1
|
Xu G, Kong W, Fang Z, Fan Y, Yin Y, Sullivan SA, Tran AQ, Clark LH, Sun W, Hao T, Zhao L, Zhou C, Bae-Jump VL. Asparagus officinalis Exhibits Anti-Tumorigenic and Anti-Metastatic Effects in Ovarian Cancer. Front Oncol 2021; 11:688461. [PMID: 34336674 PMCID: PMC8317209 DOI: 10.3389/fonc.2021.688461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
Ovarian cancer is one of the leading causes of female cancer death. Emerging evidence suggests that many dietary natural products have anti-tumorigenic activity, including that of asparagus officinalis. The current study aimed to assess the anti-tumorigenic and anti-metastatic effects of asparagus officinalis on serous ovarian cancer cell lines and a transgenic mouse model of high grade serous ovarian cancer. Asparagus officinalis decreased cellular viability, caused cell cycle G1 phase arrest and induced apoptosis in the OVCAR5 and SKOV3 cells. Induction of apoptosis and inhibition of cell proliferation was rescued by the pan-caspase inhibitor, Z-VAD-FMK, implying that its cytotoxic effects were mainly dependent on caspase pathways. Asparagus officinalis increased levels of ROS and decreased mitochondrial membrane potential with corresponding increases in PERK, Bip, Calnexin PDI and ATF4 in both cell lines. Treatment with asparagus officinalis also reduced ability of adhesion and invasion through epithelial-mesenchymal transition and reduction of VEGF expression. The combination of Asparagus officinalis with paclitaxel had synergistic anti-proliferative activity. Furthermore, Asparagus officinalis significantly inhibited tumor growth and reduced serum VEGF in a genetically engineered mouse model of ovarian cancer under obese and lean conditions, accompanied with a decrease in the expression of Ki67, VEGF and phosphorylated S6, and in an increase in phosphorylation of AMPK in the ovarian tumor tissues. Overall, our data provide a pre-clinical rationale for asparagus officinalis in the prevention and treatment of ovarian cancer as a novel natural product.
Collapse
Affiliation(s)
- Guangxu Xu
- Department of Gynecology, Fengxian Hospital, Southern Medical University, Shanghai, China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ziwei Fang
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yali Fan
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie A. Sullivan
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Arthur-Quan Tran
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leslie H. Clark
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tianran Hao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Luyu Zhao
- Shandong Juxinyuan Agricultural Technology Co, LTD., Heze, China
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Victoria L. Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Ho DV, Nguyen HT, Vu TY, Pham TV, Nguyen HM. Antioxidant Activity of a New Xanthone Derivative from Aspidistra Letreae: In Vitro and In Silico Studies. Chem Biodivers 2021; 18:e2001008. [PMID: 33660915 DOI: 10.1002/cbdv.202001008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022]
Abstract
A new xanthone derivative, aspidxanthone A (1), and three known compounds ((2S)-1-(β-D-galactopyranosyloxy)-3-(hexadecanoyloxy)propan-2-yl (9Z,12Z)-octadeca-9,12-dienoate (2), (25S)-spirostane-1β,3α,5β-triol (3), and asparenyldiol (4)) were isolated from the whole of the endemic species Aspidistra letreae in Vietnam. Their structures were elucidated by means of extensive spectroscopic analyses and comparison with published data. In this study, we report the isolation and structure elucidation of a new compound aspidxanthone A, antioxidant activities of the extract and isolates 1-4, and in silico molecular docking of aspidxanthone A. The ethyl acetate extract had good antioxidant activity with an IC50 value of 26.3 μg mL-1 . Among the isolates, aspidxanthone A exhibited DPPH reduction activity with an IC50 value of 11.2 μM, which is in the same range as that of the positive control, ascorbic acid. The mechanism of action of aspidxanthone A on the tyrosinase and xanthine oxidase proteins have been clarified by in silico studies.
Collapse
Affiliation(s)
- Duc Viet Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, 49000, Vietnam
| | - Hoai Thi Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, 49000, Vietnam
| | - Thien-Y Vu
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| | - Ty Viet Pham
- Faculty of Chemistry, Hue University of Education, Hue University, 34 Le Loi, Hue City, 49000, Vietnam
| | - Hien Minh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
3
|
Tantapakul C, Chaiyosang B, Promgool T, Somteds A, Suthiphasilp V, Kanokmedhakul K, Laphookhieo S, Andersen RJ, Patrick BO, Kanokmedhakul S. Spirosteroids and α-glucosidase inhibitory norlignans from Asparagus racemosus Willd. roots. PHYTOCHEMISTRY 2020; 177:112439. [PMID: 32562917 DOI: 10.1016/j.phytochem.2020.112439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Three undescribed spirosteroids, asparacemosones A-C, an undescribed spiro-21-norsteroid, asparacemosone D, along with seven known compounds were isolated from Thai herbal plant Asparagus racemosus Willd. roots. Their structures were elucidated by spectroscopic analysis including NMR, UV, IR and mass spectrometry. The absolute configurations of asparacemosones A, B, and D were determined by single crystal X-ray diffraction using CuKα radiation. Among the isolated compounds, the norlignan nyasol and three acetylenic norlignans demonstrated potent α-glucosidase inhibition, with IC50 values ranging from 0.003 to 0.004 μM which is 5 × 104 fold more potent than the standard acarbose.
Collapse
Affiliation(s)
- Cholpisut Tantapakul
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; The Research Unit of Natural Product Utilization, School of Science, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Boonyanoot Chaiyosang
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Trinop Promgool
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apisara Somteds
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Virayu Suthiphasilp
- Center of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai, 57100, Thailand
| | - Kwanjai Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Surat Laphookhieo
- Center of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai, 57100, Thailand
| | - Raymond J Andersen
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada; Department of Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Somdej Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
Abstract
Acetylenic metabolites belong to a class of molecules containing triple bond(s). They are found in plants, fungi, microorganisms, and marine invertebrates. This review presents 139 active acetylenic molecules of plant, fungal, and soil bacterial origin that reveal cytotoxic and/or anticancer activities. Although many compounds of this group possess encouraging characteristics, they have never been evaluated as potential anticancer agents. They are of great interest, especially for the medicine and/or pharmaceutical industries. Here we describe structures and biological activities of acetylenic metabolites.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Dmitri O Levitsky
- CNRS UMR 6204, Biotechnologie, Biocatalyse et Biorégulation, Faculté des Sciences et des Techniques, Université de Nantes, P.O. Box 92208, 44322 Nantes Cedex 3, France
| |
Collapse
|
5
|
Li XM, Cai JL, Wang L, Wang WX, Ai HL, Mao ZC. Two new phenolic compounds and antitumor activities of asparinin A from Asparagus officinalis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:164-171. [PMID: 27618876 DOI: 10.1080/10286020.2016.1206529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two new phenolic acid compounds, asparoffin C (1) and asparoffin D (2), together with four known compounds, asparenyol (3), gobicusin B (4), 1-methoxy-2-hydroxy-4-[5-(4-hydroxyphenoxy)-3-penten-1-ynyl] phenol (5), and asparinin A (6), have been isolated from the stems of Asparagus officinalis. The structures were established by extensive spectroscopic methods (MS and 1D and 2D NMR). Compound 6 has obvious antitumor activities both in vitro and in vivo.
Collapse
Affiliation(s)
- Xue-Mei Li
- a College of Pharmacy , South-Central University for Nationalities , Wuhan 430074 , China
- b School of Agriculture and Biological Technique , Yunnan Agricultural University , Kunming 650201 , China
| | - Jin-Long Cai
- a College of Pharmacy , South-Central University for Nationalities , Wuhan 430074 , China
| | - Le Wang
- a College of Pharmacy , South-Central University for Nationalities , Wuhan 430074 , China
| | - Wen-Xiang Wang
- a College of Pharmacy , South-Central University for Nationalities , Wuhan 430074 , China
| | - Hong-Lian Ai
- a College of Pharmacy , South-Central University for Nationalities , Wuhan 430074 , China
| | - Zi-Chao Mao
- b School of Agriculture and Biological Technique , Yunnan Agricultural University , Kunming 650201 , China
| |
Collapse
|
6
|
Zhong C, Jiang C, Xia X, Mu T, Wei L, Lou Y, Zhang X, Zhao Y, Bi X. Antihepatic Fibrosis Effect of Active Components Isolated from Green Asparagus (Asparagus officinalis L.) Involves the Inactivation of Hepatic Stellate Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6027-6034. [PMID: 26089141 DOI: 10.1021/acs.jafc.5b01490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Green asparagus (Asparagus officinalis L.) is a vegetable with numerous nutritional properties. In the current study, a total of 23 compounds were isolated from green asparagus, and 9 of these compounds were obtained from this genus for the first time. Preliminary data showed that the ethyl acetate (EtOAc)-extracted fraction of green asparagus exerted a stronger inhibitory effect on the growth of t-HSC/Cl-6 cells, giving an IC50 value of 45.52 μg/mL. The biological activities of the different compounds isolated from the EtOAc-extracted fraction with respect to antihepatic fibrosis were investigated further. Four compounds, C3, C4, C10, and C12, exhibited profound inhibitory effect on the activation of t-HSC/Cl-6 cells induced by TNF-α. The activation t-HSC/Cl-6 cells, which led to the production of fibrotic matrix (TGF-β1, activin C) and accumulation of TNF-α, was dramatically decreased by these compounds. The mechanisms by which these compounds inhibited the activation of hepatic stellate cells appeared to be associated with the inactivation of TGF-β1/Smad signaling and c-Jun N-terminal kinases, as well as the ERK phosphorylation cascade.
Collapse
Affiliation(s)
- Chunge Zhong
- †College of Life Science, Liaoning University, Shenyang 110036, China
| | | | - Xichun Xia
- †College of Life Science, Liaoning University, Shenyang 110036, China
| | - Teng Mu
- †College of Life Science, Liaoning University, Shenyang 110036, China
| | | | | | | | | | - Xiuli Bi
- †College of Life Science, Liaoning University, Shenyang 110036, China
| |
Collapse
|
7
|
Venditti A, Mandrone M, Serrilli AM, Bianco A, Iannello C, Poli F, Antognoni F. Dihydroasparagusic acid: antioxidant and tyrosinase inhibitory activities and improved synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6848-6855. [PMID: 23790134 DOI: 10.1021/jf401120h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Dihydroasparagusic acid (DHAA) is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. In this work, DHAA was synthetically produced by modifying some published protocols, and the synthesized molecule was tested in several in vitro assays (DPPH, ABTS, FRAP-ferrozine, BCB, deoxyribose assays) to evaluate its radical scavenging activity. Results show that DHAA is endowed with a significant in vitro antioxidant activity, comparable to that of Trolox. DHAA was also evaluated for its inhibitory activity toward tyrosinase, an enzyme involved, among others, in melanogenesis and in browning processes of plant-derived foods. DHAA was shown to exert an inhibitory effect on tyrosinase activity, and the inhibitor kinetics, analyzed by a Lineweaver-Burk plot, exhibited a competitive mechanism. Taken together, these results suggest that DHAA may be considered as a potentially active molecule for use in various fields of application, such as pharmaceutical, cosmetics, agronomic and food.
Collapse
|
8
|
Negi JS, Singh P, Joshi GP, Rawat MS, Bisht VK. Chemical constituents of Asparagus. Pharmacogn Rev 2012; 4:215-20. [PMID: 22228964 PMCID: PMC3249924 DOI: 10.4103/0973-7847.70921] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 01/24/2010] [Indexed: 11/26/2022] Open
Abstract
Asparagus species (family Liliaceae) are medicinal plants of temperate Himalayas. They possess a variety of biological properties, such as being antioxidants, immunostimulants, anti-inflammatory, antihepatotoxic, antibacterial, antioxytocic, and reproductive agents. The article briefly reviews the isolated chemical constituents and the biological activities of the plant species. The structural formula of isolated compounds and their distribution in the species studied are also given.
Collapse
Affiliation(s)
- J S Negi
- Department of Chemistry, HNB Garhwal University, Srinagar, Garhwal - 246 174, India
| | | | | | | | | |
Collapse
|
9
|
Asparagus officinalis extract controls blood glucose by improving insulin secretion and β-cell function in streptozotocin-induced type 2 diabetic rats. Br J Nutr 2012; 108:1586-95. [PMID: 22221560 DOI: 10.1017/s0007114511007148] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of the present study was to evaluate the anti-diabetic mechanism of Asparagus officinalis, a dietary agent used for the management of diabetes. Streptozotocin (90 mg/kg) was injected in 2-d-old Wistar rat pups to induce non-obese type 2 diabetes. After confirmation of diabetes on the 13th week, diabetic rats were treated with a methanolic extract of A. officinalis seeds (250 and 500 mg/kg per d) or glibenclamide for 28 d. After the treatment, fasting blood glucose, serum insulin and total antioxidant status were measured. The pancreas was examined by haematoxylin-eosin staining and immunostained β- and α-cells were observed using a fluorescence microscope. Treatment of the diabetic rats with the A. officinalis extract at doses of 250 and 500 mg/kg suppressed the elevated blood glucose in a dose- and time-dependent manner. The 500 mg/kg, but not 250 mg/kg, dose significantly improved serum insulin levels in the diabetic rats. The insulin:glucose ratio was significantly increased at both doses in the A. officinalis-treated rats. Both qualitative and quantitative improvements in β-cell function were found in the islets of the A. officinalis-treated rats. The extract showed potent antioxidant activity in an in vitro assay and also improved the total antioxidant status in vivo. In most cases, the efficacy of A. officinalis (500 mg/kg) was very similar to a standard anti-diabetic drug, glibenclamide. Thus, the present study suggests that A. officinalis extract exerts anti-diabetic effects by improving insulin secretion and β-cell function, as well as the antioxidant status.
Collapse
|
10
|
Abstract
This review is a comprehensive survey of acetylenic lipids and their derivatives, obtained from living organisms, that have anticancer activity. Acetylenic metabolites belong to a class of molecules containing triple bond(s). They are found in plants, fungi, microorganisms, and marine invertebrates. Although acetylenes are common as components of terrestrial plants, fungi, and bacteria, it is only within the last 30 years that biologically active polyacetylenes having unusual structural features have been reported from plants, cyanobacteria, algae, invertebrates, and other sources. Naturally occurring aquatic acetylenes are of particular interest since many of them display important biological activities and possess antitumor, antibacterial, antimicrobial, antifouling, antifungal, pesticidal, phototoxic, HIV-inhibitory, and immunosuppressive properties. There is no doubt that they are of great interest, especially for the medicinal and/or pharmaceutical industries. This review presents structures and describes cytotoxic and anticancer activities only for more than 300 acetylenic lipids and their derivatives isolated from living organisms.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
11
|
Jang DS, Cuendet M, Fong HHS, Pezzuto JM, Kinghorn AD. Constituents of Asparagus officinalis evaluated for inhibitory activity against cyclooxygenase-2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:2218-2222. [PMID: 15080623 DOI: 10.1021/jf0305229] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
As part of a project directed toward the discovery of new cancer chemopreventive agents from plants, two new natural products, asparagusic acid anti-S-oxide methyl ester (1) and asparagusic acid syn-S-oxide methyl ester (2), a new acetylenic compound, 2-hydroxyasparenyn [3',4'-trans-2-hydroxy-1-methoxy-4-[5-(4-methoxyphenoxy)-3-penten-1-ynyl]-benzene] (3), as well as eleven known compounds, asparenyn (4), asparenyol (5), (+/-)-1-monopalmitin (6), ferulic acid (7), 1,3-O-di-p-coumaroylglycerol (8), 1-O-feruloyl-3-O-p-coumaroylglycerol (9), blumenol C, (+/-)-epipinoresinol, linoleic acid, 1,3-O-diferuloylglycerol, and 1,2-O-diferuloylglycerol, were isolated from an ethyl acetate-soluble fraction of the methanol extract of the aerial parts of Asparagus officinalis (Asparagus), using a bioassay based on the inhibition of cyclooxygenase-2 to monitor chromatographic fractionation. The structures of compounds 1-3 were elucidated by 1D- and 2D-NMR experiments ((1)H NMR, (13)C NMR, DEPT, COSY, HMQC, HMBC and NOESY). All the isolates were evaluated for their inhibitory effects against both cyclooxygenase-1 and -2, with the most active compound being linoleic acid.
Collapse
Affiliation(s)
- Dae Sik Jang
- , Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
12
|
Zhang HJ, Sydara K, Tan GT, Ma C, Southavong B, Soejarto DD, Pezzuto JM, Fong HHS. Bioactive constituents from Asparagus cochinchinensis. JOURNAL OF NATURAL PRODUCTS 2004; 67:194-200. [PMID: 14987058 DOI: 10.1021/np030370b] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bioassay-directed fractionation of the dried roots of Asparagus cochinchinensis led to the isolation of a new spirostanol saponin, asparacoside (1), two new C-27 spirosteroids, asparacosins A (2) and B (3), a new acetylenic derivative, 3' '-methoxyasparenydiol (4), and a new polyphenol, 3'-hydroxy-4'-methoxy-4'-dehydroxynyasol (6), as well as five known phenolic compounds, asparenydiol (5), nyasol (7), 3' '-methoxynyasol (8), 1,3-bis-di-p-hydroxyphenyl-4-penten-1-one (9), and trans-coniferyl alcohol (10). Compounds 1, 6, and 8 demonstrated moderate cytotoxicities in a panel comprised of KB, Col-2, LNCaP, Lu-1, and HUVEC cells, with IC(50) values ranging from 4 to 12 microg/mL. The structures were determined by spectroscopic and chemical methods.
Collapse
Affiliation(s)
- Hong-Jie Zhang
- Program for Collaborative Research in the Pharmaceutical Sciences, Department of Medicinal Chemistry and Pharmacognosy (M/C877), College of Pharmacy, the University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|