1
|
Zhou J, Zhang X, Li Y, Feng S, Zhang Q, Wang W. Endocrine-disrupting metabolic activation of 2-nitrofluorene catalyzed by human cytochrome P450 1A1: A QM/MM approach. ENVIRONMENT INTERNATIONAL 2022; 166:107355. [PMID: 35751956 DOI: 10.1016/j.envint.2022.107355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Nitropolycyclic aromatic hydrocarbons (NPAHs) present one of the most important airborne pollutants. Recent studies have shown that one of the most abundant NPAHs, 2-Nitrofluorene (NF), was supposed to be converted to endocrine-disrupting metabolites by cytochrome P450 1A1 (CYP1A1) in human cells. However, the mechanism is still largely unexplored. Here the metabolic activation and transformation mechanism of NF catalyzed by CYP1A1 were systematically studied with the aid of Molecular Dynamics, Density Functional Theory and Quantum Mechanics/Molecular Mechanics techniques. We evidence that CYP1A1 can activate NF through two elementary processes: (i) electrophilic addition (12.4 kcal·mol-1) or hydrogen abstraction (38.2 kcal·mol-1) and (ii) epoxidation (5.9 and 8.7 kcal·mol-1) or NIH shift (12.5 and 14.9 kcal·mol-1) or proton shuttle (12.1 kcal·mol-1). Electrophilic addition was found to be the rate-determining step while epoxidation rather than NIH shift or proton shuttle is the more feasible pathway after electrophilic addition. Metabolites 6,7-epoxide-2-nitrofluorene and 7,8-epoxide-2-nitrofluorene were identified as the major epoxidation products. Epoxides are unstable and easy to react with hydrated hydrogen ions and hydroxyls to produce endocrine disrupter 7-hydroxy-2-nitrofluorene. Toxic analysis shows that some of the metabolites are more toxic to model aquatic organisms (e.g. Green algea) than NF. Binding affinity analysis to human sex hormone binding globulin reveals that NF metabolites all have endocrine-disrupting potential. This study provides a comprehensive understanding on the biotransformation process of NF and may aid future studies on various NPAHs activation catalyzed by human P450 enzyme.
Collapse
Affiliation(s)
- Junhua Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xin Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Shanshan Feng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
2
|
Dempsey JL, Cui JY. Microbiome is a functional modifier of P450 drug metabolism. CURRENT PHARMACOLOGY REPORTS 2019; 5:481-490. [PMID: 33312848 PMCID: PMC7731899 DOI: 10.1007/s40495-019-00200-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Host cytochrome P450s (P450s) play important roles in the bioactivation and detoxification of numerous therapeutic drugs, environmental toxicants, dietary factors, as well as endogenous compounds. Gut microbiome is increasingly recognized as our "second genome" that contributes to the xenobiotic biotransformation of the host, and the first pass metabolism of many orally exposed chemicals is a joint effort between host drug metabolizing enzymes including P450s and gut microbiome. Gut microbiome contributes to the drug metabolism via two distinct mechanisms: direct mechanism refers to the metabolism of drugs by microbial enzymes, among which reduction and hydrolysis (or deconjugation) are among the most important reactions; whereas indirect mechanism refers to the influence of host receptors and signaling pathways by microbial metabolites. Many types of microbial metabolites, such as secondary bile acids (BAs), short chain fatty acids (SCFAs), and tryptophan metabolites, are known regulators of human diseases through modulating host xenobiotic-sensing receptors. To study the roles of gut microbiome in regulating host drug metabolism including P450s, several models including germ free mice, antibiotics or probiotics treatments, have been widely used. The present review summarized the current information regarding the interactions between microbiome and the host P450s in xenobiotic biotransformation organs such as liver, intestine, and kidney, highlighting the remote sensing mechanisms underlying gut microbiome mediated regulation of host xenobiotic biotransformation. In addition, the roles of bacterial, fungal, and other microbiome kingdom P450s, which is an understudied area of research in pharmacology and toxicology, are discussed.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington
| |
Collapse
|
3
|
Fujino C, Watanabe Y, Sanoh S, Nakajima H, Uramaru N, Kojima H, Yoshinari K, Ohta S, Kitamura S. Activation of PXR, CAR and PPARα by pyrethroid pesticides and the effect of metabolism by rat liver microsomes. Heliyon 2019; 5:e02466. [PMID: 31538121 PMCID: PMC6745485 DOI: 10.1016/j.heliyon.2019.e02466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, we used reporter gene assays in COS-1 cells to examine the activation of rat pregnane X receptor (PXR), rat constitutive androstane receptor (CAR) and rat peroxisome-proliferator activated receptor (PPAR)α by pyrethroid pesticides, and to understand the effects of metabolic modification on their activities. All eight pyrethroids tested in this study showed rat PXR agonistic activity; deltamethrin was the most potent, followed by cis-permethrin and cypermethrin. However, when the pyrethroids were incubated with rat liver microsomes, their rat PXR activities were decreased to various extents. Cis- and trans-permethrin showed weak rat CAR agonistic activity, while the other pyrethroids were inactive. However, fenvalerate showed dose-dependent inverse agonistic activity toward rat CAR, and this activity was reduced after metabolism. None of the pyrethroids showed rat PPARα agonistic activity, but a metabolite of cis-/trans-permethrin and phenothrin, 3-phenoxybenzoic acid, activated rat PPARα. Since PXR, CAR and PPARα regulate various xenobiotic/endobiotic-metabolizing enzymes, activation of these receptors by pyrethroids may result in endocrine disruption due to changes of hormone-metabolizing activities.
Collapse
Affiliation(s)
- Chieri Fujino
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.,Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Yoko Watanabe
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hiroyuki Nakajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki, Aoba, Aoba-ku, Sendai, 980-8578, Japan.,School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Naoto Uramaru
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.,Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Kouichi Yoshinari
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.,Wakayama Medical University; 811-1 Kimiidera, Wakayama City, Wakayama, 641-8509, Japan
| | - Shigeyuki Kitamura
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| |
Collapse
|
4
|
Roszko MŁ, Kamińska M, Szymczyk K, Piasecka-Jóźwiak K, Chabłowska B. Endocrine disrupting potency of organic pollutant mixtures isolated from commercial fish oil evaluated in yeast-based bioassays. PLoS One 2018; 13:e0197907. [PMID: 29787602 PMCID: PMC5963795 DOI: 10.1371/journal.pone.0197907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
The aim of this work was to evaluate the activity of xenobiotic mixtures containing persistent organic pollutants isolated from commercial fish oil samples against sex hormone receptors, including estrogen and androgen. The applied bioassay was based on transgenic yeast strains. The mixtures were extracted from the samples using the semi-permeable membrane dialysis technique and analyzed with gas chromatography/ion trap mass spectrometry. It turned out that mixtures of chemicals isolated from fish oil may interact with human steroid sex hormone receptors in various ways: the tested samples showed both estrogenic and anti-androgenic activity. Calculated 17β-estradiol equivalents for the tested samples ranged between 0.003 and 0.073 pg g-1 (fat). Anti-androgenic activity expressed as the flutamide equivalent concentration was in the 18.58-216.21 ng g-1 (fat) range. Polychlorinated biphenyls and various DDT metabolites were the main fish oil pollutants influencing the receptors. Additivity and/or synergy between chemicals was observed in the ER/AR mediated response.
Collapse
Affiliation(s)
- Marek Łukasz Roszko
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology, Rakowiecka, Warsaw, Poland
| | - Marta Kamińska
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology, Rakowiecka, Warsaw, Poland
| | - Krystyna Szymczyk
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology, Rakowiecka, Warsaw, Poland
| | - Katarzyna Piasecka-Jóźwiak
- Department of Fermentation Technology, Institute of Agricultural and Food Biotechnology, Rakowiecka, Warsaw, Poland
| | - Beata Chabłowska
- Department of Fermentation Technology, Institute of Agricultural and Food Biotechnology, Rakowiecka, Warsaw, Poland
| |
Collapse
|
5
|
Kitamura S. [Effect of the Metabolic Modification of Environmental Chemicals on Endocrine-disrupting Activity]. YAKUGAKU ZASSHI 2018; 138:693-713. [PMID: 29710015 DOI: 10.1248/yakushi.17-00214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endocrine-disrupting activities of various environmental chemicals are metabolically activated. For example, diphenyls, styrene oligomers, chalcones, trans-stilbene and 2-nitrofluorene are not estrogens, but after incubation with liver microsomes, their metabolites show estrogenic activities. Thus, these chemicals are estrogenically activated by the cytochrome P450 system. In contrast, the antiandrogenic activity of fenthion, an organophosphorus insecticide, is abolished after metabolism to sulfoxide and sulfone derivatives. Structural requirements of twenty bisphenol A related compounds, as well as various benzophenones, for estrogenic and antiandrogenic activities have been investigated. The estrogenic and antiandrogenic activities of Benzophenone 3, a representative UV absorbant, are activated by oxidative metabolism. Parabens (used as antimicrobial agents) exhibit estrogenic activity, and their potency shows a bell-shaped curve between C1 (methylparaben) and C12 (dodecylparaben) parabens. The AhR ligand activity of indirubin is decreased by metabolism. Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDE) are activated by hydroxylation to show estrogenic and thyroid hormone-disrupting activities. Halogen adjacent to a hydroxyl group is essential for thyroid hormone-disrupting activity. Tetrabromobisphenol A, tetrachlorobisphenol A and tetramethylbisphenol A also exhibit thyroid hormone-disrupting activity. Amphibian metamorphosis of tadpoles to frogs is affected by hydroxylated PCB, hydroxylated PBDE and bisphenol A derivatives. These chemicals suppress thyroid hormone-dependent metamorphosis, acting as antagonists of thyroid hormone. Thus, metabolic modification can have a dramatic impact on the endocrine-disrupting activities of environmental chemicals.
Collapse
|
6
|
Fujino C, Tamura Y, Tange S, Nakajima H, Sanoh S, Watanabe Y, Uramaru N, Kojima H, Yoshinari K, Ohta S, Kitamura S. Metabolism of methiocarb and carbaryl by rat and human livers and plasma, and effect on their PXR, CAR and PPARα activities. J Toxicol Sci 2017; 41:677-91. [PMID: 27665777 DOI: 10.2131/jts.41.677] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The oxidative, reductive, and hydrolytic metabolism of methiocarb and the hydrolytic metabolism of carbaryl by liver microsomes and plasma of rats or humans were examined. The effects of the metabolism of methiocarb and carbaryl on their nuclear receptor activities were also examined. When methiocarb was incubated with rat liver microsomes in the presence of NADPH, methiocarb sulfoxide, and a novel metabolite, methiocarb sulfone were detected. Methiocarb sulfoxide was oxidized to the sulfone by liver microsomes and reduced back to methiocarb by liver cytosol. Thus, the interconversion between methiocarb and the sulfoxide was found to be a new metabolic pathway for methiocarb by liver microsomes. The product of methiocarb hydrolysis, which is methylthio-3,5-xylenol (MX), was also oxidized to sulfoxide form by rat liver microsomes. The oxidations were catalyzed by human flavin-containing monooxygenase isoform (FMO1). CYP2C19, which is a human cytochrome P450 (CYP) isoform, catalyzed the sulfoxidations of methiocarb and MX, while CYP1A2 also exhibited oxidase activity toward MX. Methiocarb and carbaryl were not enzymatically hydrolyzed by the liver microsomes, but they were mainly hydrolyzed by plasma and albumin to MX and 1-naphthol, respectively. Both methiocarb and carbaryl exhibited PXR and PPARα agonistic activities; however, methiocarb sulfoxide and sulfone showed markedly reduced activities. In fact, when methiocarb was incubated with liver microsomes, the receptor activities were decreased. In contrast, MX and 1-naphthol showed nuclear receptor activities equivalent to those of their parent carbamates. Thus, the hydrolysis of methiocarb and carbaryl and the oxidation of methiocarb markedly modified their nuclear receptor activities.
Collapse
Affiliation(s)
- Chieri Fujino
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tange S, Fujimoto N, Uramaru N, Wong FF, Sugihara K, Ohta S, Kitamura S. In vitro metabolism of methiocarb and carbaryl in rats, and its effect on their estrogenic and antiandrogenic activities. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:289-297. [PMID: 26774076 DOI: 10.1016/j.etap.2015.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 06/05/2023]
Abstract
In this work, we examined the metabolism of the carbamate insecticides methiocarb and carbaryl by rat liver microsomes and plasma, and its effect on their endocrine-disrupting activities. Methiocarb and carbaryl were not enzymatically hydrolyzed by rat liver microsomes, but were hydrolyzed by rat plasma, mainly to methylthio-3,5-xylenol (MX) and 1-naphthol, respectively. When methiocarb was incubated with rat liver microsomes in the presence of NADPH, methiocarb sulfoxide was formed. The hydrolysis product, MX, was also oxidized to the sulfoxide, 3,5-dimethyl-4-(methylsulfinyl)phenol (SP), by rat liver microsomes in the presence of NADPH. These oxidase activities were catalyzed by cytochrome P450 and flavin-containing monooxygenase. Methiocarb and carbaryl both exhibited estrogen receptor α (ERα) and ERβ agonistic activity. MX and 1-naphthol showed similar activities, but methiocarb sulfoxide and SP showed markedly decreased activities. On the other hand, methiocarb and carbaryl exhibited potent antiandrogenic activity in the concentration range of 1×10(-6)-3×10(-5) M. Their hydrolysis products, MX, and 1-naphthol also showed high activity, equivalent to that of flutamide. However, methiocarb sulfoxide and SP showed relatively low activity. Thus, hydrolysis of methiocarb and carbaryl and oxidation of methiocarb to the sulfoxide markedly modified the estrogenic and antiandrogenic activities of methiocarb and carbaryl.
Collapse
Affiliation(s)
- Satoko Tange
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Nariaki Fujimoto
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Naoto Uramaru
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Fung Fuh Wong
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, Taiwan
| | - Kazumi Sugihara
- Faculty of Pharmaceutical Science, Hiroshima International University, Hirokoshingai 5-1-1, Kure, Hiroshima Prefecture, 737-0112, Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Shigeyuki Kitamura
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan.
| |
Collapse
|
8
|
Watanabe Y, Kojima H, Takeuchi S, Uramaru N, Sanoh S, Sugihara K, Kitamura S, Ohta S. Metabolism of UV-filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity. Toxicol Appl Pharmacol 2014; 282:119-28. [PMID: 25528284 DOI: 10.1016/j.taap.2014.12.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/02/2014] [Accepted: 12/08/2014] [Indexed: 11/18/2022]
Abstract
Benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is widely used as sunscreen for protection of human skin and hair from damage by ultraviolet (UV) radiation. In this study, we examined the metabolism of BP-3 by rat and human liver microsomes, and the estrogenic and anti-androgenic activities of the metabolites. When BP-3 was incubated with rat liver microsomes in the presence of NADPH, 2,4,5-trihydroxybenzophenone (2,4,5-triOH BP) and 3-hydroxylated BP-3 (3-OH BP-3) were newly identified as metabolites, together with previously detected metabolites 5-hydroxylated BP-3 (5-OH BP-3), a 4-desmethylated metabolite (2,4-diOH BP) and 2,3,4-trihydroxybenzophenone (2,3,4-triOH BP). In studies with recombinant rat cytochrome P450, 3-OH BP-3 and 2,4,5-triOH BP were mainly formed by CYP1A1. BP-3 was also metabolized by human liver microsomes and CYP isoforms. In estrogen reporter (ER) assays using estrogen-responsive CHO cells, 2,4-diOH BP exhibited stronger estrogenic activity, 2,3,4-triOH BP exhibited similar activity, and 5-OH BP-3, 2,4,5-triOH BP and 3-OH BP-3 showed lower activity as compared to BP-3. Structural requirements for activity were investigated in a series of 14 BP-3 derivatives. When BP-3 was incubated with liver microsomes from untreated rats or phenobarbital-, 3-methylcholanthrene-, or acetone-treated rats in the presence of NADPH, estrogenic activity was increased. However, liver microsomes from dexamethasone-treated rats showed decreased estrogenic activity due to formation of inactive 5-OH BP-3 and reduced formation of active 2,4-diOH BP. Anti-androgenic activity of BP-3 was decreased after incubation with liver microsomes.
Collapse
Affiliation(s)
- Yoko Watanabe
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806, Japan.
| | - Hiroyuki Kojima
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819, Japan
| | - Shinji Takeuchi
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819, Japan
| | - Naoto Uramaru
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806, Japan
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazumi Sugihara
- Faculty of Pharmaceutical Science, Hiroshima International University, Koshingai 5-1-1, Kure, Hiroshima 737-0112, Japan
| | - Shigeyuki Kitamura
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806, Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
9
|
Tehrani R, Van Aken B. Hydroxylated polychlorinated biphenyls in the environment: sources, fate, and toxicities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6334-45. [PMID: 23636595 PMCID: PMC3812322 DOI: 10.1007/s11356-013-1742-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/15/2013] [Indexed: 05/20/2023]
Abstract
Hydroxylated polychlorinated biphenyls (OH-PCBs) are produced in the environment by the oxidation of PCBs through a variety of mechanisms, including metabolic transformation in living organisms and abiotic reactions with hydroxyl radicals. As a consequence, OH-PCBs have been detected in a wide range of environmental samples, including animal tissues, water, and sediments. OH-PCBs have recently raised serious environmental concerns because they exert a variety of toxic effects at lower doses than the parent PCBs and they are disruptors of the endocrine system. Although evidence about the widespread dispersion of OH-PCBs in various compartments of the ecosystem has accumulated, little is currently known about their biodegradation and behavior in the environment. OH-PCBs are, today, increasingly considered as a new class of environmental contaminants that possess specific chemical, physical, and biological properties not shared with the parent PCBs. This article reviews recent findings regarding the sources, fate, and toxicities of OH-PCBs in the environment.
Collapse
Affiliation(s)
| | - Benoit Van Aken
- Corresponding author phone: 215-204-7087; fax: 215-204-4696;
| |
Collapse
|