1
|
Tipton M. Any old iron, man. Exp Physiol 2024. [PMID: 39463270 DOI: 10.1113/ep092295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Affiliation(s)
- Mike Tipton
- Extreme Environments Laboratory, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
2
|
Kim T, Hwang D, Kyun S, Jang I, Kim SW, Park HY, Hwang H, Lim K, Kim J. Exogenous Lactate Treatment Immediately after Exercise Promotes Glycogen Recovery in Type-II Muscle in Mice. Nutrients 2024; 16:2831. [PMID: 39275149 PMCID: PMC11397291 DOI: 10.3390/nu16172831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Recent studies suggest that lactate intake has a positive effect on glycogen recovery after exercise. However, it is important to verify the effect of lactate supplementation alone and the timing of glycogen recovery. Therefore, in this study, we aimed to examine the effect of lactate supplementation immediately after exercise on glycogen recovery in mice liver and skeletal muscle at 1, 3, and 5 h after exercise. Mice were randomly divided into the sedentary, exercise-only, lactate, and saline-treated groups. mRNA expression and activation of glycogen synthesis and lactate transport-related factors in the liver and skeletal muscle were assessed using real-time polymerase chain reaction. Skeletal muscle glycogen concentration showed an increasing trend in the lactate group compared with that in the control group at 3 and 5 h after post-supplementation. Additionally, exogenous lactate supplementation significantly increased the expression of core glycogen synthesis enzymes, lactate transporters, and pyruvate dehydrogenase E1 alpha 1 in the skeletal muscles. Conversely, glycogen synthesis, lactate transport, and glycogen oxidation to acetyl-CoA were not significantly affected in the liver by exogenous lactate supplementation. Overall, these results suggest that post-exercise lactate supplement enables glycogen synthesis and recovery in skeletal muscles.
Collapse
Affiliation(s)
- Taeho Kim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Deunsol Hwang
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Sunghwan Kyun
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Inkwon Jang
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Woo Kim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Hun-Young Park
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Hyejung Hwang
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Kiwon Lim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
- Department of Physical Education, Konkuk University, Seoul 05029, Republic of Korea
| | - Jisu Kim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Kazemi A, Racil G, Ahmadi Hekmatikar AH, Behnam Moghadam M, Karami P, Henselmans M. Improved physical performance of elite soccer players based on GPS results after 4 days of carbohydrate loading followed by 3 days of low carbohydrate diet. J Int Soc Sports Nutr 2023; 20:2258837. [PMID: 37731274 PMCID: PMC10515665 DOI: 10.1080/15502783.2023.2258837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Carbohydrate loading is an established sports nutrition strategy for endur- 16 ance exercise performance. We tested if carbohydrate loading could improve the performance of 17 elite soccer players under ecologically valid circumstances using Global Positioning System (GPS) data. METHODS Twenty-two adult Iran Premier league soccer players were divided into a carbohydrate-loading group (CLG) and Control group (CG). The carbohydrate loading group restricted carbohydrate intake for three days to 1.5 g/kg/d while increasing exercise intensity. From days four to seven, exercise intensity was decreased and carbohydrate intake was considerably increased up to 7.5 g/kg/d on the day of the match, during which performance was analyzed using GPS data. The control group performed the same exercise training but maintained their habitual carbohydrate intake of 5-6 g/kg/d. The data were analyzed using a univariate ANCOVA with baseline data from a pre-intervention match as the control variable. RESULTS The carbohydrate loading team scored significantly higher on running distance, maximum speed and the number of top and repeated sprints; the carbohydrate loading group scored significantly lower on player load, metabolic power and running imbalance compared to the control team during their match. CONCLUSIONS Our findings suggest carbohydrate loading enabled elite soccer players to achieve greater running outputs with greater metabolic efficiency and lower fatigue compared to their habitual diets.
Collapse
Affiliation(s)
- Abdolreza Kazemi
- Vali-E-Asr University of Rafsanjan, Dept of Sports Sciences, Faculty of Literature and Humanities, Rafsanjan, Iran
| | - Ghazi Racil
- La Manouba University, Research Unit (UR 17JS01) “Sport Performance, Health & Society” Higher Institute of Sport and Physical Education of Ksar Said, Manouba, Tunis
| | | | - Mohadeseh Behnam Moghadam
- Islamic Azad University, Department of Physical Education & Sport Sciences, Faculty of Humanities, Tehran, Iran
| | - Parisa Karami
- University of Tehra, Department of Physical Education & Sport Sciences, Faculty of Humanities, Tehran, Iran
| | - Menno Henselmans
- The International Scientific Research Foundation for Fitness and Nutrition, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Iwayama K, Tanabe Y, Yajima K, Tanji F, Onishi T, Takahashi H. Preexercise High-Fat Meal Following Carbohydrate Loading Attenuates Glycogen Utilization During Endurance Exercise in Male Recreational Runners. J Strength Cond Res 2023; 37:661-668. [PMID: 36165996 DOI: 10.1519/jsc.0000000000004311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Iwayama, K, Tanabe, Y, Yajima, K, Tanji, F, Onishi, T, and Takahashi, H. Preexercise high-fat meal following carbohydrate loading attenuates glycogen utilization during endurance exercise in male recreational runners. J Strength Cond Res 37(3): 661-668, 2023-This study aimed to investigate whether one preexercise high-fat meal can increase glycogen conservation during endurance exercise, as compared with one preexercise high-carbohydrate meal. Ten young male recreational runners (22.0 ± 0.6 years; 171.3 ± 0.9 cm; 58.3 ± 1.9 kg; maximal oxygen uptake [V̇ o2 max], 62.0 ± 1.6 ml·kg -1 ·min -1 ) completed 2 exercise trials after high-carbohydrate loading: eating a high-carbohydrate (CHO; 7% protein, 13% fat, 80% carbohydrate) meal or eating a high-fat (FAT; 7% protein, 42% fat, 52% carbohydrate) meal 3.5 hours before exercise. The order of the 2 trials was randomized, and the interval between trials was at least 1 week. The experimental exercise consisted of running on a treadmill for 60 minutes at 95% of each subject's lactate threshold. Muscle and liver glycogen content were assessed using noninvasive carbon magnetic resonance spectroscopy before the experimental meal as well as before and after exercise; respiratory gases were measured continuously during exercise. The respiratory exchange ratio during exercise was statistically lower in the FAT trial than in the CHO trial ( p < 0.01). In addition, muscle ( p < 0.05) and liver ( p < 0.05) glycogen utilization during exercise was less in the FAT trial than in the CHO trial. Therefore, one high-fat meal following carbohydrate loading reduced muscle and liver glycogen use during the 60-minute exercise. These results suggest that this dietary approach may be applied as a strategy to optimize energy utilization during endurance exercise.
Collapse
Affiliation(s)
- Kaito Iwayama
- Faculty of Budo and Sport Studies, Tenri University, Nara, Japan
| | - Yoko Tanabe
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Katsuhiko Yajima
- Department of Nutritional Physiology, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Fumiya Tanji
- Sport Medical Science Research Institute, Tokai University, Kanagawa, Japan ; and
| | - Takahiro Onishi
- Medical Center, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Hideyuki Takahashi
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Muscle Glycogen Assessment and Relationship with Body Hydration Status: A Narrative Review. Nutrients 2022; 15:nu15010155. [PMID: 36615811 PMCID: PMC9823884 DOI: 10.3390/nu15010155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Muscle glycogen is a crucial energy source for exercise, and assessment of muscle glycogen storage contributes to the adequate manipulation of muscle glycogen levels in athletes before and after training and competition. Muscle biopsy is the traditional and gold standard method for measuring muscle glycogen; alternatively, 13C magnetic resonance spectroscopy (MRS) has been developed as a reliable and non-invasive method. Furthermore, outcomes of ultrasound and bioimpedance methods have been reported to change in association with muscle glycogen conditions. The physiological mechanisms underlying this activity are assumed to involve a change in water content bound to glycogen; however, the relationship between body water and stored muscle glycogen is inconclusive. In this review, we discuss currently available muscle glycogen assessment methods, focusing on 13C MRS. In addition, we consider the involvement of muscle glycogen in changes in body water content and discuss the feasibility of ultrasound and bioimpedance outcomes as indicators of muscle glycogen levels. In relation to changes in body water content associated with muscle glycogen, this review broadens the discussion on changes in body weight and body components other than body water, including fat, during carbohydrate loading. From these discussions, we highlight practical issues regarding muscle glycogen assessment and manipulation in the sports field.
Collapse
|
6
|
Keogh A, Smyth B, Caulfield B, Lawlor A, Berndsen J, Doherty C. Prediction Equations for Marathon Performance: A Systematic Review. Int J Sports Physiol Perform 2019; 14:1159-1169. [PMID: 31575820 DOI: 10.1123/ijspp.2019-0360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 10/27/2023]
Abstract
PURPOSE Despite the volume of available literature focusing on marathon running and the prediction of performance, no single prediction equations exists that is accurate for all runners of varying experiences and abilities. Indeed the relative merits and utility of the existing equations remain unclear. Thus, the aim of this study was to collate, characterize, compare, and contrast all available marathon prediction equations. METHODS A systematic review was conducted to identify observational research studies outlining any kind of prediction algorithm for marathon performance. RESULTS Thirty-six studies with 114 equations were identified. Sixty-one equations were based on training and anthropometric variables, whereas 53 equations included variables that required laboratory tests and equipment. The accuracy of these equations was denoted via a variety of metrics; r2 values were provided for 68 equations (r2 = .10-.99), and an SEE was provided for 19 equations (SEE 0.27-27.4 min). CONCLUSION Heterogeneity of the data precludes the identification of a single "best" equation. Important variables such as course gradient, sex, and expected weather conditions were often not included, and some widely used equations did not report the r2 value. Runners should therefore be wary of relying on a single equation to predict their performance.
Collapse
|
7
|
Chappell AJ, Simper TN. Nutritional Peak Week and Competition Day Strategies of Competitive Natural Bodybuilders. Sports (Basel) 2018; 6:sports6040126. [PMID: 30352979 PMCID: PMC6315482 DOI: 10.3390/sports6040126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 01/09/2023] Open
Abstract
Bodybuilders utilize peaking strategies in a bid to fine-tune their aesthetics for competition day. The most prevalent peaking strategies utilized by natural bodybuilders are unreported in the current literature. Eighty-one (M-59, F-22) natural bodybuilders were recruited from competitions during the 2016 and 2017 British Natural Bodybuilder Federation seasons. Competitors completed a 34-item questionnaire designed to investigate peaking and contest day strategies. The questionnaire listed commonly utilized peaking strategies and provided additional space for qualitative information. Analysis of the data indicated that carbohydrate (CHO), water, and sodium manipulation were the most commonly utilized peaking strategies. The consumption of high glycemic index CHO was the most common competition day strategy. Only 6.2% of competitors reported following their regular diet the week prior to competition. The CHO manipulation strategies followed were similar to classical CHO loading, whereby bodybuilders attempt to maximize muscle glycogen concentrations. Furthermore, bodybuilders attempted to remove superfluous water by exploiting the diuretic/polyuria effect associated with water loading/restriction. The potentially deleterious effects of peaking on bodybuilders' health is considered and the efficacy of these strategies to enhance appearance is discussed. The findings of the present investigation are likely to be of interest to bodybuilders and their coaches.
Collapse
Affiliation(s)
- Andrew J Chappell
- Food and Nutrition Group, Sheffield School of Business, Sheffield Hallam University, Howard St. Sheffield S1 1WB, UK.
| | - Trevor N Simper
- Food and Nutrition Group, Sheffield School of Business, Sheffield Hallam University, Howard St. Sheffield S1 1WB, UK.
| |
Collapse
|
8
|
Gargallo-Fernández M, Escalada San Martín J, Gómez-Peralta F, Rozas Moreno P, Marco Martínez A, Botella-Serrano M, Tejera Pérez C, López Fernández J. [Clinical recommendations for sport practice in diabetic patients (RECORD Guide). Diabetes Mellitus Working Group of the Spanish Society of Endocrinology and Nutrition (SEEN)]. ENDOCRINOLOGIA Y NUTRICION : ORGANO DE LA SOCIEDAD ESPANOLA DE ENDOCRINOLOGIA Y NUTRICION 2015; 62:e73-93. [PMID: 25840764 DOI: 10.1016/j.endonu.2015.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Sporting activity is becoming a common practice in patients with diabetes mellitus (DM). This situation requires both a preliminary medical assessment and a wide range of changes in treatment which have scarcely been addressed in medical literature. OBJECTIVE To prepare a clinical guideline on the medical approach to patients with diabetes who practice sport regularly. METHODS An expert panel from the Diabetes Mellitus Working Group of the Spanish Society of Endocrinology and Nutrition (SEEN) reviewed the most relevant literature in each of the sections. Based both on this review and on data from the experience of a number of athletes with DM, a number of recommendations were agreed within each section. Finally, the Working Group and representatives of the SEEN jointly discussed all these recommendations. CONCLUSION The guideline provides recommendations ranging from medical assessment before patients with DM start to practice sport to actions during and after physical activity. Recommendations are also given on aspects such as the impact of sport on blood glucose control, training schemes, or special risk situations.
Collapse
Affiliation(s)
| | | | | | - Pedro Rozas Moreno
- Servicio de Endocrinología y Nutrición, Hospital General Universitario de Ciudad Real, Ciudad Real, España
| | - Amparo Marco Martínez
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Toledo, Toledo, España; Servicio de Endocrinología y Nutrición, Hospital Universitario Quirón, Madrid, España
| | - Marta Botella-Serrano
- Servicio de Endocrinología y Nutrición, Hospital Universitario Príncipe de Asturias, Madrid, España
| | - Cristina Tejera Pérez
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario Ferrol, Ferrol, La Coruña, España
| | - Judith López Fernández
- Servicio de Endocrinología y Nutrición, Hospital Universitario de Canarias, Tenerife, España
| |
Collapse
|
9
|
Illian TG, Casey JC, Bishop PA. Omega 3 Chia seed loading as a means of carbohydrate loading. J Strength Cond Res 2011; 25:61-5. [PMID: 21183832 DOI: 10.1519/jsc.0b013e3181fef85c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to determine if Omega 3 Chia seed loading is a viable option for enhancing sports performance in events lasting >90 minutes and allow athletes to decrease their dietary intake of sugar while increasing their intake of Omega 3 fatty acids. It has been well documented that a high dietary carbohydrate (CHO) intake for several days before competition is known to increase muscle glycogen stores resulting in performance improvements in events lasting >90 minutes. This study compared performance testing results between 2 different CHO-loading treatments. The traditional CHO-loading treatment served as the control (100% cals from Gatorade). The Omega 3 Chia drink (50% of calories from Greens Plus Omega 3 Chia seeds, 50% Gatorade) served as the Omega 3 Chia loading drink. Both CHO-loading treatments were based on the subject's body weight and were thus isocaloric. Six highly trained male subjects V(O2)max 47.8-84.2 ml · kg(-1); mean (SD) of V(O2)max 70.3 ml · kg(-1) (13.3) performed a 1-hour run at ∼65% of their V(O2)max on a treadmill, followed by a 10k time trial on a track. There were 2 trials in a crossover counterbalanced repeated-measures design with a 2-week washout between testing sessions to allow the participants to recover from the intense exercise and any effects of the treatment. There was no statistical difference (p = 0.83) between Omega 3 Chia loading (mean 10k time = 37 minutes 49 seconds) and CHO loading (mean = 37 minutes 43 seconds). Under our conditions, Omega 3 Chia loading appears a viable option for enhancing performance for endurance events lasting >90 minutes and allows athletes to decrease their dietary intake of sugar while increasing their intake of Omega 3 fatty acids but offered no performance advantages.
Collapse
Affiliation(s)
- Travis G Illian
- Human Performance Laboratory, Department of Kinesiology, The University of Alabama, Auburn, Alabama, USA.
| | | | | |
Collapse
|
10
|
Abstract
People with type 1 diabetes (T1DM) want to enjoy the benefits of sport and exercise, but management of diabetes in this context is complex. An understanding of the physiology of exercise in health, and particularly the control of fuel mobilization and metabolism, gives an idea of problems which may arise in managing diabetes for sport and exercise. Athletes with diabetes need to be advised on appropriate diet to maximize performance and reduce fatigue. Exercise in diabetes is complicated both by hypoglycaemia and hyperglycaemia in particular circumstances and explanations are advanced which can provide a theoretical underpinning for possible management strategies. Management strategies are proposed to improve glycaemic control and performance.
Collapse
Affiliation(s)
- I W Gallen
- Diabetes Centre, Wycombe Hospital, High Wycombe, Buckinghamshire HP11 2TT, UK.
| | | | | |
Collapse
|