaling. Therefore, these findings indicate that breviscapine, which is a potentially safe and inexpensive therapy for clinical use, has protective potential in targeting cardiac hypertrophy and fibrosis through suppression of PKC-alpha-dependent signaling.
Collapse
Affiliation(s)
- Ling Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang T, Gu J, Wu PF, Wang F, Xiong Z, Yang YJ, Wu WN, Dong LD, Chen JG. Protection by tetrahydroxystilbene glucoside against cerebral ischemia: involvement of JNK, SIRT1, and NF-kappaB pathways and inhibition of intracellular ROS/RNS generation. Free Radic Biol Med 2009; 47:229-40. [PMID: 19272442 DOI: 10.1016/j.freeradbiomed.2009.02.027] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 12/21/2008] [Accepted: 02/11/2009] [Indexed: 12/14/2022]
Abstract
Many natural polyphenolic compounds have been shown to attenuate reactive oxygen/nitrogen species (ROS/RNS) formation and protect against ischemia/reperfusion injury both in vitro and in vivo. 2,3,5,4'-tetrahydroxystilbene-2-O-beta-D-glucoside (TSG), an active component of the rhizome extract from Polygonum multiflorum, exhibits antioxidative and anti-inflammatory effects. Here, we used an in vitro ischemic model of oxygen-glucose deprivation followed by reperfusion (OGD-R) and an in vivo ischemic model of middle cerebral artery occlusion (MCAO) to investigate the neuroprotective effects of TSG on ischemia/reperfusion brain injury and the related mechanisms. We demonstrated that OGD-R-induced neuronal injury, intracellular ROS generation, and mitochondrial membrane potential dissipation were reversed by TSG. The elevation of H2O2-induced [Ca2+]i was also attenuated by TSG. Inhibition of the c-Jun N-terminal kinase (JNK) and Bcl-2 family-related apoptotic signaling pathway was involved in the neuroprotection afforded by TSG. Meanwhile, TSG inhibited iNOS mRNA expression induced by OGD-R, which may be mediated by the activation of SIRT1 and inhibition of NF-kappaB activation. In vivo studies further demonstrated that TSG significantly reduced the brain infarct volume and the number of positive cells by TUNEL staining in the cerebral cortex compared to the MCAO group. Our study indicates that TSG protects against cerebral ischemia/reperfusion injury through multifunctional cytoprotective pathways.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pharmacology, Tongji Medical College, Wuhan, Hubei 430030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Long LH, Liu RL, Wang F, Liu J, Hu ZL, Xie N, Jin Y, Fu H, Chen JG. AGE-RELATED SYNAPTIC CHANGES IN THE CA1 STRATUM RADIATUM AND SPATIAL LEARNING IMPAIRMENT IN RATS. Clin Exp Pharmacol Physiol 2009; 36:675-81. [DOI: 10.1111/j.1440-1681.2008.05132.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Wang M, Xie C, Cai RL, Li XH, Luo XZ, Qi Y. Studies on antioxidant activities of breviscapine in the cell-free system. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2009; 36:1199-207. [PMID: 19051346 DOI: 10.1142/s0192415x08006521] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Breviscapine is a commercially produced plant extract from the Chinese herb Erigeron breviscapus. (Vant.) Hand.-Mazz., which contains 2 main flavonoids. It is widely used in clinic to treat ischemic diseases in which free radicals are considered to be the main causal factor. Our study is aimed to examine the antioxidant activity of this extract. The following assays were employed: 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, superoxide anion radical scavenging, nitric oxide radical scavenging, total anti-oxidative capacity, and antilipid peroxidation assays. Breviscapine was demonstrated to show an effective activity on scavenging DPPH, superoxide anion radicals and nitric oxide. The total antioxidative capacity of breviscapine (7.8 microg/ml to 250 microg/ml) was 1.22 to 6.74 FRAP value (x 10(-5) mmol). At the highest concentration of breviscapine, the inhibition extent of lipid peroxidation induced by Fe(2+) in rat liver homogenates was 38.5%. Because of the antioxidant activity, the present study is therefore designed to investigate the therapeutic potential of breviscapine for treatment of ischemic diseases.
Collapse
Affiliation(s)
- Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
37
|
Zhang L, Xiong Z, Li Z, Yao B, Zhang D. Effects of red light emitting diode on apoptosis of HeLa cells and suppression of implanted HeLa cells growth in mice. JOURNAL OF RADIATION RESEARCH 2009; 50:109-117. [PMID: 19164885 DOI: 10.1269/jrr.08003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Low intensity irradiation of cells by laser was an effective method of biostimulation. Here, we have extended these actions to evaluate the apoptosis effects in red light emitting diode (RLED) exposure. Through morphological observation, flow cytometric analysis, intracellular calcium measurement and RT-PCR, we found that HeLa cells in 24 h RLED irradiation in in-vitro experiments would significantly affects the induction of cellular apoptosis, and morphological changes such as the loose arrangement of cells, the noticeable development of apoptotic bodies,and the accompaniment of arrested S phase and activated caspases-3,-6,-8. Moreover, intracellular calcium concentrations markedly increased 40.3 +/- 1.3% and 43.1 +/- 0.8% respectively, relative to an extracellular solution containing the Ca(2+) and Ca(2+) free unexposed group. In in-vivo tests, RLED irradiation decreased the growth of tumors on day 50 and attenuated the elevation of vascular endothelial growth factor (VEGF) expression in HeLa cell implanted BALB/c mice. Taken together, our results suggest that RLED could induce HeLa cell apoptosis and convey potential antitumor properties.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union of Medical College, Tianjin, China
| | | | | | | | | |
Collapse
|
38
|
Zhu BH, Ma L, Pan XD, Huang YL, Liu J. Scutellarin induced Ca(2+ ) release and blocked KCl-induced Ca(2+ ) influx in smooth muscle cells isolated from rat thoracic artery. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2008; 10:583-589. [PMID: 18470813 DOI: 10.1080/10286020801966633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study was designed to investigate the effect of scutellarin (1) on the modulation of intracellular Ca(2+ ) concentration in thoracic smooth muscle cells of rat. Single smooth muscle cells were obtained enzymatically. Fluo-3 AM was used to determine the alteration of intracellular-free Ca(2+ )([Ca(2+ )](i)) and the changes in fluorescence intensity under different agonists were recorded. Compound 1 induced Ca(2+ ) transients in the medium with and/or without Ca(2+ ). In the Ca(2+ )-free medium, after pretreatment of 1, thapsigargin failed to cause the elevation of [Ca(2+ )](i). However, 1 still caused the elevation of [Ca(2+ )](i) after pretreatment of thapsigargin. The infusion of 1 blocked KCl-induced Ca(2+ ) entry and this effect was hardly reversible. The results of present study suggested that 1 increased [Ca(2+ )](i) by blocking sarcoplasmic reticulum Ca(2+ )/ATPase and blocked voltage-dependent Ca(2+ ) channels in smooth muscle cells of the rat thoracic aortic artery.
Collapse
Affiliation(s)
- Bang-Hao Zhu
- Department of Pharmacology, Sun Yat-Sen Medical School, Sun Yat-Sen University, Guangzhou, China.
| | | | | | | | | |
Collapse
|
39
|
Yiming L, Wei H, Aihua L, Fandian Z. Neuroprotective effects of breviscapine against apoptosis induced by transient focal cerebral ischaemia in rats. J Pharm Pharmacol 2008; 60:349-55. [PMID: 18284815 DOI: 10.1211/jpp.60.3.0010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Breviscapine, a flavonoid isolated from the traditional Chinese medicinal herb Erigerin breviscapus, has been proved to be effective in protecting the brain against ischaemic damage, but the mechanisms remain unknown. In this study, we have demonstrated the effects of breviscapine on neuronal apoptosis in a rat model of transient focal cerebral ischaemia. Rats were administered with breviscapine (50 or 100 mg kg(-1)/day) intragastrically for seven successive days, then subjected to 2-h brain ischaemia induced by middle cerebral artery occlusion, followed by 24-h reperfusion. After reperfusion, the rats were killed and the brain samples were collected. Haematoxylin-eosin staining was used to evaluate the histopathological changes. Terminal deoxynucleotidyl transferase-mediated biotiny-lated UTP nick end labeling (TUNEL) and flow cytometry (FCM) analysis were used to detect the level of apoptosis. The expressions of bcl-2 and caspase-3 in the cortex were determined by Western blot. Significant increases in the number of haematoxylin-eosin- and TUNEL-positive staining cells and DNA fragmentation were observed at 24 h after reperfusion, and the increases were inhibited by breviscapine (50 and 100 mg kg(-1)). Breviscapine at both doses markedly inhibited the expression and activation of caspase-3 and up-regulated the expression of bcl-2. These findings suggested that breviscapine attenuated neuroapoptosis and regulated the protein expression related to apoptosis after transient focal cerebral ischaemia, which may have contributed, in part, to the protective effects of breviscapine on cerebral ischaemic damage.
Collapse
Affiliation(s)
- Liu Yiming
- Central Laboratory of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510120, China.
| | | | | | | |
Collapse
|
40
|
Han T, Hu Y, Zhou SY, Li HL, Zhang QY, Zhang H, Huang BK, Rahman K, Zheng HC, Qin LP. Correlation between the genetic diversity and variation of total phenolic acids contents in Fructus Xanthii from different populations in China. Biomed Chromatogr 2008; 22:478-86. [DOI: 10.1002/bmc.956] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Institoris A, Farkas E, Berczi S, Sule Z, Bari F. Effects of cyclooxygenase (COX) inhibition on memory impairment and hippocampal damage in the early period of cerebral hypoperfusion in rats. Eur J Pharmacol 2007; 574:29-38. [PMID: 17719573 DOI: 10.1016/j.ejphar.2007.07.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 07/02/2007] [Accepted: 07/04/2007] [Indexed: 11/23/2022]
Abstract
Chronic cerebral hypoperfusion is related to neurological disorders and contributes to a cognitive decline. Its experimental model in rats is permanent, bilateral common carotid artery occlusion. The cyclooxygenase (COX) system plays a pivotal role in the evolution of ischemic brain damage. Several COX inhibitors have proved to be neuroprotective in stroke models. We set out to characterize the effects of COX inhibitors in rats with permanent cerebral hypoperfusion. Some of the animals were exposed to two-vessel occlusion (n=72), while the others served as sham-operated controls (n=54). This was followed by a 3-day post-treatment with the nonselective COX inhibitor indomethacin (3 mg/kg) or with the selective COX-2 inhibitor NS-398 (15 mg/kg) or with the solvent. Some groups of the animals were sacrificed after 3 days, while the remainder were tested in the Morris watermaze for 5 days, and were sacrificed after 2 weeks. Neurons in the hippocampus were subjected to immunocytochemical labeling with cresyl violet, the dendrites with microtubule-associated protein-2, astrocytes with glial fibrillary acidic protein and microglia activation with OX-42 antibody. Two-vessel occlusion induced a learning impairment, mild neuronal damage, marked dendritic injury and moderate astrocytic reaction in the hippocampus. NS-398, but not indomethacin improved the survival rate and abolished the learning disability. However, both drugs increased the proportion of animals displaying neuronal damage. Glial markers revealed a time-dependent elevation in both the sham and the two-vessel occluded group, and were unaffected by the treatments. In summary, NS-398 prevented the hypoperfusion-induced memory impairment, but not by protecting the hippocampal neurons.
Collapse
Affiliation(s)
- Adam Institoris
- Department of Physiology, School of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10, Hungary.
| | | | | | | | | |
Collapse
|
42
|
Zhu JTT, Choi RCY, Chu GKY, Cheung AWH, Gao QT, Li J, Jiang ZY, Dong TTX, Tsim KWK. Flavonoids possess neuroprotective effects on cultured pheochromocytoma PC12 cells: a comparison of different flavonoids in activating estrogenic effect and in preventing beta-amyloid-induced cell death. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:2438-45. [PMID: 17323972 DOI: 10.1021/jf063299z] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Despite the classical hormonal effect, estrogen possesses a neuroprotective effect in the brain, which has led many to search for novel treatments for neurodegenerative diseases. Flavonoids, a group of compounds mainly derived from vegetables, share a resemblance, chemically, to estrogen, and indeed, some have been used as estrogen substitutes. To search for potential therapeutic agents against neurodegenerative diseases, different subclasses of flavonoids were analyzed and compared with estrogen. First, the estrogenic activities of these flavonoids were determined by activating the estrogen-responsive elements in cultured MCF-7 breast cancer cells. Second, the neuroprotective effects of flavonoids were revealed by measuring its inhibition effects on the formation of reactive oxygen species, the aggregation of beta-amyloid, and the induction of cell death by beta-amyloid in cultured neuronal PC12 cells. Among these flavonoids, baicalein, scutellarin, hibifolin, and quercetin-3'-glucoside possessed the strongest effect in neuroprotection; however, the neuroprotective activity did not directly correlate with the estrogenic activity of the flavonoids. Identification of these flavonoids could be very useful in finding potential drugs, or food supplements, for treating Alzheimer's disease.
Collapse
Affiliation(s)
- Judy T T Zhu
- Department of Biology and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu C, Wu J, Gu J, Xiong Z, Wang F, Wang J, Wang W, Chen J. Baicalein improves cognitive deficits induced by chronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav 2007; 86:423-30. [PMID: 17289131 DOI: 10.1016/j.pbb.2006.11.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 11/02/2006] [Accepted: 11/09/2006] [Indexed: 11/26/2022]
Abstract
The aim of this study is to investigate the effects of baicalein on cognitive impairment and neuronal degeneration in a rat model of chronic cerebral hypoperfusion induced by permanent occlusion of bilateral common carotid arteries (2VO). It was found that baicalein (2 or 4 mg/kg/day, i.p.) significantly improved 2VO-induced cognitive deficits and neuropathological changes. Biochemical and histological examinations revealed that baicalein reduced the increased activities of superoxide dismutase (SOD) and malondialdehyde (MDA), and attenuated the decreased activities of glutathione peroxidase (GPx) and catalase in 2VO rats. The results of the present observation suggest that baicalein has therapeutic potential for the treatment of vascular dementia, which is most likely related, at least in part, to its antioxidant action.
Collapse
Affiliation(s)
- Chao Liu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | |
Collapse
|