1
|
Raberin A, Manferdelli G, Schorderet F, Bourdillon N, Millet GP. Fitness Level- and Sex-Related Differences in Pulmonary Limitations to Maximal Exercise in Normoxia and Hypoxia. Med Sci Sports Exerc 2024; 56:1398-1407. [PMID: 38530208 DOI: 10.1249/mss.0000000000003433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE Both maximal-intensity exercise and altitude exposure challenge the pulmonary system that may reach its maximal capacities. Expiratory flow limitation (EFL) and exercise-induced hypoxemia (EIH) are common in endurance-trained athletes. Furthermore, because of their smaller airways and lung size, women, independently of their fitness level, may be more prone to pulmonary limitations during maximal-intensity exercise, particularly when performed in hypoxic conditions. The objective of this study was to investigate the impact of sex and fitness level on pulmonary limitations during maximal exercise in normoxia and their consequences in acute hypoxia. METHODS Fifty-one participants were distributed across four different groups according to sex and fitness level. Participants visited the laboratory on three occasions to perform maximal incremental cycling tests in normoxia and hypoxia (inspired oxygen fraction = 0.14) and two hypoxic chemosensitivity tests. Pulmonary function and ventilatory capacities were evaluated at each visit. RESULTS EIH was more prevalent (62.5% vs 22.2%, P = 0.004) and EFL less common (37.5% vs 70.4%, P = 0.019) in women than men. EIH prevalence was different ( P = 0.004) between groups of trained men (41.7%), control men (6.7%), trained women (50.0%), and control women (75.0%). All EIH men but only 40% of EIH women exhibited EFL. EFL individuals had higher slope ratio ( P = 0.029), higher ventilation (V̇ E ) ( P < 0.001), larger ΔVO 2max ( P = 0.019), and lower hypoxia-related V̇ E increase ( P < 0.001). CONCLUSIONS Women reported a higher EIH prevalence than men, regardless of their fitness level, despite a lower EFL prevalence. EFL seems mainly due to the imbalance between ventilatory demands and capacities. It restricts ventilation, leading to a larger performance impairment during maximal exercise in hypoxic conditions.
Collapse
Affiliation(s)
- Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| | | | | | | | | |
Collapse
|
2
|
Yi L, Wu J, Yan B, Wang Y, Zou M, Zhang Y, Li F, Qiu J, Girard O. Effects of three weeks base training at moderate simulated altitude with or without hypoxic residence on exercise capacity and physiological adaptations in well-trained male runners. PeerJ 2024; 12:e17166. [PMID: 38563004 PMCID: PMC10984165 DOI: 10.7717/peerj.17166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Objectives To test the hypothesis that 'live high-base train high-interval train low' (HiHiLo) altitude training, compared to 'live low-train high' (LoHi), yields greater benefits on performance and physiological adaptations. Methods Sixteen young male middle-distance runners (age, 17.0 ± 1.5 y; body mass, 58.8 ± 4.9 kg; body height, 176.3 ± 4.3 cm; training years, 3-5 y; training distance per week, 30-60 km.wk-1) with a peak oxygen uptake averaging ~65 ml.min-1.kg-1 trained in a normobaric hypoxia chamber (simulated altitude of ~2,500 m, monitored by heart rate ~170 bpm; thrice weekly) for 3 weeks. During this period, the HiHiLo group (n = 8) stayed in normobaric hypoxia (at ~2,800 m; 10 h.day-1), while the LoHi group (n = 8) resided near sea level. Before and immediately after the intervention, peak oxygen uptake and exercise-induced arterial hypoxemia responses (incremental cycle test) as well as running performance and time-domain heart rate variability (5-km time trial) were assessed. Hematological variables were monitored at baseline and on days 1, 7, 14 and 21 during the intervention. Results Peak oxygen uptake and running performance did not differ before and after the intervention in either group (all P > 0.05). Exercise-induced arterial hypoxemia responses, measured both at submaximal (240 W) and maximal loads during the incremental test, and log-transformed root mean square of successive R-R intervals during the 4-min post-run recovery period, did not change (all P > 0.05). Hematocrit, mean reticulocyte absolute count and reticulocyte percentage increased above baseline levels on day 21 of the intervention (all P < 0.001), irrespective of group. Conclusions Well-trained runners undertaking base training at moderate simulated altitude for 3 weeks, with or without hypoxic residence, showed no performance improvement, also with unchanged time-domain heart rate variability and exercise-induced arterial hypoxemia responses.
Collapse
Affiliation(s)
- Longyan Yi
- China Institute of Sport and Health Sciences, Beijing Sport University, Beijing, China
| | - Jian Wu
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Bing Yan
- China Institute of Sport and Health Sciences, Beijing Sport University, Beijing, China
| | - Yang Wang
- China Institute of Sport and Health Sciences, Beijing Sport University, Beijing, China
| | - Menghui Zou
- China Athletics School, Beijing Sport University, Beijing, China
| | - Yimin Zhang
- China Institute of Sport and Health Sciences, Beijing Sport University, Beijing, China
- Key Laboratory of Exercise and Physical Fitness (Beijing Sport University), Ministry of Education, Beijing, China
| | - Feifei Li
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Beijing, China
| | - Junqiang Qiu
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, China
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Western Australia.
| |
Collapse
|
3
|
Husaini M, Emery MS. Cardiopulmonary Exercise Testing Interpretation in Athletes: What the Cardiologist Should Know. Card Electrophysiol Clin 2024; 16:71-80. [PMID: 38280815 DOI: 10.1016/j.ccep.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
The noninvasive assessment of oxygen consumption, carbon dioxide production, and ventilation during a cardiopulmonary exercise test (CPET) provides insight into the cardiovascular, pulmonary, and metabolic system's ability to respond to exercise. Exercise physiology has been shown to be distinct for competitive athletes and highly active persons (CAHAPs), thus creating more nuanced interpretations of CPET parameters. CPET in CAHAP is an important test that can be used for both diagnosis (provoking symptoms during a truly maximal test) and performance.
Collapse
Affiliation(s)
- Mustafa Husaini
- Department of Medicine, Division of Cardiovascular Medicine, Washington University School of Medicine, 4921 Parkview Place, Saint Louis, MO 63110, USA. https://twitter.com/husainim
| | - Michael S Emery
- Sports Cardiology Center, Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, 9500 Euclid Avenue, Desk J2-4, Cleveland, OH 44195, USA.
| |
Collapse
|
4
|
Sietsema KE, Rossiter HB. Exercise Physiology and Cardiopulmonary Exercise Testing. Semin Respir Crit Care Med 2023; 44:661-680. [PMID: 37429332 DOI: 10.1055/s-0043-1770362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Aerobic, or endurance, exercise is an energy requiring process supported primarily by energy from oxidative adenosine triphosphate synthesis. The consumption of oxygen and production of carbon dioxide in muscle cells are dynamically linked to oxygen uptake (V̇O2) and carbon dioxide output (V̇CO2) at the lung by integrated functions of cardiovascular, pulmonary, hematologic, and neurohumoral systems. Maximum oxygen uptake (V̇O2max) is the standard expression of aerobic capacity and a predictor of outcomes in diverse populations. While commonly limited in young fit individuals by the capacity to deliver oxygen to exercising muscle, (V̇O2max) may become limited by impairment within any of the multiple systems supporting cellular or atmospheric gas exchange. In the range of available power outputs, endurance exercise can be partitioned into different intensity domains representing distinct metabolic profiles and tolerances for sustained activity. Estimates of both V̇O2max and the lactate threshold, which marks the upper limit of moderate-intensity exercise, can be determined from measures of gas exchange from respired breath during whole-body exercise. Cardiopulmonary exercise testing (CPET) includes measurement of V̇O2 and V̇CO2 along with heart rate and other variables reflecting cardiac and pulmonary responses to exercise. Clinical CPET is conducted for persons with known medical conditions to quantify impairment, contribute to prognostic assessments, and help discriminate among proximal causes of symptoms or limitations for an individual. CPET is also conducted in persons without known disease as part of the diagnostic evaluation of unexplained symptoms. Although CPET quantifies a limited sample of the complex functions and interactions underlying exercise performance, both its specific and global findings are uniquely valuable. Some specific findings can aid in individualized diagnosis and treatment decisions. At the same time, CPET provides a holistic summary of an individual's exercise function, including effects not only of the primary diagnosis, but also of secondary and coexisting conditions.
Collapse
Affiliation(s)
- Kathy E Sietsema
- Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, California
| | - Harry B Rossiter
- Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, California
| |
Collapse
|
5
|
Petek BJ, Al-Alusi MA, Moulson N, Grant AJ, Besson C, Guseh JS, Wasfy MM, Gremeaux V, Churchill TW, Baggish AL. Consumer Wearable Health and Fitness Technology in Cardiovascular Medicine: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:245-264. [PMID: 37438010 PMCID: PMC10662962 DOI: 10.1016/j.jacc.2023.04.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 07/14/2023]
Abstract
The use of consumer wearable devices (CWDs) to track health and fitness has rapidly expanded over recent years because of advances in technology. The general population now has the capability to continuously track vital signs, exercise output, and advanced health metrics. Although understanding of basic health metrics may be intuitive (eg, peak heart rate), more complex metrics are derived from proprietary algorithms, differ among device manufacturers, and may not historically be common in clinical practice (eg, peak V˙O2, exercise recovery scores). With the massive expansion of data collected at an individual patient level, careful interpretation is imperative. In this review, we critically analyze common health metrics provided by CWDs, describe common pitfalls in CWD interpretation, provide recommendations for the interpretation of abnormal results, present the utility of CWDs in exercise prescription, examine health disparities and inequities in CWD use and development, and present future directions for research and development.
Collapse
Affiliation(s)
- Bradley J Petek
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts, USA; Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Mostafa A Al-Alusi
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nathaniel Moulson
- Division of Cardiology and Sports Cardiology BC, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aubrey J Grant
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Cyril Besson
- Swiss Olympic Medical Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Institute for Sport Science, University of Lausanne (ISSUL), Lausanne, Switzerland
| | - J Sawalla Guseh
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Meagan M Wasfy
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Vincent Gremeaux
- Swiss Olympic Medical Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Institute for Sport Science, University of Lausanne (ISSUL), Lausanne, Switzerland
| | - Timothy W Churchill
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Aaron L Baggish
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts, USA; Swiss Olympic Medical Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Institute for Sport Science, University of Lausanne (ISSUL), Lausanne, Switzerland.
| |
Collapse
|
6
|
Husaini M, Emery MS. Cardiopulmonary Exercise Testing Interpretation in Athletes. Cardiol Clin 2022; 41:71-80. [DOI: 10.1016/j.ccl.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Skeletal Muscle Biochemical Origin of Exercise Intensity Domains and their Relation to Whole-Body V̇O2 Kinetics. Biosci Rep 2022; 42:231600. [PMID: 35880531 PMCID: PMC9366749 DOI: 10.1042/bsr20220798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
This article presents the biochemical intra-skeletal-muscle basis of exercise intensity domains: moderate (M), heavy (H), very heavy (VH) and severe (S). Threshold origins are mediated by a "Pi double-threshold" mechanism of muscle fatigue, which assumes: (1) additional ATP usage, underlying muscle V̇O2 and metabolite slow components, is initiated when inorganic phosphate (Pi) exceeds a critical value (Picrit); (2) exercise is terminated because of fatigue, when Pi reaches a peak value (Pipeak); (3) the Pi increase and additional ATP usage increase mutually stimulate each other forming a positive feedback. M/H and H/VH borders are defined by Pi on-kinetics in relation to Picrit and Pipeak. The values of the ATP usage activity, proportional to power output (PO), for the M/H, H/VH and VH/S borders are lowest in untrained muscle and highest in well-trained muscle. The metabolic range between the M/H and H/VH border (or "H space") decreases with muscle training, while the difference between the H/VH and VH/S border (or "VH space") is only weakly dependent on training status. The absolute magnitude of the muscle V̇O2 slow-component, absent in M exercise, rises gradually with PO to a maximal value in H exercise, and then decreases with PO in VH and S exercise. Simulations of untrained, physically-active and well-trained muscle demonstrate that the muscle M/H border need not be identical to the whole-body M/H border determined from pulmonary V̇O2 on-kinetics and blood lactate, while suggesting that the biochemical origins of the H/VH border reside within skeletal muscle and correspond to whole-body critical power.
Collapse
|
8
|
Burtscher J, Millet GP, Renner-Sattler K, Klimont J, Hackl M, Burtscher M. Moderate Altitude Residence Reduces Male Colorectal and Female Breast Cancer Mortality More Than Incidence: Therapeutic Implications? Cancers (Basel) 2021; 13:cancers13174420. [PMID: 34503229 PMCID: PMC8430507 DOI: 10.3390/cancers13174420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Living at moderate altitude may be associated with health benefits, including reduced mortality from male colorectal and female breast cancer. We aimed to determine altitude-dependent incidence and mortality rates of those cancers and put them in the context of altitude-associated lifestyle differences. METHODS Incidence cases and deaths of male colorectal cancer (n = 17,712 and 7462) and female breast cancer (n = 33,803 and 9147) from altitude categories between 250 to about 2000 m were extracted from official Austrian registries across 10 years (2008-2017). Altitude-associated differences in health determinants were derived from the Austrian Health Interview Survey (2014). RESULTS The age-standardized incidence and mortality rates of male colorectal cancer decreased by 24.0% and 44.2%, and that of female breast cancer by 6.5% and 26.2%, respectively, from the lowest to the highest altitude level. Higher physical activity levels and lower body mass index for both sexes living at higher altitudes were found. CONCLUSIONS Living at a moderate altitude was associated with a reduced incidence and (more pronounced) mortality from colorectal and breast cancer. Our results suggest a complex interaction between specific climate conditions and lifestyle behaviours. These observations may, in certain cases, support decision making when changing residence.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (J.B.); (G.P.M.)
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Grégoire P. Millet
- Department of Biomedical Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (J.B.); (G.P.M.)
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Jeannette Klimont
- Unit Demography and Health, Directorate Social Statistics, Statistics Austria, 1110 Vienna, Austria;
| | - Monika Hackl
- Austrian National Cancer Registry, Directorate Social Statistics, Statistics Austria, 1110 Vienna, Austria;
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, A-6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
9
|
Implication of Blood Rheology and Pulmonary Hemodynamics on Exercise-Induced Hypoxemia at Sea Level and Altitude in Athletes. Int J Sport Nutr Exerc Metab 2021; 31:397-405. [PMID: 34303308 DOI: 10.1123/ijsnem.2021-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate the changes in blood viscosity, pulmonary hemodynamics, nitric oxide (NO) production, and maximal oxygen uptake (V˙O2max) during a maximal incremental test conducted in normoxia and during exposure to moderate altitude (2,400 m) in athletes exhibiting exercise-induced hypoxemia at sea level (EIH). Nine endurance athletes with EIH and eight without EIH (NEIH) performed a maximal incremental test under three conditions: sea level, 1 day after arrival in hypoxia, and 5 days after arrival in hypoxia (H5) at 2,400 m. Gas exchange and oxygen peripheral saturation (SpO2) were continuously monitored. Cardiac output, pulmonary arterial pressure, and total pulmonary vascular resistance were assessed by echocardiography. Venous blood was sampled before and 3 min after exercise cessation to analyze blood viscosity and NO end-products. At sea level, athletes with EIH exhibited an increase in blood viscosity and NO levels during exercise while NEIH athletes showed no change. Pulmonary hemodynamics and aerobic performance were not different between the two groups. No between-group differences in blood viscosity, pulmonary hemodynamics, and V˙O2max were found at 1 day after arrival in hypoxia. At H5, lower total pulmonary vascular resistance and greater NO concentration were reported in response to exercise in EIH compared with NEIH athletes. EIH athletes had greater cardiac output and lower SpO2 at maximal exercise in H5, but no between-group differences occurred regarding blood viscosity and V˙O2max. The pulmonary vascular response observed at H5 in EIH athletes may be involved in the greater cardiac output of EIH group and counterbalanced the drop in SpO2 in order to achieve similar V˙O2max than NEIH athletes.
Collapse
|
10
|
Petek BJ, Gustus SK, Wasfy MM. Cardiopulmonary Exercise Testing in Athletes: Expect the Unexpected. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2021; 23. [DOI: 10.1007/s11936-021-00928-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Durand F, Raberin A. Exercise-Induced Hypoxemia in Endurance Athletes: Consequences for Altitude Exposure. Front Sports Act Living 2021; 3:663674. [PMID: 33981992 PMCID: PMC8107360 DOI: 10.3389/fspor.2021.663674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022] Open
Abstract
Exercise-induced hypoxemia (EIH) is well-described in endurance-trained athletes during both maximal and submaximal exercise intensities. Despite the drop in oxygen (O2) saturation and provided that training volumes are similar, athletes who experience EIH nevertheless produce the same endurance performance in normoxia as athletes without EIH. This lack of a difference prompted trainers to consider that the phenomenon was not relevant to performance but also suggested that a specific adaptation to exercise is present in EIH athletes. Even though the causes of EIH have been extensively studied, its consequences have not been fully characterized. With the development of endurance outdoor activities and altitude/hypoxia training, athletes often train and/or compete in this stressful environment with a decrease in the partial pressure of inspired O2 (due to the drop in barometric pressure). Thus, one can reasonably hypothesize that EIH athletes can specifically adapt to hypoxemic episodes during exercise at altitude. Although our knowledge of the interactions between EIH and acute exposure to hypoxia has improved over the last 10 years, many questions have yet to be addressed. Firstly, endurance performance during acute exposure to altitude appears to be more impaired in EIH vs. non-EIH athletes but the corresponding physiological mechanisms are not fully understood. Secondly, we lack information on the consequences of EIH during chronic exposure to altitude. Here, we (i) review research on the consequences of EIH under acute hypoxic conditions, (ii) highlight unresolved questions about EIH and chronic hypoxic exposure, and (iii) suggest perspectives for improving endurance training.
Collapse
Affiliation(s)
- Fabienne Durand
- Images Espace Dev, Université de Perpignan Via Domitia, Perpignan, France
| | | |
Collapse
|
12
|
Raberin A, Nader E, Lopez Ayerbe J, Alfonsi G, Mucci P, Rytz CL, Pialoux V, Durand F. Pro-Oxidant/Antioxidant Balance during a Prolonged Exposure to Moderate Altitude in Athletes Exhibiting Exercise-Induced Hypoxemia at Sea-Level. Life (Basel) 2021; 11:life11030228. [PMID: 33799611 PMCID: PMC8001482 DOI: 10.3390/life11030228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
This study examined to what extent athletes exhibiting exercise-induced hypoxemia (EIH) possess an altered redox status at rest, in response to exercise at sea level (SL) and during moderate altitude exposure. EIH was defined as a fall in arterial O2 saturation of at least 4% during exercise. Nine endurance athletes with EIH and ten without (NEIH) performed a maximal incremental test under three conditions: SL, one (H1) and five (H2) days after arrival to 2400 m. Gas exchange and peripheral capillary oxygen saturation (SpO2) were continuously monitored. Blood was sampled before exercise and after exercise cessation. Advanced oxidation protein products (AOPP), catalase, ferric-reducing antioxidant power, glutathione peroxidase, superoxide dismutase (SOD) and nitric oxide metabolites (NOx) were measured in plasma by spectrophotometry. EIH athletes had higher AOPP and NOx concentrations at pre- and post-exercise stages compared to NEIH at SL, H2 but not at H1. Only the EIH group experienced increased SOD activity between pre- and post-exercise exercise at SL and H2 but not at H1. EIH athletes had exacerbated oxidative stress compared to the NEIH athletes at SL and H2. These differences were blunted at H1. Oxidative stress did not alter the EIH groups’ aerobic performance and could lead to higher minute ventilation at H2. These results suggest that higher oxidative stress response EIH athletes could be involved in improved aerobic muscle functionality and a greater ventilatory acclimatization during prolonged hypoxia.
Collapse
Affiliation(s)
- Antoine Raberin
- Laboratoire Européen Performance Santé Altitude (LEPSA), EA 4604, Université de Perpignan Via Domitia, 66120 Font Romeu, France;
- Correspondence: ; Tel.: +33-6-8217-3800
| | - Elie Nader
- Team « Vascular Biology and Red Blood Cell », Univ Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA 7424, Université Claude Bernard Lyon 1, 69000 Lyon, France; (E.N.); (G.A.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75000 Paris, France
| | | | - Gauthier Alfonsi
- Team « Vascular Biology and Red Blood Cell », Univ Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA 7424, Université Claude Bernard Lyon 1, 69000 Lyon, France; (E.N.); (G.A.)
| | - Patrick Mucci
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, 59000 Lille, France;
| | - Chantal L. Rytz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AL T2P 2M5, Canada;
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AL T2P 2M5, Canada
| | - Vincent Pialoux
- Team « Atherosclerosis, Thrombosis and Physical Activity », Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Univ Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France;
- Institut Universitaire de France, 75000 Paris, France
| | - Fabienne Durand
- Laboratoire Européen Performance Santé Altitude (LEPSA), EA 4604, Université de Perpignan Via Domitia, 66120 Font Romeu, France;
- IMAGES ESPACE-DEV, UMR228, Université de Perpignan Via Domitia, 66000 Perpignan, France
| |
Collapse
|
13
|
The effects of normoxic endurance exercise on erythropoietin (EPO) production and the impact of selective β 1 and non-selective β 1 + β 2 adrenergic receptor blockade. Eur J Appl Physiol 2021; 121:1499-1511. [PMID: 33646423 DOI: 10.1007/s00421-020-04558-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Habitual endurance exercise results in increased erythropoiesis, which is primarily controlled by erythropoietin (EPO), yet studies demonstrating upregulation of EPO via a single bout of endurance exercise have been equivocal. This study compares the acute EPO response to 30 min of high versus 90 min of moderate-intensity endurance exercise and whether that response can be upregulated via selective adrenergic receptor blockade. METHODS Using a counterbalanced, cross-over design, fifteen participants (age 28 ± 8) completed two bouts of running (30-min, high intensity vs 90-min, moderate intensity) matched for overall training stress. A separate cohort of fourteen participants (age 31 ± 6) completed three bouts of 30-min high-intensity cycling after ingesting the preferential β1-adrenergic receptor (AR) antagonist bisoprolol, the non-preferential β1 + β2 antagonist nadolol or placebo. Venous blood was collected before, during, and after exercise, and serum EPO levels were determined by ELISA. RESULTS No detectable EPO response was observed during or after high intensity running, however, in the moderate-intensity trial EPO was significantly elevated at both during-exercise timepoints (+ 6.8% ± 2.3% at 15 min and + 8.7% ± 2.2% at 60 min). No significant change in EPO was observed post-cycling or between the trials involving βAR blockade. CONCLUSION Neither training mode (running or cycling), nor beta-blockade significantly influenced the EPO response to 30 min of high-intensity exercise, however, 90 min of moderate-intensity running elevated EPO during exercise, returning to baseline immediately post-exercise. Identifying the optimal mode, duration and intensity required to evoke an EPO response to exercise may help tailor exercise prescriptions designed to maximize EPO response for both performance and clinical applications.
Collapse
|
14
|
Dempsey JA, La Gerche A, Hull JH. Is the healthy respiratory system built just right, overbuilt, or underbuilt to meet the demands imposed by exercise? J Appl Physiol (1985) 2020; 129:1235-1256. [PMID: 32790594 DOI: 10.1152/japplphysiol.00444.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the healthy, untrained young adult, a case is made for a respiratory system (airways, pulmonary vasculature, lung parenchyma, respiratory muscles, and neural ventilatory control system) that is near ideally designed to ensure a highly efficient, homeostatic response to exercise of varying intensities and durations. Our aim was then to consider circumstances in which the intra/extrathoracic airways, pulmonary vasculature, respiratory muscles, and/or blood-gas distribution are underbuilt or inadequately regulated relative to the demands imposed by the cardiovascular system. In these instances, the respiratory system presents a significant limitation to O2 transport and contributes to the occurrence of locomotor muscle fatigue, inhibition of central locomotor output, and exercise performance. Most prominent in these examples of an "underbuilt" respiratory system are highly trained endurance athletes, with additional influences of sex, aging, hypoxic environments, and the highly inbred equine. We summarize by evaluating the relative influences of these respiratory system limitations on exercise performance and their impact on pathophysiology and provide recommendations for future investigation.
Collapse
Affiliation(s)
- Jerome A Dempsey
- John Robert Sutton Professor of Population Health Sciences, John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Andre La Gerche
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Australia.,National Center for Sports Cardiology, St. Vincent's Hospital, Melbourne, Fitzroy, Australia
| | - James H Hull
- Department of Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom.,Institute of Sport, Exercise and Health (ISEH), University College London, United Kingdom
| |
Collapse
|
15
|
Stensrud T, Rossvoll Ø, Mathiassen M, Melau J, Illidi C, Østgaard HN, Hisdal J, Stang J. Lung function and oxygen saturation after participation in Norseman Xtreme Triathlon. Scand J Med Sci Sports 2020; 30:1008-1016. [PMID: 32153035 DOI: 10.1111/sms.13651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To examine evidence of exercise-induced bronchoconstriction (EIB) defined as ≥10% reduction in forced expiratory volume in one second (FEV1 ) and exercise-induced arterial hypoxemia (EIAH) defined as ≥4% reduction in oxygen saturation (SpO2 ) from before to after participation in the Norseman Xtreme Triathlon. Secondarily, to assess whether changes in FEV1 and SpO2 are related to respiratory symptoms, training volume, and race time. METHODS In this quasi-experimental non-controlled study, we included 63 triathletes (50♂/13♀) aged 40.3 (±9.0) years (mean ± SD). Fifty-seven (46♂/11♀) measured lung function and 54 (44♂/10♀) measured SpO2 before the race, 8-10 minutes after the race (post-test 1) and the day after the race (post-test 2). Respiratory symptoms and training volume were recorded with modified AQUA questionnaire. ANOVA for repeated measures was used to detect differences in lung function and SpO2 . Statistical significance was accepted at 0.05 level. RESULTS Twenty-six participants (46%) presented with EIB at post-test 1 and 16 (28%) at post-test 2. Lung function variables were significantly reduced from baseline to post-test 1 and 2. Thirty-five participants (65%) showed evidence of mild to moderate EIAH. No significant correlations were observed except a weak correlation between maximal reduction in FEV1 and respiratory symptoms (r = 0.35, P = .016). CONCLUSION Our results demonstrated that 46% of the participants presented with EIB and 65% showed evidence of EIAH after the Norseman Xtreme Triathlon. Changes in FEV1 and SpO2 were not correlated to weekly training hours or race time. We observed a weak correlation between maximal reduction in FEV1 and respiratory symptoms.
Collapse
Affiliation(s)
- Trine Stensrud
- Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Øyvind Rossvoll
- Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | | | - Jørgen Melau
- Prehospital Division, Vestfold Hospital Trust, Tønsberg, Norway
| | - Camilla Illidi
- Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway.,Centre of Health, Exercise and Performance, College of health & Life Sciences, Brunel University, London, UK
| | - Hege N Østgaard
- Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jonny Hisdal
- Department of vascular surgery, Oslo University Hospital, Oslo, Norway.,Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Julie Stang
- Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
16
|
Raberin A, Meric H, Mucci P, Lopez Ayerbe J, Durand F. Muscle and cerebral oxygenation during exercise in athletes with exercise-induced hypoxemia: A comparison between sea level and acute moderate hypoxia. Eur J Sport Sci 2019; 20:803-812. [PMID: 31526237 DOI: 10.1080/17461391.2019.1669717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The objective of the present study was to evaluate the influence of exercise-induced hypoxemia (EIH) on muscle and cerebral oxygenation responses during maximal exercise in normoxia and in acute moderate hypoxia (fraction of inspired oxygen: 15.3%, 2400 m). EIH was defined as a drop in hemoglobin saturation of at least 4% for at least three consecutive minutes during maximal exercise at sea level. Twenty-five athletes performed incremental treadmill tests to assess maximal oxygen consumption (VO2max) in normoxia and in hypoxia. Oxygenation of the vastus lateralis muscle and the left prefrontal cortex of the brain was monitored using near-infrared spectroscopy. During the normoxic test, 15 athletes exhibited EIH; they displayed a larger change in muscle levels of oxyhemoglobin (ΔO2Hb) (p = 0.04) and a greater change in cerebral levels of deoxyhemoglobin (ΔHHb) (p = 0.02) than athletes without EIH (NEIH group). During the hypoxic test, muscle ΔO2Hb was lower in the EIH group than in the NEIH group (p = 0.03). At VO2max, hypoxia was associated with a smaller cerebral ΔO2Hb in both groups, and a greater cerebral ΔHHb compared to normoxia in the NEIH group only (p = 0.02). No intergroup differences in changes in muscle oxygenation were observed. The severity of O2 arterial desaturation was negatively correlated with changes in total muscle hemoglobin in normoxia (r = -0.48, p = 0.01), and positively correlated with the cerebral ΔHHb in normoxia (r = 0.45, p = 0.02). The occurrence of EIH at sea level was associated with specific muscle and cerebral oxygenation responses to exercise under both normoxia and moderate hypoxia.
Collapse
Affiliation(s)
- Antoine Raberin
- LEPSA, EA 4604, Université de Perpignan Via Domitia, Font Romeu, France
| | - Henri Meric
- LEPSA, EA 4604, Université de Perpignan Via Domitia, Font Romeu, France
| | - Patrick Mucci
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | | | - Fabienne Durand
- LEPSA, EA 4604, Université de Perpignan Via Domitia, Font Romeu, France
| |
Collapse
|
17
|
Riganas C, Papadopoulou Z, Margaritelis NV, Christoulas K, Vrabas IS. Inspiratory muscle training effects on oxygen saturation and performance in hypoxemic rowers: Effect of sex. J Sports Sci 2019; 37:2513-2521. [DOI: 10.1080/02640414.2019.1646582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Christos Riganas
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
- Ergophysiology Laboratory, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Zacharoula Papadopoulou
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
- Ergophysiology Laboratory, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikos V. Margaritelis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
- Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - Kosmas Christoulas
- Ergophysiology Laboratory, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis S. Vrabas
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
18
|
Dominelli PB, Sheel AW. Exercise-induced arterial hypoxemia; some answers, more questions. Appl Physiol Nutr Metab 2019; 44:571-579. [DOI: 10.1139/apnm-2018-0468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exercise-induced arterial hypoxemia (EIAH) is characterized by the decrease in arterial oxygen tension and oxyhemoglobin saturation during dynamic aerobic exercise. Since the time of the initial observations, our knowledge and understanding of EIAH has grown, but many unknowns remain. The purpose of this review is to provide an update on recent findings, highlight areas of disagreement, and identify where information is lacking. Specifically, this review will place emphasis on (i) the occurrence of EIAH during submaximal exercise, (ii) whether there are sex differences in the development and severity of EIAH, and (iii) unresolved questions and future directions.
Collapse
Affiliation(s)
- Paolo B. Dominelli
- Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - A. William Sheel
- School of Kinesiology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
19
|
Respiratory muscle strength is decreased after maximal incremental exercise in trained runners and cyclists. Respir Physiol Neurobiol 2017; 248:25-30. [PMID: 29155334 DOI: 10.1016/j.resp.2017.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 01/11/2023]
Abstract
The respiratory muscle fatigue seems to be able to limit exercise performance and may influence the determination of maximal oxygen uptake (V̇O2max) or maximum aerobic work rate during maximal incremental test. The aim of this study was therefore to investigate whether maximal incremental exercise decreases respiratory muscle strength. We hypothesized that respiratory muscle strength (maximal pressure) will decrease after maximal incremental exercise to exhaustion. 36 runners and 23 cyclists completed a maximal incremental test on a treadmill or a cycle ergometer with continuous monitoring of expired gases. Maximal inspiratory (MIP) and expiratory (MEP) pressure measurements were taken at rest and post- exercise. At rest, the MIP and MEP were 140±25 and 172±27 in runners vs. 115±26 and 146±33 in cyclists (p<0.05 between groups, respectively). The rest values of MIP and MEP were correlated to the V̇O2peak in all athletes, r=0.34, p<0.01 and r=0.36, p<0.01, respectively. At exhaustion, the MIP and MEP decreased significantly post- test by 13±7% and 13±5% in runners vs. 17±11% and 15±10% in cyclists (p>0.05), respectively. Our results suggest that respiratory muscle strength is decreased following maximal incremental exercise in trained runners and cyclists.
Collapse
|