1
|
Wu C, Li M, Chen Z, Feng S, Deng Q, Duan R, Liu TCY, Yang L. Remote photobiomodulation ameliorates behavioral and neuropathological outcomes in a rat model of repeated closed head injury. Transl Psychiatry 2025; 15:8. [PMID: 39799140 PMCID: PMC11724958 DOI: 10.1038/s41398-025-03228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Repeated closed-head injuries (rCHI) from activities like contact sports, falls, military combat, and traffic accidents pose a serious risk due to their cumulative impact on the brain. Often, rCHI is not diagnosed until symptoms of irreversible brain damage appear, highlighting the need for preventive measures. This study assessed the prophylactic efficacy of remote photobiomodulation (PBM) targeted at the lungs against rCHI-induced brain injury and associated behavioral deficits. Utilizing the "Marmarou" weight-drop model, rCHI was induced in rats on days 0, 5, and 10. Remote PBM, employing an 808 nm continuous wave laser, was administered daily in 2-min sessions per lung side over 20 days. Behavioral deficits were assessed through three-chamber social interaction, forced swim, grip strength, open field, elevated plus maze, and Barnes maze tests. Immunofluorescence staining and 3D reconstruction evaluated neuronal damage, apoptosis, degeneration, and the morphology of microglia and astrocytes, as well as astrocyte and microglia-mediated excessive synapse elimination. Additionally, 16S rDNA amplicon sequencing analyzed changes in the lung microbiome following remote PBM treatment. Results demonstrated that remote PBM significantly improved depressive-like behaviors, motor dysfunction, and social interaction impairment while enhancing grip strength and reducing neuronal damage, apoptosis, and degeneration induced by rCHI. Analysis of lung microbiome changes revealed an enrichment of lipopolysaccharide (LPS) biosynthesis pathways, suggesting a potential link to neuroprotection. Furthermore, remote PBM mitigated hyperactivation of cortical microglia and astrocytes and significantly reduced excessive synaptic phagocytosis by these cells, highlighting its potential as a preventive strategy for rCHI with neuroprotective effects.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Meng Li
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Zhe Chen
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
2
|
Pang J, Cen C, Tian Y, Cao X, Hao L, Tao X, Cao Z. Targeting Shp2 as a therapeutic strategy for neurodegenerative diseases. Transl Psychiatry 2025; 15:6. [PMID: 39794316 PMCID: PMC11724000 DOI: 10.1038/s41398-024-03222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The incidence of neurodegenerative diseases (NDs) has increased recently. However, most of the current governance strategies are palliative and lack effective therapeutic drugs. Therefore, elucidating the pathological mechanism of NDs is the key to the development of targeted drugs. As a member of the tyrosine phosphatase family, the role of Shp2 has been studied in tumors, but the research in the nervous system is still in a sporadic state. It can be phosphorylated by tyrosine kinases and then positively regulate tyrosine kinase-dependent signaling pathways. It could also be used as an adaptor protein to mediate downstream signaling pathways. Most of the existing studies have shown that Shp2 may be a potential molecular "checkpoint" against NDs, but its role in promoting degenerative lesions is difficult to ignore as well, and its two-way effect of both activation and inhibition is very distinctive. Shp2 is closely related to NDs-related pathogenic factors such as oxidative stress, mitochondrial dysfunction, excitatory toxicity, immune inflammation, apoptosis, and autophagy. Its bidirectional effects interfere with these pathogenic factors, making it a core component of the feedback and crosstalk network between multiple signaling pathways. Therefore, this article reviews the molecular mechanism of Shp2 regulation in NDs and its regulatory role in various pathogenic factors, providing evidence for the treatment of NDs by targeting Shp2 and the development of molecular targeted drugs.
Collapse
Affiliation(s)
- Jiao Pang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China
- Department of Pathology and pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, PR China
- College of Life Science, Northwest University, Xi'an City, Shaanxi Province, PR China
| | - Changqian Cen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China
| | - Yuan Tian
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Xingrui Cao
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xueshu Tao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China.
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
3
|
Chen H, Ouyang W, Cui X, Ma X, Hu S, Qing W, Tong J. miR-124 mediates the effects of gut microbial dysbiosis on brain function in chronic stressed mice. Behav Brain Res 2025; 476:115262. [PMID: 39306097 DOI: 10.1016/j.bbr.2024.115262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024]
Abstract
The gut microbiota plays a key role in the brain function impairment caused by chronic stress, yet its exact mechanism remains unclear. Many studies have revealed the important role of miR-124 in the central nervous system. Meanwhile, previous studies have indicated that miR-124 may be regulated by chronic stress and gut microbiota. Here, we aimed to explore whether miR-124 serves as a mediator for the impacts of gut microbial dysbiosis on brain function in mice subjected to chronic stress. Repeated daily restraint stress for 4 weeks was used to induce chronic stress in mice. Chronic stress resulted in gut microbial dysbiosis, abnormal behaviors, and a decrease in hippocampal miR-124 levels. Treatment with different probiotic mixtures significantly alleviated the effects of chronic stress on hippocampal miR-124 levels and mouse behaviors. Suppression of hippocampal miR-124 expression reversed the beneficial effects of probiotics on cognitive function, neurogenesis, and related molecular markers in chronically stressed mice. Bioinformatics analysis and qPCR suggested that Ptpn11 might be a target gene for miR-124 in mediating the effects of gut microbial dysbiosis on brain function in these mice. These findings suggest that miR-124 is a pivotal regulator that mediates the detrimental effects of gut microbial dysbiosis on brain function and the subsequent cognitive impairment during chronic stress.
Collapse
Affiliation(s)
- Hui Chen
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiaoyu Cui
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xin Ma
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shanshan Hu
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenxiang Qing
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Jianbin Tong
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China; Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China; Brain Research Center, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
4
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Luo Q, Lan P, Lin Y, Zhang P, Ma X. Effect of physical activity on anxiety and depression in COVID-19 adults: A systematic review and meta-analysis. iScience 2024; 27:110844. [PMID: 39429776 PMCID: PMC11490742 DOI: 10.1016/j.isci.2024.110844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/22/2024] [Accepted: 08/27/2024] [Indexed: 10/22/2024] Open
Abstract
While the benefits of physical activity on mental health are well-known, systematic reviews and meta-analyses on its impact on mental illness in adults with COVID-19 are scarce. This study of 25 randomized controlled trials shows that physical activity significantly reduces anxiety (standardized mean difference [SMD] = -0.915; 95% confidence interval [CI] = -1.182 to -0.648; I2 = 82.0%; p < 0.001) and depression (SMD = -0.752; 95% CI = -1.034 to -0.470; I2 = 81.4%; p < 0.001). Traditional Chinese ethnic sports are notably effective. Interventions under 3 weeks best reduce depression, while 3 ≤ 7 weeks optimally reduce anxiety. Sessions ≤5 times weekly, with 30 ≤ 60 min for anxiety and >60 min for depression, yield the best outcomes. These results highlight the specific effectiveness of physical activity in alleviating anxiety and depression in COVID-19 patients.
Collapse
Affiliation(s)
- Qingyuan Luo
- School of Wushu, Chengdu Sport University, Chengdu 610041, China
| | - Peng Lan
- School of Wushu, Chengdu Sport University, Chengdu 610041, China
| | | | - Peng Zhang
- College of Physical Education and Sports, Beijing Normal University, Beijing 100875, China
| | - Xiujie Ma
- School of Wushu, Chengdu Sport University, Chengdu 610041, China
- Chinese GuoShu Academy, Chengdu Sports University, Chengdu 610041, China
| |
Collapse
|
6
|
Sahu MR, Ahmad MH, Mondal AC. MST1 selective inhibitor Xmu-mp-1 ameliorates neuropathological changes in a rat model of sporadic Alzheimer's Disease by modulating Hippo-Wnt signaling crosstalk. Apoptosis 2024; 29:1824-1851. [PMID: 38760516 DOI: 10.1007/s10495-024-01975-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is characterized by progressive cognitive impairment accompanied by aberrant neuronal apoptosis. Reports suggest that the pro-apoptotic mammalian set20-like kinase 1/2 (MST1/2) instigates neuronal apoptosis via activating the Hippo signaling pathway under various stress conditions, including AD. However, whether inhibiting MST1/2 has any therapeutic benefits in AD remains unknown. Thus, we tested the therapeutic effects of intervening MST1/2 activation via the pharmacological inhibitor Xmu-mp-1 in a sporadic AD rat model. Sporadic AD was established in adult rats by intracerebroventricular streptozotocin (ICV-STZ) injection (3 mg/kg body weight). Xmu-mp-1 (0.5 mg/kg/body weight) was administered once every 48 h for two weeks, and Donepezil (5 mg/kg body weight) was used as a reference standard drug. The therapeutic effects of Xmu-mp-1 on ICV-STZ rats were determined through various behavioral, biochemical, histopathological, and molecular tests. At the behavioral level, Xmu-mp-1 improved cognitive deficits in sporadic AD rats. Further, Xmu-mp-1 treatment reduced STZ-associated tau phosphorylation, amyloid-beta deposition, oxidative stress, neurotoxicity, neuroinflammation, synaptic dysfunction, neuronal apoptosis, and neurodegeneration. Mechanistically, Xmu-mp-1 exerted these neuroprotective actions by inactivating the Hippo signaling while potentiating the Wnt/β-Catenin signaling in the AD rats. Together, the results of the present study provide compelling support that Xmu-mp-1 negated the neuronal dysregulation in the rat model of sporadic AD. Therefore, inhibiting MST/Hippo signaling and modulating its crosstalk with the Wnt/β-Catenin pathway can be a promising alternative treatment strategy against AD pathology. This is the first study providing novel mechanistic insights into the therapeutic use of Xmu-mp-1 in sporadic AD.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
7
|
Pereira AT, Gelfuso ÉA, Beleboni RO. Repositioning pinacidil and its anticonvulsant and anxiolytic properties in murine models. Sci Rep 2024; 14:22695. [PMID: 39349563 PMCID: PMC11442869 DOI: 10.1038/s41598-024-73720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
Epilepsy, frequently comorbid with anxiety, is a prevalent neurological disorder. Available drugs often have side effects that hinder adherence, creating a need for new treatments. Potassium channel activators have emerged as promising candidates for treating both epilepsy and anxiety. This study aimed to evaluate the potential anticonvulsant and anxiolytic effects of pinacidil, an ATP-sensitive potassium channel activator used as antihypertensive, in rats. Our results indicate that pinacidil at 10 mg/kg (i.p.) fully protected animals from seizures induced by pentylenetetrazol (PTZ) and provided 85.7%, 100% and 100% protection against pilocarpine-induced seizures at 2.5, 5 and 10 mg/kg (i.p.), respectively. Although the 2.5 and 5 mg/kg (i.p) doses did not significantly protect the animals from PTZ-induced seizures, they did significantly increase the latency to the first seizure. Pinacidil also demonstrated mild anxiolytic activity, particularly at 10 mg/kg (i.p), evidenced by increased time spent in the open or illuminated areas of the Elevated Plus Maze (EPM) and Light-Dark Box (LDB) and increased exploratory activity in the Open Filed, EPM and LDB. Pinacidil did not affect locomotor performance, supporting its genuine anticonvulsant effects. This study holds significant medical and pharmaceutical value by characterizing pinacidil's anticonvulsant and anxiolytic effects and highlighting its potential for therapeutic repositioning.
Collapse
Affiliation(s)
| | | | - Rene Oliveira Beleboni
- Biotechnology Department, Ribeirão Preto University, Ribeirão Preto, SP, Brazil.
- School of Medicine, Ribeirão Preto University, Av. Costábile Romano, 2201, Ribeirânia, Zip Code 14096-300, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
8
|
Jiang XL, Zhang ZB, Feng CX, Lin CJ, Yang H, Tan LL, Ding X, Xu LX, Li G, Pan T, Qin ZH, Sun B, Feng X, Li M. PHLDA1 contributes to hypoxic ischemic brain injury in neonatal rats via inhibiting FUNDC1-mediated mitophagy. Acta Pharmacol Sin 2024; 45:1809-1820. [PMID: 38750074 PMCID: PMC11336168 DOI: 10.1038/s41401-024-01292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/14/2024] [Indexed: 08/22/2024] Open
Abstract
Hypoxia-ischemia (HI) is one of the main causes of neonatal brain injury. Mitophagy has been implicated in the degradation of damaged mitochondria and cell survival following neonatal brain HI injury. Pleckstrin homology-like domain family A member 1 (PHLDA1) plays vital roles in the progression of various disorders including the regulation of oxidative stress, the immune responses and apoptosis. In the present study we investigated the role of PHLDA1 in HI-induced neuronal injury and further explored the mechanisms underlying PHLDA1-regulated mitophagy in vivo and in vitro. HI model was established in newborn rats by ligation of the left common carotid artery plus exposure to an oxygen-deficient chamber with 8% O2 and 92% N2. In vitro studies were conducted in primary hippocampal neurons subjected to oxygen and glucose deprivation/-reoxygenation (OGD/R). We showed that the expression of PHLDA1 was significantly upregulated in the hippocampus of HI newborn rats and in OGD/R-treated primary neurons. Knockdown of PHLDA1 in neonatal rats via lentiviral vector not only significantly ameliorated HI-induced hippocampal neuronal injury but also markedly improved long-term cognitive function outcomes, whereas overexpression of PHLDA1 in neonatal rats via lentiviral vector aggravated these outcomes. PHLDA1 knockdown in primary neurons significantly reversed the reduction of cell viability and increase in intracellular reactive oxygen species (ROS) levels, and attenuated OGD-induced mitochondrial dysfunction, whereas overexpression of PHLDA1 decreased these parameters. In OGD/R-treated primary hippocampal neurons, we revealed that PHLDA1 knockdown enhanced mitophagy by activating FUNDC1, which was abolished by FUNDC1 knockdown or pretreatment with mitophagy inhibitor Mdivi-1 (25 μM). Notably, pretreatment with Mdivi-1 or the knockdown of FUNDC1 not only increased brain infarct volume, but also abolished the neuroprotective effect of PHLDA1 knockdown in HI newborn rats. Together, these results demonstrate that PHLDA1 contributes to neonatal HI-induced brain injury via inhibition of FUNDC1-mediated neuronal mitophagy.
Collapse
Affiliation(s)
- Xiao-Lu Jiang
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Zu-Bin Zhang
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China.
- Jiangsu Key Laboratory for Translational Research and Therapeutics of NeuroPsycho Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Chen-Xi Feng
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Chen-Jie Lin
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Hui Yang
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Lan-Lan Tan
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Xin Ding
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Li-Xiao Xu
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Gen Li
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Tao Pan
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Zheng-Hong Qin
- Institute of Health Technology, Global Institute of Software Technology, Qingshan Road, Suzhou Science & Technology Tower, Hi-Tech Area, Suzhou, 215163, China
| | - Bin Sun
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Xing Feng
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China.
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China.
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Mei Li
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China.
| |
Collapse
|
9
|
Chen H, Shi X, Liu N, Jiang Z, Ma C, Luo G, Liu S, Wei X, Liu Y, Ming D. Photobiomodulation therapy mitigates depressive-like behaviors by remodeling synaptic links and mitochondrial function. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112998. [PMID: 39096719 DOI: 10.1016/j.jphotobiol.2024.112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Depression, a multifactorial mental disorder, characterized by cognitive slowing, anxiety, and impaired cognitive function, imposes a significant burden on public health. Photobiomodulation (PBM), involving exposure to sunlight or artificial light at a specific intensity and wavelength for a determined duration, influences brain activity, functional connectivity, and plasticity. It is recognized for its therapeutic efficacy in treating depression, yet its molecular and cellular underpinnings remain obscure. Here, we investigated the impact of PBM with 468 nm light on depression-like behavior and neuronal damage in the chronic unpredictable mild stress (CUMS) murine model, a commonly employed animal model for studying depression. Our results demonstrate that PBM treatment ameliorated behavioral deficits, inhibited neuroinflammation and apoptosis, and notably rejuvenates the hippocampal synaptic function in depressed mice, which may be mainly attributed to the up-regulation of brain-derived neurotrophic factor signaling pathways. In addition, in vitro experiments with a corticosterone-induced hippocampal neuron injury model demonstrate reduced oxidative stress and improved mitochondrial function, further validating the therapeutic potential of PBM. In summary, these findings suggest PBM as a promising, non-invasive treatment for depression, offering insights into its biological mechanisms and potential for clinical application.
Collapse
Affiliation(s)
- Hongli Chen
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xinyu Shi
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Na Liu
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Zhongdi Jiang
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Chunyan Ma
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Guoshuai Luo
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China.
| | - Xunbin Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Cancer Hospital & Institute, International Cancer Institute, Institute of Medical Technology, Peking University Health Science Center, Biomedical Engineering Department, Peking University, Beijing 100191, China.
| | - Yi Liu
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Zhang X, Fan L, Yang L, Jin X, Liu H, Lei H, Song X, Zhang Z, Zhang F, Song J. DAPK1 mediates cognitive dysfunction and neuronal apoptosis in PSD rats through the ERK/CREB/BDNF signaling pathway. Behav Brain Res 2024; 471:115064. [PMID: 38777261 DOI: 10.1016/j.bbr.2024.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Post-stroke depression (PSD) is one of the most common mental sequelae after a stroke and can damage the brain. Although PSD has garnered increasing attention in recent years, the precise mechanism remains unclear. Studies have indicated that the expression of DAPK1 is elevated in various neurodegenerative conditions, including depression, ischemic stroke, and Alzheimer's disease. However, the specific molecular mechanism of DAPK1-mediated cognitive dysfunction and neuronal apoptosis in PSD rats is unclear. In this study, we established a rat model of PSD, and then assessed depression-like behaviors and cognitive dysfunction in rats using behavioral tests. In addition, we detected neuronal apoptosis and analyzed the expression of DAPK1 protein and proteins related to the ERK/CREB/BDNF signaling pathway. The findings revealed that MCAO combined with CUMS can induce more severe depression-like behaviors and cognitive dysfunction in rats, while overexpression of DAPK1 may hinder the downstream ERK/CREB/BDNF signaling pathways, resulting in neuronal loss and exacerbation of brain tissue damage. In this study, we will focus on DAPK1 and explore its role in PSD.
Collapse
Affiliation(s)
- Xinyue Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Lifei Fan
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Lina Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China
| | - Xuejiao Jin
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Huanhuan Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Hao Lei
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Xiaojia Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Zhaohui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Fuping Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453000, China; Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451162, China.
| | - Jinggui Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China; Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451162, China.
| |
Collapse
|
11
|
Wu C, Deng Q, Zhu L, Liu TCY, Duan R, Yang L. Methylene Blue Pretreatment Protects Against Repeated Neonatal Isoflurane Exposure-Induced Brain Injury and Memory Loss. Mol Neurobiol 2024; 61:5787-5801. [PMID: 38233687 DOI: 10.1007/s12035-024-03931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/06/2024] [Indexed: 01/19/2024]
Abstract
Perioperative neurocognitive impairment (PND) is a common medical complication in the postoperative period. General anesthesia through volatile anesthetics poses a high risk of POCD. Moreover, the developing brain is especially vulnerable to anesthesia-induced neurotoxicity. Therefore, finding a practical approach to prevent or alleviate neonatal isoflurane (ISO) exposure-induced brain injury and cognitive decline is essential for reducing medical complications following major surgery during the early postnatal period. Using a repeated neonatal ISO exposure-induced PND rat model, we investigated the effects of methylene blue (MB) pretreatment on repeated neonatal isoflurane exposure-induced brain injury and memory loss. Intraperitoneal injection of low-dose MB (1 mg/kg) was conducted three times 24 h before each ISO exposure. The Barnes maze and novel objection test were conducted to assess learning and memory. Immunofluorescence staining, F-Jade C staining, TUNEL staining, and Western blot analysis were performed to determine mitochondrial fragmentation, neuronal injury, degeneration, and apoptosis. Evans blue extravasation assay, total antioxidant capacity assay, MDA assay kit, and related inflammatory assay kits were used to test blood-brain barrier (BBB) disruption, antioxidant capacity, and neuroinflammation. Behavioral tests revealed that MB pretreatment significantly ameliorated ISO exposure-induced cognitive deficits. In addition, MB pretreatment alleviates neuronal injury, apoptosis, and degeneration. Furthermore, the BBB integrity was preserved by MB pretreatment. Additional studies revealed that ISO-induced excessive mitochondrial fragmentation, oxidative stress, and neuroinflammation were significantly attenuated by MB pretreatment in the PND rat model. Our findings suggest that MB pretreatment alleviates ISO exposure-induced brain injury and memory loss for the first time, supporting MB pretreatment as a promising approach to protect the brain against neonatal ISO exposure-induced postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Yao Y, Du J, Wang D, Li N, Tao Z, Wu D, Peng F, Shi J, Zhou W, Zhao T, Tang Y. High-intensity interval training ameliorates postnatal immune activation-induced mood disorders through KDM6B-regulated glial activation. Brain Behav Immun 2024; 120:290-303. [PMID: 38851307 DOI: 10.1016/j.bbi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
Postnatal immune activation (PIA) induces persistent glial activation in the brain and causes various neuropathologies in adults. Exercise training improves stress-related mood disorders; however, the role of exercise in psychiatric disorders induced by early-life immune activation and the association between exercise training and glial activation remain unclear. We compared the effects of different exercise intensities on the PIA model, including high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT). Both HIIT and MICT in adolescent mice inhibited neuroinflammation, remodeled synaptic plasticity, and improved PIA-induced mood disorders in adulthood. Importantly, HIIT was superior to MICT in terms of reducing inflammation and increasing body weight. RNA-seq of prefrontal cortex (PFC) tissues revealed a gene expression pattern, confirming that HIIT was more effective than MICT in improving brain glial cell activation through epigenetic modifications of KDM6B. We investigated the role of KDM6B, a specific histone lysine demethylation enzyme - histone 3 lysine 27 demethylase, in inhibiting glial activation against PIA-induced depression and anxiety by regulating the expression of IL-4 and brain-derived neurotrophic factor (BDNF). Overall, our data support the idea that HIIT improves PIA-induced mood disorders by regulating KDM6B-mediated epigenetic mechanisms and indicate that HIIT might be superior to MICT in improving mood disorders with PIA in mice. Our findings provide new insights into the treatment of anxiety and depression disorders.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Jingyi Du
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China
| | - Dongshuang Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China
| | - Naigang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China
| | - Zhouhang Tao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China
| | - Dong Wu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China
| | - Fan Peng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China
| | - Jiaming Shi
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Wenjuan Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Tiantian Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China.
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
13
|
Reitz NL, Nunes PT, Savage LM. Exercise leads to sex-specific recovery of behavior and pathological AD markers following adolescent ethanol exposure in the TgF344-AD model. Front Behav Neurosci 2024; 18:1448691. [PMID: 39148897 PMCID: PMC11324591 DOI: 10.3389/fnbeh.2024.1448691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Human epidemiological studies suggest that heavy alcohol consumption may lead to earlier onset of Alzheimer's Disease (AD), especially in individuals with a genetic predisposition for AD. Alcohol-related brain damage (ARBD) during a critical developmental timepoint, such as adolescence, interacts with AD-related pathologies to accelerate disease progression later in life. The current study investigates if voluntary exercise in mid-adulthood can recover memory deficits caused by the interactions between adolescence ethanol exposure and AD-transgenes. Methods Male and female TgF344-AD and wildtype F344 rats were exposed to an intragastric gavage of water (control) or 5 g/kg of 20% ethanol (adolescent intermittent ethanol; AIE) for a 2 day on/off schedule throughout adolescence (PD27-57). At 6 months old, rats either remained in their home cage (stationary) or were placed in a voluntary wheel running apparatus for 4 weeks and then underwent several behavioral tests. The number of cholinergic neurons in the basal forebrain and measure of neurogenesis in the hippocampus were assessed. Results Voluntary wheel running recovers spatial working memory deficits selectively in female TgF344-AD rats exposed to AIE and improves pattern separation impairment seen in control TgF344-AD female rats. There were sex-dependent effects on brain pathology: Exercise improves the integration of recently born neurons in AIE-exposed TgF344-AD female rats. Exercise led to a decrease in amyloid burden in the hippocampus and entorhinal cortex, but only in male AIE-exposed TgF344-AD rats. Although the number of basal forebrain cholinergic neurons was not affected by AD-transgenes in either sex, AIE did reduce the number of basal forebrain cholinergic neurons in female rats. Discussion These data provide support that even after symptom onset, AIE and AD related cognitive decline and associated neuropathologies can be rescued with exercise in unique sex-specific ways.
Collapse
Affiliation(s)
| | | | - Lisa M. Savage
- Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| |
Collapse
|
14
|
Hernandez CM, McCuiston MA, Davis K, Halls Y, Carcamo Dal Zotto JP, Jackson NL, Dobrunz LE, King PH, McMahon LL. In a circuit necessary for cognition and emotional affect, Alzheimer's-like pathology associates with neuroinflammation, cognitive and motivational deficits in the young adult TgF344-AD rat. Brain Behav Immun Health 2024; 39:100798. [PMID: 39022628 PMCID: PMC11253229 DOI: 10.1016/j.bbih.2024.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
In addition to extracellular amyloid plaques, intracellular neurofibrillary tau tangles, and inflammation, cognitive and emotional affect perturbations are characteristic of Alzheimer's disease (AD). The cognitive and emotional domains impaired by AD include several forms of decision making (such as intertemporal choice), blunted motivation (increased apathy), and impaired executive function (such as working memory and cognitive flexibility). However, the interaction between these domains of the mind and their supporting neurobiological substrates at prodromal stages of AD, or whether these interactions can be predictive of AD severity (individual variability), remain unclear. In this study, we employed a battery of cognitive and emotional tests in the young adult (5-7 mo) transgenic Fisher-344 AD (TgF344-AD; TgAD) rat model of AD. We also assessed whether markers of inflammation or AD-like pathology in the prelimbic cortex (PrL) of the medial prefrontal cortex (mPFC), basolateral amygdala (BLA), or nucleus accumbens (NAc), all structures that directly support the aforementioned behaviors, were predictive of behavioral deficits. We found TgAD rats displayed maladaptive decision making, greater apathy, and impaired working memory that was indeed predicted by AD-like pathology in the relevant brain structures, even at an early age. Moreover, we report that the BLA is an early epicenter of inflammation, and notably, AD-like pathology in the PrL, BLA, and NAc was predictive of BLA inflammation. These results suggest that operant-based battery testing may be sensitive enough to determine pathology trajectories, including neuroinflammation, from early stages of AD.
Collapse
Affiliation(s)
- Caesar M. Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
| | - Macy A. McCuiston
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristian Davis
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yolanda Halls
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Juan Pablo Carcamo Dal Zotto
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nateka L. Jackson
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
- Department of Neuroscience, Medical University of South Carolina, USA
| | - Lynn E. Dobrunz
- Department of Neurobiology, The University of Alabama at Birmingham, USA
| | - Peter H. King
- Department of Neurology, The University of Alabama at Birmingham, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Lori L. McMahon
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
- Department of Neuroscience, Medical University of South Carolina, USA
| |
Collapse
|
15
|
Reitz NL, Nunes PT, Savage LM. Adolescent alcohol exposure alters age-related progression of behavioral and neurotrophic dysfunction in the TgF344-AD model in a sex-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603911. [PMID: 39091885 PMCID: PMC11291002 DOI: 10.1101/2024.07.17.603911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Alzheimer's Disease (AD) and heavy alcohol use are widely prevalent and lead to brain pathology. Both alcohol-related brain damage (ABRD) and AD result in cholinergic dysfunction, reductions in hippocampal neurogenesis, and the emergence of hippocampal-dependent cognitive impairments. It is still unknown how ARBD caused during a critical developmental timepoint, such as adolescence, interacts with AD-related pathologies to accelerate disease progression later in life. The current study utilized a longitudinal design to characterize behavioral and pathological changes in a transgenic rat model of AD (TgF344-AD) following adolescent intermittent ethanol (AIE) exposure. We found that AIE accelerates cognitive decline associated with AD transgenes in female rats at 6 months of age, and male AD-rats are impaired on spatial navigation by 3-months with no additional deficits due to AIE exposure. Protein levels of various AD-pathological markers were analyzed in the dorsal and ventral hippocampus of male and female rats. The data suggests that AIE-induced alterations of the tropomyosin-related kinase A receptor (TrkA) / p75 neurotrophin receptor (p75NTR) ratio creates a brain that is vulnerable to age- and AD-related pathologies, which leads to an acceleration of cognitive decline, particularly in female rats.
Collapse
|
16
|
Espargaró A, Álvarez-Berbel I, Busquets MA, Sabate R. In Vivo Assays for Amyloid-Related Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:433-458. [PMID: 38598824 DOI: 10.1146/annurev-anchem-061622-023326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Amyloid-related diseases, such as Alzheimer's and Parkinson's disease, are devastating conditions caused by the accumulation of abnormal protein aggregates known as amyloid fibrils. While assays involving animal models are essential for understanding the pathogenesis and developing therapies, a wide array of standard analytical techniques exists to enhance our understanding of these disorders. These techniques provide valuable information on the formation and propagation of amyloid fibrils, as well as the pharmacokinetics and pharmacodynamics of candidate drugs. Despite ethical concerns surrounding animal use, animal models remain vital tools in the search for treatments. Regardless of the specific animal model chosen, the analytical methods used are usually standardized. Therefore, the main objective of this review is to categorize and outline the primary analytical methods used in in vivo assays for amyloid-related diseases, highlighting their critical role in furthering our understanding of these disorders and developing effective therapies.
Collapse
Affiliation(s)
- Alba Espargaró
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
- 2Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Irene Álvarez-Berbel
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
| | - Maria Antònia Busquets
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
- 2Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Raimon Sabate
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
- 2Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Li M, Xu J, Li L, Zhang L, Zuo Z, Feng Y, He X, Hu X. Voluntary wheel exercise improves glymphatic clearance and ameliorates colitis-associated cognitive impairment in aged mice by inhibiting TRPV4-induced astrocytic calcium activity. Exp Neurol 2024; 376:114770. [PMID: 38580155 DOI: 10.1016/j.expneurol.2024.114770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND AND OBJECTIVES Chronic colitis exacerbates neuroinflammation, contributing to cognitive impairment during aging, but the mechanism remains unclear. The polarity distribution of astrocytic aquaporin 4 (AQP4) is crucial for the glymphatic system, which is responsible for metabolite clearance in the brain. Physical exercise (PE) improves cognition in the aged. This study aims to investigate the protective mechanism of exercise in colitis-associated cognitive impairment. METHODS To establish a chronic colitis model, 18-month-old C57BL/6 J female mice received periodic oral administration of 1% wt/vol dextran sodium sulfate (DSS) in drinking water. The mice in the exercise group received four weeks of voluntary wheel exercise. High-throughput sequencing was conducted to screen for differentially expressed genes. Two-photon imaging was performed to investigate the function of the astrocytic calcium activity and in vivo intervention with TRPV4 inhibitor HC-067047. Further, GSK1016790A (GSK1), a TRPV4 agonist, was daily intraperitoneally injected during the exercise period to study the involvement of TRPV4 in PE protection. Colitis pathology was confirmed by histopathology. The novel object recognition (NOR) test, Morris water maze test (MWM), and open field test were performed to measure colitis-induced cognition and anxiety-like behavior. In vivo two-photon imaging and ex vivo imaging of fluorescent CSF tracers to evaluate the function of the glymphatic system. Immunofluorescence staining was used to detect the Aβ deposition, polarity distribution of astrocytic AQP4, and astrocytic phenotype. Serum and brain levels of the inflammatory cytokines were tested by Enzyme-linked immunosorbent assay (ELISA). The brain TUNEL assay was used to assess DNA damage. Expression of critical molecules was detected using Western blotting. RESULTS Voluntary exercise alleviates cognitive impairment and anxiety-like behavior in aged mice with chronic colitis, providing neuroprotection against neuronal damage and apoptosis. Additionally, voluntary exercise promotes the brain clearance of Aβ via increased glymphatic clearance. Mechanistically, exercise-induced beneficial effects may be attributed, in part, to the inhibition of TRPV4 expression and TRPV4-related calcium hyperactivity, subsequent promotion of AQP4 polarization, and modulation of astrocyte phenotype. CONCLUSION The present study reveals a novel role of voluntary exercise in alleviating colitis-related cognitive impairment and anxiety disorder, which is mediated by the promotion of AQP4 polarization and glymphatic clearance of Aβ via inhibition of TRPV4-induced astrocytic calcium hyperactivity.
Collapse
Affiliation(s)
- Mingyue Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinghui Xu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zejie Zuo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yifeng Feng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
18
|
Talebi V, Alamdari KA, Patel DI. Simple and Complex Wheel Running Effect on Depression, Memory, Neuroinflammation, and Neurogenesis in Alzheimer's Rat Model. Med Sci Sports Exerc 2024; 56:1159-1167. [PMID: 38227543 DOI: 10.1249/mss.0000000000003394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
INTRODUCTION The aim of this study was to investigate 12 wk of simple and complex voluntary wheel running on Alzheimer's disease (AD), associated biomarkers, and behaviors. METHODS Sixty male Wistar rats were randomly divided into six groups: healthy control (Con-Sed), AD only (AD-Sed), simple wheel control (SWC), complex wheel control (CWC), simple wheel AD (SWAD), and complex wheel AD (CWAD). Novelty-suppressed feeding test and the Morris water maze test were used to evaluate depression and memory, respectively. Ki67 was measured in the hippocampus, whereas interleukin (IL)-1β and neural/glial antigen 2 (NG2) were measured in both the hippocampus and the prefrontal cortex. One-way ANOVA with Tukey's post hoc test was performed. RESULTS AD-Sed group had significantly lower spacial memory ( P < 0.001) compared with Con-Sed. Simple and complex wheel running attenuated these deficits in the SWAD and CWAD groups, respectively ( P < 0.001). Only the CWAD group had significantly improved novelty-suppressed feeding test time compared with AD-Sed ( P < 0.001), equivalent to the healthy wheel running groups. AD-Sed has significantly higher hippocampal concentrations of Ki67 ( P = 0.01) compared with the Con-Sed. Both SWAD and CWAD had significantly reduced Ki67 with similar concentrations compared with the SWC and CWC groups ( P > 0.05). AD-Sed animals also presented with significantly higher hippocampal and prefrontal cortex concentrations of IL-1β compared with Con-Sed ( P < 0.001). SWAD and CWAD had no effect in changing these concentrations. Complex wheel running significantly increased NG2 in the healthy control and AD models, whereas simple wheel running significantly increased NG2 in the AD model. CONCLUSIONS The results of our study suggest that complex wheel running might be more advantageous in promoting memory and neuroplasticity while reducing depression that is associated with AD.
Collapse
Affiliation(s)
- Vahid Talebi
- Department of Sports Science, Faculty of Educational Sciences and Psychology, Azarbaijan Shahid Madani University, Tabriz, IRAN
| | - Karim Azali Alamdari
- Department of Sports Science, Faculty of Educational Sciences and Psychology, Azarbaijan Shahid Madani University, Tabriz, IRAN
| | - Darpan I Patel
- School of Nursing, University of Texas Medical Branch at Galveston, Galveston, TX
| |
Collapse
|
19
|
Khoramipour K, Rezaei MH, Moslemizadeh A, Hosseini MS, Ebrahimnezhad N, Bashiri H. Changes in the hippocampal level of tau but not beta-amyloid may mediate anxiety-like behavior improvement ensuing from exercise in diabetic female rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:9. [PMID: 38702776 PMCID: PMC11067136 DOI: 10.1186/s12993-024-00235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/08/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND In the present study, we investigated the effect of high-intensity interval training (HIIT) on cognitive behaviors in female rats with a high-fat diet + streptozotocin (STZ)-induced type 2 diabetes. METHODS Twenty-four female rats were divided into four groups randomly (n = 6): control (C), control + exercise (Co + EX), diabetes mellitus (type 2) (T2D), and diabetes mellitus + exercise (T2D + EX). Diabetes was induced by a two-month high-fat diet and a single dose of STZ (35 mg/kg) in the T2D and T2D + EX groups. The Co + EX and T2D + EX groups performed HIIT for eight weeks (five sessions per week, running on a treadmill at 80-100% of VMax, 4-10 intervals). Elevated plus maze (EPM) and open field test (OFT) were used for assessing anxiety-like behaviors, and passive avoidance test (PAT) and Morris water maze (MWM) were applied for evaluating learning and memory. The hippocampal levels of beta-amyloid (Aβ) and Tau were also assessed using Western blot. RESULTS An increase in fasting blood glucose (FBG), hippocampal level of Tau, and a decrease in the percentage of open arm time (%OAT) as an index of anxiety-like behavior were seen in the female diabetic rats which could be reversed by HIIT. In addition, T2D led to a significant decrease in rearing and grooming in the OFT. No significant difference among groups was seen for the latency time in the PAT and learning and memory in the MWM. CONCLUSIONS HIIT could improve anxiety-like behavior at least in part through changes in hippocampal levels of Tau.
Collapse
MESH Headings
- Animals
- Female
- Hippocampus/metabolism
- tau Proteins/metabolism
- Rats
- Physical Conditioning, Animal/physiology
- Physical Conditioning, Animal/methods
- Physical Conditioning, Animal/psychology
- Anxiety/therapy
- Anxiety/psychology
- Anxiety/metabolism
- Amyloid beta-Peptides/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/psychology
- Diabetes Mellitus, Experimental/therapy
- High-Intensity Interval Training/methods
- Maze Learning/physiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/psychology
- Diabetes Mellitus, Type 2/therapy
- Behavior, Animal/physiology
- Diet, High-Fat/adverse effects
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Student Research Committee, School of medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Hossein Rezaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | | | - Mahdieh Sadat Hosseini
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Narjes Ebrahimnezhad
- Department of Sports Science, Faculty of Educational Sciences and Psychology, Sistan and Baluchestan University, Zahedan, Iran
| | - Hamideh Bashiri
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
20
|
Dos Santos HM, Bertollo AG, Mingoti MED, Grolli RE, Kreuz KM, Ignácio ZM. Dementia and depression: Biological connections with amyloid β protein. Basic Clin Pharmacol Toxicol 2024; 134:563-573. [PMID: 38459754 DOI: 10.1111/bcpt.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
Dementia is an umbrella term for a broad group of age-associated neurodegenerative diseases. It is estimated that dementia affects 50 million people worldwide and that Alzheimer's disease (AD) is responsible for up to 75% of cases. Small extracellular senile plaques composed of filamentous aggregates of amyloid β (Aβ) protein tend to bind to neuronal receptors, affecting cholinergic, serotonergic, dopaminergic and noradrenergic neurotransmission, leading to neuroinflammation, among other pathophysiologic processes and subsequent neuronal death, followed by dementia. The amyloid cascade hypothesis points to a pathological process in the cleavage of the amyloid precursor protein (APP), resulting in pathological Aβ. There is a close relationship between the pathologies that lead to dementia and depression. It is estimated that depression is prevalent in up to 90% of individuals diagnosed with Parkinson's disease, with varying severity, and in 20 to 30% of cases of Alzheimer's disease. The hypothalamic pituitary adrenal (HPA) axis is the great intermediary between the pathophysiological mechanisms in neurodegenerative diseases and depression. This review discusses the role of Aβ protein in the pathophysiological mechanisms of dementia and depression, considering the HPA axis, neuroinflammation, oxidative stress, signalling pathways and neurotransmission.
Collapse
Affiliation(s)
- Helamã Moraes Dos Santos
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Amanda Gollo Bertollo
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Roberta Eduarda Grolli
- Laboratory for research into care, patient safety, and technological innovation in nursing and health, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Kelli Maria Kreuz
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
21
|
Lopez DC, White ZJ, Hall SE. Anxiety in Alzheimer's disease rats is independent of memory and impacted by genotype, age, sex, and exercise. Alzheimers Dement 2024; 20:3543-3550. [PMID: 38624069 PMCID: PMC11095471 DOI: 10.1002/alz.13813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is characterized by cognitive impairments; however, heightened anxiety often accompanies and, in some cases, exacerbates cognitive its. The present study aims to understand the influence of multiple variables on anxiety-like behavior in TgF344-AD rats and determine whether anxiety impacts memory performance. METHODS An elevated plus maze was used to assess anxiety-like behavior in the established colony (n = 107). Influences of age, sex, genotype, and exercise on anxiety were evaluated via multiple linear regression. Correlation analysis evaluated the relationship between anxiety and memory performance. RESULTS Age (P < 0.05) and AD genotype (P < 0.001) were associated with increasing anxiety, while exercise (P < 0.05) was associated with decreasing anxiety. Female AD animals displayed more anxiety-like behavior versus wild-type female (P < 0.001) and AD male (P < 0.05) littermates. DISCUSSION Concluding that while factors such as age, sex, AD genotype, and training status can impact anxiety levels in the TgF344-AD model, anxiety level did not impact memory performance. HIGHLIGHTS Increased anxiety-like behavior in TgF344-AD rats does not correlate with declines in memory performance. Predictors of higher anxiety-like behaviors in the TgF344-AD rat include age, Alzheimer's disease (AD) genotype, and sex with female AD animals experiencing greater anxiety compared to female wild-type or male AD. Exercise training leads to decreased anxiety-like behaviors in the TgF344-AD rat.
Collapse
Affiliation(s)
- Danielle C. Lopez
- Anatomy and Physiology DepartmentKansas State College of Veterinary MedicineManhattanKansasUSA
| | - Zachary J. White
- Anatomy and Physiology DepartmentKansas State College of Veterinary MedicineManhattanKansasUSA
| | - Stephanie E. Hall
- Anatomy and Physiology DepartmentKansas State College of Veterinary MedicineManhattanKansasUSA
| |
Collapse
|
22
|
Feizolahi F, Arabzadeh E, Sarshin A, Falahi F, Dehghannayeri Z, Ali Askari A, Wong A, Aghaei F, Zargani M. Effects of Exercise Training and L-Arginine Loaded Chitosan Nanoparticles on Hippocampus Histopathology, β-Secretase Enzyme Function, APP, Tau, Iba1and APOE-4 mRNA in Aging Rats. Neurotox Res 2024; 42:21. [PMID: 38441819 DOI: 10.1007/s12640-024-00699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
The objective of this study was to evaluate the combined and independent effects of exercise training and L-Arginine loaded chitosan nanoparticles (LA CNPs) supplementation on hippocampal Tau, App, Iba1, and ApoE gene expression, oxidative stress, β-secretase enzyme activity, and hippocampus histopathology in aging rats. Thirty-five male Wistar rats were randomly assigned to five groups (n = 7 in each): Young (8 weeks old), Old (20 months old), old + L-arginine supplementation (Old Sup), old + exercise (Old Exe) and old + L-arginine supplementation + exercise (Old Sup + Exe). LA CNPs were administered to the supplement groups through gavage at a dosage of 500 mg/kg/day for 6-weeks. Exercise groups were subjected to a swimming exercise program five days/week for the same duration. Upon the completion of their interventions, the animals underwent behavioral and open-field task tests and were subsequently sacrificed for hippocampus genetic and histopathological evaluation. For histopathological analysis of brain, Cresyl violet staining was used. Congo Red staining was employed to confirm amyloid plaques in the hippocampus. Expressions of Tau, App, Iba1, and ApoE genes were determined by real-time PCR. In contrast to the Old group, Old Exe and Old Sup + Exe groups spent more time in the central space in the open field task (p < 0.05) and have more live cells in the hippocampus. Old rats (Old, Old Sup and Old Exe groups) exhibited a significant Aβ peptide accumulation and increases in APP, Tau, Iba1, APOE-4 mRNA and MDA, along with decreases in SOD compared to the young group (p < 0.05). However, LA CNPs supplementation, exercise, and their combination (Old Sup, Old Exe and Old Sup + Exe) significantly reduced MDA, Aβ plaque as well as APP, Tau, Iba1, and APOE-4 mRNA compared to the Old group (p < 0.05). Consequently, the administration of LA CNPs supplements and exercise might regulate the risk factors of hippocampus cell and tissue.
Collapse
Affiliation(s)
- Foad Feizolahi
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Sarshin
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Farshad Falahi
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Zahra Dehghannayeri
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Ali Ali Askari
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Fariba Aghaei
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mehdi Zargani
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|
23
|
Ofili PC, Ede MO, Anyaegbunam NJ, Oforka KO, Okereke IE, Umeifekwem JE, Bosa CN, Ngwoke SOR, Okoroafor U, Oyibo MA, Ogueri EO, Ibhafido A, Abbah OI, Nwakamma JC, Ezeufodiama SC, Okechukwu EC, Omeye RO, Nwaiwu N, Anozie KC, Ikediashi OE, Ogbochie AN, Obeagu EI, Okoroafor JC, Odo EO. Physical activity and depressive symptoms during the fifth wave of COVID-19 pandemic: Implication for public policy and administrators. Medicine (Baltimore) 2024; 103:e37155. [PMID: 38363916 PMCID: PMC10869065 DOI: 10.1097/md.0000000000037155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
Depression is a public mental health problem that can progress to suicidal ideation, literature suggests regular physical activity may ameliorate it. The study assessed the link between physical activity and depression symptoms during the fifth wave of the COVID-19 pandemic and the Academic Staff Union (ASU) strike among undergraduates. Four hundred and eighteen undergraduates were recruited and participated in the study. Participants completed the International Physical Activity Questionnaire-Short Form (IPAQ-SF) and Patient Health Questionnaire-9 (PHQ-9) to measure depression severity. The result on PA showed that about one-third of the participants were inactive, above half were moderately active, while a few achieved high PA levels. Above one-fifth of the participants experienced minimal or no depression while a good percent had mild, moderate, moderately severe, and severe depression. Non-parametric tests between PA total score and depression total score with demographic variables were not significant. Spearman's correlation showed a strong negative relationship between PHQ-9 scores and IPAQ-SF scores. This suggests that a high PA level is associated with lower depression symptoms. The COVID-19 pandemic and the ASU strike experiences resulted in increased depression among undergraduates. The university administration needs to formulate an urgent policy to promote PA among undergraduates and provide treatment for the affected students.
Collapse
Affiliation(s)
- Perpetua Chinyere Ofili
- Department of Human Kinetic and Health Education, Faculty of Education, University of Nigeria, Nsukka, Nigeria
| | - Moses Onyemaechi Ede
- Department of Educational Foundations, Faculty of Education, University of Nigeria, Nsukka, Nigeria
| | | | - Kingsley Okechukwu Oforka
- Department of Human Kinetic and Health Education, Faculty of Education, University of Nigeria, Nsukka, Nigeria
| | - Innocent Ebere Okereke
- Department of Science Education, Faculty of Education, University of Nigeria, Nsukka, Nigeria
| | - Joshua Emeka Umeifekwem
- Department of Human Kinetic and Health Education, Faculty of Education, University of Nigeria, Nsukka, Nigeria
| | - Chukwuebuka Nnagozie Bosa
- Department of Human Kinetic and Health Education, Faculty of Education, University of Nigeria, Nsukka, Nigeria
| | | | - Uzochukwu Okoroafor
- Department of Human kinetics and Sports Studies, Alvan Ikoku University of Education, Owerri, Imo State
| | - Melitus Amadi Oyibo
- Department of Human kinetics and Sports Studies, Alvan Ikoku University of Education, Owerri, Imo State
| | - Emmanuel Obinna Ogueri
- Department of Human kinetics and Sports Studies, Alvan Ikoku University of Education, Owerri, Imo State
| | - Akhere Ibhafido
- Department of Human kinetics and Sports Studies, Alvan Ikoku University of Education, Owerri, Imo State
| | - Oliver Igwebuike Abbah
- Department of Human Kinetic and Health Education, Faculty of Education, University of Nigeria, Nsukka, Nigeria
| | - Jude Chikezie Nwakamma
- Department of Human kinetics and Sports Studies, Alvan Ikoku University of Education, Owerri, Imo State
| | - Stella C. Ezeufodiama
- Department of Human kinetics and Sports Studies, Alvan Ikoku University of Education, Owerri, Imo State
| | | | - Rita Okechukwu Omeye
- Department of Human Kinetic and Health Education, Faculty of Education, University of Nigeria, Nsukka, Nigeria
| | - Nnochiri Nwaiwu
- Department of Human kinetics and Sports Studies, Alvan Ikoku University of Education, Owerri, Imo State
| | - Keyna Chinyere Anozie
- Department of Human kinetics and Sports Studies, Alvan Ikoku University of Education, Owerri, Imo State
| | - Olisa Emmanuel Ikediashi
- Department of Human kinetics and Sports Studies, Alvan Ikoku University of Education, Owerri, Imo State
| | - Andrew Nnabuchi Ogbochie
- Department of Public Administration and Local Government, University of Nigeria, Nsukka, Nigeria
| | | | - Judith Chikamma Okoroafor
- Department of Human Kinetics and Sports Studies, Faculty of Education, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Edward Odogbu Odo
- Health and Physical Education, School of General Studies, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
| |
Collapse
|
24
|
Chen Z, Li M, Wu C, Su Y, Feng S, Deng Q, Zou P, Liu TCY, Duan R, Yang L. Photobiomodulation therapy alleviates repeated closed head injury-induced anxiety-like behaviors. JOURNAL OF BIOPHOTONICS 2024; 17:e202300343. [PMID: 37909411 DOI: 10.1002/jbio.202300343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Repeated closed head injury (rCHI) is one of the most common brain injuries. Although extensive studies have focused on how to treat rCHI-induced brain injury and reduce the possibility of developing memory deficits, the prevention of rCHI-induced anxiety has received little research attention. The current study was designed to assess the effects of photobiomodulation (PBM) therapy in preventing anxiety following rCHI. The rCHI disease model was constructed by administering three repeated closed-head injuries within an interval 5 days. 2-min daily PBM therapy using an 808 nm continuous wave laser at 350 mW/cm2 on the scalp was implemented for 20 days. We found that PBM significantly ameliorated rCHII-induced anxiety-like behaviors, neuronal apoptosis, neuronal injury, promotes astrocyte/microglial polarization to anti-inflammatory phenotype, preserves mitochondrial fusion-related protein MFN2, attenuates the elevated mitochondrial fission-related protein DRP1, and mitigates neuronal senescence. We concluded that PBM therapy possesses great potential in preventing anxiety following rCHI.
Collapse
Affiliation(s)
- Zhe Chen
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Meng Li
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Yanlin Su
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shu Feng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Peibin Zou
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
25
|
Ma Y, Sun W, Bai J, Gao F, Ma H, Liu H, Hu J, Xu C, Zhang X, Liu Z, Yuan T, Sun C, Huang Y, Wang R. Targeting blood brain barrier-Remote ischemic conditioning alleviates cognitive impairment in female APP/PS1 rats. CNS Neurosci Ther 2024; 30:e14613. [PMID: 38379185 PMCID: PMC10879645 DOI: 10.1111/cns.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/16/2023] [Accepted: 11/26/2023] [Indexed: 02/22/2024] Open
Abstract
AIMS Alzheimer's disease (AD) is a significant global health concern, and it is crucial that we find effective methods to prevent or slow down AD progression. Recent studies have highlighted the essential role of blood vessels in clearing Aβ, a protein that contributes to AD. Scientists are exploring blood biomarkers as a potential tool for future AD diagnosis. One promising method that may help prevent AD is remote ischemic conditioning (RIC). RIC involves using sub-lethal ischemic-reperfusion cycles on limbs. However, a comprehensive understanding of how RIC can prevent AD and its long-term effectiveness is still lacking. Further research is essential to fully comprehend the potential benefits of RIC in preventing AD. METHODS Female wild-type (WT) and APP/PS1 transgenic rats, aged 12 months, underwent ovariectomy and were subsequently assigned to WT, APP/PS1, and APP/PS1 + RIC groups. RIC was conducted five times a week for 4 weeks. The rats' depressive and cognitive behaviors were evaluated using force swimming, open-field tests, novel objective recognition, elevated plus maze, and Barnes maze tests. Evaluation of the neurovascular unit (NVU), synapses, vasculature, astrocytes, and microglia was conducted using immunofluorescence staining (IF), Western blot (WB), and transmission electron microscopy (TEM). Additionally, the cerebro-vasculature was examined using micro-CT, and cerebral blood flow (CBF) was measured using Speckle Doppler. Blood-brain barrier (BBB) permeability was determined by measuring the Evans blue leakage. Finally, Aβ levels in the rat frontal cortex were measured using WB, ELISA, or IF staining. RESULTS RIC enhanced memory-related protein expression and rescued depressive-like behavior and cognitive decline in APP/PS1 transgenic rats. Additionally, the intervention protected NVU in the rat frontal cortex, as evidenced by (1) increased expression of TJ (tight junction) proteins, pericyte marker PDGFRβ, and glucose transporter 1 (GLUT1), as well as decreased VCAM1; (2) mitigation of ultrastructure impairment in neuron, cerebral vascular, and astrocyte; (3) upregulation of A2 astrocyte phenotype markers and downregulation of A1 phenotype markers, indicating a shift toward a healthier phenotype. Correspondingly, RIC intervention alleviated neuroinflammation, as evidenced by the decreased Iba1 level, a microglia marker. Meanwhile, RIC intervention elevated CBF in frontal cortex of the rats. Notably, RIC intervention effectively suppressed Aβ toxicity, as demonstrated by the enhancement of α-secretase and attenuation of β-secretase (BACE1) and γ- secretase and Aβ1-42 and Aβ1-40 levels as well. CONCLUSION Chronic RIC intervention exerts vascular and neuroprotective roles, suggesting that RIC could be a promising therapeutic strategy targeting the BBB and NVU during AD development.
Collapse
Affiliation(s)
- Yuxuan Ma
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Wuxiang Sun
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Jing Bai
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Fujia Gao
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Haoran Ma
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Huiyu Liu
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Jiewei Hu
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Chao Xu
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Xin Zhang
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Zixuan Liu
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Tao Yuan
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Chenxu Sun
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Yuanyuan Huang
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Ruimin Wang
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| |
Collapse
|
26
|
Koketsu S, Matsubara K, Ueki Y, Shinohara Y, Inoue K, Murakami S, Ueki T. The defects of the hippocampal ripples and theta rhythm in depression, and the effects of physical exercise on their amelioration. Heliyon 2024; 10:e23738. [PMID: 38226277 PMCID: PMC10788462 DOI: 10.1016/j.heliyon.2023.e23738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Adverse environmental stress causes depressive symptoms with the impairments of memory formation, cognition, and motivation, however, their underlying neural bases have not been well understood, especially based on the observation of living animals. In the present study, therefore, the mice model of restraint-induced stress was examined electrophysiologically to investigate the alterations of hippocampal sharp wave ripples (SWRs) and theta rhythms. In addition, the therapeutic effects of physical exercise on the amelioration of those hippocampal impairments were examined in combination with a series of behavioral tests. The data demonstrated that chronic restraint stress caused the reductions of occurrence and amplitude of hippocampal SWRs and the decreases of occurrence, duration, and power of theta rhythms, while physical exercise significantly reverted them to the levels of healthy control. Furthermore, hippocampal adult neurogenesis and microglial activation, previously reported to be involved in the etiology of depression, were histologically examined in the mice. The results showed that the impairment of neurogenesis and alleviation of microglial activation were induced in the depressed mice. On the other hand, physical exercise considerably ameliorated those pathological conditions in the affected brain. Consistently, the data of behavioral tests in mice suggested that physical exercise ameliorated the symptomatic defects of motivation, memory formation, and cognition in the depressed mice. The impairments of hippocampal SWRs and theta rhythms in the affected hippocampus are linked with the symptomatic impairments of cognition and motivation, and the defect of memory formation, respectively, in depression. Taken together, this study demonstrated the implications of impairment of the hippocampal SWRs and theta rhythms in the etiology of depression and their usefulness as diagnostic markers of depression.
Collapse
Affiliation(s)
- Shinnosuke Koketsu
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Physical Therapy, Nagoya Women's University Faculty of Medical Science, Nagoya, Aichi, 467-8610, Japan
| | - Kohki Matsubara
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Yoshino Ueki
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Yoshiaki Shinohara
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Anatomy and Cell Biology, Yamanashi University Graduate School of Medical Sciences, Chuo, Yamanashi, 409-3898, Japan
| | - Koichi Inoue
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Satona Murakami
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| |
Collapse
|
27
|
Yu J, Tang L, Yang L, Zheng M, Yu H, Luo Y, Liu J, Xu J. Role and mechanism of MiR-542-3p in regulating TLR4 in nonylphenol-induced neuronal cell pyroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155123. [PMID: 37976699 DOI: 10.1016/j.phymed.2023.155123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/26/2023] [Accepted: 09/27/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND This study aimed to investigate the spatial learning/memory and motor abilities of rats and the alteration of miR-542-3p and pyroptosis in the midbrain nigrostriatal area in vivo after nonylphenol (NP) gavage and to explore the mechanism of miR-542-3p regulation of Toll-like receptor 4 (TLR4) in NP-induced pyroptosis in BV2 microglia in vitro. METHODS In vivo: Thirty-six specific-pathogen-free-grade Sprague-Dawley rats were divided into three equal groups: blank control group (treated with pure corn oil), NP group (treated with NP, 80 mg/kg body weight per day for 90 days), and positive control group [treated with lipopolysaccharide (LPS), 2 mg/kg body weight for 7 days]. In vitro: The first part of the experiment was divided into blank group (control, saline), LPS group [1 µg/ml + 1 mM adenosine triphosphate (ATP)], and NP group (40 µmol/L). The second part was divided into mimics NC (negative control) group, miR-542-3p mimics group, mimics NC + NP group, and miR-542-3p mimics + NP group. RESULTS In vivo: Behaviorally, the spatial learning/memory and motor abilities of rats after NP exposure declined, as detected via Y-maze, open field, and rotarod tests. Some microglia in the substantia nigra of the NP-treated rats were activated. The downregulation of miR-542-3p was observed in rat brain tissue after NP exposure. The mRNA/protein expression of pyroptosis-related indicators (TLR4), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), gasdermin-D (GSDMD), cysteinyl aspartate-specific proteinase-1 (caspase-1), and interleukin-1β (IL-1β) in the substantia nigra of the midbrain increased after NP exposure. In vitro: ASC fluorescence intensity increased in BV2 cells after NP exposure. The mRNA and/or protein expression of pyroptosis-related indicators (TLR4, NLRP3, GSDMD, caspase-1, and IL-1β) in BV2 cells was upregulated after NP exposure. The transfection of miR-542-3p mimics inhibited NP-induced ASC expression in BV2 cells. The overexpression of miR-542-3p, followed by NP exposure, significantly reduced TLR4, NLRP3, ASC, caspase-1, and IL-1β gene and/or protein expression. CONCLUSIONS This study suggested that NP exposure caused a decline in spatial learning memory and whole-body motor ability in rats. Our study was novel in reporting that the upregulation of miR-542-3p targeting and regulating TLR4 could inhibit NLRP3 inflammatory activation and alleviate NP-induced microglia pyroptosis.
Collapse
Affiliation(s)
- Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Lan Tang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China; Department of Nosocomial Infection Control, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, 550002, PR China
| | - Lilin Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Mucong Zheng
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Huawen Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Ya Luo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jinqing Liu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
28
|
Shao S, Ye X, Su W, Wang Y. Curcumin alleviates Alzheimer's disease by inhibiting inflammatory response, oxidative stress and activating the AMPK pathway. J Chem Neuroanat 2023; 134:102363. [PMID: 37989445 DOI: 10.1016/j.jchemneu.2023.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a common degenerative brain disorder with limited therapeutic options. Curcumin (Cur) exhibits neuroprotective function in many diseases. We aimed to explore the role and mechanism of Cur in AD. MATERIALS AND METHODS Firstly, we established AD mice by injecting amyloid-β1-42 (Aβ1-42) solution into the hippocampus. Then, the AD mice received 150 mg/kg/d Cur for 10 consecutive days. The Morris water maze test was conducted to evaluate the cognitive function of the mice by hidden platform training and probe trials. To assess the spatial memory of the mice, spontaneous alternation behavior, the number of crossing the novel arm and the time spent in the novel arm during the Y-maze test was recorded. Hematoxylin and eosin (H&E) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNAL) assay were performed to assess the pathological damage and apoptosis of brain tissues. The number of damaged neurons was inspected by Nissl staining. Immunohistochemical staining was then performed to detect Aβ1-42 deposition. The levels of tumor necrosis factor-α (TNF-a), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in serum and hippocampus, the contents of super oxide dismutase (SOD) and malondialdehyde (MDA) in brain tissues were assessed by enzyme-linked immunosorbent assay (ELISA). Additionally, B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), RelA (p65) protein expressions and Adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation were tested using Western blot. RESULTS Cur not only improved cognitive function and spatial memory, but also alleviated the pathological damage and apoptosis of brain tissues for AD mice. Meanwhile, upon Cur treatment, the number of damaged neurons in AD mice was decreased, the level of Aβ1-42 in AD mice was significantly decreased. Furthermore, the AD mice treated with Cur exhibited lower TNF-a, IL-6, IL-1β and MDA levels and a higher SOD content. Besides, Cur also downregulated p65 expression and upregulated AMPK phosphorylation. CONCLUSION Cur may improve AD via suppressing the inflammatory response, oxidative stress and activating the AMPK pathway, suggesting that Cur may be a potential drug for AD.
Collapse
Affiliation(s)
- Sen Shao
- Department of Neurology, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Ye
- Department of Neurology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wenwen Su
- Department of Internal Medicine, CiXi Seventh People's Hospital, Ningbo, China
| | - Yanbo Wang
- Department of Neurology, the Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China.
| |
Collapse
|
29
|
Zou P, Wu C, Liu TCY, Duan R, Yang L. Oligodendrocyte progenitor cells in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2023; 12:52. [PMID: 37964328 PMCID: PMC10644503 DOI: 10.1186/s40035-023-00385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) play pivotal roles in myelin formation and phagocytosis, communicating with neighboring cells and contributing to the integrity of the blood-brain barrier (BBB). However, under the pathological circumstances of Alzheimer's disease (AD), the brain's microenvironment undergoes detrimental changes that significantly impact OPCs and their functions. Starting with OPC functions, we delve into the transformation of OPCs to myelin-producing oligodendrocytes, the intricate signaling interactions with other cells in the central nervous system (CNS), and the fascinating process of phagocytosis, which influences the function of OPCs and affects CNS homeostasis. Moreover, we discuss the essential role of OPCs in BBB formation and highlight the critical contribution of OPCs in forming CNS-protective barriers. In the context of AD, the deterioration of the local microenvironment in the brain is discussed, mainly focusing on neuroinflammation, oxidative stress, and the accumulation of toxic proteins. The detrimental changes disturb the delicate balance in the brain, impacting the regenerative capacity of OPCs and compromising myelin integrity. Under pathological conditions, OPCs experience significant alterations in migration and proliferation, leading to impaired differentiation and a reduced ability to produce mature oligodendrocytes. Moreover, myelin degeneration and formation become increasingly active in AD, contributing to progressive neurodegeneration. Finally, we summarize the current therapeutic approaches targeting OPCs in AD. Strategies to revitalize OPC senescence, modulate signaling pathways to enhance OPC differentiation, and explore other potential therapeutic avenues are promising in alleviating the impact of AD on OPCs and CNS function. In conclusion, this review highlights the indispensable role of OPCs in CNS function and their involvement in the pathogenesis of AD. The intricate interplay between OPCs and the AD brain microenvironment underscores the complexity of neurodegenerative diseases. Insights from studying OPCs under pathological conditions provide a foundation for innovative therapeutic strategies targeting OPCs and fostering neurodegeneration. Future research will advance our understanding and management of neurodegenerative diseases, ultimately offering hope for effective treatments and improved quality of life for those affected by AD and related disorders.
Collapse
Affiliation(s)
- Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
30
|
Reyna NC, Clark BJ, Hamilton DA, Pentkowski NS. Anxiety and Alzheimer's disease pathogenesis: focus on 5-HT and CRF systems in 3xTg-AD and TgF344-AD animal models. Front Aging Neurosci 2023; 15:1251075. [PMID: 38076543 PMCID: PMC10699143 DOI: 10.3389/fnagi.2023.1251075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/25/2023] [Indexed: 02/12/2024] Open
Abstract
Dementia remains one of the leading causes of morbidity and mortality in older adults. Alzheimer's disease (AD) is the most common type of dementia, affecting over 55 million people worldwide. AD is characterized by distinct neurobiological changes, including amyloid-beta protein deposits and tau neurofibrillary tangles, which cause cognitive decline and subsequent behavioral changes, such as distress, insomnia, depression, and anxiety. Recent literature suggests a strong connection between stress systems and AD progression. This presents a promising direction for future AD research. In this review, two systems involved in regulating stress and AD pathogenesis will be highlighted: serotonin (5-HT) and corticotropin releasing factor (CRF). Throughout the review, we summarize critical findings in the field while discussing common limitations with two animal models (3xTg-AD and TgF344-AD), novel pharmacotherapies, and potential early-intervention treatment options. We conclude by highlighting promising future pharmacotherapies and translational animal models of AD and anxiety.
Collapse
Affiliation(s)
- Nicole C. Reyna
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | | | | | | |
Collapse
|
31
|
Zhu Z, He Z, Tang T, Wang F, Chen H, Zhou J, Lin C, Chen G, Wang J, Li J, Liu X, Zhou Z, Liu S. Effect of mechanical stimulation on tissue heterotopic ossification: an in vivo experimental study. Front Physiol 2023; 14:1225898. [PMID: 37900947 PMCID: PMC10600381 DOI: 10.3389/fphys.2023.1225898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Background: Heterotopic ossification of tendons and ligaments (HOTL) is a common clinical condition characterized by the absence of discernible features and a lack of effective treatment. In vitro experiments have demonstrated that mechanical stimulation can induce cell differentiation toward osteogenesis, thereby promoting heterotopic ossification. Currently, there are few experimental designs aimed at inducing ligament stretching in mice, and the mechanism of heterotopic ossification may not entirely mirror that observed in clinical cases. Therefore, there is an urgent imperative to develop a novel and feasible animal model. Methods: In this study, all the Enpp1 gene deficiency mice (a mouse model with heterotopic ossification of multiple ligaments) were divided into three groups: the control group, the spinal brake group, and the hyperactive group (treadmill training group). An external spinal fixation device was designed to restrict mice's spinal flexion and extension at 6 weeks of age. The brace was adjusted weekly according to the changes in the size of the mice. Additionally, treadmill training was used to increase activity in the spinal ligaments and Achilles tendons of the mice. Micro-CT scanning and HE staining were performed at 12, 20, and 28 W to evaluate the degree of ossification in the spinal ligament and Achilles tendon. What's more, As one of the mechanical stimulation transduction signals, YAP plays a crucial role in promoting osteogenic differentiation of cells. Immunofluorescence was utilized to assess YAP expression levels for the purpose of determining the extent of mechanical stimulation in tissues. Results: Our findings showed that a few ossification lesions were detected behind the vertebral space of mice at 8 weeks of age. Spinal immobilization effectively restricts the flexion and extension of cervical and thoracic vertebrae in mice, delaying spinal ligament ossification and reducing chronic secondary spinal cord injury. Running exercises not only enhance the ossification area of the posterior longitudinal ligament (PLL) and Achilles tendons but also exacerbate secondary spinal cord injury. Further immunofluorescence results revealed a notable increase in YAP expression levels in tissues with severe ossification, suggesting that these tissues may be subjected to higher mechanical stimulation. Conclusion: Mechanical stimulation plays a pivotal role in the process of heterotopic ossification in tissues. Our study provided valid animal models to further explore the pathological mechanism of mechanical stimulation in HOTL development.
Collapse
Affiliation(s)
- Zhengya Zhu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhongyuan He
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, Orthopaedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Tang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, Orthopaedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fuan Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, Orthopaedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongkun Chen
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiaxiang Zhou
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengkai Lin
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guoliang Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jianmin Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jianfeng Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, Orthopaedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, Orthopaedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaoyu Liu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, Orthopaedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Rezaei MH, Madadizadeh E, Aminaei M, Abbaspoor M, Schierbauer J, Moser O, Khoramipour K, Chamari K. Leptin Signaling Could Mediate Hippocampal Decumulation of Beta-Amyloid and Tau Induced by High-Intensity Interval Training in Rats with Type 2 Diabetes. Cell Mol Neurobiol 2023; 43:3465-3478. [PMID: 37378849 DOI: 10.1007/s10571-023-01357-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/29/2023] [Indexed: 06/29/2023]
Abstract
Leptin (LEP) can cross the blood-brain barrier and facilitate cross-talk between the adipose tissue and central nerve system (CNS). This study aimed to investigate the effect of 8-week high-intensity interval training (HIIT) on the LEP signaling in the hippocampus of rats with type 2 diabetes. 20 rats were randomly divided into four groups: (i) control (Con), (ii) type 2 diabetes (T2D), (iii) exercise (EX), and (iv) type 2 diabetes + exercise (T2D + EX). The rats in the T2D and T2D + EX were fed a high-fat diet for two months, then a single dose of STZ (35 mg/kg) was injected to induce diabetes. The EX and T2D + EX groups performed 4-10 intervals of treadmill running at 80-100% of Vmax. Serum and hippocampal levels of LEP as well as hippocampal levels of LEP receptors (LEP-R), Janus kinase 2 (JAK-2), signal transducer and activator of transcription 3 (STAT-3), activated protein kinase (AMP-K), proxy zoster receptor α (PGC-1α), beta-secretase 1 (BACE1), Beta-Amyloid (Aβ), Phosphoinositide 3-kinases (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), Glycogen Synthase Kinase 3 Beta (GSK3β), and hyperphosphorylated tau proteins (TAU) were measured. One-way ONOVA and Tukey post-hoc tests were used to analyze the data. Serum and hippocampal levels of LEP as well as hippocampal levels of LEP-R, JAK-2, STAT-3, AMP-K, PGC1α, PI3K, AKT, and mTOR were increased while hippocampal levels of BACE1, GSK3B, TAU, and Aβ were decreased in T2D + EX compared with T2D group. Serum LEP and hippocampal levels of LEP, LEP-R, JAK-2, STAT-3, AMP-K, PGC1α, PI3K, AKT, and mTOR were decreased. Conversely hippocampal levels of BACE1, GSK3B, TAU, and Aβ were increased in T2D group compared with CON group. HIIT could improve LEP signaling in the hippocampus of rats with type 2 diabetes and decrease the accumulation of Tau and Aβ, which may reduce the risk of memory impairments.
Collapse
Affiliation(s)
- Maryam Hossein Rezaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Elham Madadizadeh
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Mohsen Aminaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Mehdi Abbaspoor
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Janis Schierbauer
- Exercise Physiology and Metabolism (Sports Medicine), BaySpo-Bayreuth Centre of Sports Science, University of Bayreuht, Bayreuth, Germany
| | - Othmar Moser
- Exercise Physiology and Metabolism (Sports Medicine), BaySpo-Bayreuth Centre of Sports Science, University of Bayreuht, Bayreuth, Germany
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Karim Chamari
- Aspetar Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
33
|
Hwang DJ, Koo JH, Kim TK, Jang YC, Hyun AH, Yook JS, Yoon CS, Cho JY. Exercise as an antidepressant: exploring its therapeutic potential. Front Psychiatry 2023; 14:1259711. [PMID: 37772067 PMCID: PMC10523322 DOI: 10.3389/fpsyt.2023.1259711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
The COVID-19 pandemic has increased the prevalence of depressive disorders worldwide, requiring alternative treatments beyond medication and psychotherapy. Exercise has positive effects on the brain; therefore, it has emerged as a promising therapeutic option for individuals with depression. Considerable research involving humans and animals offers compelling evidence to support the mental health benefits of physical activity or exercise mediated by the regulation of complex theoretical paradigms. However, challenges such as conducting long-term follow-up assessments and considering individual characteristics remain in human studies despite extensive efforts. While animal studies provide valuable insights into the potential benefits of exercise and its impact on outcomes related to depression and anxiety in rodents exposed to different stress paradigms, translating the findings to humans requires careful evaluation. More research is needed to establish precise exercise prescription guidelines and to better understand the complex relationship between exercise and depressive disorders. Therefore, this concise review explores the evidence supporting exercise intervention as an antidepressant treatment and its underlying mechanisms.
Collapse
Affiliation(s)
- Dong-Joo Hwang
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Republic of Korea
- Sport Science Institute, Korea National Sport University, Seoul, Republic of Korea
| | - Jung-Hoon Koo
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Republic of Korea
| | - Tae-Kyung Kim
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Republic of Korea
- Sport Science Institute, Korea National Sport University, Seoul, Republic of Korea
| | - Yong-Chul Jang
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Republic of Korea
| | - Ah-Hyun Hyun
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Republic of Korea
| | - Jang-Soo Yook
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Chang-Sun Yoon
- Department of Physical Education, Korea National Sport University, Seoul, Republic of Korea
| | - Joon-Yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Srivastava H, Lasher AT, Nagarajan A, Sun LY. Sexual dimorphism in the peripheral metabolic homeostasis and behavior in the TgF344-AD rat model of Alzheimer's disease. Aging Cell 2023; 22:e13854. [PMID: 37095621 PMCID: PMC10352566 DOI: 10.1111/acel.13854] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Alzheimer's disease (AD), a prevalent form of dementia, is characterized by the decline of cognitive abilities with age. Available treatment options for AD are limited, making it a significant public health concern. Recent research suggests that metabolic dysfunction plays a role in the development of AD. In addition, insulin therapy has been shown to improve memory in patients with cognitive decline. In this study, we report the first examination of body composition, peripheral insulin sensitivity, and glucose tolerance in relation to behavioral assessments of learning, memory, and anxiety in the TgF344-AD rat model of AD. Results from glucose and insulin tolerance tests show that female TgF344-AD rats exhibit impaired glucose clearance and reduced insulin sensitivity at both 9 and 12 months of age, while males display no differences at 9 months and even improved glucose clearance at 12 months. Results from the Morris Water Maze assessment of learning and memory reveal that male TgF344-AD rats display impairments at both 9 and 12 months of age, while female TgF344-AD rats only show impairments at 12 months. Furthermore, results from open field and elevated plus maze tests suggest that female TgF344-AD rats display increased anxiety at 9 months of age; however, no differences were detected in males or at 12 months of age. Overall, our findings suggest that impairments in metabolism, commonly associated with type 2 diabetes, occur before or simultaneously with cognitive decline and anxiety in a sexually dimorphic manner in the TgF344-AD rat model.
Collapse
Affiliation(s)
- Hemant Srivastava
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | - Akash Nagarajan
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Liou Y. Sun
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
35
|
de Sousa Fernandes MS, Badicu G, Santos GCJ, Filgueira TO, Henrique RDS, de Souza RF, Aidar FJ, Souto FO, Brum PC, Lagranha CJ. Physical Exercise Decreases Endoplasmic Reticulum Stress in Central and Peripheral Tissues of Rodents: A Systematic Review. Eur J Investig Health Psychol Educ 2023; 13:1082-1096. [PMID: 37366786 DOI: 10.3390/ejihpe13060082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/10/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023] Open
Abstract
Endoplasmic reticulum stress (ER stress) affects many tissues and contributes to the development and severity of chronic diseases. In contrast, regular physical exercise (PE) has been considered a powerful tool to prevent and control several chronic diseases. The present systematic review aimed to evaluate the impact of different PE protocols on ER stress markers in central and peripheral tissues in rodents. The eligibility criteria were based on PICOS (population: rodents; intervention: physical exercise/physical training; control: animals that did not undergo training; outcomes: endoplasmic reticulum stress; studies: experimental). The PubMed/Medline, Science Direct, Scopus, and Scielo databases were analyzed systematically. Quality assessment was performed using SYRCLE's risk of bias tool for animal studies. The results were qualitatively synthesized. Initially, we obtained a total of 2.490 articles. After excluding duplicates, 30 studies were considered eligible. Sixteen studies were excluded for not meeting the eligibility criteria. Therefore, 14 articles were included. The PE protocol showed decreased levels/expression of markers of ER stress in the central and peripheral tissues of rodents. PE can decrease ER stress by reducing cellular stress in the cardiac, brain, and skeletal muscle tissues in rodents. However, robust PE protocols must be considered, including frequency, duration, and intensity, to optimize the PE benefits of counteracting ER stress and its associated conditions.
Collapse
Affiliation(s)
- Matheus Santos de Sousa Fernandes
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife 507400-600, Pernambuco, Brazil
| | - Georgian Badicu
- Department of Physical Education and Special Motricity, Transilvania University of Brasov, 500068 Brasov, Romania
| | | | - Tayrine Ordonio Filgueira
- Graduate Program in Applied Health Biology, Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Recife 507400-600, Pernambuco, Brazil
| | - Rafael Dos Santos Henrique
- Department of Physical Education, Federal University of Pernambuco, Recife 507400-600, Pernambuco, Brazil
| | - Raphael Fabrício de Souza
- Department of Physical Education, Federal University of Sergipe, São Cristovão 49100-000, Sergipe, Brazil
| | - Felipe J Aidar
- Department of Physical Education, Federal University of Sergipe, São Cristovão 49100-000, Sergipe, Brazil
| | - Fabrício Oliveira Souto
- Graduate Program in Applied Health Biology, Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Recife 507400-600, Pernambuco, Brazil
| | - Patrícia Chakur Brum
- School of Physical Education and Sport, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Claudia Jacques Lagranha
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife 507400-600, Pernambuco, Brazil
| |
Collapse
|
36
|
Feng S, Wu C, Zou P, Deng Q, Chen Z, Li M, Zhu L, Li F, Liu TCY, Duan R, Yang L. High-intensity interval training ameliorates Alzheimer's disease-like pathology by regulating astrocyte phenotype-associated AQP4 polarization. Theranostics 2023; 13:3434-3450. [PMID: 37351177 PMCID: PMC10283053 DOI: 10.7150/thno.81951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Background: Alzheimer's disease (AD), one of the most common forms of dementia, is a widely studied neurodegenerative disease characterized by Aβ accumulation and tau hyperphosphorylation. Currently, there is no effective cure available for AD. The astrocyte AQP4 polarized distribution-mediated glymphatic system is essential for Aβ and abnormal tau clearance and is a potential therapeutic target for AD. However, the role of exercise on the AQP4 polarized distribution and the association between the AQP4 polarized distribution and astrocyte phenotype polarization are poorly understood. Methods: Using a streptozotocin (STZ)-induced sporadic AD rat model, we investigated the effects of high-intensity interval training on AD pathologies. The Branes maze task was conducted to measure spatial learning and memory. Immunofluorescence staining of NeuN with TUNEL, Fluoro-Jade C, and relative neuronal damage markers was applied to measure neuronal apoptosis, neurodegeneration, and damage. Sholl analysis was carried out to analyze the morphology of microglia. Line-scan analysis, 3D rendering, and the orthogonal view were applied to analyze the colocalization. Western blot analysis and enzyme-linked immunosorbent assay (ELISA) analysis were conducted to examine AQP4 and Aβ, respectively. An APP/PS1 transgenic AD mice model was used to confirm the key findings. Results: High-intensity interval training (HIIT) alleviates cognitive dysfunction in STZ-induced AD-like rat models and provides neuroprotection against neurodegeneration, neuronal damage, and neuronal loss. Additionally, HIIT improved the drainage of abnormal tau and Aβ from the cortex and hippocampus via the glymphatic system to the kidney. Further mechanistic studies support that the beneficial effects of HIIT on AD might be due, in part, to the polarization of glial cells from a neurotoxic phenotype towards a neuroprotective phenotype. Furthermore, an intriguing finding of our study is that the polarized distribution of AQP4 was strongly correlated with astrocyte phenotype. We found A2 phenotype exhibited more evident AQP4 polarization than the A1 phenotype. Conclusion: Our findings indicate that HIIT ameliorates Alzheimer's disease-like pathology by regulating astrocyte phenotype and astrocyte phenotype-associated AQP4 polarization. These changes promote Aβ and p-tau clearance from the brain tissue through the glymphatic system and the kidney.
Collapse
Affiliation(s)
- Shu Feng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Peibin Zou
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Zhe Chen
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Meng Li
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Ling Zhu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Fanghui Li
- School of Sport Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
37
|
Huang Y, Sun W, Gao F, Ma H, Yuan T, Liu Z, Liu H, Hu J, Bai J, Zhang X, Wang R. Brain-Derived Estrogen Regulates Neurogenesis, Learning and Memory with Aging in Female Rats. BIOLOGY 2023; 12:760. [PMID: 37372046 DOI: 10.3390/biology12060760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023]
Abstract
Although 17β-estradiol (E2) can be locally synthesized in the brain, whether and how brain-derived E2 (BDE2) impacts neurogenesis with aging is largely unclear. In this study, we examined the hippocampal neural stem cells, neurogenesis, and gliogenesis of 1, 3, 6, 14, and 18-month (Mon) female rats. Female forebrain neuronal aromatase knockout (FBN-ARO-KO) rats and letrozole-treated rats were also employed. We demonstraed that (1) the number of neural stem cells declined over 14-Mon age, and the differentiation of astrocytes and microglia markedly elevated and exhibited excessive activation. KO rats showed declines in astrocyte A2 subtype and elevation in A1 subtype at 18 Mon; (2) neurogenesis sharply dropped from 1-Mon age; (3) KO suppressed dentate gyrus (DG) neurogenesis at 1, 6 and 18 Mon. Additionally, KO and letrozole treatment led to declined neurogenesis at 1-Mon age, compared to age-matched WT controls; (4) FBN-ARO-KO inhibited CREB-BDNF activation, and decreased protein levels of neurofilament, spinophilin and PSD95. Notably, hippocampal-dependent spatial learning and memory was impaired in juvenile (1 Mon) and adulthood (6 Mon) KO rats. Taken together, we demonstrated that BDE2 plays a pivotal role for hippocampal neurogenesis, as well as learning and memory during female aging, especially in juvenile and middle age.
Collapse
Affiliation(s)
- Yuanyuan Huang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- School of Basic Medical Science, North China University of Science and Technology, Tangshan 063210, China
| | - Wuxiang Sun
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- School of Basic Medical Science, North China University of Science and Technology, Tangshan 063210, China
| | - Fujia Gao
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Haoran Ma
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Tao Yuan
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Zixuan Liu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- School of Basic Medical Science, North China University of Science and Technology, Tangshan 063210, China
| | - Huiyu Liu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Jiewei Hu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- School of Basic Medical Science, North China University of Science and Technology, Tangshan 063210, China
| | - Jing Bai
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- School of Basic Medical Science, North China University of Science and Technology, Tangshan 063210, China
| | - Xin Zhang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Ruimin Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- School of Basic Medical Science, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
38
|
Kelberman MA, Rorabaugh JM, Anderson CR, Marriott A, DePuy SD, Rasmussen K, McCann KE, Weiss JM, Weinshenker D. Age-dependent dysregulation of locus coeruleus firing in a transgenic rat model of Alzheimer's disease. Neurobiol Aging 2023; 125:98-108. [PMID: 36889122 PMCID: PMC10038926 DOI: 10.1016/j.neurobiolaging.2023.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Hyperphosphorylated tau in the locus coeruleus (LC) is ubiquitous in prodromal Alzheimer's disease (AD), and LC neurons degenerate as AD progresses. Hyperphosphorylated tau alters firing rates in other brain regions, but its effects on LC neurons are unknown. We assessed single unit LC activity in anesthetized wild-type (WT) and TgF344-AD rats at 6 months, which represents a prodromal stage when LC neurons are the only cells containing hyperphosphorylated tau in TgF344-AD animals, and at 15 months when amyloid-β (Aβ) and tau pathology are both abundant in the forebrain. At baseline, LC neurons from TgF344-AD rats were hypoactive at both ages compared to WT littermates but showed elevated spontaneous bursting properties. Differences in footshock-evoked LC firing depended on age, with 6-month TgF344-AD rats demonstrating aspects of hyperactivity, and 15-month transgenic rats showing hypoactivity. Early LC hyperactivity is consistent with appearance of prodromal neuropsychiatric symptoms and is followed by LC hypoactivity which contributes to cognitive impairment. These results support further investigation into disease stage-dependent noradrenergic interventions for AD.
Collapse
Affiliation(s)
| | | | | | - Alexia Marriott
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | | | | | | | - Jay M Weiss
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
39
|
Zhu C, Zhang T, Li Q, Chen X, Wang K. Depression and Anxiety During the COVID-19 Pandemic: Epidemiology, Mechanism, and Treatment. Neurosci Bull 2023; 39:675-684. [PMID: 36411394 PMCID: PMC9685018 DOI: 10.1007/s12264-022-00970-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has had an adverse impact on the physical and mental health of the public worldwide. In addition to illness in patients with COVID-19, isolated people and the general population have experienced mental health problems due to social distancing policies, mandatory lockdown, and other psychosocial factors, and the prevalence of depression and anxiety significantly increased during the pandemic. The purpose of this review is to elucidate the epidemiology, contributing factors, and pathogenesis of depression and anxiety. during the pandemic. These findings indicate that physicians and psychiatrists should pay more attention to and identify those with a high risk for mental problems, such as females, younger people, unmarried people, and those with a low educational level. In addition, researchers should focus on identifying the neural and neuroimmune mechanisms involved in depression and anxiety, and assess the intestinal microbiome to identify effective biomarkers. We also provide an overview of various intervention methods, including pharmacological treatment, psychological therapy, and physiotherapy, to provide a reference for different populations to guide the development of optimized intervention methods.
Collapse
Affiliation(s)
- Chunyan Zhu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, China
| | - Ting Zhang
- Department of Psychiatry, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qianqian Li
- Department of Psychiatry, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xingui Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, China.
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230032, China.
| |
Collapse
|
40
|
Safari S, Mirazi N, Ahmadi N, Asadbegi M, Nourian A, Rashno M, Komaki A. Policosanol protects against Alzheimer's disease-associated spatial cognitive decline in male rats: possible involved mechanisms. Psychopharmacology (Berl) 2023; 240:755-767. [PMID: 36723631 DOI: 10.1007/s00213-023-06317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 01/11/2023] [Indexed: 02/02/2023]
Abstract
RATIONALE Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by cognitive decline and synaptic failure. OBJECTIVE The present study was designed to explore the possible protective effects of policosanol (PCO) on spatial cognitive capacity, long-term potentiation (LTP) induction, oxidant/antioxidant status, and Aβ plaques formation in an AD rat model induced by intracerebroventricular (ICV) injection of Aβ1-40. METHODS Healthy adult male Wistar rats were randomly divided into control, sham (ICV injection of 5 µl phosphate-buffered saline), AG (50 mg/kg; P.O., as PCO vehicle), PCO (50 mg/kg; P.O.), AD model (ICV injection of 5 µl Aβ), AD + AG (50 mg/kg; P.O.), and AD + PCO (50 mg/kg; P.O.). Treatments were performed for eight consecutive weeks. At the end of the treatment course, spatial learning and memory functions, hippocampal long-term potentiation (LTP) induction, malondialdehyde (MDA), and total thiol group (TTG) levels, as well as the formation of Aβ plaques, were examined. RESULTS The results showed that injection of Aβ reduced spatial learning and memory abilities in the Barnes maze test, which was accompanied by decreases in field excitatory postsynaptic potential (fEPSP) slope, population spike (PS) amplitude, and TTG level and increases in Aβ plaque accumulation and MDA content. In contrast, PCO treatment improved all the above-mentioned changes in the Aβ-infused rats. CONCLUSIONS The results suggest that amelioration of hippocampal synaptic plasticity impairment, modulation of oxidant/antioxidant status, and inhibition of Aβ plaque formation by PCO may be the mechanisms behind its protective effect against AD-associated spatial cognitive decline.
Collapse
Affiliation(s)
- Samaneh Safari
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran.
| | - Nesa Ahmadi
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck, Germany
| | - Masoumeh Asadbegi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Nourian
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Masome Rashno
- Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
41
|
Kumar H, Green R, Cornfeld DM, Condron P, Emsden T, Elsayed A, Zhao D, Gilbert K, Nash MP, Clark AR, Tawhai MH, Burrowes K, Murphy R, Tayebi M, McGeown J, Kwon E, Shim V, Wang A, Choisne J, Carman L, Besier T, Handsfield G, Babarenda Gamage TP, Shen J, Maso Talou G, Safaei S, Maller JJ, Taylor D, Potter L, Holdsworth SJ, Wilson GA. Roadmap for an imaging and modelling paediatric study in rural NZ. Front Physiol 2023; 14:1104838. [PMID: 36969588 PMCID: PMC10036853 DOI: 10.3389/fphys.2023.1104838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 03/12/2023] Open
Abstract
Our study methodology is motivated from three disparate needs: one, imaging studies have existed in silo and study organs but not across organ systems; two, there are gaps in our understanding of paediatric structure and function; three, lack of representative data in New Zealand. Our research aims to address these issues in part, through the combination of magnetic resonance imaging, advanced image processing algorithms and computational modelling. Our study demonstrated the need to take an organ-system approach and scan multiple organs on the same child. We have pilot tested an imaging protocol to be minimally disruptive to the children and demonstrated state-of-the-art image processing and personalized computational models using the imaging data. Our imaging protocol spans brain, lungs, heart, muscle, bones, abdominal and vascular systems. Our initial set of results demonstrated child-specific measurements on one dataset. This work is novel and interesting as we have run multiple computational physiology workflows to generate personalized computational models. Our proposed work is the first step towards achieving the integration of imaging and modelling improving our understanding of the human body in paediatric health and disease.
Collapse
Affiliation(s)
- Haribalan Kumar
- Mātai Medical Research Institute, Gisborne, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- GE Healthcare (Australia & New Zealand), Auckland, New Zealand
| | - Robby Green
- Mātai Medical Research Institute, Gisborne, New Zealand
| | - Daniel M. Cornfeld
- Mātai Medical Research Institute, Gisborne, New Zealand
- Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Paul Condron
- Mātai Medical Research Institute, Gisborne, New Zealand
- Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Taylor Emsden
- Mātai Medical Research Institute, Gisborne, New Zealand
- Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ayah Elsayed
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Auckland University of Technology, Auckland, New Zealand
| | - Debbie Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kat Gilbert
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Martyn P. Nash
- Mātai Medical Research Institute, Gisborne, New Zealand
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Alys R. Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Merryn H. Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kelly Burrowes
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Rinki Murphy
- Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Maryam Tayebi
- Mātai Medical Research Institute, Gisborne, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Josh McGeown
- Mātai Medical Research Institute, Gisborne, New Zealand
| | - Eryn Kwon
- Mātai Medical Research Institute, Gisborne, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Alan Wang
- Mātai Medical Research Institute, Gisborne, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Julie Choisne
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Laura Carman
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Thor Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Geoffrey Handsfield
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Jiantao Shen
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Gonzalo Maso Talou
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Soroush Safaei
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jerome J. Maller
- GE Healthcare (Australia & New Zealand), Auckland, New Zealand
- Monash Alfred Psychiatry Research Centre, Melbourne, VIC, Australia
| | | | - Leigh Potter
- Mātai Medical Research Institute, Gisborne, New Zealand
| | - Samantha J. Holdsworth
- Mātai Medical Research Institute, Gisborne, New Zealand
- Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
- *Correspondence: Samantha J. Holdsworth,
| | | |
Collapse
|
42
|
Gong W, Li X, Feng Y, Ji M, Zhang D, Chen B, Wang S, Wu X, Cui L, Li B, Xia M. Novel pathogenesis of post-traumatic stress disorder studied in transgenic mice. J Psychiatr Res 2023; 161:188-198. [PMID: 36933445 DOI: 10.1016/j.jpsychires.2023.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 03/20/2023]
Abstract
Posttraumatic stress disorder (PTSD) is very common after exposure to trauma, mental stress or violence. Because objective biological markers for PTSD are lacking, exactly diagnosing PTSD is a challenge for clinical psychologists. In-depth research on the pathogenesis of PTSD is a key for solving this problem. In this work, we used male Thy1-YFP transgenic mice, in which neurons are fluorescently labeled, to research the effects of PTSD on neurons in vivo. We initially discovered that pathological stress associated with PTSD increased the activation of glycogen synthesis kinase-beta (GSK-3β) in neurons and induced the translocation of the transcription factor forkhead box-class O3a (FoxO3a) from the cytoplasm to the nucleus, which decreased the expression of uncoupling protein 2 (UCP2) and increased mitochondrial production of reactive oxygen species (ROS) to trigger neuronal apoptosis in the prefrontal cortex (PFC). Furthermore, the PTSD model mice showed increased freezing and anxiety-like behaviors and more severe decrease of memory and exploratory behavior. Additionally, leptin attenuated neuronal apoptosis by increasing the phosphorylation of signal transducer and activator of transcription 3 (STAT3), which further elevated the expression of UCP2 and inhibited the mitochondrial production of ROS induced by PTSD, thus reducing neuronal apoptosis and ameliorating PTSD-related behaviors. Our study is expected to promote the exploration of PTSD-related pathogenesis in neural cells and the clinical effectiveness of leptin for PTSD.
Collapse
Affiliation(s)
- Wenliang Gong
- Department of Orthopaedics, The First Hospital of China Medical University, PR China; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Xinyu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Yuliang Feng
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Ming Ji
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Binjie Chen
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China.
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital of China Medical University, PR China; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, PR China; China Medical University Centre of Forensic Investigation, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, PR China.
| |
Collapse
|
43
|
Fermented Wheat Germ Alleviates Depression-like Behavior in Rats with Chronic and Unpredictable Mild Stress. Foods 2023; 12:foods12050920. [PMID: 36900437 PMCID: PMC10000856 DOI: 10.3390/foods12050920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Depression is a chronic mental illness with devastating effects on a person's physical and mental health. Studies have reported that food fermentation with probiotics can enrich the nutritional values of food and produce functional microorganisms that can alleviate depression and anxiety. Wheat germ is an inexpensive raw material that is rich in bioactive ingredients. For example, gamma-aminobutyric acid (GABA) is reported to have antidepressant effects. Several studies concluded that Lactobacillus plantarum is a GABA-producing bacteria and can alleviate depression. Herein, fermented wheat germs (FWGs) were used to treat stress-induced depression. FWG was prepared by fermenting wheat germs with Lactobacillus plantarum. The chronic unpredictable mild stress (CUMS) model was established in rats, and these rats were treated with FWG for four weeks to evaluate the effects of FWG in relieving depression. In addition, the study also analyzed the potential anti-depressive mechanism of FWG based on behavioral changes, physiological and biochemical index changes, and intestinal flora changes in depressed rats. The results demonstrated that FWG improved depression-like behaviors and increased neurotransmitter levels in the hippocampus of CUMS model rats. In addition, FWG effectively altered the gut microbiota structure and remodeled the gut microbiota in CUMS rats, restored neurotransmitter levels in depressed rats through the brain-gut axis, and restored amino acid metabolic functions. In conclusion, we suggest that FWG has antidepressant effects, and its potential mechanism may act by restoring the disordered brain-gut axis.
Collapse
|
44
|
Donoso F, Cryan JF, Olavarría-Ramírez L, Nolan YM, Clarke G. Inflammation, Lifestyle Factors, and the Microbiome-Gut-Brain Axis: Relevance to Depression and Antidepressant Action. Clin Pharmacol Ther 2023; 113:246-259. [PMID: 35278334 PMCID: PMC10084001 DOI: 10.1002/cpt.2581] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023]
Abstract
Depression is considered a major public health concern, where existing pharmacological treatments are not equally effective across all patients. The pathogenesis of depression involves the interaction of complex biological components, such as the immune system and the microbiota-gut-brain axis. Adjunctive lifestyle-oriented approaches for depression, including physical exercise and special diets are promising therapeutic options when combined with traditional antidepressants. However, the mechanisms of action of these strategies are incompletely understood. Accumulating evidence suggests that physical exercise and specific dietary regimens can modulate both the immune system and gut microbiota composition. Here, we review the current information about the strategies to alleviate depression and their crosstalk with both inflammatory mechanisms and the gut microbiome. We further discuss the role of the microbiota-gut-brain axis as a possible mediator for the adjunctive therapies for depression through inflammatory mechanisms. Finally, we review existing and future adjunctive strategies to manipulate the gut microbiota with potential use for depression, including physical exercise, dietary interventions, prebiotics/probiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Francisco Donoso
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | | | - Yvonne M Nolan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
45
|
Yang L, Zhang Q. The Eph receptor A4-mediated demyelination in depression. AGING PATHOBIOLOGY AND THERAPEUTICS 2022; 4:132-134. [DOI: 10.31491/apt.2022.12.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Accumulating evidence reveals that major depressive disorder, one of the most common mental illnesses, is characterized by abnormal myelination. However, the relationship between demyelination and depressionrelated behaviors and the molecular mechanism underlying demyelination and synaptic deficits in depression is largely unknown. In a recent study, Li and his colleagues found that the ephrin A4 receptor (EphA4), a member of the Eph family of receptor tyrosine kinases, was essential to mediate demyelination and regulate synaptogenesis in depression. Using the chronic, unpredictable mild stress (CUMS) exposure or lipopolysaccharide (LPS) administration-induced animal model of depression, the authors found that depression could induce demyelination, and the increased EphA4 levels mediate demyelination and depression-like behaviors. In this commentary, we reviewed this critical finding and discussed future directions on this topic. Keywords: Depression, Eph receptor A4, demyelination
Collapse
|
46
|
Zhou R, Wang Z, Zhou B, Yu Z, Wu C, Hou J, Cheng K, Liu TC. Estrogen receptors mediate the antidepressant effects of aerobic exercise: A possible new mechanism. Front Aging Neurosci 2022; 14:1040828. [PMID: 36570542 PMCID: PMC9780551 DOI: 10.3389/fnagi.2022.1040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose This study aimed to examine whether aerobic exercise exerts mood-modulating effects through an estrogen signaling mechanism. Method The experiment was divided into two parts. The first part is to compare the three modeling methods to obtain the most obvious method of depression-like phenotype for further study in the second part. The first part of ovariectomized rats (age, 13 weeks) was tested when rats were 14 or 22 weeks old or in the sixth week after 3 weeks of chronic restraint stress. The second part was to treat the animals with the most obvious depression-like phenotype in different ways, placebo treatment or estradiol (E2) replacement therapy was administered, aerobic training, or estrogen receptor antagonist treatment. The cognitive (Barnes maze and 3-chamber social tests), anxiety-like (open-field and elevated plus maze tests) and depression-like (sucrose preference and forced swim tests) behaviors of rats in both parts were analyzed to study the effects of estrogen depletion and aerobic exercise. Results Rats did not develop depressive symptoms immediately after ovariectomy, however, the symptoms became more pronounced with a gradual decrease in ovarian hormone levels. Compared with the placebo or control groups, the exercise and E2 groups showed improved performance in all behavioral test tasks, and the antidepressant effects of aerobic exercise were comparable to those of estrogen. Moreover, the estrogen receptor antagonist has markedly inhibited the antidepressant effects of aerobic exercise. Conclusion Estrogen receptors may mediate the antidepressant effects of aerobic exercise. In addition, an increasingly fragile ovarian hormonal environment may underlies chronic restraint stress-induced depression.
Collapse
|
47
|
Wang C, Li Y, Yi Y, Liu G, Guo R, Wang L, Lan T, Wang W, Chen X, Chen S, Yu SY. Hippocampal microRNA-26a-3p deficit contributes to neuroinflammation and behavioral disorders via p38 MAPK signaling pathway in rats. J Neuroinflammation 2022; 19:283. [PMID: 36434679 PMCID: PMC9694101 DOI: 10.1186/s12974-022-02645-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Neuronal injury is considered a critical risk factor in the pathogenesis of most neurological and neuropsychiatric diseases. However, the underlying molecular mechanisms and identification of potential therapeutic targets for preventing neuronal injury associated with brain function remain largely uncharacterized. Therefore, identifying neural mechanisms would put new insights into the progression of this condition and provide novel therapeutic strategies for the treatment of these diseases. METHODS Stereotactic injection of AAV virus was used to knock-down the miR-26a-3p within hippocampus of rats. Behavioral changes was detected by open field test (OFT), elevated plus maze (EPM), forced swim test (FST) and sucrose preference test (SPT). The inflammatory cytokines and related proteins were verified by real-time quantitative PCR, immunoblotting or immunofluorescence assay. Golgi staining and electron microscopy analysis was used to observe the dendritic spine, synapse and ultrastructural pathology. SB203580 (0.5 mg/kg) were administered daily to prevent p38 MAPK via an intraperitoneal (i.p.) injection. Finally, electrophysiological method was used to examine the synaptic transmission via whole-cell patch-clamp recording. RESULTS Here, we showed that miR-26a-3p deficiency within hippocampal regions leads to the activation of microglia, increased level of pro-inflammatory cytokines and behavioral disorders in rats, effects which appear to be mediated by directly targeting the p38 mitogen-activated protein kinase (MAPK)-NF-κB signaling pathway. Specifically, we found that the enhanced glia-activation may consequently result in neuronal deterioration that mainly presented as the dysregulation of structural and functional plasticity in hippocampal neurons. In contrast, preventing p38 pathway by SB203580 significantly ameliorated abnormal behavioral phenotypes and neuronal jury resulting from miR-26a-3p knock-down. CONCLUSION These results suggest that the normal expression of miR-26a-3p exerts neuroprotective effects via suppressing neural abnormality and maintaining neuroplasticity to against behavioral disorders in rats. These effects appear to involve a down-regulation of p38 MAPK-NF-κB signaling within the hippocampal region. Taken together, these findings provide evidence that miR-26a-3p can function as a critical factor in regulating neural activity and suggest that the maintaining of normal structure and function of neurons might be a potential therapeutic strategy in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Changmin Wang
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Ye Li
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Yuhang Yi
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Guiyu Liu
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Ruojing Guo
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Liyan Wang
- grid.27255.370000 0004 1761 1174Morphological Experimental Center, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Tian Lan
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Wenjing Wang
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Xiao Chen
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Shihong Chen
- grid.27255.370000 0004 1761 1174Department of Endocrinology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People’s Republic of China
| | - Shu Yan Yu
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China ,Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| |
Collapse
|
48
|
Levetiracetam Ameliorates Doxorubicin-Induced Chemobrain by Enhancing Cholinergic Transmission and Reducing Neuroinflammation Using an Experimental Rat Model and Molecular Docking Study. Molecules 2022; 27:molecules27217364. [PMID: 36364190 PMCID: PMC9653834 DOI: 10.3390/molecules27217364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/28/2022] Open
Abstract
Cancer chemotherapy-induced cognitive impairment (chemobrain) is a major complication that affects the prognosis of therapy. Our study evaluates the nootropic-like activity of levetiracetam (LEVE) against doxorubicin (DOX)-induced memory defects using in vivo and molecular modelling. Rats were treated with LEVE (100 and 200 mg/kg, 30 days) and chemobrain was induced by four doses of DOX (2 mg/kg, i.p.). Spatial memory parameters were evaluated using an elevated plus maze (EPM) and Y-maze. Additionally, acetylcholinesterase (AChE) and the neuroinflammatory biomarkers cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), nuclear factor-κB (NF-κB), and tumor necrosis factor-alpha (TNF-α) were analyzed using brain homogenate. PharmMapper was used for inverse docking and AutoDock Vina was used for molecular docking. LEVE treatment significantly diminished the DOX-induced memory impairment parameters in both the EPM and Y-maze. In addition, the drug treatment significantly reduced AChE, COX-2, PGE2, NF-κB, and TNF-α levels compared to DOX-treated animals. The inverse docking procedures resulted in the identification of AChE as the potential target. Further molecular modelling studies displayed interactions with residues Gly118, Gly119, and Ser200, critical for the hydrolysis of ACh. Analysis of the results suggested that administration of LEVE improved memory-related parameters in DOX-induced animals. The ‘nootropic-like’ activity could be related to diminished AChE and neuroinflammatory mediator levels.
Collapse
|
49
|
Jiang X, Wu J, Tan B, Yan S, Deng N, Wei H. Effect of chronic unpredicted mild stress-induced depression on clopidogrel pharmacokinetics in rats. PeerJ 2022; 10:e14111. [PMID: 36213502 PMCID: PMC9536304 DOI: 10.7717/peerj.14111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
Background Clopidogrel is widely used to prevent and treat cardiovascular atherosclerosis and thrombosis. However, disturbance in the expression and activity of liver cytochrome metabolic enzymes significantly changes clopidogrel efficacy. Therefore, the effect of chronic unpredictable mild stress (CUMS)-induced depression on the expression of liver cytochrome metabolic enzymes and clopidogrel pharmacokinetics in rats were explored. Methods Nine different CUMSs were selected to establish a rat model of depression. Open field experiment and sucrose preference test were applied to explore the depressive behaviors. The concentration of serotonin in the cortex of depressed rats was determined using enzyme linked immunosorbent assay (ELISA). All rats were given 10 mg/kg clopidogrel orally after 12 weeks, and blood samples were collected at different time points. The clopidogrel concentration and CYP2C19/ CYP2C9 activity in rat liver microsomes were assayed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The rat liver drug enzymes expression was determined by Real-Time Quantitative Reverse Transcription PCR (RT-qPCR). Results Open field experiment and sucrose preference test indicated the successful construction of the CUMS-induced depression model. The concentration of serotonin in the cortex of depressed rats decreased by 42.56% (∗∗ p < 0.01). The area under the curve of clopidogrel pharmacokinetics decreased by 33.13% (∗ p < 0.05) in the depression rats, while distribution volume and clearance increased significantly (∗∗ p < 0.01). The half-time and distribution volume did not significantly differ. The CYP2C19 and CYP2C9 activity of liver microsomes in the CUMS-induced depression group were significantly higher than that in the control group (∗∗ p < 0.01). CYP2C11 and CYP1A2 mRNA expression up-regulated approximately 1.3 - fold in the depressed rat livers compared with that in the control, whereas that of CYP2C13 was down-regulated by 27.43% (∗∗ p < 0.01). CYP3A1 and CYP2C12 expression were slightly up-regulated, and that of CES1 did not change. Conclusions These results indicated that CUMS-induced depression altered clopidogrel pharmacokinetics, and the change in CYP450 activity and expression in depressed rat livers might contribute to the disturbance of clopidogrel pharmacokinetics.
Collapse
Affiliation(s)
| | - Jing Wu
- Hunan Normal University, Changsha, Hunan, China
| | - Boyu Tan
- Department of Pharmacy, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sulan Yan
- Department of Cardiovascular, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Nan Deng
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Hongyan Wei
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| |
Collapse
|
50
|
Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TCY, Duan R. Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen 2022; 42:31. [PMID: 36184623 PMCID: PMC9527145 DOI: 10.1186/s41232-022-00216-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases and the most common form of dementia. Characterized by the loss of learning, memory, problem-solving, language, and other thinking abilities, AD exerts a detrimental effect on both patients' and families' quality of life. Although there have been significant advances in understanding the mechanism underlying the pathogenesis and progression of AD, there is no cure for AD. The failure of numerous molecular targeted pharmacologic clinical trials leads to an emerging research shift toward non-invasive therapies, especially multiple targeted non-invasive treatments. In this paper, we reviewed the advances of the most widely studied non-invasive therapies, including photobiomodulation (PBM), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and exercise therapy. Firstly, we reviewed the pathological changes of AD and the challenges for AD studies. We then introduced these non-invasive therapies and discussed the factors that may affect the effects of these therapies. Additionally, we review the effects of these therapies and the possible mechanisms underlying these effects. Finally, we summarized the challenges of the non-invasive treatments in future AD studies and clinical applications. We concluded that it would be critical to understand the exact underlying mechanisms and find the optimal treatment parameters to improve the translational value of these non-invasive therapies. Moreover, the combined use of non-invasive treatments is also a promising research direction for future studies and sheds light on the future treatment or prevention of AD.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|