1
|
Vaes AW, De Boever P, Franssen FME, Uszko-Lencer NHMK, Vanfleteren LEGW, Spruit MA. Endothelial function in patients with COPD: an updated systematic review of studies using flow-mediated dilatation. Expert Rev Respir Med 2023; 17:53-69. [PMID: 36731860 DOI: 10.1080/17476348.2023.2176845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Cardiovascular disease is a significant cause of morbidity and mortality in COPD. Endothelial dysfunction is suggested to be involved in cardiovascular disease pathogenesis, and multiple studies report endothelial dysfunction in COPD. This article summarized the current knowledge on endothelial function in COPD patients. AREAS COVERED Databases were screened until November 2022 for studies using ultrasound-based flow-mediated dilation in patients with stable COPD. Pooled effect sizes were calculated using random effects model. Meta-regression analyses assessed the effects of demographic and clinical variables. EXPERT OPINION 34 studies were identified (1365 COPD patients; 617 controls). Pooled analysis demonstrated an impaired endothelial-dependent (-2.33%; 95%CI -3.30/-1.35; p < 0.001) and endothelial-independent dilation (-3.11%; 95%CI -5.14/-1.08; p = 0.003) in COPD patients when compared to non-COPD controls. Meta-regression identified that higher age, worse severity of airflow obstruction, and current smoking were significantly associated with impaired endothelial function. Studies evaluating the effects of pharmacological and non-pharmacological interventions on endothelial function in COPD patients demonstrated conflicting results.
Collapse
Affiliation(s)
- Anouk W Vaes
- Department of Research and Development, Ciro, Horn, Netherlands
| | - Patrick De Boever
- Center of Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Frits M E Franssen
- Department of Research and Development, Ciro, Horn, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Nicole H M K Uszko-Lencer
- Department of Research and Development, Ciro, Horn, Netherlands.,Department of Cardiology, CARIM, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lowie E G W Vanfleteren
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.,COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martijn A Spruit
- Department of Research and Development, Ciro, Horn, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| |
Collapse
|
2
|
Theodorakopoulou MP, Alexandrou ME, Bakaloudi DR, Pitsiou G, Stanopoulos I, Kontakiotis T, Boutou AK. Endothelial dysfunction in COPD: a systematic review and meta-analysis of studies using different functional assessment methods. ERJ Open Res 2021; 7:00983-2020. [PMID: 34195258 PMCID: PMC8236757 DOI: 10.1183/23120541.00983-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/09/2021] [Indexed: 01/18/2023] Open
Abstract
Background Cardiovascular disease is a major cause of morbidity and mortality in COPD. Endothelial dysfunction is suggested to be one of the pathogenetic mechanisms involved. This is a systematic review and meta-analysis of studies using any available functional method to examine differences in endothelial function between patients with COPD and individuals without COPD (controls). Methods Literature search involved PubMed and Scopus databases. Eligible studies included adult patients and evaluated endothelial damage via functional methods. The Newcastle–Ottawa scale was applied to evaluate the quality of retrieved studies. Subgroup analyses were performed to explore heterogeneity across the studies. Funnel plots were constructed to evaluate publication bias. Results Of the 21 reports initially identified, 19 studies with a total of 968 participants were included in the final meta-analysis. A significantly impaired response in endothelium-dependent (weighted mean between-group difference (WMD) −2.59, 95% CI −3.75 to −1.42) and -independent vasodilation (WMD −3.13, 95% CI −5.18 to −1.09) was observed in patients with COPD compared to controls. When pooling all studies together, regardless of the technique used for assessment of vascular reactivity, pronounced endothelial dysfunction was observed in COPD compared to controls (standardised mean difference (SMD) −1.19, 95% CI −1.69 to −0.68). Subgroup analysis showed that the difference was larger when patients with COPD were compared with nonsmoking controls (SMD −1.75, 95% CI −2.58 to −0.92). Sensitivity analyses confirmed the results. Conclusions Patients with COPD have significantly impaired endothelial function compared to controls without COPD. Future studies should delineate the importance of endothelial dysfunction towards development of cardiovascular disease in COPD. COPD is significantly associated with endothelial dysfunction of both conduit vessels and microvasculature. This association is further strengthened when patients with COPD are compared to nonsmoking controls.https://bit.ly/2NlWLFN
Collapse
Affiliation(s)
| | - Maria Eleni Alexandrou
- Dept of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Georgia Pitsiou
- Dept of Respiratory Failure, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Stanopoulos
- Dept of Respiratory Failure, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Kontakiotis
- Dept of Respiratory Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Afroditi K Boutou
- Dept of Respiratory Medicine, G. Papanikolaou Hospital, Thessaloniki, Greece
| |
Collapse
|
3
|
Theodorakopoulou MP, Bakaloudi DR, Dipla K, Zafeiridis A, Boutou AK. Vascular endothelial damage in COPD: current functional assessment methods and future perspectives. Expert Rev Respir Med 2021; 15:1121-1133. [PMID: 33874819 DOI: 10.1080/17476348.2021.1919089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Cardiovascular disease is a major cause of death in chronic obstructive pulmonary disease (COPD), but the relationship between these two entities is not fully understood; smoking, inflammation, arterial stiffness and endothelial dysfunction are significant determinants. Endothelial dysfunction is not only associated with cardiovascular disease, but also with COPD severity.Areas covered: Several functional methods have been developed to evaluate endothelial function in healthy and diseased individuals; from the invasive angiography of epicardial coronary arteries and Venous-Occlusion-Plethysmography, to more modern, noninvasive approaches such as Flow-Mediated-Dilatation, Peripheral-Arterial-Tonometry and Near-Infrared-Spectroscopy, all these methods have boosted clinical research in this field. In this context, this narrative review, which included articles published in PubMed and Scopus up to 25-November-2020, summarizes available functional methods for endothelial damage assessment in COPD and discusses existing evidence on their associations with comorbidities and outcomes in this population.Expert opinion: Accumulated evidence suggests that endothelial dysfunction occurs in early stages of CΟPD and worsens with pulmonary obstruction severity and during acute exacerbations. Novel methods evaluating endothelial function offer a detailed, real-time assessment of different parameters related to vascular function and should be increasingly used to shed more light on the role of endothelial damage on cardiovascular and COPD progression.
Collapse
Affiliation(s)
- Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Rafailia Bakaloudi
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Dipla
- Exercise Physiology & Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Zafeiridis
- Exercise Physiology & Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Afroditi K Boutou
- Department of Respiratory Medicine, G. Papanikolaou Hospital, Thessaloniki, Greece
| |
Collapse
|
4
|
Pulakazhi Venu VK, El-Daly M, Saifeddine M, Hirota SA, Ding H, Triggle CR, Hollenberg MD. Minimizing Hyperglycemia-Induced Vascular Endothelial Dysfunction by Inhibiting Endothelial Sodium-Glucose Cotransporter 2 and Attenuating Oxidative Stress: Implications for Treating Individuals With Type 2 Diabetes. Can J Diabetes 2019; 43:510-514. [PMID: 30930073 DOI: 10.1016/j.jcjd.2019.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 01/14/2023]
Abstract
This overview deals with mechanisms whereby hyperglycemia-induced oxidative stress compromises vascular endothelial function and provides a background for a recently published study illustrating the beneficial impact of endothelial sodium-glucose cotransporter 2 (SGLT2) inhibitors in attenuating hyperglycemia-induced vascular dysfunction in vitro. The data provide new insight that can possibly lead to improved drug therapy for people with type 2 diabetes. The working hypotheses that underpinned the experiments performed are provided, along with the findings of the study. For the causes of hyperglycemia-induced vascular endothelial dysfunction, the findings point to the key roles of: 1) functional endothelial SGLT2; 2) oxidative stress-induced signalling pathways including mammalian sarcoma virus kinase, the EGF receptor-kinase and protein kinase C; and 3) mitochondrial dysfunction triggered by hyperglycemia was mitigated by an SGLT2 inhibitor in the hyperglycemic mouse aorta vascular organ cultures. The overview sums up the approaches implicated by the study that can potentially counteract the detrimental impact of hyperglycemia on vascular function in people with diabetes, including the clinical use of SGLT2 inhibitors for those with type 2 diabetes already being treated, for example, with metformin, along with dietary supplementation with broccoli-derived sulforaphane and tetrahydrobiopterin. The caveats associated with the study for extending the findings from mice to humans are summarized, pointing to the need to validate the work using vascular tissues from humans. Suggestions for future clinical studies are made, including the assessment of the impact of the therapeutic strategies proposed on measurements of blood flow in subjects with diabetes.
Collapse
Affiliation(s)
- Vivek Krishna Pulakazhi Venu
- Inflammation Research Network, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Physiology & Pharmacology, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Mahmoud El-Daly
- Inflammation Research Network, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Mahmoud Saifeddine
- Inflammation Research Network, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Physiology & Pharmacology, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Simon A Hirota
- Inflammation Research Network, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Physiology & Pharmacology, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Hong Ding
- Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Ar-Rayyan, Qatar
| | - Chris R Triggle
- Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Ar-Rayyan, Qatar
| | - Morley D Hollenberg
- Inflammation Research Network, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Physiology & Pharmacology, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, Alberta Health Service and University of Calgary, Calgary, Alberta, Canada; Department of Medicine, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Beaudin AE, Hartmann SE, Pun M, Poulin MJ. Human cerebral blood flow control during hypoxia: focus on chronic pulmonary obstructive disease and obstructive sleep apnea. J Appl Physiol (1985) 2017; 123:1350-1361. [DOI: 10.1152/japplphysiol.00352.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 01/06/2023] Open
Abstract
The brain is a vital organ that relies on a constant and adequate blood flow to match oxygen and glucose delivery with the local metabolic demands of active neurons. Thus exquisite regulation of cerebral blood flow (CBF) is particularly important under hypoxic conditions to prevent a detrimental decrease in the partial pressure of oxygen within the brain tissues. Cerebrovascular sensitivity to hypoxia, assessed as the change in CBF during a hypoxic challenge, represents the capacity of cerebral vessels to respond to, and compensate for, a reduced oxygen supply, and has been shown to be impaired or blunted in a number of conditions. For instance, this is observed with aging, and in clinical conditions such as untreated obstructive sleep apnea (OSA) and in healthy humans exposed to intermittent hypoxia. This review will 1) provide a brief overview of cerebral blood flow regulation and results of pharmacological intervention studies which we have performed to better elucidate the basic mechanisms of cerebrovascular regulation in humans; and 2) present data from studies in clinical and healthy populations, using a translational physiology approach, to investigate human CBF control during hypoxia. Results from studies in patients with chronic obstructive pulmonary disease and OSA will be presented to identify the effects of the disease processes on cerebrovascular sensitivity to hypoxia. Data emerging from experimental human models of intermittent hypoxia during wakefulness will also be reviewed to highlight the effects of intermittent hypoxia on the brain.
Collapse
Affiliation(s)
- Andrew E. Beaudin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sara E. Hartmann
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matiram Pun
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marc J. Poulin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Vaes AW, Spruit MA, Theunis J, Goswami N, Vanfleteren LE, Franssen FME, Wouters EFM, De Boever P. Endothelial function in patients with chronic obstructive pulmonary disease: a systematic review of studies using flow mediated dilatation. Expert Rev Respir Med 2017; 11:1021-1031. [PMID: 28978239 DOI: 10.1080/17476348.2017.1389277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cardiovascular disease is an important cause of morbidity and mortality in chronic obstructive pulmonary disease (COPD). Endothelial function may be involved in the pathogenesis of cardiovascular disease. In contrast to the attention given to pulmonary endothelial dysfunction, little is known about peripheral vascular changes in COPD. Therefore, we reviewed the literature on peripheral endothelial function in COPD. METHODS Databases were screened for studies using ultrasound-based flow-mediated dilation (FMD), the reference method for assessing peripheral endothelial function, in stable COPD patients. Pooled effect sizes were calculated using random effects model. RESULTS 17 studies were identified, with a total of 1228 participants (724 COPD patients; 504 controls). Pooled analysis demonstrated an impaired endothelial-dependent FMD (-3.22%; 95% confidence interval (CI) -4.74 to -1.69; p < 0.001; I2 = 96%) and endothelial-independent FMD (-2.86%; 95%CI -5.63 to -0.09; p = 0.04; I2 = 83%) in COPD patients when compared with smoking and non-smoking controls. CONCLUSION This review provides evidence for impaired peripheral endothelial function in COPD. Since impaired endothelial function may contribute to cardiovascular morbidity, a more comprehensive cardiovascular phenotyping is considered important in COPD to address cardiovascular risk. A high frequency of cardiovascular comorbidity is observed in COPD patients, and therefore well-controlled, larger studies that investigate endothelial function in COPD patients are recommended.
Collapse
Affiliation(s)
- Anouk W Vaes
- a Department of Research and Education , Ciro , Horn , Netherlands.,b Environmental Risk and Health Unit , Flemish Institute for Technological Research (VITO) , Mol , Belgium
| | - Martijn A Spruit
- a Department of Research and Education , Ciro , Horn , Netherlands.,c Department of Respiratory Medicine , Maastricht University Medical Centre (MUMC+), NUTRIM School of Nutrition and Translational Research in Metabolism , Maastricht , The Netherlands.,d REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences , Hasselt University , Diepenbeek , Belgium
| | - Jan Theunis
- b Environmental Risk and Health Unit , Flemish Institute for Technological Research (VITO) , Mol , Belgium
| | - Nandu Goswami
- e Department of Physiology , Medical University of Graz , Graz , Austria
| | - Lowie E Vanfleteren
- a Department of Research and Education , Ciro , Horn , Netherlands.,d REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences , Hasselt University , Diepenbeek , Belgium
| | - Frits M E Franssen
- a Department of Research and Education , Ciro , Horn , Netherlands.,d REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences , Hasselt University , Diepenbeek , Belgium
| | - Emiel F M Wouters
- a Department of Research and Education , Ciro , Horn , Netherlands.,d REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences , Hasselt University , Diepenbeek , Belgium
| | - Patrick De Boever
- b Environmental Risk and Health Unit , Flemish Institute for Technological Research (VITO) , Mol , Belgium.,f Centre for Environmental Sciences , Hasselt University , Hasselt , Belgium
| |
Collapse
|
7
|
Ambrosino P, Lupoli R, Iervolino S, De Felice A, Pappone N, Storino A, Di Minno MND. Clinical assessment of endothelial function in patients with chronic obstructive pulmonary disease: a systematic review with meta-analysis. Intern Emerg Med 2017; 12:877-885. [PMID: 28593450 DOI: 10.1007/s11739-017-1690-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
Patients with chronic obstructive pulmonary disease (COPD) have an increased cardiovascular morbidity and mortality. Flow-mediated (FMD) and nitrate-mediated dilatation (NMD) are considered non-invasive methods to assess endothelial function and surrogate markers of subclinical atherosclerosis. We performed a systematic review with meta-analysis and meta-regression to evaluate the impact of COPD on FMD and NMD. Studies were systematically searched in the PubMed, Web of Science, Scopus and EMBASE databases. The random-effect method was used to take into account the variability among included studies. A total of eight studies were included in the final analysis, eight with data on FMD (334 COPD patients) and two on NMD (104 COPD patients). Compared to controls, COPD patients show a significantly lower FMD (MD -3.15%; 95% CI -4.89, -1.40; P < 0.001) and NMD (MD -3.53%; 95% CI -7.04, -0.02; P = 0.049). Sensitivity analyses substantially confirms the results. Meta-regression models show that a more severe degree of airway obstruction is associated with a more severe FMD impairment in COPD patients than in controls. Regression analyses confirm that the association between COPD and endothelial dysfunction is independent of baseline smoking status and most traditional cardiovascular risk factors. In conclusion, COPD is significantly and independently associated with endothelial dysfunction. These findings may be useful to plan adequate cardiovascular prevention strategies in this clinical setting, with particular regard to patients with a more severe disease.
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
- ICS Maugeri SpA SB, Scientific Institute of Telese Terme, IRCCS, Telese Terme, BN, Italy
| | - Roberta Lupoli
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Salvatore Iervolino
- ICS Maugeri SpA SB, Scientific Institute of Telese Terme, IRCCS, Telese Terme, BN, Italy
| | - Alberto De Felice
- ICS Maugeri SpA SB, Scientific Institute of Telese Terme, IRCCS, Telese Terme, BN, Italy
| | - Nicola Pappone
- ICS Maugeri SpA SB, Scientific Institute of Telese Terme, IRCCS, Telese Terme, BN, Italy
| | - Antonio Storino
- ICS Maugeri SpA SB, Scientific Institute of Telese Terme, IRCCS, Telese Terme, BN, Italy
- Department of Public Health, Federico II University, Naples, Italy
| | - Matteo Nicola Dario Di Minno
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
8
|
Layec G, Hart CR, Trinity JD, Kwon OS, Rossman MJ, Broxterman RM, Le Fur Y, Jeong EK, Richardson RS. Oxygen delivery and the restoration of the muscle energetic balance following exercise: implications for delayed muscle recovery in patients with COPD. Am J Physiol Endocrinol Metab 2017; 313:E94-E104. [PMID: 28292763 PMCID: PMC6109703 DOI: 10.1152/ajpendo.00462.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 11/22/2022]
Abstract
Patients with chronic obstructive pulmonary disease (COPD) experience a delayed recovery from skeletal muscle fatigue following exhaustive exercise that likely contributes to their progressive loss of mobility. As this phenomenon is not well understood, this study sought to examine postexercise peripheral oxygen (O2) transport and muscle metabolism dynamics in patients with COPD, two important determinants of muscle recovery. Twenty-four subjects, 12 nonhypoxemic patients with COPD and 12 healthy subjects with a sedentary lifestyle, performed dynamic plantar flexion exercise at 40% of the maximal work rate (WRmax) with phosphorus magnetic resonance spectroscopy (31P-MRS), near-infrared spectroscopy (NIRS), and vascular Doppler ultrasound assessments. The mean response time of limb blood flow at the offset of exercise was significantly prolonged in patients with COPD (controls: 56 ± 27 s; COPD: 120 ± 87 s; P < 0.05). In contrast, the postexercise time constant for capillary blood flow was not significantly different between groups (controls: 49 ± 23 s; COPD: 51 ± 21 s; P > 0.05). The initial postexercise convective O2 delivery (controls: 0.15 ± 0.06 l/min; COPD: 0.15 ± 0.06 l/min) and the corresponding oxidative adenosine triphosphate (ATP) demand (controls: 14 ± 6 mM/min; COPD: 14 ± 6 mM/min) in the calf were not significantly different between controls and patients with COPD (P > 0.05). The phosphocreatine resynthesis time constant (controls: 46 ± 20 s; COPD: 49 ± 21 s), peak mitochondrial phosphorylation rate, and initial proton efflux were also not significantly different between groups (P > 0.05). Therefore, despite perturbed peripheral hemodynamics, intracellular O2 availability, proton efflux, and aerobic metabolism recovery in the skeletal muscle of nonhypoxemic patients with COPD are preserved following plantar flexion exercise and thus are unlikely to contribute to the delayed recovery from exercise in this population.
Collapse
Affiliation(s)
- Gwenael Layec
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah;
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Corey R Hart
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Oh-Sung Kwon
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Matthew J Rossman
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Ryan M Broxterman
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Yann Le Fur
- Centre de Résonance Magnétique Biologique et Médicale, Aix-Marseille Universite, Centre National de la Recherche Scientifique, Marseille, France; and
| | - Eun-Kee Jeong
- Department of Radiology and Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
9
|
Hirai DM, Jones JH, Zelt JT, da Silva ML, Bentley RF, Edgett BA, Gurd BJ, Tschakovsky ME, O'Donnell DE, Neder JA. Oral N-acetylcysteine and exercise tolerance in mild chronic obstructive pulmonary disease. J Appl Physiol (1985) 2017; 122:1351-1361. [PMID: 28255088 DOI: 10.1152/japplphysiol.00990.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/25/2023] Open
Abstract
Heightened oxidative stress is implicated in the progressive impairment of skeletal muscle vascular and mitochondrial function in chronic obstructive pulmonary disease (COPD). Whether accumulation of reactive oxygen species contributes to exercise intolerance in the early stages of COPD is unknown. The purpose of the present study was to determine the effects of oral antioxidant treatment with N-acetylcysteine (NAC) on respiratory, cardiovascular, and locomotor muscle function and exercise tolerance in patients with mild COPD. Thirteen patients [forced expiratory volume in 1 s (FEV1)-to-forced vital capacity ratio < lower limit of normal (LLN) and FEV1 ≥ LLN) were enrolled in a double-blind, randomized crossover study to receive NAC (1,800 mg/day) or placebo for 4 days. Severe-intensity constant-load exercise tests were performed with noninvasive measurements of central hemodynamics (stroke volume, heart rate, and cardiac output via impedance cardiography), arterial blood pressure, pulmonary ventilation and gas exchange, quadriceps muscle oxygenation (near-infrared spectroscopy), and estimated capillary blood flow. Nine patients completed the study with no major adverse clinical effects. Although NAC elevated plasma glutathione by ~27% compared with placebo (P < 0.05), there were no differences in exercise tolerance (placebo: 325 ± 47 s, NAC: 336 ± 51 s), central hemodynamics, arterial blood pressure, pulmonary ventilation or gas exchange, locomotor muscle oxygenation, or capillary blood flow from rest to exercise between conditions (P > 0.05 for all). In conclusion, modulation of plasma redox status with oral NAC treatment was not translated into beneficial effects on central or peripheral components of the oxygen transport pathway, thereby failing to improve exercise tolerance in nonhypoxemic patients with mild COPD.NEW & NOTEWORTHY Acute antioxidant treatment with N-acetylcysteine (NAC) elevated plasma glutathione but did not modulate central or peripheral components of the O2 transport pathway, thereby failing to improve exercise tolerance in patients with mild chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Daniel M Hirai
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada; .,Pulmonary Function and Clinical Exercise Physiology Unit, Respiratory Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Joshua H Jones
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Joel T Zelt
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Marianne L da Silva
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada.,Division of Physical Therapy, University of Brasilia, Brasilia, Brazil
| | - Robert F Bentley
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Brittany A Edgett
- Queen's Muscle Physiology Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada; and
| | - Brendon J Gurd
- Queen's Muscle Physiology Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada; and
| | - Michael E Tschakovsky
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Denis E O'Donnell
- Respiratory Investigation Unit, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - J Alberto Neder
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
10
|
Iepsen UW, Munch GDW, Rugbjerg M, Rinnov AR, Zacho M, Mortensen SP, Secher NH, Ringbaek T, Pedersen BK, Hellsten Y, Lange P, Thaning P. Effect of endurance versus resistance training on quadriceps muscle dysfunction in COPD: a pilot study. Int J Chron Obstruct Pulmon Dis 2016; 11:2659-2669. [PMID: 27822028 PMCID: PMC5087783 DOI: 10.2147/copd.s114351] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Introduction Exercise is an important countermeasure to limb muscle dysfunction in COPD. The two major training modalities in COPD rehabilitation, endurance training (ET) and resistance training (RT), may both be efficient in improving muscle strength, exercise capacity, and health-related quality of life, but the effects on quadriceps muscle characteristics have not been thoroughly described. Methods Thirty COPD patients (forced expiratory volume in 1 second: 56% of predicted, standard deviation [SD] 14) were randomized to 8 weeks of ET or RT. Vastus lateralis muscle biopsies were obtained before and after the training intervention to assess muscle morphology and metabolic and angiogenic factors. Symptom burden, exercise capacity (6-minute walking and cycle ergometer tests), and vascular function were also assessed. Results Both training modalities improved symptom burden and exercise capacity with no difference between the two groups. The mean (SD) proportion of glycolytic type IIa muscle fibers was reduced after ET (from 48% [SD 11] to 42% [SD 10], P<0.05), whereas there was no significant change in muscle fiber distribution with RT. There was no effect of either training modality on muscle capillarization, angiogenic factors, or vascular function. After ET the muscle protein content of phosphofructokinase was reduced (P<0.05) and the citrate synthase content tended increase (P=0.08) but no change was observed after RT. Conclusion Although both ET and RT improve symptoms and exercise capacity, ET induces a more oxidative quadriceps muscle phenotype, counteracting muscle dysfunction in COPD.
Collapse
Affiliation(s)
- Ulrik Winning Iepsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Gregers Druedal Wibe Munch
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Mette Rugbjerg
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Anders Rasmussen Rinnov
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Morten Zacho
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Stefan Peter Mortensen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark; Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Niels H Secher
- Department of Anesthesiology, University of Copenhagen, Rigshospitalet, Copenhagen
| | - Thomas Ringbaek
- Department of Respiratory Medicine, University Hospital Hvidovre, Hvidovre
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen
| | - Peter Lange
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark; Department of Respiratory Medicine, University Hospital Hvidovre, Hvidovre; Department of Public Health, Section of Social Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Pia Thaning
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark; Department of Respiratory Medicine, University Hospital Hvidovre, Hvidovre
| |
Collapse
|