1
|
Salgado RM, Ryan BJ, Seeley AD, Charkoudian N. Improving Endurance Exercise Performance at High Altitude: Traditional and Nontraditional Approaches. Exerc Sport Sci Rev 2025; 53:10-22. [PMID: 39262050 DOI: 10.1249/jes.0000000000000347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Acute exposure to terrestrial altitude (hypobaric hypoxia) causes decrements in endurance performance relative to sea level. Altitude acclimatization consistently results in partial attenuation of these decrements, but due to logistical challenges, it is not readily implemented. We discuss mechanisms and impact (or lack thereof) of other non-acclimatization interventions to improve endurance performance and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Roy M Salgado
- US Army Research Institute of Environmental Medicine, Thermal and Mountain Medicine Division, Natick, MA
| | | | | | | |
Collapse
|
2
|
Wang A, Hurr C. Effect of Ischemic Preconditioning on Endurance Running Performance in the Heat. J Sports Sci Med 2024; 23:799-811. [PMID: 39649574 PMCID: PMC11622057 DOI: 10.52082/jssm.2024.799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/08/2024] [Indexed: 12/11/2024]
Abstract
Ischemic preconditioning (IPC) is a strategy that may enhances endurance performance in thermoneutral environments. Exercising in the heat increases thermoregulatory and cardiovascular strain, decreasing endurance performance. The current study aimed to determine whether IPC administration improves endurance performance in the heat. In a randomized crossover design, 12 healthy subjects (V̇O2max: 54.4 ± 8.1 mL·kg-1·min-1) underwent either IPC administration (220 mmHg) or a sham treatment (20 mmHg), then completed a moderate-intensity 6-min running (EX1) and a high-intensity time-to-exhaustion running test (EX2) in a hot environment (35 °C, 50 % RH). Cardiac function, oxygen consumption (V̇O2), and core body temperature (TCORE) were measured. During EX2, IPC administration increased the total running time in the heat compared to the sham treatment (IPC: 416.4 ± 61.9 vs. sham 389.3 ± 40.7 s, P = 0.027). IPC administration also increased stroke volume (IPC: 150.4 ± 17.5 vs. sham: 128.2 ± 11.6 ml, P = 0.008) and cardiac output (IPC: 27.4 ± 1.7 vs. sham: 25.1 ± 2.2 ml min-1, P = 0.007) during 100% isotime of EX2. End-exercise V̇O2 (IPC: 3.72 ± 0.85 vs. sham: 3.54 ± 0.87 L·min-1, P = 0.017) and slow phase amplitude (IPC: 0.57 ± 0.17 vs. sham: 0.72 ± 0.22 L·min-1, P = 0.016) were improved. When compared with the baseline period, an increase in TCORE was less in the IPC condition during EX1 (IPC: 0.18 ± 0.06 vs. sham: 0.22 ± 0.08 °C, P = 0.005) and EX2 (IPC: 0.87 ± 0.10 vs. sham: 1.03 ± 0.10 °C, P < 0.001). IPC improves high-intensity endurance performance in the heat by 6.9 %. This performance benefit could be associated with improved cardiac and thermoregulatory function engendered by IPC administration.
Collapse
Affiliation(s)
- Anjie Wang
- Department of Physical Education, Anhui Polytechnic University, Wuhu, China
- Integrative Exercise Physiology Laboratory, Department of Physical Education, Jeonbuk National University, Jeonju, South Korea
| | - Chansol Hurr
- Integrative Exercise Physiology Laboratory, Department of Physical Education, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
3
|
Souza HLR, Oliveira GT, Meireles A, Dos Santos MP, Vieira JG, Arriel RA, Patterson SD, Marocolo M. Does ischemic preconditioning enhance sports performance more than placebo or no intervention? A systematic review with meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2024:101010. [PMID: 39536913 DOI: 10.1016/j.jshs.2024.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/17/2024] [Accepted: 06/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Ischemic preconditioning (IPC) is purported to have beneficial effects on athletic performance, although findings are inconsistent, with some studies reporting placebo effects. The majority of studies have investigated IPC alongside a placebo condition, but without a control condition that was devoid of experimental manipulation, thereby limiting accurate determination of the IPC effects. Therefore, the aims of this study wereto assess the impact of the IPC intervention, compared to both placebo and no intervention, on exercise capacity and athletic performance. METHODS A systematic search of PubMed, Embase, SPORTDiscus, Cochrane Library, and Latin American and Caribbean Health Sciences Literature (LILACS) covering records from their inception until July 2023 was conducted. To qualify for inclusion, studies had to apply IPC as an acute intervention, comparing it with placebo and/or control conditions. Outcomes of interest were performance (force, number of repetitions, power, time to exhaustion, and time trial performance), physiological measurements (maximum oxygen consumption, and heart rate), or perceptual measurements (RPE). For each outcome measure, we conducted 3 independent meta-analyses (IPC vs. placebo, IPC vs. control, placebo vs. control) using an inverse-variance random-effects model. The between-treatment effects were quantified by the standardized mean difference (SMD), accompanied by their respective 95% confidence intervals. Additionally, we employed the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach to assess the level of certainty in the evidence. RESULTS Seventy-nine studies were included in the quantitative analysis. Overall, IPC demonstrates a comparable effect to the placebo condition (using a low-pressure tourniquet), irrespective of the subjects'training level (all outcomes presenting p > 0.05), except for the outcome of time to exhaustion, which exhibits a small magnitude effect (SMD = 0.37; p = 0.002). Additionally, the placebo exhibited effects notably greater than the control condition (outcome: number of repetitions; SMD=0.45; p = 0.03), suggesting a potential influence of participants' cognitive perception on the outcomes. However, the evidence is of moderate to low certainty, regardless of the comparison or outcome. CONCLUSION IPC has significant effects compared to the control intervention, but it did not surpass the placebo condition. Its administration might be influenced by the cognitive perception of the receiving subject, and the efficacy of IPC as an ergogenic strategy for enhancing exercise capacity and athletic performance remains questionable.
Collapse
Affiliation(s)
- Hiago L R Souza
- Department of Biophysics and Physiology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; Postgraduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil.
| | - Géssyca T Oliveira
- Department of Biophysics and Physiology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; Postgraduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Anderson Meireles
- Department of Biophysics and Physiology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; Postgraduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Marcelo P Dos Santos
- Department of Biophysics and Physiology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; Postgraduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - João G Vieira
- Postgraduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Rhai A Arriel
- Department of Biophysics and Physiology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Stephen D Patterson
- Centre for Applied Performance Science, St Mary's University, London TW1 4SX, United Kingdom
| | - Moacir Marocolo
- Department of Biophysics and Physiology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; Postgraduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; Department of Training and Exercise Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Yu CJ, Tsai SC, Liao YH, Chen CY, Wu KC. Exploring the Potential Benefits of Interventions When Addressing Simulated Altitude Hypoxia during Male Cyclist Sports: A Systematic Review. APPLIED SCIENCES 2024; 14:3091. [DOI: 10.3390/app14073091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Training in hypoxic environments enhances endurance, but the various influences of training protocols and supplementation for efficient performance are not yet clear. This systematic review explored the effects of different supplementations and interventions used to optimize the aerobic and anaerobic performance of cyclists. Data were collected from the following sources: PubMed, Google Scholar, EMBASE, WOS, Cochrane Central Register of Controlled Trials, and randomized controlled trials (RCTs). Studies that explored the effects of supplementation or intervention during cycling were selected for analysis. Five studies (67 male cyclists; mean age, 23.74–33.56 years) reported different outcomes from supplementation or intervention during the acute hypoxia of cyclists. Three studies (42 male cyclists; mean age, 25.88–36.22 years) listed the benefits of beetroot juice in preserving SpO2 (pulse oxygen saturation) and enhancing high-intensity endurance performance, effectively preventing the reduction in power output. This systematic review provided evidence that the different effects of ischemic preconditioning (IPC), sildenafil, and beetroot (BR) supplementation and intervention did not present a statistically greater benefit than for normoxia groups, but BR supplementation promoted the benefits of SpO2. Future research should evaluate the duration and higher FiO2 (simulated altitude, hypoxia) levels of hypoxia in training protocols for cyclists. This is important when determining the effectiveness of supplements or interventions in hypoxic conditions and their impact on sports performance, particularly in terms of power output.
Collapse
Affiliation(s)
- Chen-Jui Yu
- Institute of Sports Sciences, University of Taipei, Taipei City 11153, Taiwan
| | - Shiow-Chwen Tsai
- Institute of Sports Sciences, University of Taipei, Taipei City 11153, Taiwan
| | - Yi-Hung Liao
- Department of Exercise and Health Sciences, National Taipei University of Nursing and Health Sciences, Taipei City 11219, Taiwan
| | - Chung-Yu Chen
- Department of Exercise and Health Sciences, University of Taipei, Taipei City 11153, Taiwan
| | - Kuo-Cheng Wu
- Graduate Institute of Sports Training, Kinesiology, University of Taipei, Taipei City 11153, Taiwan
| |
Collapse
|
5
|
Morley WN, Murrant CL, Burr JF. Ergogenic effect of ischemic preconditioning is not directly conferred to isolated skeletal muscle via blood. Eur J Appl Physiol 2023; 123:1851-1861. [PMID: 37074464 DOI: 10.1007/s00421-023-05197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/03/2023] [Indexed: 04/20/2023]
Abstract
PURPOSE Ischemic preconditioning (IPC) in humans has been demonstrated to confer ergogenic benefit to aerobic exercise performance, with an improvement in the response rate when the IPC stimulus is combined with concurrent exercise. Despite potential performance improvements, the nature of the neuronal and humoral mechanisms of conferral and their respective contributions to ergogenic benefit remain unclear. We sought to examine the effects of the humoral component of ischemic preconditioning on skeletal muscle tissue using preconditioned human serum and isolated mouse soleus. METHODS Isolated mouse soleus was electrically stimulated to contract while in human serum preconditioned with either traditional (IPC) or augmented (AUG) ischemic preconditioning compared to control (CON) and exercise (ERG) preconditioning. Force frequency (FF) curves, twitch responses, and a fatigue-recovery protocol were performed on muscles before and after the addition of serum. After preconditioning, human participants performed a 4 km cycling time trial in order to identify responders and non-responders to IPC. RESULTS No differences in indices of contractile function, fatiguability, nor recovery were observed between conditions in mouse soleus muscles. Further, no human participants improved performance in a 4-km cycling time trial in response to traditional nor augmented ischemic preconditioning compared to control or exercise conditions (CON 407.7 ± 41.1 s, IPC 411.6 ± 41.9 s, ERG 408.8 ± 41.4 s, AUG 414.1 ± 41.9 s). CONCLUSIONS Our findings do not support the conferral of ergogenic benefit via a humoral component of IPC at the intracellular level. Ischemic preconditioning may not manifest prominently at submaximal exercise intensities, and augmented ischemic preconditioning may have a hormetic relationship with performance improvements.
Collapse
Affiliation(s)
- William N Morley
- Human Performance & Health Research Laboratory, Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Coral L Murrant
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Jamie F Burr
- Human Performance & Health Research Laboratory, Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
6
|
O’Brien L, Jacobs I. Potential physiological responses contributing to the ergogenic effects of acute ischemic preconditioning during exercise: A narrative review. Front Physiol 2022; 13:1051529. [PMID: 36518104 PMCID: PMC9742576 DOI: 10.3389/fphys.2022.1051529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 09/26/2023] Open
Abstract
Ischemic preconditioning (IPC) has been reported to augment exercise performance, but there is considerable heterogeneity in the magnitude and frequency of performance improvements. Despite a burgeoning interest in IPC as an ergogenic aid, much is still unknown about the physiological mechanisms that mediate the observed performance enhancing effects. This narrative review collates those physiological responses to IPC reported in the IPC literature and discusses how these responses may contribute to the ergogenic effects of IPC. Specifically, this review discusses documented central and peripheral cardiovascular responses, as well as selected metabolic, neurological, and perceptual effects of IPC that have been reported in the literature.
Collapse
Affiliation(s)
- Liam O’Brien
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Ira Jacobs
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- The Tannenbaum Institute for Science in Sport, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Seeley AD, Caldwell AR, Cahalin LP, Ahn S, Perry AC, Arwari B, Jacobs KA. Seven days of ischemic preconditioning augments hypoxic exercise ventilation and muscle oxygenation in recreationally trained males. Am J Physiol Regul Integr Comp Physiol 2022; 323:R457-R466. [PMID: 35968897 PMCID: PMC9529270 DOI: 10.1152/ajpregu.00335.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022]
Abstract
This investigation sought to assess whether single or repeated bouts of ischemic preconditioning (IPC) could improve oxyhemoglobin saturation ([Formula: see text]) and/or attenuate reductions in muscle tissue saturation index (TSI) during submaximal hypoxic exercise. Fifteen healthy young men completed submaximal graded exercise under four experimental conditions: 1) normoxia (NORM), 2) hypoxia (HYP) [oxygen fraction of inspired air ([Formula: see text]) = 0.14, ∼3,200 m], 3) hypoxia preceded by a single session of IPC (IPC1-HYP), and 4) hypoxia preceded by seven sessions of IPC, one a day for 7 consecutive days (IPC7-HYP). IPC7-HYP heightened minute ventilation (V̇e) at 80% HYP peak cycling power output (Wpeak) (+10.47 ± 3.35 L·min-1, P = 0.006), compared with HYP, as a function of increased breathing frequency. Both IPC1-HYP (+0.17 ± 0.04 L·min-1, P < 0.001) and IPC7-HYP (+0.16 ± 0.04 L·min-1, P < 0.001) elicited greater oxygen consumption (V̇o2) across exercise intensities compared with NORM, whereas V̇o2 was unchanged with HYP alone. [Formula: see text] was unchanged by either IPC condition at any exercise intensity, yet the reduction of muscle TSI during resting hypoxic exposure was attenuated by IPC7-HYP (+9.9 ± 3.6%, P = 0.040) compared with HYP, likely as a function of reduced local oxygen extraction. Considering all exercise intensities, IPC7-HYP attenuated reductions of TSI with HYP (+6.4 ± 1.8%, P = 0.001). Seven days of IPC heightens ventilation, posing a threat to ventilatory efficiency, during high-intensity submaximal hypoxic exercise and attenuates reductions in hypoxic resting and exercise muscle oxygenation in healthy young men. A single session of IPC may be capable of modulating hypoxic ventilation; however, our present population was unable to demonstrate this with certainty.
Collapse
Affiliation(s)
- Afton D Seeley
- Department of Kinesiology and Sport Sciences, School of Education and Human Development, University of Miami, Coral Gables, Florida
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
| | - Aaron R Caldwell
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
| | - Lawrence P Cahalin
- Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, Florida
| | - Soyeon Ahn
- Department of Educational and Psychological Studies, School of Education and Human Development, University of Miami, Coral Gables, Florida
| | - Arlette C Perry
- Department of Kinesiology and Sport Sciences, School of Education and Human Development, University of Miami, Coral Gables, Florida
| | - Brian Arwari
- Department of Kinesiology and Sport Sciences, School of Education and Human Development, University of Miami, Coral Gables, Florida
| | - Kevin A Jacobs
- Department of Kinesiology and Sport Sciences, School of Education and Human Development, University of Miami, Coral Gables, Florida
| |
Collapse
|
8
|
Zhong Z, Dong H, Wu Y, Zhou S, Li H, Huang P, Tian H, Li X, Xiao H, Yang T, Xiong K, Zhang G, Tang Z, Li Y, Fan X, Yuan C, Ning J, Li Y, Xie J, Li P. Remote ischemic preconditioning enhances aerobic performance by accelerating regional oxygenation and improving cardiac function during acute hypobaric hypoxia exposure. Front Physiol 2022; 13:950086. [PMID: 36160840 PMCID: PMC9500473 DOI: 10.3389/fphys.2022.950086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) may improve exercise performance. However, the influence of RIPC on aerobic performance and underlying physiological mechanisms during hypobaric hypoxia (HH) exposure remains relatively uncertain. Here, we systematically evaluated the potential performance benefits and underlying mechanisms of RIPC during HH exposure. Seventy-nine healthy participants were randomly assigned to receive sham intervention or RIPC (4 × 5 min occlusion 180 mm Hg/reperfusion 0 mm Hg, bilaterally on the upper arms) for 8 consecutive days in phases 1 (24 participants) and phase 2 (55 participants). In the phases 1, we measured the change in maximal oxygen uptake capacity (VO2max) and muscle oxygenation (SmO2) on the leg during a graded exercise test. We also measured regional cerebral oxygenation (rSO2) on the forehead. These measures and physiological variables, such as cardiovascular hemodynamic parameters and heart rate variability index, were used to evaluate the intervention effect of RIPC on the changes in bodily functions caused by HH exposure. In the phase 2, plasma protein mass spectrometry was then performed after RIPC intervention, and the results were further evaluated using ELISA tests to assess possible mechanisms. The results suggested that RIPC intervention improved VO2max (11.29%) and accelerated both the maximum (18.13%) and minimum (53%) values of SmO2 and rSO2 (6.88%) compared to sham intervention in hypobaric hypoxia exposure. Cardiovascular hemodynamic parameters (SV, SVRI, PPV% and SpMet%) and the heart rate variability index (Mean RR, Mean HR, RMSSD, pNN50, Lfnu, Hfnu, SD1, SD2/SD1, ApEn, SampEn, DFA1and DFA2) were evaluated. Protein sequence analysis showed 42 unregulated and six downregulated proteins in the plasma of the RIPC group compared to the sham group after HH exposure. Three proteins, thymosin β4 (Tβ4), heat shock protein-70 (HSP70), and heat shock protein-90 (HSP90), were significantly altered in the plasma of the RIPC group before and after HH exposure. Our data demonstrated that in acute HH exposure, RIPC mitigates the decline in VO2max and regional oxygenation, as well as physiological variables, such as cardiovascular hemodynamic parameters and the heart rate variability index, by influencing plasma Tβ4, HSP70, and HSP90. These data suggest that RIPC may be beneficial for acute HH exposure.
Collapse
Affiliation(s)
- Zhifeng Zhong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huaping Dong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Wu
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Simin Zhou
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pei Huang
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huaijun Tian
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoxu Li
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Heng Xiao
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tian Yang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kun Xiong
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Zhang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhongwei Tang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yaling Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xueying Fan
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chao Yuan
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaolin Ning
- Department of Anesthesiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yue Li
- Department of Anesthesiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaxin Xie
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jiaxin Xie, ; Peng Li,
| | - Peng Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jiaxin Xie, ; Peng Li,
| |
Collapse
|
9
|
Bellini D, Chapman C, Peden D, Hoekstra SP, Ferguson RA, Leicht CA. Ischaemic preconditioning improves upper-body endurance performance without altering ⩒O 2 kinetics. Eur J Sport Sci 2022:1-9. [PMID: 35848989 DOI: 10.1080/17461391.2022.2103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Whilst pre-exercise ischaemic preconditioning (IPC) can improve lower-body exercise performance, its impact on upper-limb performance has received little attention. This study examines the influence of IPC on upper-body exercise performance and oxygen uptake (⩒O2) kinetics. METHODS Eleven recreationally-active males (24 ± 2 years) completed an arm-crank graded exercise test to exhaustion to determine the power outputs at the ventilatory thresholds (VT1 and VT2) and ⩒O2peak (40.0 ± 7.4 ml·kg-1·min-1). Four main trials were conducted, two following IPC (4 × 5-min, 220 mmHg contralateral upper-limb occlusion), the other two following SHAM (4 × 5-min, 20 mmHg). The first two trials consisted of a 15-minute constant work rate and the last two time-to-exhaustion (TTE) arm-crank tests at the power equivalents of 95% VT1 (LOW) and VT2 (HIGH), respectively. Pulmonary ⩒O2 kinetics, heart rate, blood-lactate concentration, and rating of perceived exertion were recorded throughout exercise. RESULTS TTE during HIGH was longer following IPC than SHAM (459 ± 115 vs 395 ± 102 s, p = 0.004). Mean response time and change in ⩒O2 between 2-min and end exercise (Δ⩒O2) were not different between IPC and SHAM for arm-cranking at both LOW (80.3 ± 19.0 vs 90.3 ± 23.5 s [p = 0.06], 457 ± 184 vs 443 ± 245 ml [p = 0.83]) and HIGH (96.6 ± 31.2 vs 92.1 ± 24.4 s [p = 0.65], 617 ± 321 vs 649 ± 230 ml [p = 0.74]). Heart rate, blood-lactate concentration, and rating of perceived exertion did not differ between conditions (all p≥0.05). CONCLUSION TTE was longer following IPC during upper-body exercise despite unchanged ⩒O2 kinetics.
Collapse
Affiliation(s)
- D Bellini
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, UK
| | - C Chapman
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, UK
| | - D Peden
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, UK
| | - S P Hoekstra
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, UK.,The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | - R A Ferguson
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, UK
| | - C A Leicht
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, UK.,The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| |
Collapse
|
10
|
Chopra K, Jeffries O, Tallent J, Heffernan S, Kilduff L, Gray A, Waldron M. Repeated Ischemic Preconditioning Effects on Physiological Responses to Hypoxic Exercise. Aerosp Med Hum Perform 2022; 93:13-21. [PMID: 35063051 DOI: 10.3357/amhp.5919.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION: Repeated ischemic preconditioning (IPC) can improve muscle and pulmonary oxygen on-kinetics, blood flow, and exercise efficiency, but these effects have not been investigated in severe hypoxia. The aim of the current study was to evaluate the effects of 7 d of IPC on resting and exercising muscle and cardio-pulmonary responses to severe hypoxia.METHODS: A total of 14 subjects received either: 1) 7 d of repeated lower-limb occlusion (4 × 5 min, 217 ± 30 mmHg) at limb occlusive pressure (IPC) or SHAM (4 × 5 min, 20 mmHg). Subjects were tested for resting limb blood flow, relative microvascular deoxyhemoglobin concentration ([HHB]), and pulmonary oxygen (Vo2p) responses to steady state and incremental exercise to exhaustion in hypoxia (fractional inspired O₂ = 0.103), which was followed by 7 d of IPC or SHAM and retesting 72 h post-intervention.RESULTS: There were no effects of IPC on maximal oxygen consumption, time to exhaustion during the incremental test, or minute ventilation and arterial oxygen saturation. However, the IPC group had higher delta efficiency based on pooled results and lower steady state Δ[HHB] (IPC ∼24% vs. SHAM ∼6% pre to post), as well as slowing the [HHB] time constant (IPC ∼26% vs. SHAM ∼3% pre to post) and reducing the overshoot in [HHB]: Vo₂ ratio during exercise onset.CONCLUSIONS: Collectively, these results demonstrate that muscle O₂ efficiency and microvascular O₂ distribution can be improved by repeated IPC, but there are no effects on maximal exercise capacity in severe hypoxia.Chopra K, Jeffries O, Tallent J, Heffernan S, Kilduff L, Gray A, Waldron M. Repeated ischemic preconditioning effects on physiological responses to hypoxic exercise. Aerosp Med Hum Perform. 2022; 93(1):13-21.
Collapse
|
11
|
Tanaka D, Suga T, Shimoho K, Isaka T. Effect of 2-Weeks Ischemic Preconditioning on Exercise Performance: A Pilot Study. Front Sports Act Living 2021; 3:646369. [PMID: 34195610 PMCID: PMC8236525 DOI: 10.3389/fspor.2021.646369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
An acute bout of ischemic preconditioning (IPC) has been reported to increase exercise performance. Nevertheless, the ineffectiveness of acute IPC on exercise performance has also been reported. Similarly, the effect of a shot-term intervention of IPC on exercise performance remains controversial in previous studies. In this study, we examined the effects of short-term IPC intervention on whole and local exercise performances and its-related parameters. Ten healthy young males undertook a 2-weeks IPC intervention (6 days/weeks). The IPC applied to both legs with three episodes of a 5-min ischemia and 5-min reperfusion cycle. Whole-body exercise performance was assessed by peak O2 consumption (VO2: VO2peak) during a ramp-incremental cycling test. Local exercise performance was assessed by time to task failure during a knee extensor sustained endurance test. A repeated moderate-intensity cycling test was performed to evaluate dynamics of pulmonary VO2 and muscle deoxygenation. The knee extensor maximal voluntary contraction and quadriceps femoris cross-sectional area measurements were performed to explore the potentiality for strength gain and muscle hypertrophy. The whole-body exercise performance (i.e., VO2peak) did not change before and after the intervention (P = 0.147, Power = 0.09, Effect size = 0.21, 95% confidence interval: −0.67, 1.09). Moreover, the local exercise performance (i.e., time to task failure) did not change before and after the intervention (P = 0.923, Power = 0.05, Effect size = 0.02, 95% confidence interval: −0.86, 0.89). Furthermore, no such changes were observed for all parameters measured using a repeated moderate-intensity cycling test and knee extensor strength and quadriceps femoris size measurements. These findings suggest that a 2-weeks IPC intervention cannot increase whole-body and local exercise performances, corresponding with ineffectiveness on its-related parameters in healthy young adults. However, the statistical analyses of changes in the measured parameters in this study showed insufficient statistical power and sensitivity, due to the small sample size. Additionally, this study did not include control group(s) with placebo and/or nocebo. Therefore, further studies with a larger sample size and control group are required to clarify the present findings.
Collapse
Affiliation(s)
- Daichi Tanaka
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Tadashi Suga
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Kento Shimoho
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
12
|
Wang Z, Lv B, Zhang L, Gao R, Zhao W, Wang L, Min Z, Mi Z, Song Y, Zhang J, Yu Y, Ji X, Li J, Wu L. Repeated remote ischaemic preconditioning can prevent acute mountain sickness after rapid ascent to a high altitude. Eur J Sport Sci 2021; 22:1304-1314. [PMID: 33977839 DOI: 10.1080/17461391.2021.1927197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND The aim of the present study was to assess the effectiveness of 4 different remote ischaemic preconditioning (RIPC) protocols varying in duration and frequency for preventing acute mountain sickness (AMS). Methods: The participants in the four RIPC groups received different RIPC treatments in the arms at a low altitude; the control group did not receive a specific sham treatment. The participants were then flown to a High Altitude (3650 m). The primary outcome was the incidence and severity of AMS evaluated by the Lake Louise score (LLS) after arrival; vital signs were collected simultaneously. We performed an intention-to-treat analysis. Results: A total of 250 participants were included with 50 participants in each group. The total AMS incidence in all participants was 26.4%. A total of 20 AMS cases (40%) occurred in the control group, whereas 15 AMS cases (30%) occurred both in the RIPC A and RIPC B groups (relative risk 1.3; 95% confidence interval 0.8 - 2.3; χ2 = 1.099; p = 0.29), and 8 AMS cases (16%) occurred both in the RIPC C and D groups (RR 2.5; 95% CI 1.2 - 5.2; χ2 = 7.143, p < 0.01), with significantly lower LLSs in the RIPC C and D groups (F = 6.51, p <0.001). Conclusion: This study demonstrated that a four-week RIPC intervention but not a one-week regimen reduced AMS incidence and severity; however, a placebo effect might have contributed to the results of this study. METHODS The participants in the four RIPC groups received different RIPC treatments in the arms at a low altitude; the control group did not receive a specific sham treatment. The participants were then flown to a High Altitude (3650 m). The primary outcome was the incidence and severity of AMS evaluated by the Lake Louise score (LLS) after arrival; vital signs were collected simultaneously. We performed an intention-to-treat analysis. RESULTS A total of 250 participants were included with 50 participants in each group. The total AMS incidence in all participants was 26.4%. A total of 20 AMS cases (40%) occurred in the control group after arrival at high altitude, whereas 15 AMS cases (30%) occurred both in the RIPC A and RIPC B groups (relative risk 1.3; 95% confidence interval 0.8 - 2.3; χ2 = 1.099; p = 0.29), and 8 AMS cases (16%) occurred both in the RIPC C and D groups (RR 2.5; 95% CI 1.2 - 5.2; χ2 = 7.143, p < 0.01), with significantly lower LLSs in the RIPC C and D groups (F = 6.51, p <0.001). CONCLUSION This study demonstrated that a four-week RIPC intervention but not a one-week regimen reduced AMS incidence and severity; however, a placebo effect might have contributed to the results of this study.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Bo Lv
- Department of Neurology, PKUCare Zibo Hospital, Zibo, People's Republic of China.,Department of Neurology, People's Hospital of Yuncheng County, Heze, People's Republic of China
| | - Lin Zhang
- Department of Emergency, People's Hospital of Rizhao, Rizhao, People's Republic of China
| | - Ran Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lin Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhaojun Min
- Department of Geriatric Medicine, People's Hospital of Lhasa, Lhasa, People's Republic of China
| | - Zhen Mi
- Department of Geriatric Medicine, People's Hospital of Lhasa, Lhasa, People's Republic of China
| | - Yang Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yabin Yu
- Capital Institute of Pediatrics, Beijing, People's Republic of China
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Junjie Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
13
|
Morley WN, Ferth S, Debenham MIB, Boston M, Power GA, Burr JF. Training response to 8 weeks of blood flow restricted training is not improved by preferentially altering tissue hypoxia or lactate accumulation when training to repetition failure. Appl Physiol Nutr Metab 2021; 46:1257-1264. [PMID: 33930277 DOI: 10.1139/apnm-2020-1056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite compelling muscular structure and function changes resulting from blood flow restricted (BFR) resistance training, mechanisms of action remain poorly characterized. Alterations in tissue O2 saturation (TSI%) and metabolites are potential drivers of observed changes, but their relationships with degree of occlusion pressure are unclear. We examined local TSI% and blood lactate (BL) concentration during BFR training to failure using different occlusion pressures on strength, hypertrophy, and muscular endurance over an 8-week training period. Twenty participants (11M:9F) trained 3/wk for 8wk using high pressure (100% resting limb occlusion pressure, LOP, 20%1RM), moderate pressure (50% LOP, 20%1RM), or traditional resistance training (70%1RM). Strength, size, and muscular endurance were measured pre/post training. TSI% and BL were quantified during a training session. Despite overall increases, no group preferentially increased strength, hypertrophy, or muscular endurance (p>0.05). Neither TSI% nor BL concentration differed between groups (p>0.05). Moderate pressure resulted in greater accumulated deoxygenation stress (TSI%*time) (-6352±3081, -3939±1835, -2532±1349 au for moderate pressure, high pressure, and TRT, p=0.018). We demonstrate that BFR training to task-failure elicits similar strength, hypertrophy, and muscular endurance changes to traditional resistance training. Further, varied occlusion pressure does not impact these outcomes, nor elicit changes in TSI% or BL concentrations. Novelty Bullets • Training to task failure with low-load blood flow restriction elicits similar improvements to traditional resistance training, regardless of occlusion pressure. • During blood flow restriction, altering occlusion pressure does not proportionally impact tissue O2 saturation nor blood lactate concentrations.
Collapse
Affiliation(s)
- William Neil Morley
- University of Guelph, 3653, Human Health and Nutritional Sciences, Guelph, Ontario, Canada;
| | - Shane Ferth
- University of Guelph, 3653, Human Health and Nutritional Sciences, Guelph, Ontario, Canada;
| | | | - Matthew Boston
- University of Guelph, 3653, Human Health and Nutritional Sciences, Guelph, Ontario, Canada;
| | - Geoffrey Alonzo Power
- University of Guelph, 3653, Human Health & Nutritional Sciences , Guelph, Ontario, Canada;
| | - Jamie F Burr
- University of Guelph, 3653, Human Health and Nutritional Sciences, Guelph, Canada;
| |
Collapse
|
14
|
O'Brien L, Jacobs I. Methodological Variations Contributing to Heterogenous Ergogenic Responses to Ischemic Preconditioning. Front Physiol 2021; 12:656980. [PMID: 33995123 PMCID: PMC8117357 DOI: 10.3389/fphys.2021.656980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemic preconditioning (IPC) has been repeatedly reported to augment maximal exercise performance over a range of exercise durations and modalities. However, an examination of the relevant literature indicates that the reproducibility and robustness of ergogenic responses to this technique are variable, confounding expectations about the magnitude of its effects. Considerable variability among study methodologies may contribute to the equivocal responses to IPC. This review focuses on the wide range of methodologies used in IPC research, and how such variability likely confounds interpretation of the interactions of IPC and exercise. Several avenues are recommended to improve IPC methodological consistency, which should facilitate a future consensus about optimizing the IPC protocol, including due consideration of factors such as: location of the stimulus, the time between treatment and exercise, individualized tourniquet pressures and standardized tourniquet physical characteristics, and the incorporation of proper placebo treatments into future study designs.
Collapse
Affiliation(s)
- Liam O'Brien
- Human Physiology Laboratory, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Ira Jacobs
- Human Physiology Laboratory, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Waldron M, Papavasileiou G, Jeffries O, Nevola V, Heffernan S M, Kilduff L, Tallent J. Concurrent adaptations in maximal aerobic capacity, heat tolerance, microvascular blood flow and oxygen extraction following heat acclimation and ischemic preconditioning. J Therm Biol 2020; 93:102724. [PMID: 33077136 DOI: 10.1016/j.jtherbio.2020.102724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/29/2022]
Abstract
We investigated the effects of: 1) Ischemic pre-conditioning (IPC) plus a concurrent five-day heat acclimation + IPC (IPC + HA), 2) five-day HA with sham IPC (HA), or 3) control (CON) on thermoneutral measurements of endurance performance, resting measures of skeletal muscle oxygenation and blood flow. Twenty-nine participants were randomly allocated to three groups, which included: 1) five-days of repeated leg occlusion (4 x 5-min) IPC at limb occlusive pressure, plus fixed-intensity (55% V˙ O2max) cycling HA at ~36 °C/40% humidity; 2) HA plus sham IPC (20 mmHg) or 3) or CON (thermoneutral 55% V˙ O2max plus sham IPC). In IPC + HA and HA, there were increases in maximal oxygen consumption (O2max) (7.8% and 5.4%, respectively; P < 0.05), ventilatory threshold (VT) (5.6% and 2.4%, respectively, P < 0.05), delta efficiency (DE) (2.0% and 1.4%, respectively; P < 0.05) and maximum oxygen pulse (O2pulse-Max) (7.0% and 6.9%, respectively; P < 0.05) during an exhaustive incremental test. There were no changes for CON (P > 0.05). Changes (P < 0.05) in resting core temperature (TC), muscle oxygen consumption (m V˙ O2), and limb blood flow (LBF) were also found pre-to-post intervention among the HA and IPC + HA groups, but not in CON (P > 0.05). Five-days of either HA or IPC + HA can enhance markers of endurance performance in cooler environments, alongside improved muscle oxygen extraction, blood flow, exercising muscle efficiency and O2 pulse at higher intensities, thus suggesting the occurrence of peripheral adaptation. Both HA and IPC + HA enhance the adaptation of endurance capacity, which might partly relate to peripheral changes.
Collapse
Affiliation(s)
- M Waldron
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK; School of Science and Technology, University of New England, NSW, Australia; Welsh Institute of Performance Science, Swansea University, Swansea, UK.
| | - G Papavasileiou
- Sport, Health and Applied Sciences, St Mary's University, London, UK
| | - O Jeffries
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - V Nevola
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK; Defence Science and Technology Laboratory (Dstl), Fareham, Hampshire, UK
| | - M Heffernan S
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - L Kilduff
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK; Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - J Tallent
- Sport, Health and Applied Sciences, St Mary's University, London, UK
| |
Collapse
|
16
|
Vangsoe MT, Nielsen JK, Paton CD. A Comparison of Different Prerace Warm-Up Strategies on 1-km Cycling Time-Trial Performance. Int J Sports Physiol Perform 2020; 15:1109-1116. [PMID: 32294619 DOI: 10.1123/ijspp.2019-0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/10/2019] [Accepted: 11/12/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE Ischemic preconditioning (IPC) and postactivation potentiation (PAP) are warm-up strategies proposed to improve high-intensity sporting performance. However, only few studies have investigated the benefits of these strategies compared with an appropriate control (CON) or an athlete-selected (SELF) warm-up protocol. Therefore, this study examined the effects of 4 different warm-up routines on 1-km time-trial (TT) performance with competitive cyclists. METHODS In a randomized crossover study, 12 well-trained cyclists (age 32 [10] y, mass 77.7 [4.6] kg, peak power output 1141 [61] W) performed 4 different warm-up strategies-(CON) 17 minutes CON only, (SELF) a self-determined warm-up, (IPC) IPC + CON, or (PAP) CON + PAP-prior to completing a maximal-effort 1-km TT. Performance time and power, quadriceps electromyograms, muscle oxygen saturation (SmO2), and blood lactate were measured to determine differences between trials. RESULTS There were no significant differences (P > .05) in 1-km performance time between CON (76.9 [5.2] s), SELF (77.3 [6.0] s), IPC (77.0 [5.5] s), or PAP (77.3 [5.9] s) protocols. Furthermore, there were no significant differences in mean or peak power output between trials. Finally, electromyogram activity, SmO2, and recovery blood lactate concentration were not different between conditions. CONCLUSIONS Adding IPC or PAP protocols to a short CON warm-up appears to provide no additional benefit to 1-km TT performance with well-trained cyclists and is therefore not recommended. Furthermore, additional IPC and PAP protocols had no effect on electromyograms and SmO2 values during the TT or peak lactate concentration during recovery.
Collapse
|
17
|
da Mota GR, Willis SJ, Sobral NDS, Borrani F, Billaut F, Millet GP. Ischemic Preconditioning Maintains Performance on Two 5-km Time Trials in Hypoxia. Med Sci Sports Exerc 2020; 51:2309-2317. [PMID: 31169794 DOI: 10.1249/mss.0000000000002049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The ergogenic effect of ischemic preconditioning (IPC) on endurance exercise performed in hypoxia remains debated and has never been investigated with successive exercise bouts. Therefore, we evaluated if IPC would provide immediate or delayed effects during two 5-km cycling time trials (TT) separated by ~1 h in hypoxia. METHODS In a counterbalanced randomized crossover design, 13 healthy males (27.5 ± 3.6 yr) performed two maximal cycling 5-km TT separated by ~1 h of recovery (TT1 25 min and TT2 2 h post-IPC/SHAM), preceded by IPC (3 × 5 min occlusion 220 mm Hg/reperfusion 0 mm Hg, bilaterally on thighs) or SHAM (20 mm Hg) at normobaric hypoxia (fraction of inspired oxygen [FiO2] of 16%). Performance and physiological (i.e., oxyhemoglobin saturation, heart rate, blood lactate, and vastus lateralis oxygenation) parameters were recorded. RESULTS Time to complete (P = 0.011) 5-km TT and mean power output (P = 0.005) from TT1 to TT2 were worse in SHAM, but not in IPC (P = 0.381/P = 0.360, respectively). There were no differences in time, power output, or physiological variables during the two TT between IPC and SHAM. All muscle oxygenation indices differed (P < 0.001) during the IPC/SHAM with a greater deoxygenation in IPC. During the TT, there was a greater concentration of total hemoglobin in IPC than SHAM (P = 0.047) and greater total hemoglobin in TT1 than TT2. Further, the concentration of oxyhemoglobin was lower during TT2 than TT1 (P = 0.005). CONCLUSION In moderate hypoxia, IPC allowed maintaining a higher blood volume during a subsequent maximal exercise, mitigating the performance decrement between two consecutive cycling TT.
Collapse
Affiliation(s)
- Gustavo R da Mota
- Human Performance and Sport Research Group, Department of Sport Sciences, Institute of Health Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, BRAZIL.,Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| | - Sarah J Willis
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| | - Nelson Dos Santos Sobral
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| | - Fabio Borrani
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| | | | - Grégoire P Millet
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| |
Collapse
|
18
|
Paradis-Deschênes P, Joanisse DR, Mauriège P, Billaut F. Ischemic Preconditioning Enhances Aerobic Adaptations to Sprint-Interval Training in Athletes Without Altering Systemic Hypoxic Signaling and Immune Function. Front Sports Act Living 2020; 2:41. [PMID: 33345033 PMCID: PMC7739728 DOI: 10.3389/fspor.2020.00041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/25/2020] [Indexed: 01/29/2023] Open
Abstract
Optimizing traditional training methods to elicit greater adaptations is paramount for athletes. Ischemic preconditioning (IPC) can improve maximal exercise capacity and up-regulate signaling pathways involved in physiological training adaptations. However, data on the chronic use of IPC are scarce and its impact on high-intensity training is still unknown. We investigated the benefits of adding IPC to sprint-interval training (SIT) on performance and physiological adaptations of endurance athletes. In a randomized controlled trial, athletes included eight SIT sessions in their training routine for 4 weeks, preceded by IPC (3 × 5 min ischemia/5 min reperfusion cycles at 220 mmHg, n = 11) or a placebo (20 mmHg, n = 9). Athletes were tested pre-, mid-, and post-training on a 30 s Wingate test, 5-km time trial (TT), and maximal incremental step test. Arterial O2 saturation, heart rate, rate of perceived exertion, and quadriceps muscle oxygenation changes in total hemoglobin (Δ[THb]), deoxyhemoglobin (Δ[HHb]), and tissue saturation index (ΔTSI) were measured during exercise. Blood samples were taken pre- and post-training to determine blood markers of hypoxic response, lipid-lipoprotein profile, and immune function. Differences within and between groups were analyzed using Cohen's effect size (ES). Compared to PLA, IPC improved time to complete the TT (Mid vs. Post: -1.6%, Cohen's ES ± 90% confidence limits -0.24, -0.40;-0.07) and increased power output (Mid vs. Post: 4.0%, ES 0.20, 0.06;0.35), Δ[THb] (Mid vs. Post: 73.6%, ES 0.70, -0.15;1.54, Pre vs. Post: 68.5%, ES 0.69, -0.05;1.43), Δ[HHb] (Pre vs. Post: 12.7%, ES 0.24, -0.11;0.59) and heart rate (Pre vs. Post: 1.4%, ES 0.21, -0.13;0.55, Mid vs. Post: 1.6%, ES 0.25, -0.09;0.60). IPC also attenuated the fatigue index in the Wingate test (Mid vs. Post: -8.4%, ES -0.37, -0.79;0.05). VO2peak and maximal aerobic power remained unchanged in both groups. Changes in blood markers of the hypoxic response, vasodilation, and angiogenesis remained within the normal clinical range in both groups. We concluded that IPC combined with SIT induces greater adaptations in cycling endurance performance that may be related to muscle perfusion and metabolic changes. The absence of elevated markers of immune function suggests that chronic IPC is devoid of deleterious effects in athletes, and is thus a safe and potent ergogenic tool.
Collapse
Affiliation(s)
- Pénélope Paradis-Deschênes
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Denis R. Joanisse
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Pascale Mauriège
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - François Billaut
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| |
Collapse
|
19
|
Behrens M, Zschorlich V, Mittlmeier T, Bruhn S, Husmann F. Ischemic Preconditioning Did Not Affect Central and Peripheral Factors of Performance Fatigability After Submaximal Isometric Exercise. Front Physiol 2020; 11:371. [PMID: 32411014 PMCID: PMC7199714 DOI: 10.3389/fphys.2020.00371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 12/29/2022] Open
Abstract
The present study was designed to provide further insight into the mechanistic basis for the improved exercise tolerance following ischemic preconditioning (IPC) by investigating key-determinants of performance and perceived fatigability. Using a randomized, counterbalanced, single-blind, sham-controlled, crossover design, 16 males performed an isometric time-to-exhaustion test with the knee extensors at 20% maximal voluntary torque (MVT) after an IPC and a sham treatment (SHAM). Those who improved their time-to-exhaustion following IPC performed a time-matched IPC trial corresponding to the exercise duration of SHAM (IPCtm). Neuromuscular function was assessed before and after exercise termination during each condition (IPC, IPCtm, and SHAM) to analyze the impact of IPC on performance fatigability and its central and peripheral determinants. Muscle oxygenation (SmO2), muscle activity, and perceptual responses (effort and muscle pain) were recorded during exercise. Performance fatigability as well as its central and peripheral determinants were quantified as percentage pre-post changes in MVT (ΔMVT) as well as voluntary activation (ΔVA) and quadriceps twitch torque evoked by paired electrical stimuli at 100 and 10 Hz (ΔPS100 and ΔPS10⋅PS100-1 ratio), respectively. Time-to-exhaustion, performance fatigability, its determinants, muscle activity, SmO2, and perceptual responses during exercise were not different between IPC and SHAM. However, six participants improved their performance by >10% following IPC (299 ± 71 s) compared to SHAM (253 ± 66 s, d = 3.23). The time-matched comparisons (IPCtm vs. SHAM) indicated that performance fatigability, its determinants, and SmO2 were not affected, while effort perception seemed to be lower (ηp 2 = 0.495) in those who improved their time-to-exhaustion. The longer time-to-exhaustion following IPC seemed to be associated with a lower effort perception (ηp 2 = 0.380) and larger impairments in neuromuscular function, i.e., larger ΔMVT, ΔVA, and ΔPS10⋅PS100-1 ratio (d = 0.71, 1.0, 0.92, respectively). IPC did neither affect exercise tolerance, performance fatigability, as well as its central and peripheral determinants, nor muscle activity, SmO2, and perceptual responses during submaximal isometric exercise. However, IPC seemed to have an ergogenic effect in a few subjects, which might have resulted from a lower effort perception during exercise. These findings support the assumption that there are 'responders' and 'non-responders' to IPC.
Collapse
Affiliation(s)
- Martin Behrens
- Institute of Sport Science, University of Rostock, Rostock, Germany
| | | | - Thomas Mittlmeier
- Department of Traumatology, Hand and Reconstructive Surgery, University Medicine Rostock, Rostock, Germany
| | - Sven Bruhn
- Institute of Sport Science, University of Rostock, Rostock, Germany
| | - Florian Husmann
- Institute of Sport Science, University of Rostock, Rostock, Germany
| |
Collapse
|
20
|
Girard O, Brocherie F, Goods PSR, Millet GP. An Updated Panorama of "Living Low-Training High" Altitude/Hypoxic Methods. Front Sports Act Living 2020; 2:26. [PMID: 33345020 PMCID: PMC7739748 DOI: 10.3389/fspor.2020.00026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
With minimal costs and travel constraints for athletes, the “living low-training high” (LLTH) approach is becoming an important intervention for modern sport. The popularity of the LLTH model of altitude training is also associated with the fact that it only causes a slight disturbance to athletes' usual daily routine, allowing them to maintain their regular lifestyle in their home environment. In this perspective article, we discuss the evolving boundaries of the LLTH paradigm and its practical applications for athletes. Passive modalities include intermittent hypoxic exposure at rest (IHE) and Ischemic preconditioning (IPC). Active modalities use either local [blood flow restricted (BFR) exercise] and/or systemic hypoxia [continuous low-intensity training in hypoxia (CHT), interval hypoxic training (IHT), repeated-sprint training in hypoxia (RSH), sprint interval training in hypoxia (SIH) and resistance training in hypoxia (RTH)]. A combination of hypoxic methods targeting different attributes also represents an attractive solution. In conclusion, a growing number of LLTH altitude training methods exists that include the application of systemic and local hypoxia stimuli, or a combination of both, for performance enhancement in many disciplines.
Collapse
Affiliation(s)
- Olivier Girard
- School of Human Sciences, Exercise and Sport Science, University of Western Australia, Perth, WA, Australia
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance, EA 7370, French Institute of Sport (INSEP), Paris, France
| | - Paul S R Goods
- School of Human Sciences, Exercise and Sport Science, University of Western Australia, Perth, WA, Australia.,Western Australian Institute of Sport (WAIS), Perth, WA, Australia
| | - Gregoire P Millet
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Halley SL, Marshall P, Siegler JC. Effect of ischemic preconditioning and changing inspired O2 fractions on neuromuscular function during intense exercise. J Appl Physiol (1985) 2019; 127:1688-1697. [DOI: 10.1152/japplphysiol.00539.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aim of the present study was to determine whether ischemic preconditioning (IPC)-mediated effects on neuromuscular function are dependent on tissue oxygenation. Eleven resistance-trained males completed four exercise trials (6 sets of 11 repetitions of maximal effort dynamic single-leg extensions) in either normoxic [fraction of inspired oxygen ([Formula: see text]): 21%) or hypoxic [Formula: see text]: 14%] conditions, preceded by treatments of either IPC (3 × 5 min bilateral leg occlusions at 220 mmHg) or sham (3 × 5 min at 20 mmHg). Femoral nerve stimulation was utilized to assess voluntary activation and potentiated twitch characteristics during maximal voluntary contractions (MVCs). Tissue oxygenation (via near-infrared spectroscopy) and surface electromyography activity were measured throughout the exercise task. MVC and twitch torque declined 62 and 54%, respectively (MVC: 96 ± 24 N·m, Cohen’s d = 2.9, P < 0.001; twitch torque: 37 ± 11 N·m, d = 1.6, P < 0.001), between pretrial measurements and the sixth set without reductions in voluntary activation ( P > 0.21); there were no differences between conditions. Tissue oxygenation was reduced in both hypoxic conditions compared with normoxia ( P < 0.001), with an even further reduction of 3% evident in the hypoxic IPC compared with the sham trial (mean decrease 1.8 ± 0.7%, d = 1.0, P < 0.05). IPC did not affect any measure of neuromuscular function regardless of tissue oxygenation. A reduction in [Formula: see text] did invoke a humoral response and improved muscle O2 extraction during exercise, however, it did not manifest into any performance benefit. NEW & NOTEWORTHY Ischemic preconditioning did not affect any facet of neuromuscular function regardless of the degree of tissue oxygenation. Reducing the fraction of inspired oxygen induced localized tissue deoxygenation, subsequently invoking a humoral response, which improved muscle oxygen extraction during exercise. This physiological response, however, did not manifest into any performance benefits.
Collapse
Affiliation(s)
- Samuel L. Halley
- Sport and Exercise Science, School of Health Sciences, Western Sydney University, Sydney, Australia
| | - Paul Marshall
- Sport and Exercise Science, School of Health Sciences, Western Sydney University, Sydney, Australia
| | - Jason C. Siegler
- Sport and Exercise Science, School of Health Sciences, Western Sydney University, Sydney, Australia
| |
Collapse
|
22
|
Wiggins CC, Constantini K, Paris HL, Mickleborough TD, Chapman RF. Ischemic Preconditioning, O2 Kinetics, and Performance in Normoxia and Hypoxia. Med Sci Sports Exerc 2019; 51:900-911. [PMID: 30601792 DOI: 10.1249/mss.0000000000001882] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Ischemic preconditioning (IPC) before exercise has been shown to be a novel approach to improve performance in different exercise modes in normoxia (NORM). Few studies have been conducted examining potential mechanisms behind these improvements, and less has been done examining its influence during exercise in hypoxia (HYP). Oxygen uptake and extraction kinetics are factors that have been implicated as possible determinants of cycling performance. We hypothesized that IPC would lead to improvements in oxygen extraction and peripheral blood flow kinetics, and this would translate to improvements in cycling time trial (TT) performance in both NORM and HYP. METHODS Thirteen men (age, 24 ± 7 yr; V˙O2max, 63.1 ± 5.1 mL·kg·min) participated in the study. Subjects completed trials of each combination of normobaric HYP (FiO2 = 0.16, simulating ~8000 ft/2500 m) or NORM (FiO2 = 0.21) with preexercise IPC protocol (4 × 5 min at 220 mm Hg) or SHAM procedure. Trials included submaximal constant load cycle exercise bouts (power outputs of 15% below gas exchange threshold, and 85% of V˙O2max), and a 5-km cycling performance TT. RESULTS Ischemic preconditioning significantly improved 5-km TT time in NORM by 0.9% ± 1.8% compared with SHAM (IPC, 491.2 ± 35.2 s vs SHAM, 495.9 ± 36.0 s; P < 0.05). Ischemic preconditioning did not alter 5-km TT performance times in HYP (P = 0.231). Ischemic preconditioning did, however, improve tissue oxygen extraction in HYP (deoxygenated hemoglobin/myoglobin: IPC, 21.23 ± 10.95 μM; SHAM, 19.93 ± 9.91 μM; P < 0.05) during moderate-intensity exercise. CONCLUSIONS Our data confirm that IPC is an effective ergogenic aid for athletes performing 5-km cycling TT bouts in NORM. Ischemic preconditioning did mitigate the declines in tissue oxygen during moderate-intensity exercise in HYP, but this did not translate to a significant effect on mean group performance. These data suggest that IPC may be of benefit for athletes training and competing in NORM.
Collapse
Affiliation(s)
- Chad C Wiggins
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN.,Department of Anesthesiology, Mayo Clinic, Rochester, MN
| | - Keren Constantini
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| | - Hunter L Paris
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| | - Robert F Chapman
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| |
Collapse
|
23
|
Marocolo M, Simim MAM, Bernardino A, Monteiro IR, Patterson SD, da Mota GR. Ischemic preconditioning and exercise performance: shedding light through smallest worthwhile change. Eur J Appl Physiol 2019; 119:2123-2149. [PMID: 31451953 DOI: 10.1007/s00421-019-04214-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Ischemic preconditioning (IPC) has been suggested as a potential ergogenic aid to improve exercise performance, although controversial findings exist. The controversies may be explained by several factors, including the mode of exercise, the ratio between the magnitude of improvement, or the error of measurement and physiological meaning. However, a relevant aspect has been lacking in the literature: the interpretation of the findings considering statistical tests and adequate effect size (ES) according to the fitness level of individuals. Thus, we performed a systematic review with meta-analysis to update the effects of IPC on exercise performance and physiological responses, using traditional statistics (P values), ES, and smallest worth change (SWC) approach contextualizing the IPC application to applied Sports and Exercise performance. Forty-five studies met the inclusion criteria. Overall, the results show that IPC has a minimal or nonsignificant effect on performance considering the fitness level of the individuals, using statistical approaches (i.e., tests with P value, ES, and SWC). Therefore, IPC procedures should be revised and refined in future studies to evaluate if IPC promotes positive effects on performance in a real-world scenario with more consistent interpretation.
Collapse
Affiliation(s)
- Moacir Marocolo
- Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Mario A Moura Simim
- Institute of Physical Education and Sports, Federal University of Ceará, Fortaleza, Brazil
| | - Anderson Bernardino
- Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Iury Reis Monteiro
- Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Stephen D Patterson
- Faculty of Sport, Health, and Applied Science, St. Mary's University, Twickenham, London, UK
| | - Gustavo R da Mota
- Department of Sport Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| |
Collapse
|
24
|
Slysz JT, Petrick HL, Marrow JP, Burr JF. An examination of individual responses to ischemic preconditioning and the effect of repeated ischemic preconditioning on cycling performance. Eur J Sport Sci 2019; 20:633-640. [PMID: 31429381 DOI: 10.1080/17461391.2019.1651401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To use repeated control trials to measure within-subject variability and assess the existence of responders to ischemic preconditioning (IPC). Secondly, to determine whether repeated IPC can evoke a dosed ergogenic response. METHODS Twelve aerobically fit individuals each completed three control and three IPC 5-km cycling time trials. IPC trials included: (i) IPC 15-min preceding the trial (traditional IPC), (ii) IPC 24-h and 15-min preceding (IPC × 2), (iii) IPC 48-h, 24-h, and 15-min preceding (IPC × 3). IPC consisted of 3 × 5-min cycles of occlusion and reperfusion at the upper thighs. To assess the existence of a true response to IPC, individual performance following traditional IPC was compared to each individual's own 5-km TT coefficient of variation. In individuals who responded to IPC, all three IPC conditions were compared to the mean of the three control trials (CONavg) to determine whether repeated IPC can evoke a dosed ergogenic response. RESULTS 9 of 12 (75%) participants improved 5-km time (-1.8 ± 1.7%) following traditional IPC, however, only 7 of 12 (58%) improved greater than their own variability between repeated controls (true responders). In true responders only, we observed a significant mean improvement in 5-km TT completion following traditional IPC (478 ± 50 s), IPC × 2 (481 ± 51 s), and IPC × 3 (480.5 ± 49 s) compared to mean CONavg (488 ± 51s; p < 0.006), with no differences between various IPC trials (p > 0.05). CONCLUSION A majority of participants responded to IPC, providing support for a meaningful IPC-mediated performance benefit. However, repeated bouts of IPC on consecutive days do not enhance the ergogenic effect of a single bout of IPC.
Collapse
Affiliation(s)
- J T Slysz
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - H L Petrick
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - J P Marrow
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - J F Burr
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
25
|
Caru M, Levesque A, Lalonde F, Curnier D. An overview of ischemic preconditioning in exercise performance: A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:355-369. [PMID: 31333890 PMCID: PMC6620415 DOI: 10.1016/j.jshs.2019.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/29/2018] [Accepted: 12/03/2018] [Indexed: 06/10/2023]
Abstract
Ischemic preconditioning (IPC) is an attractive method for athletes owing to its potential to enhance exercise performance. However, the effectiveness of the IPC intervention in the field of sports science remains mitigated. The number of cycles of ischemia and reperfusion, as well as the duration of the cycle, varies from one study to another. Thus, the aim of this systematic review was to provide a comprehensive review examining the IPC literature in sports science. A systematic literature search was performed in PubMed (MEDLINE) (from 1946 to May 2018), Web of Science (sport sciences) (from 1945 to May 2018), and EMBASE (from 1974 to May 2018). We included all studies investigating the effects of IPC on exercise performance in human subjects. To assess scientific evidence for each study, this review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. The electronic database search generated 441 potential articles that were screened for eligibility. A total of 52 studies were identified as eligible and valid for this systematic review. The studies included were of high quality, with 48 of the 52 studies having a randomized, controlled trial design. Most studied showed that IPC intervention can be beneficial to exercise performance. However, IPC intervention seems to be more beneficial to healthy subjects who wish to enhance their performance in aerobic exercises than athletes. Thus, this systematic review highlights that a better knowledge of the mechanisms generated by the IPC intervention would make it possible to optimize the protocols according to the characteristics of the subjects with the aim of suggesting to the subjects the best possible experience of IPC intervention.
Collapse
Affiliation(s)
- Maxime Caru
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- Department of Psychology, University of Paris-Nanterre, Nanterre 92000, France
- Laboratoire EA 4430 – Clinique Psychanalyse Developpement (CliPsyD), University of Paris-Nanterre, Nanterre 92000, France
- CHU Ste-Justine Research Center, CHU Ste-Justine, Montreal H3T 1C5, Canada
| | - Ariane Levesque
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- CHU Ste-Justine Research Center, CHU Ste-Justine, Montreal H3T 1C5, Canada
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - François Lalonde
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- Department of Physical Activity Sciences, Faculty of Sciences, Université du Québec à Montréal, Montreal, Quebec H2L 2C4, Canada
| | - Daniel Curnier
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- CHU Ste-Justine Research Center, CHU Ste-Justine, Montreal H3T 1C5, Canada
| |
Collapse
|
26
|
Paull EJ, Van Guilder GP. Remote ischemic preconditioning increases accumulated oxygen deficit in middle-distance runners. J Appl Physiol (1985) 2019; 126:1193-1203. [DOI: 10.1152/japplphysiol.00585.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mediators underlying the putative benefits of remote ischemic preconditioning (IPC) on dynamic whole body exercise performance have not been widely investigated. Our objective was to test the hypothesis that remote IPC improves supramaximal exercise performance in National Collegiate Athletic Association (NCAA) Division I middle-distance runners by increasing accumulated oxygen deficit (AOD), an indicator of glycolytic capacity. A randomized sham-controlled crossover study was employed. Ten NCAA Division I middle-distance athletes [age: 21 ± 1 yr; maximal oxygen uptake (V̇o2max): 65 ± 7 ml·kg−1·min−1] completed three supramaximal running trials (baseline, after mock IPC, and with remote IPC) at 110% V̇o2max to exhaustion. Remote IPC was induced in the right arm with 4 × 5 min cycles of brachial artery ischemia with 5 min of reperfusion. Supramaximal AOD (ml/kg) was calculated as the difference between the theoretical oxygen demand required for the supramaximal running bout (linear regression extrapolated from ~12 × 5 min submaximal running stages) and the actual oxygen demand for these bouts. Remote IPC [122 ± 38 s, 95% confidence interval (CI): 94–150] increased ( P < 0.001) time to exhaustion 22% compared with baseline (99 ± 23 s, 95% CI: 82–116, P = 0.014) and sham (101 ± 30 s, 95% CI: 80–123, P = 0.001). In the presence of IPC, AOD was 47 ± 36 ml/kg (95% CI: 20.8–73.9), a 29% increase compared with baseline (36 ± 28 ml/kg, 95% CI: 16.3–56.9, P = 0.008) and sham (38 ± 32 ml/kg, 95% CI: 16.2–63.0, P = 0.024). Remote IPC considerably improved supramaximal exercise performance in NCAA Division I middle-distance athletes. Greater glycolytic capacity, as estimated by increased AOD, is a potential mediator for these performance improvements. NEW & NOTEWORTHY Our novel findings indicate that ischemic preconditioning enhanced glycolytic exercise capacity, enabling National Collegiate Athletic Association (NCAA) middle-distance track athletes to run ~22 s longer before exhaustion compared with baseline and mock ischemic preconditioning. The increase in “all-out” performance appears to be due to increased accumulated oxygen deficit, an index of better supramaximal capacity. Of note, enhanced exercise performance was demonstrated in a specific group of in-competition NCAA elite athletes that has already undergone substantial training of the glycolytic energy systems.
Collapse
Affiliation(s)
- Emily J. Paull
- Vascular Protection Research Laboratory, Department of Health and Nutritional Sciences, South Dakota State University, Brookings, South Dakota
| | - Gary P. Van Guilder
- Vascular Protection Research Laboratory, Department of Health and Nutritional Sciences, South Dakota State University, Brookings, South Dakota
| |
Collapse
|
27
|
Halley SL, Marshall P, Siegler JC. The effect of IPC on central and peripheral fatiguing mechanisms in humans following maximal single limb isokinetic exercise. Physiol Rep 2019; 7:e14063. [PMID: 31025549 PMCID: PMC6483935 DOI: 10.14814/phy2.14063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemic preconditioning (IPC) has been suggested to preserve neural drive during fatiguing dynamic exercise, however, it remains unclear as to whether this may be the consequence of IPC-enhanced muscle oxygenation. We hypothesized that the IPC-enhanced muscle oxygenation during a dynamic exercise task would subsequently attenuate exercise-induced reductions in voluntary activation. Ten resistance trained males completed three 3 min maximal all-out tests (AOTs) via 135 isokinetic leg extensions preceded by treatments of IPC (3 × 5 min bilateral leg occlusions at 220 mmHg), SHAM (3 × 5 min at 20 mmHg) or CON (30 min passive rest). Femoral nerve stimulation was utilized to assess voluntary activation and potentiated twitch torque during maximal voluntary contractions (MVCs) performed at baseline (BL), prior to the AOT (Pre), and then 10 sec post (Post). Tissue oxygenation (via near-infrared spectroscopy) and sEMG activity was measured throughout the AOT. MVC and twitch torque levels declined (MVC: -87 ± 23 Nm, 95% CI = -67 to -107 Nm; P < 0.001, twitch: -30 ± 13 Nm; 95% CI = -25 to -35 Nm; P < 0.001) between Pre and Post without reductions in voluntary activation (P = 0.72); there were no differences between conditions (MVC: P = 0.75, twitch: P = 0.55). There were no differences in tissue saturation index (P = 0.27), deoxyhemoglobin concentrations (P = 0.86) or sEMG activity (P = 0.92) throughout the AOT. These findings demonstrate that IPC does not preserve neural drive during an all-out 3 min isokinetic leg extension task.
Collapse
Affiliation(s)
- Samuel L. Halley
- Sport and Exercise ScienceSchool of Science and HealthWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Paul Marshall
- Sport and Exercise ScienceSchool of Science and HealthWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Jason C. Siegler
- Sport and Exercise ScienceSchool of Science and HealthWestern Sydney UniversitySydneyNew South WalesAustralia
| |
Collapse
|
28
|
Marocolo M, Billaut F, da Mota GR. Ischemic Preconditioning and Exercise Performance: An Ergogenic Aid for Whom? Front Physiol 2018; 9:1874. [PMID: 30622484 PMCID: PMC6308393 DOI: 10.3389/fphys.2018.01874] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022] Open
Affiliation(s)
- Moacir Marocolo
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | - Gustavo R da Mota
- Human Performance and Sports Research Group, Department of Sport Sciences, Institute of Health Sciences, Federal University of Triangulo Mineiro (UFTM), Uberaba, Brazil
| |
Collapse
|
29
|
Lindsay A, Petersen C, Ferguson H, Blackwell G, Rickerby S. Lack of a Dose Response from 7 Days of Ischemic Preconditioning in Moderately trained Cyclists. Sports Med Int Open 2018; 2:E91-E97. [PMID: 30539124 PMCID: PMC6225969 DOI: 10.1055/a-0639-5035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 01/20/2023] Open
Abstract
Ischemic preconditioning (IP) has a small benefit on exercise performance, but differences in the IP method, performance tasks and exercise modality have made providing practical coach guidelines difficult. We investigated the performance-enhancing effects of IP on cyclists by comparing the frequency of IP application over a 7-day period. Using a randomized, sham-controlled, single-blinded experiment, 24 competitive age-group track cyclists (38±12 years) were assigned to one of three twice-daily (sham: 20 and 20 mmHg; once-a-day: 20 and 220 mmHg; twice-a-day: 220 and 220 mmHg) IP leg protocols (4 × 5 min ischemia/5 min reperfusion alternating between legs) over seven consecutive days. A 4000-m cycling-ergometer time trial was completed before, immediately following and one week after the protocols. Neither mean power, nor 4000-m performance time nor VO
2
were significantly affected by either of the IP protocols compared to the sham at any time point following treatment. Repeated application of IP over seven days did not enhance the performance of trained cyclists in a 4000-m laboratory time trial. More research is required to understand how changes to methodological variables can improve the chances of IP successfully enhancing athlete performance.
Collapse
Affiliation(s)
- Angus Lindsay
- Program in Physical Therapy and Rehabilitation Sciences, University of Minnesota Twin Cities, Minneapolis, United States
| | - Carl Petersen
- School of Health Sciences, University of Canterbury, Christchurch, New Zealand
| | - Hamish Ferguson
- Sport Performance Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Gavin Blackwell
- School of Sciences and Physical Education, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
30
|
da Mota GR, Marocolo M. Is Ischemic Preconditioning Feasible to Improve Performance at Moderate Altitude? Med Sci Sports Exerc 2018; 50:2612. [PMID: 29975304 DOI: 10.1249/mss.0000000000001708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Gustavo Ribeiro da Mota
- Federal University of Triangulo Mineiro Institute of Health Sciences Department of Sport Sciences Uberaba, MG, BRAZIL Physiology and Human Performance Research Group Department of Physiology Institute of Biological Sciences Federal University of Juiz de Fora Juiz de Fora, MG, BRAZIL
| | | |
Collapse
|
31
|
|