1
|
Brunchi CE, Morariu S. Laponite ®-From Dispersion to Gel-Structure, Properties, and Applications. Molecules 2024; 29:2823. [PMID: 38930887 PMCID: PMC11206873 DOI: 10.3390/molecules29122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Laponite® (LAP) is an intensively studied synthetic clay due to the versatility given by its layered structure, which makes it usable in various applications. This review describes the multifaceted properties and applications of LAP in aqueous dispersions and gel systems. The first sections of the review discuss the LAP structure and the interactions between clay discs in an aqueous medium under different conditions (such as ionic strength, pH, temperature, and the addition of polymers) in order to understand the function of clay in tailoring the properties of the designed material. Additionally, the review explores the aging phenomenon characteristic of LAP aqueous dispersions as well as the development of shake-gels by incorporating LAP. The second part shows the most recent studies on materials containing LAP with possible applicability in the drilling industry, cosmetics or care products industry, and biomedical fields. By elucidating the remarkable versatility and ease of integration of LAP into various matrices, this review underscores its significance as a key ingredient for the creation of next-generation materials with tailored functionalities.
Collapse
Affiliation(s)
| | - Simona Morariu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania;
| |
Collapse
|
2
|
Mitsuhashi K, Inagaki NF, Ito T. Moldable Tissue-Sealant Hydrogels Composed of In Situ Cross-Linkable Polyethylene Glycol via Thiol-Michael Addition and Carbomers. ACS Biomater Sci Eng 2024; 10:3343-3354. [PMID: 38695560 DOI: 10.1021/acsbiomaterials.3c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Moldable tissue-sealant hydrogels were developed herein by combining the yield stress fluidity of a Carbomer and in situ cross-linking of 3-arm PEG-thiol (PEG-SH) and 4-arm PEG-acrylate (PEG-AC). The Carbomer was mixed with each PEG oligomer to form two aqueous precursors: Carbomer/PEG-SH and Carbomer/PEG-AC. The two hydrogel precursors exhibited sufficient yield stress (>100 Pa) to prevent dripping from their placement on the tissue surface. Moreover, these hydrogel precursors exhibited rapid restructuring when the shear strain was repeatedly changed. These rheological properties contribute to the moldability of these hydrogel precursors. After mixing these two precursors, they were converted from yield-stress fluids to chemically cross-linked hydrogels, Carbomer/PEG hydrogel, via thiol-Michael addition. The gelation time was 5.0 and 11.2 min at 37 and 25 °C, respectively. In addition, the Carbomer/PEG hydrogels exhibited higher cellular viability than the pure Carbomer. They also showed stable adhesiveness and burst pressure resistance to various tissues, such as the skin, stomach, colon, and cecum of pigs. The hydrogels showed excellent tissue sealing in a cecum ligation and puncture model in mice and improved the survival rate due to their tissue adhesiveness and biocompatibility. The Carbomer/PEG hydrogel is a potential biocompatible tissue sealant that surgeons can mold. It was revealed that the combination of in situ cross-linkable PEG oligomers and yield stress fluid such as Carbomer is effective for developing the moldable tissue sealant without dripping of its hydrogel precursors.
Collapse
Affiliation(s)
- Kento Mitsuhashi
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Natsuko F Inagaki
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
3
|
Chandel AKS, Sreedevi Madhavikutty A, Okada S, Qiming Z, Inagaki NF, Ohta S, Ito T. Injectable, shear-thinning, photocrosslinkable, and tissue-adhesive hydrogels composed of diazirine-modified hyaluronan and dendritic polyethyleneimine. Biomater Sci 2024; 12:1454-1464. [PMID: 38223981 DOI: 10.1039/d3bm01279d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
In the present study, we report the first synthesis of diazirine-modified hyaluronic acid (HA-DAZ). In addition, we also produced a precursor polymer solution composed of HA-DAZ and dendritic polyethyleneimine (DPI) that showed strong shear-thinning properties. Furthermore, its viscosity was strongly reduced (i.e., from 5 × 105 mPa s at 10-3 s-1 to 6 × 101 mPa s at 103 s-1), substantially, which enhanced solution injectability using a 21 G needle. After ultraviolet irradiation at 365 nm and 6 mW cm-2, the HA-DAZ/DPI solution achieved rapid gelation, as measured using the stirring method, and its gelation time decreased from 200 s to 9 s as the total concentrations of HA-DAZ and DPI increased. Following UV irradiation, the storage modulus increased from 40 to 200 Pa. In addition, reversible sol-gel transition and self-healing properties were observed even after UV irradiation. This suggests that the HA-DAZ/DPI hydrogel was crosslinked in multiple ways, i.e., via covalent bonding between the diazirine and amine groups and via intermolecular interactions, including hydrogen bonding, electrostatic interactions, and hydrophobic interactions. A lap shear test showed that the HA-DAZ/DPI hydrogel exhibited strong adhesiveness as a fibrin glue following UV irradiation. Finally, the HA-DAZ/DPI hydrogel showed higher tissue reinforcement than fibrin glue in an ex vivo burst pressure test of the porcine esophageal mucosa.
Collapse
Affiliation(s)
- Arvind K Singh Chandel
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Athira Sreedevi Madhavikutty
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Saki Okada
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Zhang Qiming
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Natsuko F Inagaki
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Seiichi Ohta
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Radiology and Biomedical Engineering, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Kamedani M, Okawa M, Madhavikutty AS, Tsai CC, Singh Chandel AK, Fujiyabu T, Inagaki NF, Ito T. Injectable Extracellular Matrix-Inspired Hemostatic Hydrogel Composed of Hyaluronan and Gelatin with Shear-Thinning and Self-Healing. Biomacromolecules 2024; 25:1790-1799. [PMID: 38306215 DOI: 10.1021/acs.biomac.3c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Injectable ECM-inspired hydrogels composed of hyaluronic acid and gelatin are biocompatible and potentially useful for various medical applications. We developed injectable hydrogels composed of monoaldehyde-modified hyaluronic acid (HA-mCHO) and carbohydrazide-modified gelatin (GL-CDH), "HA/GL gel", whose ratios of HA-mCHO to GL-CDH were different. The hydrogels exhibited gelation times shorter than 3 s. In addition, the hydrogels showed strong shear-thinning and self-healing properties, mainly because of the dynamic covalent bonding of Schiff bases between HA-mCHO and GL-CDH. This hydrogel degraded in the mice's peritoneum for a week and showed excellent biocompatibility. Moreover, the hydrogel showed a higher breaking strength than fibrin glue in the lap shear test of porcine skin. Finally, the hydrogels decreased bleeding to as low as fibrin glue without using thrombin and fibrinogen in a mouse liver bleeding model in both single- and double-barreled syringe administrations. HA/GL gels have the potential for excellent biocompatibility and hemostasis in clinical settings.
Collapse
Affiliation(s)
- Momoko Kamedani
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masashi Okawa
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Athira Sreedevi Madhavikutty
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ching-Cheng Tsai
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Fujiyabu
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Natsuko F Inagaki
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Tripathi D, B H MP, Sahoo J, Kumari J. Navigating the Solution to Drug Formulation Problems at Research and Development Stages by Amorphous Solid Dispersion Technology. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:79-99. [PMID: 38062659 DOI: 10.2174/0126673878271641231201065151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 08/30/2024]
Abstract
Amorphous Solid Dispersions (ASDs) have indeed revolutionized the pharmaceutical industry, particularly in drug solubility enhancement. The amorphous state of a drug, which is a highenergy metastable state, can lead to an increase in the apparent solubility of the drug. This is due to the absence of a long-range molecular order, which results in higher molecular mobility and free volume, and consequently, higher solubility. The success of ASD preparation depends on the selection of appropriate excipients, particularly polymers that play a crucial role in drug solubility and physical stability. However, ASDs face challenges due to their thermodynamic instability or tendency to recrystallize. Measuring the crystallinity of the active pharmaceutical ingredient (API) and drug solubility is a complex process that requires a thorough understanding of drug-polymer miscibility and molecular interactions. Therefore, it is important to monitor drug solids closely during preparation, storage, and application. Techniques such as solid-state nuclear magnetic resonance (ssNMR), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and dielectric spectroscopy have been successful in understanding the mechanism of drug crystallization. In addition, the continuous downstream processing of drug-loaded ASDs has introduced new automated methods for consistent ASD production. Advanced techniques such as hot melt extrusion, KinetiSol, electro spraying, and electrospinning have gained popularity. This review provides a comprehensive overview of Amorphous Solid Dispersions (ASDs) for oral drug delivery. It highlights the critical challenges faced during formulation, the impact of manufacturing variables, theoretical aspects of drug-polymer interaction, and factors related to drug-polymer miscibility. ASDs have been recognized as a promising strategy to improve the oral bioavailability of poorly water-soluble drugs. However, the successful development of an ASD-based drug product is not straightforward due to the complexity of the ASD systems. The formulation and process parameters can significantly influence the performance of the final product. Understanding the interactions between the drug and polymer in ASDs is crucial for predicting their stability and performance.
Collapse
Affiliation(s)
- Devika Tripathi
- Pranveer Singh Institute of Technology (Pharmacy), Uttar Pradesh, Kanpur, India
| | - Manjunatha Prabhu B H
- Department of Food Protection and Infestation Control, CSIR-CFTRI, Central Food Technological Research Institute, Mysore, India
| | - Jagannath Sahoo
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, NIMMS, Mumbai, India
| | - Jyoti Kumari
- Pranveer Singh Institute of Technology (Pharmacy), Uttar Pradesh, Kanpur, India
| |
Collapse
|
6
|
Pan Q, Tsuji Y, Sreedevi Madhavikutty A, Ohta S, Fujisawa A, Inagaki NF, Fujishiro M, Ito T. Prevention of esophageal stenosis via in situ cross-linkable alginate/gelatin powder in a new submucosal exfoliation model in rats. Biomater Sci 2023; 11:6781-6789. [PMID: 37614197 DOI: 10.1039/d3bm00887h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Endoscopic submucosal dissection (ESD) for the treatment of esophageal mucosal lesions often leads to postoperative stenosis, causing difficulty in swallowing, known as dysphagia. In this study, we developed an in situ cross-linkable powder composed of alginate, gelatin, transglutaminase (TG), and calcium chloride ions (Ca2+), which can be administered through a 1.5 m-long and 3.2 mm-diameter endoscopic instrument channel. The powdered mixture of alginate and gelatin quickly formed a hydrogel by absorbing body fluids and was cross-linked by TG and Ca2+, which adhered ex vivo to porcine submucosal layers for over 2 weeks. In addition, we developed a new submucosal exfoliation model in rats that induced severe stenosis, similar to the ESD-induced stenosis models in clinical practice. When administered to the new rat model, the powder system effectively reduced the severity of esophageal stenosis based on body weight change monitoring, anatomical findings, and histological analysis. The body weight of the rats was maintained at the initial weight on postoperative day 14 (POD14), and epithelialization on POD7 and 14 improved to almost 100%. Additionally, collagen accumulation and the number of α-SMA-positive cells decreased due to powder administration. Therefore, these findings indicate that the in situ cross-linkable powder can prevent esophageal stenosis after ESD.
Collapse
Affiliation(s)
- Qi Pan
- Center for Disease Biology and Integrative Medicine, School of Medicine, the University of Tokyo, Japan.
| | - Yosuke Tsuji
- Department of Gastroenterology, School of Medicine, the University of Tokyo, Japan
| | | | - Seiichi Ohta
- Center for Disease Biology and Integrative Medicine, School of Medicine, the University of Tokyo, Japan.
- Institute of Engineering Innovation, School of Engineering, the University of Tokyo, Japan
- Department of Bioengineering, School of Engineering, the University of Tokyo, Japan
| | - Ayano Fujisawa
- Department of Bioengineering, School of Engineering, the University of Tokyo, Japan
| | - Natsuko F Inagaki
- Center for Disease Biology and Integrative Medicine, School of Medicine, the University of Tokyo, Japan.
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, School of Medicine, the University of Tokyo, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, School of Medicine, the University of Tokyo, Japan.
- Department of Chemical System Engineering, School of Engineering, the University of Tokyo, Japan
- Department of Bioengineering, School of Engineering, the University of Tokyo, Japan
| |
Collapse
|
7
|
Silva-Abreu M, Sosa L, Espinoza LC, Fábrega MJ, Rodríguez-Lagunas MJ, Mallandrich M, Calpena AC, Garduño-Ramírez ML, Rincón M. Efficacy of Apremilast Gels in Mouse Model of Imiquimod-Induced Psoriasis Skin Inflammation. Pharmaceutics 2023; 15:2403. [PMID: 37896163 PMCID: PMC10610068 DOI: 10.3390/pharmaceutics15102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Apremilast (APM) is a novel drug for the treatment of psoriasis and psoriatic arthritis. APM is a phosphodiesterase 4 (PDE4) inhibitor, raising intracellular cAMP levels and thereby decreasing the inflammatory response by modulating the expression of TNF-α, IL-17, IL-23, and other inflammatory cytokines. The goal of this study is to develop APM gels as a new pharmaceutical formulation for the treatment of topical psoriasis. APM was solubilized in Transcutol-P and incorporated into Pluronic F127, Sepigel, and carbomer bases at different proportions. All formulations were characterized physiochemically. A biopharmaceutical study (release profile) was performed, and ex vivo permeation was evaluated using a human skin model. A toxicity assay was carried out on the HaCaT cell line. A mouse model of imiquimod-induced psoriasis skin inflammation was carried out to determine its efficacy by histological analysis, RNA extraction, and RT-qPCR assays. APM gel formulations showed good physicochemical characteristics and a sustained release profile. There was no permeation of any gel measured through human skin, indicating a high retained amount of APM on the skin. Cell viability was greater than 80% at most dilution concentrations. APM gels treated the psoriasis mouse model, and it shows a reduction in the proinflammatory cytokines (IL-8, IL-17A, IL-17F, and IL-23). APM gels could be a new approach for the treatment of topical psoriasis.
Collapse
Affiliation(s)
- Marcelle Silva-Abreu
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.M.); (A.C.C.)
- Institut de Nanociència i Nanotecnologia IN2UB, University of Barcelona, 08028 Barcelona, Spain; (L.C.E.); (M.R.)
| | - Lilian Sosa
- Research Institute of Applied Sciences and Technology, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras;
- Microbiology Research Institute, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
| | - Lupe Carolina Espinoza
- Institut de Nanociència i Nanotecnologia IN2UB, University of Barcelona, 08028 Barcelona, Spain; (L.C.E.); (M.R.)
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| | - María-José Fábrega
- Department of Experimental and Health Sciences, Parc de Recerca Biomèdica de Barcelona, University Pompeu Fabra (UPF), 08005 Barcelona, Spain;
| | - María J. Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Barcelona, Spain
| | - Mireia Mallandrich
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.M.); (A.C.C.)
- Institut de Nanociència i Nanotecnologia IN2UB, University of Barcelona, 08028 Barcelona, Spain; (L.C.E.); (M.R.)
| | - Ana Cristina Calpena
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.M.); (A.C.C.)
- Institut de Nanociència i Nanotecnologia IN2UB, University of Barcelona, 08028 Barcelona, Spain; (L.C.E.); (M.R.)
| | - María Luisa Garduño-Ramírez
- Center for Chemical Research, Institute for Research Basic and Applied Sciences, Autonomous University of the State of Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico;
| | - María Rincón
- Institut de Nanociència i Nanotecnologia IN2UB, University of Barcelona, 08028 Barcelona, Spain; (L.C.E.); (M.R.)
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona (UB), C. Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Kumbhakar P, Jayan JS, Sreedevi Madhavikutty A, Sreeram P, Saritha A, Ito T, Tiwary CS. Prospective applications of two-dimensional materials beyond laboratory frontiers: A review. iScience 2023; 26:106671. [PMID: 37168568 PMCID: PMC10165413 DOI: 10.1016/j.isci.2023.106671] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
The development of nanotechnology has been advancing for decades and gained acceleration in the 21st century. Two-dimensional (2D) materials are widely available, giving them a wide range of material platforms for technological study and the advancement of atomic-level applications. The design and application of 2D materials are discussed in this review. In order to evaluate the performance of 2D materials, which might lead to greater applications benefiting the electrical and electronics sectors as well as society, the future paradigm of 2D materials needs to be visualized. The development of 2D hybrid materials with better characteristics that will help industry and society at large is anticipated to result from intensive research in 2D materials. This enhanced evaluation might open new opportunities for the synthesis of 2D materials and the creation of devices that are more effective than traditional ones in various sectors of application.
Collapse
Affiliation(s)
- Partha Kumbhakar
- Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
- Department of Physics and Electronics, CHRIST (Deemed to Be University), Bangalore 560029, India
| | - Jitha S. Jayan
- Department of Chemistry, National Institute of Technology Calicut, Calicut, Kerala, India
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | | | - P.R. Sreeram
- Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| | - Appukuttan Saritha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Chandra Sekhar Tiwary
- Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| |
Collapse
|
9
|
Sreedevi Madhavikutty A, Singh Chandel AK, Tsai CC, Inagaki NF, Ohta S, Ito T. pH responsive cationic guar gum-borate self-healing hydrogels for muco-adhesion. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2175586. [PMID: 36896456 PMCID: PMC9990695 DOI: 10.1080/14686996.2023.2175586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 06/08/2023]
Abstract
We developed a new muco-adhesive hydrogel composed of cationic guar gum (CGG) and boric acid (BA). The CGG-BA precursor solution of 0.5-2% w/v concentration exhibited fluidity at low pH (3-5), while gelation occurred within 1 min at physiological pH (7-8) conditions. Scanning electron microscopy and Fourier-transform infrared spectroscopy results confirmed the change in physical and chemical behavior, respectively, with change in pH. The pH-responsive self-healing ability was analyzed through microscopy and rheology. CGG-BA hydrogels showed good self-healing property at pH 7.4. The in vitro biocompatibility test of the hydrogel studied using NIH3T3 and NHEK cells showed that it was non-toxic at concentrations of CGG-BA below 2% w/v. Ex vivo mucoadhesive tests confirmed the hydrogel's potential for use as a muco-adhesive. Burst pressure tests were conducted using pig esophageal mucosa and the results showed that at pH 7.4, 1% w/v CGG-BA self-healable hydrogel resisted about 8 ± 2 kPa pressure, comparable to that of Fibrin glue. This was higher than that at solution (pH 5) and brittle gel (pH 10) conditions. To confirm the good adhesive strength of the self-healable hydrogels, lap shear tests conducted, resulted in adhesive strengths measured in the range of 1.0 ± 0.5-2.0 ± 0.6 kPa, which was also comparable to fibrin glue control 1.8 ± 0.6 kPa. Hydrogel weight measurements showed that 40-80% gel lasted under physiological conditions for 10 h. The results suggest that CGG-BA hydrogel has potential as a pH responsive mucosal protectant biomaterial.
Collapse
Affiliation(s)
| | - Arvind K. Singh Chandel
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ching-Cheng Tsai
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Natsuko F. Inagaki
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Seiichi Ohta
- Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
10
|
3D Printing of Stretchable, Adhesive and Conductive Ti3C2Tx-Polyacrylic Acid Hydrogels. Polymers (Basel) 2022; 14:polym14101992. [PMID: 35631873 PMCID: PMC9147333 DOI: 10.3390/polym14101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Stretchable, adhesive, and conductive hydrogels have been regarded as ideal interfacial materials for seamless and biocompatible integration with the human body. However, existing hydrogels can rarely achieve good mechanical, electrical, and adhesive properties simultaneously, as well as limited patterning/manufacturing techniques posing severe challenges to bioelectronic research and their practical applications. Herein, we develop a stretchable, adhesive, and conductive Ti3C2Tx-polyacrylic acid hydrogel by a simple pre-crosslinking method followed by successive direct ink writing 3D printing. Pre-polymerization of acrylic acid can be initiated by mechanical mixing with Ti3C2Tx nanosheet suspension, leading to the formation of viscous 3D printable ink. Secondary free radical polymerization of the ink patterns via 3D printing can achieve a stretchable, adhesive, and conductive Ti3C2Tx-polyacrylic acid hydrogel. The as-formed hydrogel exhibits remarkable stretchability (~622%), high electrical conductivity (5.13 S m−1), and good adhesion strength on varying substrates. We further demonstrate the capability of facilely printing such hydrogels into complex geometries like mesh and rhombus patterns with high resolution and robust integration.
Collapse
|