1
|
Al-Aqtash R, Collier DM. Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism. Channels (Austin) 2024; 18:2355150. [PMID: 38762911 PMCID: PMC11110710 DOI: 10.1080/19336950.2024.2355150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
P2X7 is a member of the Ionotropic Purinergic Receptor (P2X) family. The P2X family of receptors is composed of seven (P2X1-7), ligand-gated, nonselective cation channels. Changes in P2X expression have been reported in multiple disease models. P2Xs have large complex extracellular domains that function as receptors for a variety of ligands, including endogenous and synthetic agonists and antagonists. ATP is the canonical agonist. ATP affinity ranges from nanomolar to micromolar for most P2XRs, but P2X7 has uniquely poor ATP affinity. In many physiological settings, it may be difficult to achieve the millimolar extracellular ATP concentrations needed for P2X7 channel activation; however, channel function is implicated in pain sensation, immune cell function, cardiovascular disease, cancer, and osteoporosis. Multiple high-resolution P2X7 structures have been solved in apo-, ATP-, and antagonist-bound states. P2X7 structural data reveal distinct allosteric and orthosteric antagonist-binding sites. Both allosteric and orthosteric P2X7 antagonists are well documented to inhibit ATP-evoked channel current. However, a growing body of evidence supports P2X7 activation by non-nucleotide agonists, including extracellular histone proteins and human cathelicidin-derived peptides (LL-37). Interestingly, P2X7 non-nucleotide agonism is not inhibited by allosteric antagonists, but is inhibited by orthosteric antagonists. Herein, we review P2X7 function with a focus on the efficacy of available pharmacology on P2X7 channel current activation by non-nucleotide agonists in effort to understand agonist/antagonist efficacy, and consider the impact of these data on the current understanding of P2X7 in physiology and disease given these limitations of P2X7-selective antagonists and incomplete knockout mouse models.
Collapse
Affiliation(s)
- Rua’a Al-Aqtash
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel M. Collier
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
2
|
Iring-Varga B, Baranyi M, Gölöncsér F, Tod P, Sperlágh B. The antidepressant effect of short- and long-term zinc exposition is partly mediated by P2X7 receptors in male mice. Front Pharmacol 2023; 14:1241406. [PMID: 37908978 PMCID: PMC10613712 DOI: 10.3389/fphar.2023.1241406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Background: As a member of the purinergic receptor family, divalent cation-regulated ionotropic P2X7 (P2rx7) plays a role in the pathophysiology of psychiatric disorders. This study aimed to investigate whether the effects of acute zinc administration and long-term zinc deprivation on depression-like behaviors in mice are mediated by P2X7 receptors. Methods: The antidepressant-like effect of elevated zinc level was studied using a single acute intraperitoneal injection in C57BL6/J wild-type and P2rx7 gene-deficient (P2rx7 -/-) young adult and elderly animals in the tail suspension test (TST) and the forced swim test (FST). In the long-term experiments, depression-like behavior caused by zinc deficiency was investigated with the continuous administration of zinc-reduced and control diets for 8 weeks, followed by the same behavioral tests. The actual change in zinc levels owing to the treatments was examined by assaying serum zinc levels. Changes in monoamine and brain-derived neurotrophic factor (BDNF) levels were measured from the hippocampus and prefrontal cortex brain areas by enzyme-linked immunosorbent assay and high-performance liquid chromatography, respectively. Results: A single acute zinc treatment increased the serum zinc level evoked antidepressant-like effect in both genotypes and age groups, except TST in elderly P2rx7 -/- animals, where no significant effect was detected. Likewise, the pro-depressant effect of zinc deprivation was observed in young adult mice in the FST and TST, which was alleviated in the case of the TST in the absence of functional P2X7 receptors. Among elderly mice, no pro-depressant effect was observed in P2rx7 -/- mice in either tests. Treatment and genotype changes in monoamine and BDNF levels were also detected in the hippocampi. Conclusion: Changes in zinc intake were associated with age-related changes in behavior in the TST and FST. The antidepressant-like effect of zinc is partially mediated by the P2X7 receptor.
Collapse
Affiliation(s)
- Bernadett Iring-Varga
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Pál Tod
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Miyanaga K, Asada A, Komoto M, Ohshima Y, Morimoto H, Yasukawa T, Matsuura R, Morito K, Takayama K, Uozumi Y, Nagasawa K. Prophylactic Administration of Magnesium Oxide Prevents Dextran Sulfate Sodium-Induced Colonic Injury in Mice. Biol Pharm Bull 2022; 45:1312-1320. [DOI: 10.1248/bpb.b22-00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kayo Miyanaga
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Ayumi Asada
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Miki Komoto
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Yasuyuki Ohshima
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | | | | | | | - Katsuya Morito
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Kentaro Takayama
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | | | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| |
Collapse
|
4
|
P2X7 receptor in multifaceted cellular signalling and its relevance as a potential therapeutic target in different diseases. Eur J Pharmacol 2021; 906:174235. [PMID: 34097884 DOI: 10.1016/j.ejphar.2021.174235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
P2X7 receptor, a purinergic receptor family member, is abundantly expressed on many cells, including immune, muscle, bone, neuron, and glia. It acts as an ATP-activated cation channel that permits the influx of Ca2+, Na+ and efflux of K+ ions. The P2X7 receptor plays crucial roles in many physiological processes including cytokine and chemokine secretion, NLRP3 inflammasome activation, cellular growth and differentiation, locomotion, wound healing, transcription factors activation, cell death and T-lymphocyte survival. Past studies have demonstrated the up-regulation and direct association of this receptor in many pathophysiological conditions such as cancer, diabetics, arthritis, tuberculosis (TB) and inflammatory diseases. Hence, targeting this receptor is considered a worthwhile approach to lessen the afflictions associated with the disorders mentioned above by understanding the receptor architecture and downstream signalling processes. Here, in the present review, we have dissected the structural and functional aspects of the P2X7 receptor, emphasizing its role in various diseased conditions. This information will provide in-depth knowledge about the receptor and help to develop apt curative methodologies for the betterment of humanity in the coming years.
Collapse
|
5
|
Ozen M, Xie H, Shin N, Al Yousif G, Clemens J, McLane MW, Lei J, Burd I. Magnesium sulfate inhibits inflammation through P2X7 receptors in human umbilical vein endothelial cells. Pediatr Res 2020; 87:463-471. [PMID: 31493768 PMCID: PMC7035964 DOI: 10.1038/s41390-019-0557-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/09/2019] [Accepted: 08/23/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Magnesium sulfate (MgSO4) is utilized for fetal neuroprotection in preterm birth but its mechanism of action is still poorly understood. P2X7 receptor (P2X7R) is required for secretion of IL-1β, and can be blocked by divalent cations such as magnesium (Mg) and its own antagonist, Brilliant Blue G (BBG). We sought to determine whether during inflammation MgSO4 can block endothelial IL-1β secretion, using an in-vitro model. METHODS Human umbilical vein endothelial cell (HUVEC) cultures were treated with varying doses of LPS, 2'(3)-Ο-(4-Benzoylbenzoyl) adenosine-5'-triphosphate (BzATP), BBG and MgSO4 for 3- or 24 h. We determined cell cytotoxicity, apoptosis, IL-1β mRNA expression, IL-1β production and secretion and P2X7R expression on HUVECs. RESULTS We demonstrated that MgSO4 is efficacious in blocking IL-1β-mediated-inflammation in HUVECs, at both the initiation and propagation phases of inflammation. MgSO4 exerts these anti-inflammatory effects via downregulation of P2X7Rs on HUVECs. CONCLUSION LPS-exposure increases IL-1β production and secretion in HUVECs, which is further intensified by P2X7R agonist, BzATP while MgSO4 inhibits IL-1β in both presence and absence of BzATP. This effect is similar to the results of P2X7R antagonist, BBG, suggesting that the anti-inflammatory effects of MgSO4 is through P2X7R.
Collapse
Affiliation(s)
- Maide Ozen
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pediatrics, Neonatal-Perinatal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Han Xie
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Na Shin
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ghada Al Yousif
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Julia Clemens
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michael W McLane
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
6
|
Kovács G, Környei Z, Tóth K, Baranyi M, Brunner J, Neubrandt M, Dénes Á, Sperlágh B. Modulation of P2X7 purinergic receptor activity by extracellular Zn 2+ in cultured mouse hippocampal astroglia. Cell Calcium 2018; 75:1-13. [PMID: 30098501 DOI: 10.1016/j.ceca.2018.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/05/2018] [Accepted: 07/28/2018] [Indexed: 02/06/2023]
Abstract
The P2X7R protein, a P2 type purinergic receptor functioning as a non-selective cation channel, is expressed in different cell types of the central nervous system in several regions of the brain. The activation of the P2X7R protein by ATP modulates excitatory neurotransmission and contributes to microglial activation, apoptosis and neuron-glia communication. Zinc is an essential micronutrient that is highly concentrated in the synaptic vesicles of glutamatergic hippocampal neurons where free zinc ions released into the synaptic cleft alter glutamatergic signal transmission. Changes in both P2X7R-mediated signaling and brain zinc homeostasis have been implicated in the pathogenesis of mood disorders. Here, we tested the hypothesis that extracellular zinc regulates P2X7R activity in the hippocampus. We observed that P2X7R is expressed in both neurons and glial cells in primary mouse hippocampal neuron-glia culture. Propidium iodide (PI) uptake through large pores formed by pannexins and P2X7R was dose-dependently inhibited by extracellular zinc ions. Calcium influx mediated by P2X7R in glial cells was also reduced by free zinc ions. Interestingly, no calcium influx was detected in response to ATP or 3'-O-(4-Benzoyl) benzoyl ATP (BzATP) in neurons despite the expression of P2X7R at the plasma membrane. Our results show that free zinc ions can modulate hippocampal glial purinergic signaling, and changes in the activity of P2X7R may contribute to the development of depression-like behaviors associated with zinc deficiency.
Collapse
Affiliation(s)
- Gergely Kovács
- Department of Pharmacology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Szigony utca 43, HU-1083 Budapest, Hungary; Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Ifjúság útja 20, Pécs, Hungary.
| | - Zsuzsanna Környei
- Laboratory of Neuroimmunology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Szigony utca 43, Budapest, HU-1083 Hungary
| | - Krisztina Tóth
- Laboratory of Neuroimmunology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Szigony utca 43, Budapest, HU-1083 Hungary
| | - Mária Baranyi
- Department of Pharmacology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Szigony utca 43, HU-1083 Budapest, Hungary
| | - János Brunner
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Szigony utca 43, HU-1083 Budapest, Hungary
| | - Máté Neubrandt
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Szigony utca 43, HU-1083 Budapest, Hungary
| | - Ádám Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Szigony utca 43, Budapest, HU-1083 Hungary
| | - Beáta Sperlágh
- Department of Pharmacology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Szigony utca 43, HU-1083 Budapest, Hungary
| |
Collapse
|
7
|
Paredes C, Li S, Chen X, Coddou C. Divalent metal modulation of Japanese flounder ( Paralichthys olivaceus) purinergic P2X7 receptor. FEBS Open Bio 2018; 8:383-389. [PMID: 29511615 PMCID: PMC5832984 DOI: 10.1002/2211-5463.12375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023] Open
Abstract
Paralichthys olivaceus P2X7 receptor (poP2X7R) is a recently identified as a P2X7 purinergic receptor involved in innate immunity of the Japanese flounder Paralichthys olivaceus. Divalent metals are allosteric modulators of mammalian P2XRs, but there is no information for fish P2XRs. Here, we characterized the effects of divalent metals on poP2X7R channel activity by electrophysiology and molecular biology techniques. Copper, zinc and mercury inhibited poP2X7R‐mediated currents with different maximal inhibition potency, while cadmium had no effect on poP2X7R activity. Mercury‐induced inhibition was irreversible, but the inhibitory effects of copper and zinc were reversed after washout. Cooper and zinc also reduced poP2X7R‐mediated interleukin‐1 mRNA production. These findings suggest that divalent metals have potential effects on the Japanese flounder innate immune response through modulation of poP2X7R activity.
Collapse
Affiliation(s)
- Carolina Paredes
- Department of Biomedical Sciences Faculty of Medicine Universidad Católica del Norte Coquimbo Chile
| | - Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance College of Life Sciences Tianjin Normal University China
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance College of Life Sciences Tianjin Normal University China
| | - Claudio Coddou
- Department of Biomedical Sciences Faculty of Medicine Universidad Católica del Norte Coquimbo Chile
| |
Collapse
|
8
|
Furuta T, Mukai A, Ohishi A, Nishida K, Nagasawa K. Oxidative stress-induced increase of intracellular zinc in astrocytes decreases their functional expression of P2X7 receptors and engulfing activity. Metallomics 2017; 9:1839-1851. [DOI: 10.1039/c7mt00257b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exposure of astrocytes to oxidative stress induces an increase of intracellular labile zinc and a decrease of functional expression of P2X7 receptorviaits translocation from the plasma membrane to the cytosol by altering the expression profile of P2X7 receptor and its splice variants, leading to a decrease of their engulfing activity.
Collapse
Affiliation(s)
- Takahiro Furuta
- Department of Environmental Biochemistry
- Kyoto Pharmaceutical University
- Yamashina-ku
- Japan
| | - Ayumi Mukai
- Department of Environmental Biochemistry
- Kyoto Pharmaceutical University
- Yamashina-ku
- Japan
| | - Akihiro Ohishi
- Department of Environmental Biochemistry
- Kyoto Pharmaceutical University
- Yamashina-ku
- Japan
| | - Kentaro Nishida
- Department of Environmental Biochemistry
- Kyoto Pharmaceutical University
- Yamashina-ku
- Japan
| | - Kazuki Nagasawa
- Department of Environmental Biochemistry
- Kyoto Pharmaceutical University
- Yamashina-ku
- Japan
| |
Collapse
|
9
|
Ohbori K, Fujiwara M, Ohishi A, Nishida K, Uozumi Y, Nagasawa K. Prophylactic Oral Administration of Magnesium Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice through a Decrease of Colonic Accumulation of P2X7 Receptor-Expressing Mast Cells. Biol Pharm Bull 2017; 40:1071-1077. [DOI: 10.1248/bpb.b17-00143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kenshi Ohbori
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | - Makiko Fujiwara
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | - Akihiro Ohishi
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | - Kentaro Nishida
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | | | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| |
Collapse
|