1
|
Cramer MN, Gagnon D, Laitano O, Crandall CG. Human temperature regulation under heat stress in health, disease, and injury. Physiol Rev 2022; 102:1907-1989. [PMID: 35679471 PMCID: PMC9394784 DOI: 10.1152/physrev.00047.2021] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022] Open
Abstract
The human body constantly exchanges heat with the environment. Temperature regulation is a homeostatic feedback control system that ensures deep body temperature is maintained within narrow limits despite wide variations in environmental conditions and activity-related elevations in metabolic heat production. Extensive research has been performed to study the physiological regulation of deep body temperature. This review focuses on healthy and disordered human temperature regulation during heat stress. Central to this discussion is the notion that various morphological features, intrinsic factors, diseases, and injuries independently and interactively influence deep body temperature during exercise and/or exposure to hot ambient temperatures. The first sections review fundamental aspects of the human heat stress response, including the biophysical principles governing heat balance and the autonomic control of heat loss thermoeffectors. Next, we discuss the effects of different intrinsic factors (morphology, heat adaptation, biological sex, and age), diseases (neurological, cardiovascular, metabolic, and genetic), and injuries (spinal cord injury, deep burns, and heat stroke), with emphasis on the mechanisms by which these factors enhance or disturb the regulation of deep body temperature during heat stress. We conclude with key unanswered questions in this field of research.
Collapse
Affiliation(s)
- Matthew N Cramer
- Defence Research and Development Canada-Toronto Research Centre, Toronto, Ontario, Canada
| | - Daniel Gagnon
- Montreal Heart Institute and School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Quebec, Canada
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
2
|
Hassabi M, Esteghamati A, Halabchi F, Abedi-Yekta AH, Mahdaviani B, Hassanmirzaie B, Hosseinpanah F, Valizadeh M. Iranian National Clinical Practice Guideline for Exercise in Patients with Diabetes. Int J Endocrinol Metab 2021; 19:e109021. [PMID: 34567134 PMCID: PMC8453655 DOI: 10.5812/ijem.109021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/04/2021] [Accepted: 04/10/2021] [Indexed: 11/23/2022] Open
Abstract
CONTEXT Growing evidence highlights the importance of physical activity as a critical element for the prevention and control of diabetes. However, there is no clinical practice guideline focusing on the different aspects of exercise in patients with diabetes, especially for the Iranian population. OBJECTIVE We aimed to prepare and adopt a clinical practice guideline to provide well-defined, simple, and concise responses to certain questions related to physical activity and exercise in all patients with diabetes, including type 1, 2, and gestational diabetes mellitus (GDM). EVIDENCE ACQUISITION A multidisciplinary team of experts in various fields (sports medicine specialists, endocrinologists, and cardiologists) developed the guideline. This group did the task in four stages: (1) identifying and refining the subject area using 17 clinical questions; (2) appraising evidence through a systematic review of the literature; (3) extracting recommendations from evidence and grading them as A, B, C, or D based on the quality, quantity, and consistency of existing evidence; and (4) subjecting the guideline to external review and finally selecting the recommendations with high scores of appropriateness and agreement. The final version was evaluated and approved by the National Deputy for Curative Affairs - Ministry of Health and Medical Education and has also been endorsed by the Iran Endocrine Society (IES) and Iranian Association of Sports and Exercise Medicine (IASEM). RESULTS The guideline consists of 52 recommendations addressing 17 important questions concerning different aspects of exercise prescription in Iranian patients with diabetes. CONCLUSIONS The guideline provides evidence-based information that may help physicians to prescribe exercise for Iranian patients with diabetes safely and effectively.
Collapse
Affiliation(s)
- Mohammad Hassabi
- Department of Sports and Exercise Medicine, Taleghani Hospital Research Development Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Halabchi
- Department of Sports and Exercise Medicine, Imam Khomeini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Sports and Exercise Medicine, Imam Khomeini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Hosein Abedi-Yekta
- Department of Sports and Exercise Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Mahdaviani
- Department of Sports and Exercise Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahar Hassanmirzaie
- Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Hosseinpanah
- Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Valizadeh
- Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Scott SN, Fontana FY, Cocks M, Morton JP, Jeukendrup A, Dragulin R, Wojtaszewski JFP, Jensen J, Castol R, Riddell MC, Stettler C. Post-exercise recovery for the endurance athlete with type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol 2021; 9:304-317. [PMID: 33864810 DOI: 10.1016/s2213-8587(21)00054-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
There has been substantial progress in the knowledge of exercise and type 1 diabetes, with the development of guidelines for optimal glucose management. In addition, an increasing number of people living with type 1 diabetes are pushing their physical limits to compete at the highest level of sport. However, the post-exercise recovery routine, particularly with a focus on sporting performance, has received little attention within the scientific literature, with most of the focus being placed on insulin or nutritional adaptations to manage glycaemia before and during the exercise bout. The post-exercise recovery period presents an opportunity for maximising training adaption and recovery, and the clinical management of glycaemia through the rest of the day and overnight. The absence of clear guidance for the post-exercise period means that people with type 1 diabetes should either develop their own recovery strategies on the basis of individual trial and error, or adhere to guidelines that have been developed for people without diabetes. This Review provides an up-to-date consensus on post-exercise recovery and glucose management for individuals living with type 1 diabetes. We aim to: (1) outline the principles and time course of post-exercise recovery, highlighting the implications and challenges for endurance athletes living with type 1 diabetes; (2) provide an overview of potential strategies for post-exercise recovery that could be used by athletes with type 1 diabetes to optimise recovery and adaptation, alongside improved glycaemic monitoring and management; and (3) highlight the potential for technology to ease the burden of managing glycaemia in the post-exercise recovery period.
Collapse
Affiliation(s)
- Sam N Scott
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland; Team Novo Nordisk Professional Cycling Team, Atlanta, GA, USA
| | - Federico Y Fontana
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland; Team Novo Nordisk Professional Cycling Team, Atlanta, GA, USA
| | - Matt Cocks
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Asker Jeukendrup
- School of Sport and Exercise Sciences, University of Birmingham, Birmingham, UK
| | - Radu Dragulin
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Rafael Castol
- Team Novo Nordisk Professional Cycling Team, Atlanta, GA, USA
| | - Michael C Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Christoph Stettler
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland.
| | | |
Collapse
|
4
|
Foster J, Hodder SG, Lloyd AB, Havenith G. Individual Responses to Heat Stress: Implications for Hyperthermia and Physical Work Capacity. Front Physiol 2020; 11:541483. [PMID: 33013476 PMCID: PMC7516259 DOI: 10.3389/fphys.2020.541483] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background Extreme heat events are increasing in frequency, severity, and duration. It is well known that heat stress can have a negative impact on occupational health and productivity, particularly during physical work. However, there are no up-to-date reviews on how vulnerability to heat changes as a function of individual characteristics in relation to the risk of hyperthermia and work capacity loss. The objective of this narrative review is to examine the role of individual characteristics on the human heat stress response, specifically in relation to hyperthermia risk and productivity loss in hot workplaces. Finally, we aim to generate practical guidance for industrial hygienists considering our findings. Factors included in the analysis were body mass, body surface area to mass ratio, body fat, aerobic fitness and training, heat adaptation, aging, sex, and chronic health conditions. Findings We found the relevance of any factor to be dynamic, based on the work-type (fixed pace or relative to fitness level), work intensity (low, moderate, or heavy work), climate type (humidity, clothing vapor resistance), and variable of interest (risk of hyperthermia or likelihood of productivity loss). Heat adaptation, high aerobic fitness, and having a large body mass are the most protective factors during heat exposure. Primary detrimental factors include low fitness, low body mass, and lack of heat adaptation. Aging beyond 50 years, being female, and diabetes are less impactful negative factors, since their independent effect is quite small in well matched participants. Skin surface area to mass ratio, body composition, hypertension, and cardiovascular disease are not strong independent predictors of the heat stress response. Conclusion Understanding how individual factors impact responses to heat stress is necessary for the prediction of heat wave impacts on occupational health and work capacity. The recommendations provided in this report could be utilized to help curtail hyperthermia risk and productivity losses induced by heat.
Collapse
Affiliation(s)
- Josh Foster
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Simon G Hodder
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Alex B Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
5
|
VanBaak KD, Nally LM, Finigan RT, Jurkiewicz CL, Burnier AM, Conrad BP, Khodaee M, Lipman GS. Wilderness Medical Society Clinical Practice Guidelines for Diabetes Management. Wilderness Environ Med 2019; 30:S121-S140. [PMID: 31753543 DOI: 10.1016/j.wem.2019.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 11/18/2022]
Abstract
The Wilderness Medical Society convened an expert panel in 2018 to develop a set of evidence-based guidelines for the treatment of type 1 and 2 diabetes, as well as the recognition, prevention, and treatment of complications of diabetes in wilderness athletes. We present a review of the classifications, pathophysiology, and evidence-based guidelines for planning and preventive measures, as well as best practice recommendations for both routine and urgent therapeutic management of diabetes and glycemic complications. These recommendations are graded based on the quality of supporting evidence and balance between the benefits and risks or burdens for each recommendation.
Collapse
Affiliation(s)
- Karin D VanBaak
- Department of Family Medicine and Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO.
| | - Laura M Nally
- Department of Pediatric Endocrinology, Yale University School of Medicine, New Haven, CT
| | | | - Carrie L Jurkiewicz
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Barry P Conrad
- Division of Endocrinology, Stanford Children's Hospital, Stanford, CA
| | - Morteza Khodaee
- Department of Family Medicine and Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO
| | - Grant S Lipman
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
6
|
Baker LB. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature (Austin) 2019; 6:211-259. [PMID: 31608304 PMCID: PMC6773238 DOI: 10.1080/23328940.2019.1632145] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/21/2022] Open
Abstract
The purpose of this comprehensive review is to: 1) review the physiology of sweat gland function and mechanisms determining the amount and composition of sweat excreted onto the skin surface; 2) provide an overview of the well-established thermoregulatory functions and adaptive responses of the sweat gland; and 3) discuss the state of evidence for potential non-thermoregulatory roles of sweat in the maintenance and/or perturbation of human health. The role of sweating to eliminate waste products and toxicants seems to be minor compared with other avenues of excretion via the kidneys and gastrointestinal tract; as eccrine glands do not adapt to increase excretion rates either via concentrating sweat or increasing overall sweating rate. Studies suggesting a larger role of sweat glands in clearing waste products or toxicants from the body may be an artifact of methodological issues rather than evidence for selective transport. Furthermore, unlike the renal system, it seems that sweat glands do not conserve water loss or concentrate sweat fluid through vasopressin-mediated water reabsorption. Individuals with high NaCl concentrations in sweat (e.g. cystic fibrosis) have an increased risk of NaCl imbalances during prolonged periods of heavy sweating; however, sweat-induced deficiencies appear to be of minimal risk for trace minerals and vitamins. Additional research is needed to elucidate the potential role of eccrine sweating in skin hydration and microbial defense. Finally, the utility of sweat composition as a biomarker for human physiology is currently limited; as more research is needed to determine potential relations between sweat and blood solute concentrations.
Collapse
Affiliation(s)
- Lindsay B. Baker
- Gatorade Sports Science Institute, PepsiCo R&D Physiology and Life Sciences, Barrington, IL, USA
| |
Collapse
|
7
|
Francisco MA, Minson CT. Cutaneous active vasodilation as a heat loss thermoeffector. HANDBOOK OF CLINICAL NEUROLOGY 2019; 156:193-209. [PMID: 30454590 DOI: 10.1016/b978-0-444-63912-7.00012-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Human skin is the interface between the human body and the environment. As such, human temperature regulation relies largely on cutaneous vasomotor and sudomotor adjustments to appropriately thermoregulate. In particular, changes in skin blood flow can increase or decrease the convective heat transfer from internal tissues to the periphery where it can increase or prevent heat loss to the environment. Thermoregulatory control of the cutaneous vasculature is largely due to cutaneous sympathetic nerves. Sympathetic adrenergic nerves mediate vasoconstriction of the skin, similar to other vascular beds, whereas active vasodilator nerves in nonglabrous skin respond to changes in internal and peripheral temperatures and can profoundly increase skin blood flow. Activation of these vasodilator nerves is known as cutaneous active vasodilation and has been the subject of much recent research. This research has uncovered a highly complex system that involves the activation of multiple receptors and vasodilator pathways in a synergistic and sometimes redundant manner. This complexity and redundancy has left our understanding of cutaneous active vasodilation incomplete; however, the employment of new techniques and use of new pharmacologic agents have introduced many new insights into cutaneous active vasodilation.
Collapse
Affiliation(s)
- Michael A Francisco
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Christopher T Minson
- Department of Human Physiology, University of Oregon, Eugene, OR, United States.
| |
Collapse
|
8
|
Buoite Stella A, Yardley J, Francescato MP, Morrison SA. Fluid Intake Habits in Type 1 Diabetes Individuals during Typical Training Bouts. ANNALS OF NUTRITION AND METABOLISM 2018; 73:10-18. [PMID: 29843124 DOI: 10.1159/000489823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Hyperglycemia may influence the hydration status in diabetic individuals. During exercise, type 1 diabetes mellitus (T1DM) individuals may be challenged by a higher risk of dehydration due to a combination of fluid losses from sweat and increased urine output via glycosuria. So far, no study has characterised spontaneous fluid intake in T1DM individuals during active trainings. METHODS A validated questionnaire was used to assess T1DM participants' diabetes therapy, sports characteristics and fluid intake during training; results were then compared to an age- and sport-matched sample of non-diabetic individuals. RESULTS Ninety individuals completed the survey (n = 45 T1DM individuals, n = 45 matched controls). A proportion of T1DM -individuals reported blood glucose levels greater than 10.0 mmol at both the start (28.9%) and end (24.4%) of the exercise. The mean self-reported fluid intake was greater in T1DM (0.60 ± 0.47 L·h-1) compared to that of the control (0.37 ± 0.28 L·h-1, p < 0.05). In spite of drinking fluid volumes in line with international guidelines, 84.4% of those with T1DM reported that they were still feeling thirsty at the end of their training session. CONCLUSIONS T1DM individuals self-report spontaneously consuming fluid adequate volumes suggested by sport nutrition guidelines for non-diabetic athletes. Discrepancies in the T1DM subjectively reported feelings of thirst suggest that more education on hydration during exercise is needed for this population to adequately compensate for elevated blood glucose levels. It remains to be established whether fluid volumes suggested for healthy athletes are adequate for maintaining euhydration in T1DM patients due to their altered diuresis.
Collapse
Affiliation(s)
- Alex Buoite Stella
- Department of Medicine, University of Udine, Udine, Italy.,Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy
| | - Jane Yardley
- Department of Social Sciences, Augustana Campus, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
9
|
MacRae BA, Annaheim S, Spengler CM, Rossi RM. Skin Temperature Measurement Using Contact Thermometry: A Systematic Review of Setup Variables and Their Effects on Measured Values. Front Physiol 2018. [PMID: 29441024 DOI: 10.3389/fphys.2018.00029, 10.3389/fpls.2018.00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Skin temperature (Tskin) is commonly measured using Tskin sensors affixed directly to the skin surface, although the influence of setup variables on the measured outcome requires clarification. Objectives: The two distinct objectives of this systematic review were (1) to examine measurements from contact Tskin sensors considering equilibrium temperature and temperature disturbance, sensor attachments, pressure, environmental temperature, and sensor type, and (2) to characterise the contact Tskin sensors used, conditions of use, and subsequent reporting in studies investigating sports, exercise, and other physical activity. Data sources and study selection: For the measurement comparison objective, Ovid Medline and Scopus were used (1960 to July 2016) and studies comparing contact Tskin sensor measurements in vivo or using appropriate physical models were included. For the survey of use, Ovid Medline was used (2011 to July 2016) and studies using contact temperature sensors for the measurement of human Tskinin vivo during sport, exercise, and other physical activity were included. Study appraisal and synthesis methods: For measurement comparisons, assessments of risk of bias were made according to an adapted version of the Cochrane Collaboration's risk of bias tool. Comparisons of temperature measurements were expressed, where possible, as mean difference and 95% limits of agreement (LoA). Meta-analyses were not performed due to the lack of a common reference condition. For the survey of use, extracted information was summarised in text and tabular form. Results: For measurement comparisons, 21 studies were included. Results from these studies indicated minor (<0.5°C) to practically meaningful (>0.5°C) measurement bias within the subgroups of attachment type, applied pressure, environmental conditions, and sensor type. The 95% LoA were often within 1.0°C for in vivo studies and 0.5°C for physical models. For the survey of use, 172 studies were included. Details about Tskin sensor setup were often poorly reported and, from those reporting setup information, it was evident that setups widely varied in terms of type of sensors, attachments, and locations used. Conclusions: Setup variables and conditions of use can influence the measured temperature from contact Tskin sensors and thus key setup variables need to be appropriately considered and consistently reported.
Collapse
Affiliation(s)
- Braid A MacRae
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland.,Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Simon Annaheim
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| |
Collapse
|
10
|
MacRae BA, Annaheim S, Spengler CM, Rossi RM. Skin Temperature Measurement Using Contact Thermometry: A Systematic Review of Setup Variables and Their Effects on Measured Values. Front Physiol 2018; 9:29. [PMID: 29441024 PMCID: PMC5797625 DOI: 10.3389/fphys.2018.00029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Skin temperature (Tskin) is commonly measured using Tskin sensors affixed directly to the skin surface, although the influence of setup variables on the measured outcome requires clarification. Objectives: The two distinct objectives of this systematic review were (1) to examine measurements from contact Tskin sensors considering equilibrium temperature and temperature disturbance, sensor attachments, pressure, environmental temperature, and sensor type, and (2) to characterise the contact Tskin sensors used, conditions of use, and subsequent reporting in studies investigating sports, exercise, and other physical activity. Data sources and study selection: For the measurement comparison objective, Ovid Medline and Scopus were used (1960 to July 2016) and studies comparing contact Tskin sensor measurements in vivo or using appropriate physical models were included. For the survey of use, Ovid Medline was used (2011 to July 2016) and studies using contact temperature sensors for the measurement of human Tskinin vivo during sport, exercise, and other physical activity were included. Study appraisal and synthesis methods: For measurement comparisons, assessments of risk of bias were made according to an adapted version of the Cochrane Collaboration's risk of bias tool. Comparisons of temperature measurements were expressed, where possible, as mean difference and 95% limits of agreement (LoA). Meta-analyses were not performed due to the lack of a common reference condition. For the survey of use, extracted information was summarised in text and tabular form. Results: For measurement comparisons, 21 studies were included. Results from these studies indicated minor (<0.5°C) to practically meaningful (>0.5°C) measurement bias within the subgroups of attachment type, applied pressure, environmental conditions, and sensor type. The 95% LoA were often within 1.0°C for in vivo studies and 0.5°C for physical models. For the survey of use, 172 studies were included. Details about Tskin sensor setup were often poorly reported and, from those reporting setup information, it was evident that setups widely varied in terms of type of sensors, attachments, and locations used. Conclusions: Setup variables and conditions of use can influence the measured temperature from contact Tskin sensors and thus key setup variables need to be appropriately considered and consistently reported.
Collapse
Affiliation(s)
- Braid A. MacRae
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Simon Annaheim
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Christina M. Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| |
Collapse
|
11
|
Lamarche DT, Meade RD, D'Souza AW, Flouris AD, Hardcastle SG, Sigal RJ, Boulay P, Kenny GP. The recommended Threshold Limit Values for heat exposure fail to maintain body core temperature within safe limits in older working adults. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2017; 14:703-711. [PMID: 28609164 DOI: 10.1080/15459624.2017.1321844] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
PURPOSE The American Conference of Governmental and Industrial Hygienists (ACGIH®) Threshold Limit Values (TLV® guidelines) for work in the heat consist of work-rest (WR) allocations designed to ensure a stable core temperature that does not exceed 38°C. However, the TLV® guidelines have not been validated in older workers. This is an important shortcoming given that adults as young as 40 years demonstrate impairments in their ability to dissipate heat. We therefore evaluated body temperature responses in older adults during work performed in accordance to the TLV® recommended guidelines. METHODS On three occasions, 9 healthy older (58 ± 5 years) males performed a 120-min work-simulated protocol in accordance with the TLV® guidelines for moderate-to-heavy intensity work (360 W fixed rate of heat production) in different wet-bulb globe temperatures (WBGT). The first was 120 min of continuous (CON) cycling at 28.0°C WBGT (CON[28°C]). The other two protocols were 15-min intermittent work bouts performed with different WR cycles and WBGT: (i) WR of 3:1 at 29.0°C (WR3:1[29°C]) and (ii) WR of 1:1 at 30.0°C (WR1:1[30°C]). Rectal temperature was measured continuously. The rate of change in mean body temperature was determined via thermometry (weighting coefficients: rectal, 0.9; mean skin temperature, 0.1) and direct calorimetry. RESULTS Rectal temperature exceeded 38°C in all participants in CON[28°C] and WR3:1[29°C] whereas a statistically similar proportion of workers exceeded 38°C in WR1:1[30°C] (χ2; P = 0.32). The average time for rectal temperature to reach 38°C was: CON[28°C], 53 ± 7; WR3:1[29°C], 79 ± 11; and WR1:1[30°C], 100 ± 29 min. Finally, while a stable mean body temperature was not achieved in any work condition as measured by thermometry (i.e., >0°C·min-1; all P<0.01), heat balance as determined by direct calorimetry was achieved in WR3:1[29°C] and WR1:1[30°C] (both P ≥ 0.08). CONCLUSION Our findings indicate that the TLV® guidelines do not prevent body core temperature from exceeding 38°C in older workers. Furthermore, a stable core temperature was not achieved within safe limits (i.e., ≤38°C) indicating that the TLV® guidelines may not adequately protect all individuals during work in hot conditions.
Collapse
Affiliation(s)
- Dallon T Lamarche
- a Human and Environmental Physiology Research Unit, School of Human Kinetics , University of Ottawa , Ottawa , Ontario , Canada
| | - Robert D Meade
- a Human and Environmental Physiology Research Unit, School of Human Kinetics , University of Ottawa , Ottawa , Ontario , Canada
| | - Andrew W D'Souza
- a Human and Environmental Physiology Research Unit, School of Human Kinetics , University of Ottawa , Ottawa , Ontario , Canada
| | - Andreas D Flouris
- b FAME Laboratory, Department of Exercise Science , University of Thessaly , Trikala , Greece
| | | | - Ronald J Sigal
- a Human and Environmental Physiology Research Unit, School of Human Kinetics , University of Ottawa , Ottawa , Ontario , Canada
- d Departments of Medicine, Cardiac Sciences and Community Health Sciences, Faculties of Medicine and Kinesiology , University of Calgary , Calgary , Alberta , Canada
- e Clinical Epidemiology Program , Ottawa Hospital Research Institute , Ottawa , Ontario , Canada
| | - Pierre Boulay
- f Faculty of Physical Activity Sciences , University of Sherbrooke , Sherbrooke , Quebec , Canada
| | - Glen P Kenny
- a Human and Environmental Physiology Research Unit, School of Human Kinetics , University of Ottawa , Ottawa , Ontario , Canada
- e Clinical Epidemiology Program , Ottawa Hospital Research Institute , Ottawa , Ontario , Canada
| |
Collapse
|
12
|
Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation. Eur J Appl Physiol 2017; 117:1765-1785. [DOI: 10.1007/s00421-017-3670-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/21/2017] [Indexed: 01/08/2023]
|
13
|
Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, Horton ES, Castorino K, Tate DF. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care 2016; 39:2065-2079. [PMID: 27926890 PMCID: PMC6908414 DOI: 10.2337/dc16-1728] [Citation(s) in RCA: 1459] [Impact Index Per Article: 162.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sheri R Colberg
- Department of Human Movement Sciences, Old Dominion University, Norfolk, VA
| | - Ronald J Sigal
- Departments of Medicine, Cardiac Sciences, and Community Health Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jane E Yardley
- Department of Social Sciences, Augustana Campus, University of Alberta, Camrose, Alberta, Canada
| | - Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - David W Dunstan
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Paddy C Dempsey
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Edward S Horton
- Harvard Medical School and Joslin Diabetes Center, Boston, MA
| | | | - Deborah F Tate
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
14
|
Fujii N, Dervis S, Sigal RJ, Kenny GP. Type 1 diabetes modulates cyclooxygenase- and nitric oxide-dependent mechanisms governing sweating but not cutaneous vasodilation during exercise in the heat. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1076-R1084. [PMID: 27733388 DOI: 10.1152/ajpregu.00376.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 01/09/2023]
Abstract
Both cyclooxygenase (COX) and nitric oxide synthase (NOS) contribute to sweating, whereas NOS alone contributes to cutaneous vasodilation during exercise in the heat. Here, we evaluated if Type 1 diabetes mellitus (T1DM) modulates these responses. Adults with (n = 11, 25 ± 5 yr) and without (n = 12, 24 ± 4 yr) T1DM performed two bouts of 30-min cycling at a fixed rate of heat production of 400 W in the heat (35°C); each followed by a 20- and 40-min recovery period, respectively. Sweat rate and cutaneous vascular conductance (CVC) were measured at four intradermal microdialysis sites treated with either 1) lactated Ringer (vehicle control site), 2) 10 mM ketorolac (nonselective COX inhibitor), 3) 10 mM NG-nitro-l-arginine methyl ester (nonselective NOS inhibitor), or 4) a combination of both inhibitors. In nondiabetic adults, separate and combined inhibition of COX and NOS reduced exercise sweat rate (P ≤ 0.05), and the magnitude of reductions were similar across sites. In individuals with T1DM, inhibition of COX resulted in an increase in sweat rate of 0.10 ± 0.09 and 0.09 ± 0.08 mg ·: min-1 ·: cm-2 for the first and second exercise bouts, respectively, relative to vehicle control site (P ≤ 0.05), whereas NOS inhibition had no effect on sweating. In both groups, NOS inhibition reduced CVC during exercise (P ≤ 0.05), although the magnitude of reduction did not differ between the nondiabetic and T1DM groups (exercise 1: -28 ± 10 vs. -23 ± 8% max, P = 0.51; exercise 2: -31 ± 12 vs. -24 ± 10% max, P = 0.38). We show that in individuals with T1DM performing moderate intensity exercise in the heat, NOS-dependent sweating but not cutaneous vasodilation is attenuated, whereas COX inhibition increases sweating.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Sheila Dervis
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Departments of Medicine, Cardiac Sciences and Community Health Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta Canada; and.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; .,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Wong BJ, Hollowed CG. Current concepts of active vasodilation in human skin. Temperature (Austin) 2016; 4:41-59. [PMID: 28349094 PMCID: PMC5356216 DOI: 10.1080/23328940.2016.1200203] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 10/30/2022] Open
Abstract
In humans, an increase in internal core temperature elicits large increases in skin blood flow and sweating. The increase in skin blood flow serves to transfer heat via convection from the body core to the skin surface while sweating results in evaporative cooling of the skin. Cutaneous vasodilation and sudomotor activity are controlled by a sympathetic cholinergic active vasodilator system that is hypothesized to operate through a co-transmission mechanism. To date, mechanisms of cutaneous active vasodilation remain equivocal despite many years of research by several productive laboratory groups. The purpose of this review is to highlight recent advancements in the field of cutaneous active vasodilation framed in the context of some of the historical findings that laid the groundwork for our current understanding of cutaneous active vasodilation.
Collapse
Affiliation(s)
- Brett J. Wong
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA, USA
| | - Casey G. Hollowed
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
16
|
Kenny GP, Sigal RJ, McGinn R. Body temperature regulation in diabetes. Temperature (Austin) 2016; 3:119-45. [PMID: 27227101 PMCID: PMC4861190 DOI: 10.1080/23328940.2015.1131506] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 01/06/2023] Open
Abstract
The effects of type 1 and type 2 diabetes on the body's physiological response to thermal stress is a relatively new topic in research. Diabetes tends to place individuals at greater risk for heat-related illness during heat waves and physical activity due to an impaired capacity to dissipate heat. Specifically, individuals with diabetes have been reported to have lower skin blood flow and sweating responses during heat exposure and this can have important consequences on cardiovascular regulation and glycemic control. Those who are particularly vulnerable include individuals with poor glycemic control and who are affected by diabetes-related complications. On the other hand, good glycemic control and maintenance of aerobic fitness can often delay the diabetes-related complications and possibly the impairments in heat loss. Despite this, it is alarming to note the lack of information regarding diabetes and heat stress given the vulnerability of this population. In contrast, few studies have examined the effects of cold exposure on individuals with diabetes with the exception of its therapeutic potential, particularly for type 2 diabetes. This review summarizes the current state of knowledge regarding the impact of diabetes on heat and cold exposure with respect to the core temperature regulation, cardiovascular adjustments and glycemic control while also considering the beneficial effects of maintaining aerobic fitness.
Collapse
Affiliation(s)
- Glen P Kenny
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, Ottawa, ON, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ronald J Sigal
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Departments of Medicine, Cardiac Sciences, and Community Health Sciences, Cumming School of Medicine, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Ryan McGinn
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, Ottawa, ON, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Carter MR, McGinn R, Barrera-Ramirez J, Sigal RJ, Kenny GP. Impairments in local heat loss in type 1 diabetes during exercise in the heat. Med Sci Sports Exerc 2015; 46:2224-33. [PMID: 24784146 DOI: 10.1249/mss.0000000000000350] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UNLABELLED Studies show that vasomotor and sudomotor activities are compromised in individuals with Type 1 diabetes mellitus (T1DM), which could lead to impaired skin blood flow (SkBF) and sweating during heat stress. However, recent work suggests the impairments may only be evidenced beyond a certain level of heat stress. PURPOSE We examined T1DM-related differences in heat loss responses of SkBF and sweating during exercise performed at progressive increases in the requirement for heat loss. METHODS Sixteen adults (10 males and six females) with (T1DM, n = 8) and without T1DM (control, n = 8) matched for age, sex, body surface area, and fitness cycled at fixed rates of metabolic heat production of 200, 250, and 300 W·m in the heat (35°C and 20% relative humidity). Each rate was performed sequentially for 30 min. Local sweat rate (LSR, ventilated capsule), sweat gland activation (modified iodine paper technique), and sweat gland output were measured on the forearm, upper back, and chest, whereas SkBF (laser Doppler) was measured on the forearm and upper back. RESULTS Despite a similar requirement for heat loss, LSR was lower in T1DM on the forearm and chest relative to that in the control. Reductions were measured in the second (forearm: 0.68 ± 0.14 vs 0.85 ± 0.11 mg·min·cm, P = 0.004; chest: 0.58 ± 0.08 vs 0.82 ± 0.12 mg·min·cm, P = 0.046) and third exercise bouts (forearm: 0.75 ± 0.11 vs 0.98 ± 0.12 mg·min·cm, P = 0.005; chest: 0.66 ± 0.1 vs 1.02 ± 0.16 mg·min·cm, P = 0.032). Differences in forearm LSR were the result of a reduction in sweat gland output, whereas the decrease in chest LSR was due to lower sweat gland activation. SkBF did not differ between groups. CONCLUSIONS We show that T1DM is associated with impairments in heat dissipation during exercise in the heat, as evidenced by attenuated LSR. However, these differences are only shown beyond a certain requirement for heat loss.
Collapse
Affiliation(s)
- Mike R Carter
- 1Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, CANADA; and 2Departments of Medicine, Cardiac Sciences, and Community Health Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, CANADA
| | | | | | | | | |
Collapse
|
18
|
McGinn R, Carter MR, Barrera-Ramirez J, Sigal RJ, Flouris AD, Kenny GP. Does type 1 diabetes alter post-exercise thermoregulatory and cardiovascular function in young adults? Scand J Med Sci Sports 2014; 25:e504-14. [PMID: 25487370 DOI: 10.1111/sms.12344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2014] [Indexed: 11/26/2022]
Abstract
Recent data demonstrated that individuals with type 1 diabetes mellitus (T1DM) exhibit impaired sweating and increased rectal temperature (i.e., heat storage) during exercise compared with healthy controls. Our purpose in this study was to investigate the consequences of T1DM on post-exercise thermal homeostasis. Sixteen participants (eight controls matched with eight T1DM) performed 90 min of cycling followed by 60 min of seated recovery. Esophageal and rectal temperatures, sweating (forearm, chest, and upper back), skin blood flow [forearm and upper back, presented as cutaneous vascular conductance (CVC)], and blood pressure [mean arterial pressure (MAP)] were measured at baseline and throughout recovery. Esophageal temperature was similar during baseline and recovery between groups (P = 0.88). However, rectal temperature was elevated in our T1DM group throughout recovery (P = 0.05). Sweating and CVC were similar between groups at all sites from 10-min post-exercise until the end of recovery (P ≥ 0.16). While absolute MAP was similar between groups (P = 0.43), the overall decrease in MAP post-exercise was greater in controls from 20 min (T1DM: - 8 ± 5 vs control: - 13 ± 6 mmHg, P = 0.03) until the end of recovery. We conclude that despite increased heat storage during exercise, individuals with T1DM exhibit a suppression in heat loss similar to their healthy counterparts during recovery.
Collapse
Affiliation(s)
- R McGinn
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - M R Carter
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - J Barrera-Ramirez
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - R J Sigal
- Departments of Medicine, Cardiac Sciences and Community Health Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - A D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - G P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Larose J, Boulay P, Wright-Beatty HE, Sigal RJ, Hardcastle S, Kenny GP. Age-related differences in heat loss capacity occur under both dry and humid heat stress conditions. J Appl Physiol (1985) 2014; 117:69-79. [PMID: 24812643 DOI: 10.1152/japplphysiol.00123.2014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the progression of impairments in heat dissipation as a function of age and environmental conditions. Sixty men (n = 12 per group; 20-30, 40-44, 45-49, 50-54, and 55-70 yr) performed four intermittent exercise/recovery cycles for a duration of 2 h in dry (35°C, 20% relative humidity) and humid (35°C, 60% relative humidity) conditions. Evaporative heat loss and metabolic heat production were measured by direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and heat loss during the sessions. Evaporative heat loss was reduced during exercise in the humid vs. dry condition in age groups 20-30 (-17%), 40-44 (-18%), 45-49 (-21%), 50-54 (-25%), and 55-70 yr (-20%). HE fell short of being significantly different between groups in the dry condition, but was greater in age group 20-30 yr (279 ± 10 W) compared with age groups 45-49 (248 ± 8 W), 50-54 (242 ± 6 W), and 55-70 yr (240 ± 7 W) in the humid condition. As a result of a reduced rate of heat dissipation predominantly during exercise, age groups 40-70 yr stored between 60-85 and 13-38% more heat than age group 20-30 yr in the dry and humid conditions, respectively. These age-related differences in heat dissipation and heat storage were not paralleled by significant differences in local sweating and skin blood flow, or by differences in core temperature between groups. From a whole body perspective, combined heat and humidity impeded heat dissipation to a similar extent across age groups, but, more importantly, intermittent exercise in dry and humid heat stress conditions created a greater thermoregulatory challenge for middle-aged and older adults.
Collapse
Affiliation(s)
- Joanie Larose
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Pierre Boulay
- Faculty of Physical Education and Sports, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Heather E Wright-Beatty
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ronald J Sigal
- Departments of Medicine, Cardiac Sciences, and Community Health Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada; and
| | | | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada;
| |
Collapse
|
20
|
Colberg SR, Vinik AI. Exercising with peripheral or autonomic neuropathy: what health care providers and diabetic patients need to know. PHYSICIAN SPORTSMED 2014; 42:15-23. [PMID: 24565817 DOI: 10.3810/psm.2014.02.2043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Both peripheral and autonomic neuropathies are characterized by a progressive loss of nerve fiber function. Most peripheral neuropathy affects the extremities, particularly the lower legs and the feet, but also the hands, whereas damage to the autonomic nervous system may lead to imbalances between the sympathetic and parasympathetic nerve fibers that innervate the heart and blood vessels, as well as abnormalities in heart rate control and vascular dynamics. To prescribe or engage in exercise that is both safe and effective, health care providers and patients with diabetes mellitus need to increase their understanding of the pathophysiological nature of neuropathies and the physical activity hurdles that may arise from the presence of a neuropathy. With proper care and preventative measures, patients with diabetes mellitus that experience either type of neuropathy can benefit from regular participation in mild to moderate aerobic, resistance, and balance activities, assuming they take any potential alterations into account to ensure that exercise is safe and effective.
Collapse
Affiliation(s)
- Sheri R Colberg
- Human Movement Sciences Department, Old Dominion University, Norfolk, VA.
| | | |
Collapse
|