1
|
Sadgir NV, Dhonnar SL, Jagdale BS. Synthesis, molecular structure, FMO, spectroscopic, antimicrobial and In-silico investigation of (E)-1-(benzo[d][1,3]dioxol-5-yl)-3-(4-aryl)prop-2-en-1-one derivative: Experimental and computational study. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
2
|
Zhang X, Xu L, Chen H, Zhang X, Lei Y, Liu W, Xu H, Ma B, Zhu C. Novel Hydroxychalcone-Based Dual Inhibitors of Aldose Reductase and α-Glucosidase as Potential Therapeutic Agents against Diabetes Mellitus and Its Complications. J Med Chem 2022; 65:9174-9192. [PMID: 35749671 DOI: 10.1021/acs.jmedchem.2c00380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We designed a novel series of bifunctional inhibitors of α-glucosidase and aldose reductase (ALR2) based on the structure of hydroxychalcone. The two enzymes relate to blood glucose level and anomalously elevated polyol pathway of glucose metabolism under hyperglycemia, respectively. Most compounds in the series exhibited a potent inhibitory activity for both enzymes, and a significant antioxidant property was shown. Further in vivo studies of 11j and 14d using streptozotocin (STZ)-induced diabetic rats as a model found that 11j achieved not only good antihyperglycemic and glucose tolerance effect in a dose-dependent manner (p < 0.01) but also showed effective inhibition of polyol pathway. 14d significantly suppressed the maltose-induced postprandial glucose elevation. Additionally, they effectively improved lipid metabolisms and restored an antioxidant ability. Therefore, the two compounds may be promising agents for the prevention and treatment of diabetic complications.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Long Xu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Huan Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanqi Lei
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenchao Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hulin Xu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bing Ma
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Changjin Zhu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Okolo EN, Ugwu DI, Ezema BE, Ndefo JC, Eze FU, Ezema CG, Ezugwu JA, Ujam OT. New chalcone derivatives as potential antimicrobial and antioxidant agent. Sci Rep 2021; 11:21781. [PMID: 34741131 PMCID: PMC8571407 DOI: 10.1038/s41598-021-01292-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/14/2021] [Indexed: 01/11/2023] Open
Abstract
Seven chalcone derivatives were synthesized by the Claisen-Schmidt condensation. The structures of the compounds were confirmed by spectral data (Ultraviolet/visible, infrared, nuclear magnetic resonance and mass spectroscopy). The compounds were tested for their in silico and in vitro antimicrobial and antioxidant activities. The molecular docking assessments showed that all the compounds exhibited good binding affinity with the target microorganism proteins but, compounds 6e and 6g showed better binding affinity compared with the standards. The antimicrobial test revealed that all the compounds screened were active against Staphylococcus aureus and Bacillus subtilis and had minimum inhibitory concentrations (MIC) between 0.4 and 0.6 mg/mL. Compounds 6a, 6c and 6d had moderate activities on Salmonella typhi. Compounds 6b and 6c had moderate activity on Escherichia coli. Compound 6c had moderate activity on Aspergillus niger while compounds 6a and 6e had poor activity. All the compounds except compound 6e had no inhibition against Pseudomonas aeruginosa. The in-vitro antioxidant activity was assessed using ethylenediaminetetraacetate (EDTA) as the standard. Compounds 6c, 6e and 6g gave excellent inhibitory activity better than the standard. Compound 6a gave good activity at 500 μg/mL and 1000 μg/mL concentrations but, below the standard at 250 μg/mL and no inhibition at 125 μg/mL. Compound 6d had good inhibition at 500 μg/mL and 1000 μg/mL but, no inhibition at 125 μg/mL and 250 μg/mL. Compound 6b was found to be inactive in all the concentrations. Absorption, distribution, metabolism and excretion properties of the compounds were assessed using SwissADME. The results of lead likeness showed that compound 6e is a lead-like molecule.
Collapse
Affiliation(s)
- Emelda N Okolo
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - David I Ugwu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria.
| | - Benjamin E Ezema
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Joseph C Ndefo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Nigeria
| | - Florence U Eze
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Chidimma G Ezema
- National Center for Energy Research and Development, University of Nigeria, Nsukka, Nigeria
| | - James A Ezugwu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Oguejiofo T Ujam
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
4
|
Rocha S, Ribeiro D, Fernandes E, Freitas M. A Systematic Review on Anti-diabetic Properties of Chalcones. Curr Med Chem 2020; 27:2257-2321. [PMID: 30277140 DOI: 10.2174/0929867325666181001112226] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/08/2018] [Accepted: 08/21/2018] [Indexed: 01/22/2023]
Abstract
The use of anti-diabetic drugs has been increasing worldwide and the evolution of therapeutics has been enormous. Still, the currently available anti-diabetic drugs do not present the desired efficacy and are generally associated with serious adverse effects. Thus, entirely new interventions, addressing the underlying etiopathogenesis of type 2 diabetes mellitus, are required. Chalcones, secondary metabolites of terrestrial plants and precursors of the flavonoids biosynthesis, have been used for a long time in traditional medicine due to their wide-range of biological activities, from which the anti-diabetic activity stands out. This review systematizes the information found in literature about the anti-diabetic properties of chalcones, in vitro and in vivo. Chalcones are able to exert these properties by acting in different therapeutic targets: Dipeptidyl Peptidase 4 (DPP-4); Glucose Transporter Type 4 (GLUT4), Sodium Glucose Cotransporter 2 (SGLT2), α-amylase, α-glucosidase, Aldose Reductase (ALR), Protein Tyrosine Phosphatase 1B (PTP1B), Peroxisome Proliferator-activated Receptor-gamma (PPARγ) and Adenosine Monophosphate (AMP)-activated Protein Kinase (AMPK). Chalcones are, undoubtedly, promising anti-diabetic agents, and some crucial structural features have already been established. From the Structure-Activity Relationships analysis, it can generally be stated that the presence of hydroxyl, prenyl and geranyl groups in their skeleton improves their activity for the evaluated anti-diabetic targets.
Collapse
Affiliation(s)
- Sonia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Liddle DM, Kavanagh ME, Wright AJ, Robinson LE. Apple Flavonols Mitigate Adipocyte Inflammation and Promote Angiogenic Factors in LPS- and Cobalt Chloride-Stimulated Adipocytes, in Part by a Peroxisome Proliferator-Activated Receptor-γ-Dependent Mechanism. Nutrients 2020; 12:nu12051386. [PMID: 32408695 PMCID: PMC7284758 DOI: 10.3390/nu12051386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue (AT) expansion induces local hypoxia, a key contributor to the chronic low-grade inflammation that drives obesity-associated disease. Apple flavonols phloretin (PT) and phlorizin (PZ) are suggested anti-inflammatory molecules but their effectiveness in obese AT is inadequately understood. Using in vitro models designed to reproduce the obese AT microenvironment, 3T3-L1 adipocytes were cultured for 24 h with PT or PZ (100 μM) concurrent with the inflammatory stimulus lipopolysaccharide (LPS; 10 ng/mL) and/or the hypoxia mimetic cobalt chloride (CoCl2; 100 μM). Within each condition, PT was more potent than PZ and its effects were partially mediated by peroxisome proliferator-activated receptor (PPAR)-γ (p < 0.05), as tested using the PPAR-γ antagonist bisphenol A diglycidyl ether (BADGE). In LPS-, CoCl2-, or LPS + CoCl2-stimulated adipocytes, PT reduced mRNA expression and/or secreted protein levels of inflammatory and macrophage chemotactic adipokines, and increased that of anti-inflammatory and angiogenic adipokines, which was consistent with reduced mRNA expression of M1 polarization markers and increased M2 markers in RAW 264.7 macrophages cultured in media collected from LPS + CoCl2-simulated adipocytes (p < 0.05). Further, within LPS + CoCl2-stimulated adipocytes, PT reduced reactive oxygen species accumulation, nuclear factor-κB activation, and apoptotic protein expression (p < 0.05). Overall, apple flavonols attenuate critical aspects of the obese AT phenotype.
Collapse
|
6
|
Balu P, Jas JS, Govindaraj M. Design and evaluation of chalconeimine derivatives as α-amylase inhibitors. Bioinformation 2019; 15:523-529. [PMID: 31485138 PMCID: PMC6704331 DOI: 10.6026/97320630015523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/28/2019] [Indexed: 12/03/2022] Open
Abstract
Alpha-amylase is a known target for type II diabetes. Therefore, it is of interest to design α-amylase inhibitors based on hydrazone scaffold. The structure of these hybrids was confirmed by spectroscopic analysis (IR, 1H-and 13C NMR). All the compounds have potential inhibitory properties as shown by in vitro α-amylase inhibition activity. The compound 5-((1Z,3Z)-3-(benzo[d][1,3]dioxol-5-yl)-3-((2-chloropyridin-3- yl)imino)prop-1-en-1-yl)-2-(difluoromethoxy)phenol(4a) in 100 µg/mL concentration showed a high inhibition of 85.23%. In vitro α-amylase inhibition was further supported by docking studies of compound against the active site of pig pancreatic α-amylase (PDB ID: 3L2M). Docking studies revealed that the bonding interactions found between the compound and human pancreatic α-amylase are similar to those responsible for α-amylase inhibition by acarbose.
Collapse
Affiliation(s)
- Prithivirajan Balu
- Research and Development Centre, Bharathiar University, Coimbatore-641046, India
| | - Jebastin Sonia Jas
- Research and Development Centre, Bharathiar University, Coimbatore-641046, India
- Department of Chemistry, IFET College of Engineering, Villupuram-605108, India
| | - Marimuthu Govindaraj
- Department of Chemistry, Swami Dayananda College of Arts and Science, Manjakkudi-612610,Tiruvarur District, India
| |
Collapse
|
7
|
Silva AR, Grosso C, Delerue-Matos C, Rocha JM. Comprehensive review on the interaction between natural compounds and brain receptors: Benefits and toxicity. Eur J Med Chem 2019; 174:87-115. [PMID: 31029947 DOI: 10.1016/j.ejmech.2019.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Given their therapeutic activity, natural products have been used in traditional medicines throughout the centuries. The growing interest of the scientific community in phytopharmaceuticals, and more recently in marine products, has resulted in a significant number of research efforts towards understanding their effect in the treatment of neurodegenerative diseases, such as Alzheimer's (AD), Parkinson (PD) and Huntington (HD). Several studies have shown that many of the primary and secondary metabolites of plants, marine organisms and others, have high affinities for various brain receptors and may play a crucial role in the treatment of diseases affecting the central nervous system (CNS) in mammalians. Actually, such compounds may act on the brain receptors either by agonism, antagonism, allosteric modulation or other type of activity aimed at enhancing a certain effect. The current manuscript comprehensively reviews the state of the art on the interactions between natural compounds and brain receptors. This information is of foremost importance when it is intended to investigate and develop cutting-edge drugs, more effective and with alternative mechanisms of action to the conventional drugs presently used for the treatment of neurodegenerative diseases. Thus, we reviewed the effect of 173 natural products on neurotransmitter receptors, diabetes related receptors, neurotrophic factor related receptors, immune system related receptors, oxidative stress related receptors, transcription factors regulating gene expression related receptors and blood-brain barrier receptors.
Collapse
Affiliation(s)
- Ana R Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, P-4249-015, Porto, Portugal.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, P-4249-015, Porto, Portugal
| | - João M Rocha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal; REQUIMTE/LAQV, Grupo de investigação de Química Orgânica Aplicada (QUINOA), Laboratório de polifenóis alimentares, Departamento de Química e Bioquímica (DQB), Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n, P-4169-007, Porto, Portugal
| |
Collapse
|
8
|
Acharjee S, Maity TK, Samanta S, Mana S, Chakraborty T, Singha T, Mondal A. Antihyperglycemic activity of chalcone based novel 1-{3-[3-(substituted phenyl) prop-2-enoyl] phenyl} thioureas. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1539178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Satarupa Acharjee
- Department of Pharmaceutical Technology Synthetic and Natural Product Research Laboratory, Jadavpur University, Kolkata, West Bengal, India
- Department of Pharmacy, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology Synthetic and Natural Product Research Laboratory, Jadavpur University, Kolkata, West Bengal, India
| | - Subir Samanta
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India
| | - Supriya Mana
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Tania Chakraborty
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Tanushree Singha
- Department of Pharmaceutical Technology Synthetic and Natural Product Research Laboratory, Jadavpur University, Kolkata, West Bengal, India
| | - Arijit Mondal
- Department of Pharmacy, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| |
Collapse
|
9
|
Hsieh CT, Chang FR, Tsai YH, Wu YC, Hsieh TJ. 2-Bromo-4'-methoxychalcone and 2-Iodo-4'-methoxychalcone Prevent Progression of Hyperglycemia and Obesity via 5'-Adenosine-Monophosphate-Activated Protein Kinase in Diet-Induced Obese Mice. Int J Mol Sci 2018; 19:ijms19092763. [PMID: 30223438 PMCID: PMC6163633 DOI: 10.3390/ijms19092763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022] Open
Abstract
Obesity and diabetes are global health-threatening issues. Interestingly, the mechanism of these pathologies is quite different among individuals. The discovery and development of new categories of medicines from diverse sources are urgently needed for preventing and treating diabetes and other metabolic disorders. Previously, we reported that chalcones are important for preventing biological disorders, such as diabetes. In this study, we demonstrate that the synthetic halogen-containing chalcone derivatives 2-bromo-4′-methoxychalcone (compound 5) and 2-iodo-4′-methoxychalcone (compound 6) can promote glucose consumption and inhibit cellular lipid accumulation via 5′-adenosine-monophosphate-activated protein kinase (AMPK) activation and acetyl-CoA carboxylase 1 (ACC) phosphorylation in 3T3-L1 adipocytes and C2C12 skeletal myotubes. In addition, the two compounds significantly prevented body weight gain and impaired glucose tolerance, hyperinsulinemia, and insulin resistance, which collectively help to delay the progression of hyperglycemia in high-fat-diet-induced obese C57BL/6 mice. These findings indicate that 2-bromo-4′-methoxychalcone and 2-iodo-4′-methoxychalcone could act as AMPK activators, and may serve as lead compounds for a new class of medicines that target obesity and diabetes.
Collapse
Affiliation(s)
- Chi-Ting Hsieh
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Tusty-Jiuan Hsieh
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
10
|
Kumar SN, Bavikar SR, Pavan Kumar CNSS, Yu IF, Chein RJ. From Carbamate to Chalcone: Consecutive Anionic Fries Rearrangement, Anionic Si → C Alkyl Rearrangement, and Claisen-Schmidt Condensation. Org Lett 2018; 20:5362-5366. [PMID: 30148638 DOI: 10.1021/acs.orglett.8b02269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly efficient one-pot procedure was developed for the synthesis of various 2'-hydroxychalcones from phenyl diethylcarbamate, featuring consecutive Snieckus-Fries rearrangement, anionic Si → C alkyl rearrangement, and Claisen-Schmidt condensation in a single operation. The applicability of this protocol was demonstrated by the highly efficient synthesis of the anti-inflammatory natural product lonchocarpin. The mechanism insight is also provided.
Collapse
Affiliation(s)
| | - Suhas Ravindra Bavikar
- Institute of Chemistry , Academia Sinica , Nankang, Taipei 11529 , Taiwan.,Molecular Science and Technology Program, Taiwan International Graduate Program , Academia Sinica and National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Chebolu Naga Sesha Sai Pavan Kumar
- Institute of Chemistry , Academia Sinica , Nankang, Taipei 11529 , Taiwan.,Division of Chemistry, Department of Sciences and Humanities , Vignan's Foundation for Science, Technology, and Research , Vadlamudi, Guntur , Andhra Pradesh , India
| | - Isaac Furay Yu
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Rong-Jie Chein
- Institute of Chemistry , Academia Sinica , Nankang, Taipei 11529 , Taiwan
| |
Collapse
|
11
|
Antidiabetic effects of trihydroxychalcone derivatives via activation of AMP-activated protein kinase. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Tajammal A, Batool M, Ramzan A, Samra MM, Mahnoor I, Verpoort F, Irfan A, Al-Sehemi AG, Munawar MA, Basra MAR. Synthesis, antihyperglycemic activity and computational studies of antioxidant chalcones and flavanones derived from 2,5 dihydroxyacetophenone. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.07.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Pirat C, Dacquet C, Leclerc V, Hennuyer N, Beucher-Gaudin M, Zanirato G, Géant A, Staels B, Ktorza A, Farce A, Caignard DH, Berthelot P, Lebegue N. Anti-diabetic activity of fused PPARγ-SIRT1 ligands with limited body-weight gain by mimicking calorie restriction and decreasing SGK1 expression. Eur J Med Chem 2017; 137:310-326. [DOI: 10.1016/j.ejmech.2017.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/27/2022]
|
14
|
Synthesis and biological evaluation of chalcone derivatives containing aminoguanidine or acylhydrazone moieties. Bioorg Med Chem Lett 2016; 26:5920-5925. [DOI: 10.1016/j.bmcl.2016.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022]
|
15
|
Peng F, Meng CW, Zhou QM, Chen JP, Xiong L. Cytotoxic Evaluation against Breast Cancer Cells of Isoliquiritigenin Analogues from Spatholobus suberectus and Their Synthetic Derivatives. JOURNAL OF NATURAL PRODUCTS 2016; 79:248-51. [PMID: 26690274 DOI: 10.1021/acs.jnatprod.5b00774] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Five isoliquiritigenin analogues, including a new methylene-bridged bischalcone (1), were isolated from Spatholobus suberectus. Cytotoxicity screening of these isolates and several synthetic derivatives indicated that the introduction, removal, position modification, or glycosylation of hydroxy groups in isoliquiritigenin did not improve the resultant cytotoxicity against the MCF-7 and MDA-MB-231 human breast cancer cell lines. In addition, cyclization of OH-2' chalcones or reduction of the α,β-unsaturated carbonyl double bond decreased such cytotoxicity substantially. However, methylation of hydroxy groups resulted in a marked increase in such cytotoxic activity. Among these active isoliquiritigenin analogues, 3',4',5',4″-tetramethoxychalcone (3h) was obtained as a compound with promising cytotoxic activity.
Collapse
Affiliation(s)
- Fu Peng
- School of Chinese Medicine, The University of Hong Kong , 10 Sassoon Road, Pokfulam, Hong Kong, People's Republic of China
| | | | | | - Jian-Ping Chen
- School of Chinese Medicine, The University of Hong Kong , 10 Sassoon Road, Pokfulam, Hong Kong, People's Republic of China
| | | |
Collapse
|
16
|
Hofmann E, Webster J, Do T, Kline R, Snider L, Hauser Q, Higginbottom G, Campbell A, Ma L, Paula S. Hydroxylated chalcones with dual properties: Xanthine oxidase inhibitors and radical scavengers. Bioorg Med Chem 2015; 24:578-87. [PMID: 26762836 DOI: 10.1016/j.bmc.2015.12.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/06/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022]
Abstract
In this study, we evaluated the abilities of a series of chalcones to inhibit the activity of the enzyme xanthine oxidase (XO) and to scavenge radicals. 20 mono- and polyhydroxylated chalcone derivatives were synthesized by Claisen-Schmidt condensation reactions and then tested for inhibitory potency against XO, a known generator of reactive oxygen species (ROS). In parallel, the ability of the synthesized chalcones to scavenge a stable radical was determined. Structure-activity relationship analysis in conjunction with molecular docking indicated that the most active XO inhibitors carried a minimum of three hydroxyl groups. Moreover, the most effective radical scavengers had two neighboring hydroxyl groups on at least one of the two phenyl rings. Since it has been proposed previously that XO inhibition and radical scavenging could be useful properties for reduction of ROS-levels in tissue, we determined the chalcones' effects to rescue neurons subjected to ROS-induced stress created by the addition of β-amyloid peptide. Best protection was provided by chalcones that combined good inhibitory potency with high radical scavenging ability in a single molecule, an observation that points to a potential therapeutic value of this compound class.
Collapse
Affiliation(s)
- Emily Hofmann
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA
| | - Jonathan Webster
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA
| | - Thuy Do
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA
| | - Reid Kline
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA
| | - Lindsey Snider
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA
| | - Quintin Hauser
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA
| | - Grace Higginbottom
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA
| | - Austin Campbell
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA
| | - Lili Ma
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA
| | - Stefan Paula
- Department of Chemistry, Natural Sciences Center, Northern Kentucky University, Highland Heights, KY 41099-1905, USA; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA; Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907-2063, USA.
| |
Collapse
|
17
|
Wang FW, Wang SQ, Zhao BX, Miao JY. Discovery of 2'-hydroxychalcones as autophagy inducer in A549 lung cancer cells. Org Biomol Chem 2015; 12:3062-70. [PMID: 24695783 DOI: 10.1039/c3ob42429d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of 2'-hydroxychalcone derivatives was synthesized and the effects of all the compounds on growth of A549 lung cancer cell were investigated. The results showed that all compounds had inhibitory effects on the growth of A549 lung cancer cells and compound possessed the highest growth inhibitory effect and induced autophagy of A549 lung cancer cells.
Collapse
Affiliation(s)
- Fang-Wu Wang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, P.R. China.
| | | | | | | |
Collapse
|
18
|
Synthesis of some new 2-amino-6-thiocyanato benzothiazole derivatives bearing 2,4-thiazolidinediones and screening of their in vitro antimicrobial, antitubercular and antiviral activities. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1358-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Mahapatra DK, Asati V, Bharti SK. Chalcones and their therapeutic targets for the management of diabetes: structural and pharmacological perspectives. Eur J Med Chem 2015; 92:839-65. [PMID: 25638569 DOI: 10.1016/j.ejmech.2015.01.051] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 12/25/2022]
Abstract
Diabetes Mellitus (DM) is the fastest growing metabolic disorder affecting about 387 million people across the globe and is estimated to affect 592 million people by year 2030. The search for newer anti-diabetic agents is the foremost need to control the accelerating diabetic population. Several natural and (semi) synthetic chalcones deserve the credit of being potential candidates that act by modulating the therapeutic targets PPAR-γ, DPP-4, α-glucosidase, PTP1B, aldose reductase, and stimulate insulin secretion and tissue sensitivity. In this review, a comprehensive study (from January 1977 to October 2014) of anti-diabetic chalcones, their molecular targets, structure activity relationships (SARs), mechanism of actions (MOAs) and patents have been described. The compounds which showed promising activity and have a well-defined MOAs, SARs must be considered as prototype for the design and development of potential anti-diabetic agents. They should be evaluated critically at all clinical stages to ensure their therapeutic and toxicological profile to meet the demand of diabetics.
Collapse
Affiliation(s)
- Debarshi Kar Mahapatra
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Vivek Asati
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India.
| |
Collapse
|
20
|
Song MX, Deng XQ, Li YR, Zheng CJ, Hong L, Piao HR. Synthesis and biological evaluation of (E)-1-(substituted)-3-phenylprop-2-en-1-ones bearing rhodanines as potent anti-microbial agents. J Enzyme Inhib Med Chem 2013; 29:647-53. [PMID: 24102526 DOI: 10.3109/14756366.2013.837899] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Herein, we report the design, syntheses and in vitro anti-microbial activity of two series of rhodanines with chalcone moiety. Anti-microbial tests showed that some of the synthesized compounds exhibited good inhibition (MIC = 1-8 µg/mL) against multi-drug-resistant Gram-positive organisms, including methicillin resistant and quinolone-resistant Staphylococcus aureus, in which the compound 4g was found to be the most potent with minimum inhibitory concentration (MIC) value of 1 µg/mL against two methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Ming-Xia Song
- Department of Pharmacy, Jing Gangshan University College of Medicine , Ji'an , People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Sharath V, Kumar HV, Naik N. Synthesis of novel indole based scaffolds holding pyrazole ring as anti-inflammatory and antioxidant agents. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.jopr.2013.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Giampietro L, D’Angelo A, Giancristofaro A, Ammazzalorso A, De Filippis B, Fantacuzzi M, Linciano P, Maccallini C, Amoroso R. Synthesis and structure–activity relationships of fibrate-based analogues inside PPARs. Bioorg Med Chem Lett 2012; 22:7662-6. [DOI: 10.1016/j.bmcl.2012.09.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/26/2012] [Accepted: 09/29/2012] [Indexed: 02/02/2023]
|
23
|
Schott JT, Mordaunt CE, Vargas AJ, Leon MA, Chen KH, Singh M, Satoh M, Cardenas EL, Maitra S, Patel NV, de Lijser HJP. Effects of structural and electronic characteristics of chalcones on the activation of peroxisome proliferator-activated receptor gamma. Chem Pharm Bull (Tokyo) 2012. [PMID: 23183544 DOI: 10.1248/cpb.c12-00749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chalcones share some structural similarities with GW-1929, a highly-selective and potent agonist for peroxisome proliferator-activated receptor-gamma (PPARγ). In this study, we tested 53 structurally diverse chalcones to identify characteristics essential for PPARγ activation in a GAL4-based transactivation assay. This screen identified several novel chalcone agonists of PPARγ. Our results indicate that chalcones with an electron rich group or sterically large groups such as naphthyl on the carbonyl side tend to activate PPARγ. The absence of any strict structural or electronic requirements suggests that the flexibility of the PPARγ ligand binding pocket may allow binding of diverse chalcones with some preference for a slightly larger electron-rich group on the carbonyl side. We predict that further structure-activity relationship studies on chalcones with naphthalene or electron-rich groups near the carbonyl moiety will lead to the development of more potent PPARγ agonists.
Collapse
Affiliation(s)
- Jason Taylor Schott
- Department of Biological Science, California State University, Fullerton, CA 92831, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Avupati VR, Yejella RP, Akula A, Guntuku GS, Doddi BR, Vutla VR, Anagani SR, Adimulam LS, Vyricharla AK. Synthesis, characterization and biological evaluation of some novel 2,4-thiazolidinediones as potential cytotoxic, antimicrobial and antihyperglycemic agents. Bioorg Med Chem Lett 2012; 22:6442-50. [PMID: 22981328 DOI: 10.1016/j.bmcl.2012.08.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/13/2012] [Accepted: 08/14/2012] [Indexed: 10/28/2022]
Abstract
A series of some novel 2,4-thiazolidinediones (TZDs) (2a-x) have been synthesized and characterized by FTIR, (1)H NMR, (13)C NMR and LC mass spectral analysis. All the synthesized compounds were evaluated for their cytotoxicity, antimicrobial and in vivo antihyperglycemic activities. Among the tested compounds for cytotoxicity using Brine Shrimp Lethality assay, compound 2t ((Z)-5-(4-((E)-3-oxo-3-(thiophen-2-yl)prop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-dione) exhibited significant inhibitory activity at ED(50) value 4.00±0.25 μg/mL and this level of activity was comparable to that of the reference drug podophyllotoxin with ED(50) value 3.61±0.17 μg/mL. Antimicrobial activity was screened using agar well diffusion assay method against selected Gram-positive, Gram-negative and fungal strains and the activity expressed as the minimum inhibitory concentration (MIC) in μg/mL. From the results of antimicrobial activity compound 2s ((Z)-5-(4-((E)-3-(3,5-bis(benzyloxy)phenyl)-3-oxoprop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-dione) was found to be the most active against all the tested strains of microorganisms with MIC value 16 μg/mL. In vivo antihyperglycemic effect of twenty four TZDs (2a-x) at different doses 10, 30 and 50mg/kg b.w (oral) were assessed using percentage reduction of plasma glucose (PG) levels in streptozotocin-induced type II diabetic rat models. From the results, the novel compound 2x ((Z)-5-(4-((E)-3-(9H-fluoren-2-yl)-3-oxoprop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-dione) exhibited considerably potent blood glucose lowering activity than that of the standard drug rosiglitazone and it could be a remarkable starting point to evaluate structure-activity relationships and to develop new lead molecules with potential cytotoxicity, antimicrobial and antihyperglycemic activities. In addition molecular docking studies were carried out against PPARγ molecular target using Molegro Virtual Docker v 4.0 to accomplish preliminary confirmation of the observed in vivo antihyperglycemic activity.
Collapse
Affiliation(s)
- Vasudeva Rao Avupati
- Pharmaceutical Chemistry Division, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hsieh CT, Hsieh TJ, El-Shazly M, Chuang DW, Tsai YH, Yen CT, Wu SF, Wu YC, Chang FR. Synthesis of chalcone derivatives as potential anti-diabetic agents. Bioorg Med Chem Lett 2012; 22:3912-5. [PMID: 22608392 DOI: 10.1016/j.bmcl.2012.04.108] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/12/2012] [Accepted: 04/24/2012] [Indexed: 12/26/2022]
|
26
|
Chen ZH, Sun LP, Zhang W, Shen Q, Gao LX, Li J, Piao HR. Synthesis and Biological Evaluation of Heterocyclic Ring-substituted Chalcone Derivatives as Novel Inhibitors of Protein Tyrosine Phosphatase 1B. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.5.1505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Zheng CJ, Jiang SM, Chen ZH, Ye BJ, Piao HR. Synthesis and Anti-Bacterial Activity of Some Heterocyclic Chalcone Derivatives Bearing Thiofuran, Furan, and Quinoline Moieties. Arch Pharm (Weinheim) 2011; 344:689-95. [DOI: 10.1002/ardp.201100005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/10/2011] [Accepted: 04/06/2011] [Indexed: 11/05/2022]
|
28
|
Liu XF, Zheng CJ, Sun LP, Liu XK, Piao HR. Synthesis of new chalcone derivatives bearing 2,4-thiazolidinedione and benzoic acid moieties as potential anti-bacterial agents. Eur J Med Chem 2011; 46:3469-73. [PMID: 21624712 DOI: 10.1016/j.ejmech.2011.05.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
|
29
|
Khalil OM. Synthesis of Some Chalcones and Pyrazolines Carrying Morpholinophenyl Moiety as Potential Anti-Inflammatory Agents. Arch Pharm (Weinheim) 2010; 344:242-7. [DOI: 10.1002/ardp.201000245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/03/2010] [Accepted: 10/08/2010] [Indexed: 11/06/2022]
|
30
|
Chen ZH, Zheng CJ, Sun LP, Piao HR. Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential anti-bacterial activity. Eur J Med Chem 2010; 45:5739-43. [DOI: 10.1016/j.ejmech.2010.09.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/04/2010] [Accepted: 09/09/2010] [Indexed: 11/17/2022]
|
31
|
Bandgar BP, Gawande SS. Synthesis and biological screening of a combinatorial library of β-chlorovinyl chalcones as anticancer, anti-inflammatory and antimicrobial agents. Bioorg Med Chem 2010; 18:2060-5. [PMID: 20138527 DOI: 10.1016/j.bmc.2009.12.077] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 12/29/2009] [Accepted: 12/31/2009] [Indexed: 11/17/2022]
Affiliation(s)
- Babasaheb P Bandgar
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur 413 255, India.
| | | |
Collapse
|
32
|
Matin A, Gavande N, Kim MS, Yang NX, Salam NK, Hanrahan JR, Roubin RH, Hibbs DE. 7-Hydroxy-benzopyran-4-one derivatives: a novel pharmacophore of peroxisome proliferator-activated receptor alpha and -gamma (PPARalpha and gamma) dual agonists. J Med Chem 2009; 52:6835-50. [PMID: 19807106 DOI: 10.1021/jm900964r] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Design, synthesis, and in vitro bioevaluation of a new class of potential dual PPARalpha and gamma agonists discovered through a structure-driven design paradigm are described. The 7-hydroxy-benzopyran-4-one moiety (includes flavones, flavanones, and isoflavones) is the key pharmacophore of these novel molecules, exhibiting similarity to the core structure of both fibrates and thiazolidinediones. New lead PPAR ligands were identified from "natraceuticals" and synthetic analogues. In total, 77 molecules, including chalcones, flavones, flavanones, isoflavones, and pyrazole derivatives, were screened and structure-activity relationship studies of the dual agonists undertaken. Compounds 68, 70, 72, and 76 were identified as novel and potent dual PPARalpha and gamma agonists. These novel molecules may have the potential to be the future leads in PPAR-related disorders, including type II diabetes mellitus and metabolic syndrome.
Collapse
Affiliation(s)
- Azadeh Matin
- Faculty of Pharmacy, The University of Sydney, NSW 2006, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hassan M, El Yazidi C, Landrier JF, Lairon D, Margotat A, Amiot MJ. Phloretin enhances adipocyte differentiation and adiponectin expression in 3T3-L1 cells. Biochem Biophys Res Commun 2007; 361:208-13. [PMID: 17658475 DOI: 10.1016/j.bbrc.2007.07.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 07/05/2007] [Indexed: 11/26/2022]
Abstract
Adipocyte dysfunction is strongly associated with the development of cardiovascular risk factors and diabetes. It is accepted that the regulation of adipogenesis or adipokines expression, notably adiponectin, is able to prevent these disorders. In this report, we show that phloretin, a dietary flavonoid, enhances 3T3-L1 adipocyte differentiation as evidenced by increased triglyceride accumulation and GPDH activity. At a molecular level, mRNA expression levels of both PPARgamma and C/EBPalpha, the master adipogenic transcription factors, are markedly increased by phloretin. Moreover, mRNA levels of PPARgamma target genes such as LPL, aP2, CD36 and LXRalpha are up-regulated by phloretin. We also show that phloretin enhances the expression and secretion of adiponectin. Co-transfection studies suggest the induction of PPARgamma transcriptional activity as a possible mechanism underlying the phloretin-mediated effects. Taken together, these results suggest that phloretin may be beneficial for reducing insulin resistance through its potency to regulate adipocyte differentiation and function.
Collapse
Affiliation(s)
- Meryl Hassan
- INSERM, U476 Nutrition Humaine et Lipides, Marseille F-13385, France
| | | | | | | | | | | |
Collapse
|