1
|
Liu L, Jin YD, Fan YH. Progress in research of corticotropin-releasing hormone receptor 2 in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2024; 32:742-749. [DOI: 10.11569/wcjd.v32.i10.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Members of the corticotropin-releasing hormone family and their receptors are widely distributed in central and peripheral tissues and are involved in the regulation of the cardiovascular system, metabolism, immune function, and inflammatory response in the body. Corticotropin-releasing hormone receptor 2 (CRHR2), one of specific receptors for corticotropin releasing factor, attenuates stress-induced intestinal hypersensitivity, influences intestinal microbial composition and diversity, has strong anti-inflammatory capacity, and regulates the proliferation, migration, and apoptosis of intestinal epithelial cells, and promotes intestinal mucosal repair. In recent years, studies have shown that the levels of CRHR2 in the colon tissue of patients with inflammatory bowel disease (IBD) are significantly different from those in normal human intestinal tissue, and it has been suggested that CRHR2 may be a potential therapeutic target for IBD. This paper reviews the physiological functions of CRHR2 and its clinical relevance to IBD, with the aim of exploring its specific mechanism of action and potential clinical application in the treatment of IBD, so as to provide a basis for the development of more effective therapeutic means for IBD in the future.
Collapse
Affiliation(s)
- Liu Liu
- Department of Gastroen-terology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Yi-Dan Jin
- Department of Gastroen-terology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Yi-Hong Fan
- Department of Gastroen-terology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
2
|
Su K, Liu J, Chen J, Wu H, Tang W, Sun S, Lin J, Zhan G, Hsu CH. Bisphenol C Induces Cardiac Developmental Defects by Disrupting m 6A Homeostasis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17259-17269. [PMID: 39208335 PMCID: PMC11447910 DOI: 10.1021/acs.est.4c04373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Bisphenol A (BPA) is a commonly used plastic additive. Since BPA has been banned in maternal and infant food containers in many countries, BPA substitutes have been widely introduced to replace it. By systematically assessing the potential developmental toxicity of BPA substitutes, we observed that the 41-150 nM in vivo BPC exposure (around the reported concentration detected in infant urine: 6-186 nM) induced cardiac defects in zebrafish. Mechanistically, BPC disrupted m6A homeostasis by downregulation of the key m6A methyltransferase, Mettl3, thereby causing the m6A reader, Igf2bp2b, to fail in recognizing and stabilizing the inefficiently m6A-modified acox1 and tnnt2d mRNA. Then, downregulation of Acox1 (a regulator in cardiac fatty acid metabolism) and Tnnt2d (a component of cardiac troponin for muscle contraction) led to cardiac defects. Indeed, the dual cardiac functional axes regulated by the same m6A reader in response to BPC provided new insight into the regulatory mechanisms of epitranscriptomics and cardiac development. Collectively, our study not only presented evidence showing that the internal exposure levels of BPC in humans could lead to cardiac developmental defects but also demonstrated the underlying mechanism of BPC-mediated defects by disrupting the Mettl3-m6A-Igf2bp2b-Acox1/Tnnt2d pathways, which provided potential molecular markers associated with BPC exposure.
Collapse
Affiliation(s)
- Kunhui Su
- The
Fourth Affiliated Hospital, Department of Environmental Medicine, Zhejiang University School of Medicine, Zhejiang 310058, China
- Institute
of Genetics, International School of Medicine, Zhejiang University, Zhejiang 310058, China
| | - Jinfeng Liu
- The
Fourth Affiliated Hospital, Department of Environmental Medicine, Zhejiang University School of Medicine, Zhejiang 310058, China
- Institute
of Genetics, International School of Medicine, Zhejiang University, Zhejiang 310058, China
| | - Jiafeng Chen
- The
Fourth Affiliated Hospital, Department of Environmental Medicine, Zhejiang University School of Medicine, Zhejiang 310058, China
- Institute
of Genetics, International School of Medicine, Zhejiang University, Zhejiang 310058, China
| | - Hengyu Wu
- The
Fourth Affiliated Hospital, Department of Environmental Medicine, Zhejiang University School of Medicine, Zhejiang 310058, China
- Institute
of Genetics, International School of Medicine, Zhejiang University, Zhejiang 310058, China
| | - Wenbin Tang
- The
Fourth Affiliated Hospital, Department of Environmental Medicine, Zhejiang University School of Medicine, Zhejiang 310058, China
- Institute
of Genetics, International School of Medicine, Zhejiang University, Zhejiang 310058, China
| | - Siqi Sun
- The
Fourth Affiliated Hospital, Department of Environmental Medicine, Zhejiang University School of Medicine, Zhejiang 310058, China
- Institute
of Genetics, International School of Medicine, Zhejiang University, Zhejiang 310058, China
| | - Jiebo Lin
- The
Fourth Affiliated Hospital, Department of Environmental Medicine, Zhejiang University School of Medicine, Zhejiang 310058, China
- Institute
of Genetics, International School of Medicine, Zhejiang University, Zhejiang 310058, China
| | - Guankai Zhan
- The
Fourth Affiliated Hospital, Department of Environmental Medicine, Zhejiang University School of Medicine, Zhejiang 310058, China
- Institute
of Genetics, International School of Medicine, Zhejiang University, Zhejiang 310058, China
| | - Chih-Hung Hsu
- The
Fourth Affiliated Hospital, Department of Environmental Medicine, Zhejiang University School of Medicine, Zhejiang 310058, China
- Institute
of Genetics, International School of Medicine, Zhejiang University, Zhejiang 310058, China
| |
Collapse
|
3
|
Liang YF, Chen XQ, Zhang MT, Tang HY, Shen GM. Research Progress of Central and Peripheral Corticotropin-Releasing Hormone in Irritable Bowel Syndrome with Comorbid Dysthymic Disorders. Gut Liver 2024; 18:391-403. [PMID: 37551453 PMCID: PMC11096901 DOI: 10.5009/gnl220346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 08/09/2023] Open
Abstract
Irritable bowel syndrome (IBS) is considered a stress disorder characterized by psychological and gastrointestinal dysfunction. IBS patients not only suffer from intestinal symptoms such as abdominal pain, diarrhea, or constipation but also, experience dysthymic disorders such as anxiety and depression. Studies have found that corticotropin-releasing hormone plays a key role in IBS with comorbid dysthymic disorders. Next, we will summarize the effects of corticotropin-releasing hormone from the central nervous system and periphery on IBS with comorbid dysthymic disorders and relevant treatments based on published literatures in recent years.
Collapse
Affiliation(s)
- Yi Feng Liang
- College of Acupuncture and Massage, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Qi Chen
- College of Acupuncture and Massage, Anhui University of Chinese Medicine, Hefei, China
| | - Meng Ting Zhang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - He Yong Tang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Guo Ming Shen
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Zhu C, Li S. The peripheral corticotropin releasing factor family's role in vasculitis. Vascul Pharmacol 2024; 154:107275. [PMID: 38184094 DOI: 10.1016/j.vph.2023.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Corticotropin releasing factor family peptides (CRF peptides) include 4 members, corticotropin releasing hormone (CRH), Urocortin (UCN1), UCN2 and UCN3. CRF peptides function via the two distinct receptors, CRF1 and CRF2. Among them, CRH/CRF1 has been recognized to influence immunity/inflammation peripherally. Both pro- and anti-inflammatory effects of CRH are reported. Likewise, UCNs, peripherally in cardiovascular system have been documented to have both potent protective and harmful effects, with UCN1 acting on both CRF1 & CRF2 and UCN2 & UCN3 on CRF2. We and others also observe protective and detrimental effects of CRF peptides/receptors on vasculature, with the latter of predominantly higher incidence, i.e., they play an important role in the development of vasculitis while in some cases they are found to counteract vascular inflammation. The pro-vasculitis effects of CRH & UCNs include increasing vascular endothelial permeability, interrupting endothelial adherens & tight junctions leading to hyperpermeability, stimulating immune/inflammatory cells to release inflammatory factors, and promoting angiogenesis by VEGF release while the anti-vasculitis effects may be just the opposite, depending on many factors such as different CRF receptor types, species and systemic conditions. Furthermore, CRF peptides' pro-vasculitis effects are found to be likely related to cPLA2 and S1P receptor signal pathway. This minireview will focus on summarizing the peripheral effects of CRF peptides on vasculature participating in the processes of vasculitis.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue, 101, Nanjing, China
| | - Shengnan Li
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue, 101, Nanjing, China.
| |
Collapse
|
5
|
Rajendran A, Minhas AS, Kazzi B, Varma B, Choi E, Thakkar A, Michos ED. Sex-specific differences in cardiovascular risk factors and implications for cardiovascular disease prevention in women. Atherosclerosis 2023; 384:117269. [PMID: 37752027 PMCID: PMC10841060 DOI: 10.1016/j.atherosclerosis.2023.117269] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/13/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality for women globally. Sex differences exist in the relative risks conferred by traditional CVD risk factors, including diabetes, hypertension, obesity, and smoking. Additionally, there are female-specific risk factors, including age of menarche and menopause, polycystic ovary syndrome, infertility and the use of assisted reproductive technology, spontaneous pregnancy loss, parity, and adverse pregnancy outcomes, as well as female-predominant conditions such as autoimmune diseases, migraines, and depression, that enhance women's cardiovascular risk across the lifespan. Along with measurement of traditional risk factors, these female-specific factors should also be ascertained as a part of cardiovascular risk assessment to allow for a more comprehensive overview of the risk for developing cardiometabolic disorders and CVD. When present, these factors can identify women at elevated cardiovascular risk, who may benefit from more intensive preventive interventions, including lifestyle changes and/or pharmacotherapy such as statins. This review describes sex differences in traditional risk factors and female-specific/female-predominant risk factors for CVD and examines the role of coronary artery calcium scores and certain biomarkers that can help further risk stratify patients and guide preventive recommendations.
Collapse
Affiliation(s)
- Aardra Rajendran
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anum S Minhas
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brigitte Kazzi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bhavya Varma
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eunjung Choi
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aarti Thakkar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin D Michos
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Baumer Y, Pita M, Baez A, Ortiz-Whittingham L, Cintron M, Rose R, Gray V, Osei Baah F, Powell-Wiley T. By what molecular mechanisms do social determinants impact cardiometabolic risk? Clin Sci (Lond) 2023; 137:469-494. [PMID: 36960908 PMCID: PMC10039705 DOI: 10.1042/cs20220304] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
While it is well known from numerous epidemiologic investigations that social determinants (socioeconomic, environmental, and psychosocial factors exposed to over the life-course) can dramatically impact cardiovascular health, the molecular mechanisms by which social determinants lead to poor cardiometabolic outcomes are not well understood. This review comprehensively summarizes a variety of current topics surrounding the biological effects of adverse social determinants (i.e., the biology of adversity), linking translational and laboratory studies with epidemiologic findings. With a strong focus on the biological effects of chronic stress, we highlight an array of studies on molecular and immunological signaling in the context of social determinants of health (SDoH). The main topics covered include biomarkers of sympathetic nervous system and hypothalamic-pituitary-adrenal axis activation, and the role of inflammation in the biology of adversity focusing on glucocorticoid resistance and key inflammatory cytokines linked to psychosocial and environmental stressors (PSES). We then further discuss the effect of SDoH on immune cell distribution and characterization by subset, receptor expression, and function. Lastly, we describe epigenetic regulation of the chronic stress response and effects of SDoH on telomere length and aging. Ultimately, we highlight critical knowledge gaps for future research as we strive to develop more targeted interventions that account for SDoH to improve cardiometabolic health for at-risk, vulnerable populations.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Mario A. Pita
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Manuel A. Cintron
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Rebecca R. Rose
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Veronica C. Gray
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Foster Osei Baah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
7
|
Modde Epstein C, McCoy TP. Linking Electronic Health Records With Wearable Technology From the All of Us Research Program. J Obstet Gynecol Neonatal Nurs 2023; 52:139-149. [PMID: 36702164 DOI: 10.1016/j.jogn.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE To evaluate the feasibility of using electronic health records (EHRs) and wearable data to describe patterns of longitudinal change in day-level heart rate before, during, and after pregnancy and how these patterns differ by age and body mass index. DESIGN Descriptive secondary analysis feasibility study using data from the National Institutes of Health All of Us Research Program. SETTING United States. PARTICIPANTS Women (N = 89) who had a birth or length of gestation code in the EHR and at least 60 days of Fitbit heart rate data during pregnancy. METHODS We estimated pregnancy-related episodes using EHR codes. Time consisted of five 3-month periods: before pregnancy, first trimester, second trimester, third trimester, and after birth. We analyzed data using descriptive statistics and locally estimated scatterplot smoothing. RESULTS An average of 330 days (SD = 112) of Fitbit heart rate data (29,392 days) were available from participants. During pregnancy, distinct peaks in heart rate occurred during the first trimester (6% increase) and third trimester (15% increase). CONCLUSION Future researchers can examine whether longitudinal timing and patterns of heart rate from wearable devices could be leveraged to detect health problems early in pregnancy.
Collapse
|
8
|
Amado P, Zegers J, Yarur HE, Gysling K. Transcriptional Regulation, Signaling Pathways, and Subcellular Localization of Corticotropin-Releasing Factor Receptors in the Central Nervous System. Mol Pharmacol 2022; 102:280-287. [PMID: 36167424 DOI: 10.1124/molpharm.121.000476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Corticotropin-releasing factor (CRF) receptors CRF-R1 and CRF-R2 are differentially distributed in body tissues, and although they respond differentially to stimuli due to their association with different signaling pathways, both receptors have a fundamental role in the response and adaptation to stressful stimuli. Here, we summarize the reported data on different forms of CRF-R1 and CRF-R2 regulation as well as on their subcellular localization. Although the presence of R1 has been described at pre- and postsynaptic sites, R2 is mainly associated with postsynaptic densities. Different studies have provided valuable information on how these receptors regulate responses at a central level, elucidating different and sometimes synergistic roles in response to stress, but despite their high sequence identity, both receptors have been described to be differentially regulated both by their ligands and by transcriptional factors. To date, and from the point of view of their promoter sequences, it has not yet been reported how the different consensus sites identified in silico could be modulating the transcriptional regulation and expression of the receptors under different conditions, which strongly limits the full understanding of their differential functions, providing a wide field to increase and expand the study of the regulation and role of CRF receptors in the CRF system. SIGNIFICANCE STATEMENT: A large number of physiological functions related to the organization of the stress response in different body tissues are associated with the corticotropin-releasing factor system. This system also plays a relevant role in depression and anxiety disorders, as well as being a direct connection between stress and addiction. A better understanding of how the receptors of this system are regulated would help to expand the understanding of how these receptors respond differently to both drugs and stressful stimuli.
Collapse
Affiliation(s)
- Paula Amado
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Zegers
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hector E Yarur
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Lau ES, Wang D, Roberts M, Taylor CN, Murugappan G, Shadyab AH, Schnatz PF, Farland LV, Wood MJ, Scott NS, Eaton CB, Ho JE. Infertility and Risk of Heart Failure in the Women's Health Initiative. J Am Coll Cardiol 2022; 79:1594-1603. [PMID: 35450577 PMCID: PMC9377329 DOI: 10.1016/j.jacc.2022.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND There is growing recognition that reproductive factors are associated with increased risk of future cardiovascular disease. Infertility has been less well studied, although emerging data support its association with increased risk of cardiovascular disease. Whether infertility is associated with future risk of heart failure (HF) is not known. OBJECTIVES This study sought to examine the development of HF and HF subtypes in women with and without history of infertility. METHODS We followed postmenopausal women from the Women's Health Initiative prospectively for the development of HF. Infertility was self-reported at study baseline. Multivariable cause-specific Cox models were used to evaluate the association of infertility with incident overall HF and HF subtypes (heart failure with preserved ejection fraction [HFpEF]: left ventricular ejection fraction of ≥50% vs heart failure with reduced ejection fraction [HFrEF]: left ventricular ejection fraction of <50%]). RESULTS Among 38,528 postmenopausal women (mean age: 63 ± 7 years), 5,399 (14%) participants reported a history of infertility. Over a median follow-up of 15 years, 2,373 developed incident HF, including 807 with HFrEF and 1,133 with HFpEF. Infertility was independently associated with future risk of overall HF (HR: 1.16; 95% CI: 1.04-1.30; P = 0.006). Notably, when examining HF subtypes, infertility was associated with future risk of HFpEF (HR: 1.27; 95% CI: 1.09-1.48; P = 0.002) but not HFrEF (HR: 0.97; 95% CI: 0.80-1.18). CONCLUSIONS Infertility was significantly associated with incident HF. This was driven by increased risk of HFpEF, but not HFrEF, and appeared independent of traditional cardiovascular risk factors and other infertility-related conditions. Future research should investigate mechanisms that underlie the link between infertility and HFpEF.
Collapse
Affiliation(s)
- Emily S Lau
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Dongyu Wang
- CardioVascular Institute and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Mary Roberts
- Department of Family Medicine, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Christy N Taylor
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gayathree Murugappan
- Department of Obstetrics and Gynecology, Stanford University Medical Center, Stanford, California, USA
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, California, USA
| | - Peter F Schnatz
- Department of Obstetrics and Gynecology, The Reading Hospital/Tower Health, Reading, Pennsylvania, USA
| | - Leslie V Farland
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA; Department of Obstetrics and Gynecology, College of Medicine-Tucson, Tucson, Arizona, USA
| | - Malissa J Wood
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nandita S Scott
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Charles B Eaton
- Department of Family Medicine, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Jennifer E Ho
- CardioVascular Institute and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA. https://twitter.com/JenHoCardiology
| |
Collapse
|
10
|
Urocortins as biomarkers in cardiovascular disease. Clin Sci (Lond) 2022; 136:1-14. [PMID: 34939089 DOI: 10.1042/cs20210732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
The urocortins (Ucns) belong to the corticotropin-releasing factor (CRF) family of peptides and have multiple effects within the central nervous and the cardiovascular systems. With growing evidence indicating significant cardioprotective properties and cardiovascular actions of these peptides, the question arises as to whether the plasma profiles of the Ucns are altered in pathologic settings. While reports have shown conflicting results and findings have not been corroborated in multiple independent cohorts, it seems likely that plasma Ucn concentrations are elevated in multiple cardiovascular conditions. The degree of increase and accurate determination of circulating values of the Ucns requires further validation.
Collapse
|
11
|
Mori Y, Tsuchihira A, Yoshida T, Yoshida S, Fujiuchi A, Ohmi M, Isogai Y, Sakaguchi T, Eguchi S, Tsuda T, Kato K, Ohashi K, Ouchi N, Park HM, Murohara T, Takefuji M. Corticotropin releasing hormone receptor 2 antagonist, RQ-00490721, for the prevention of pressure overload-induced cardiac dysfunction. Biomed Pharmacother 2021; 146:112566. [PMID: 34954642 DOI: 10.1016/j.biopha.2021.112566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND G protein-coupled receptors (GPCRs) regulate the pathological and physiological functions of the heart. GPCR antagonists are widely used in the treatment of chronic heart failure. Despite therapeutic advances in the treatments for cardiovascular diseases, heart failure is a major clinical health problem, with significant mortality and morbidity. Corticotropin releasing hormone receptor 2 (CRHR2) is highly expressed in cardiomyocytes, and cardiomyocyte-specific deletion of the genes encoding CRHR2 suppresses pressure overload-induced cardiac dysfunction. This suggests that the negative modulation of CRHR2 may prevent the progression of heart failure. However, there are no systemic drugs against CRHR2. FINDINGS We developed a novel, oral, small molecule antagonist of CRHR2, RQ-00490721, to investigate the inhibition of CRHR2 as a potential therapeutic approach for the treatment of heart failure. In vitro, RQ-00490721 decreased CRHR2 agonist-induced 3', 5'-cyclic adenosine monophosphate (cAMP) production. In vivo, RQ-00490721 showed sufficient oral absorption and better distribution to peripheral organs than to the central nervous system. Oral administration of RQ-00490721 inhibited the CRHR2 agonist-induced phosphorylation of cAMP-response element binding protein (CREB) in the heart, which regulates a transcription activator involved in heart failure. RQ-00490721 administration was not found to affect basal heart function in mice but protected them from pressure overload-induced cardiac dysfunction. INTERPRETATION Our results suggest that RQ-00490721 is a promising agent for use in the treatment of chronic heart failure.
Collapse
Affiliation(s)
- Yu Mori
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | | | - Tatsuya Yoshida
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Satoya Yoshida
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Akiyoshi Fujiuchi
- Discovery Research, RaQualia Pharma Inc., Nagoya, Japan; RaQualia Pharma Industry-Academia Collaborative Research Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Masashi Ohmi
- Discovery Research, RaQualia Pharma Inc., Nagoya, Japan
| | - Yumi Isogai
- Discovery Research, RaQualia Pharma Inc., Nagoya, Japan
| | - Teruhiro Sakaguchi
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Shunsuke Eguchi
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Takuma Tsuda
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Hyi-Man Park
- Discovery Research, RaQualia Pharma Inc., Nagoya, Japan; RaQualia Pharma Industry-Academia Collaborative Research Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan.
| |
Collapse
|
12
|
CRH/CRHR1 modulates cerebrovascular endothelial cell permeability in association with S1PR2 and S1PR3 under oxidative stress. Vascul Pharmacol 2021; 142:106941. [PMID: 34781017 DOI: 10.1016/j.vph.2021.106941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022]
Abstract
Corticotrophin-releasing hormone (CRH) has been demonstrated to participate in vascular inflammation and permeability. Our previous studies have shown that blockade of S1PR2 or CRHR1 inhibited H2O2-induced brain endothelial hyperpermeability via inhibiting cPLA2 phosphorylation. However, little is known about the linkage between S1PRs and CRHR1 in oxidative stress-induced cerebrovascular endothelial hyperpermeability. Here we observed the opposite effects of S1PR2 to those of S1PR3 on the monolayer permeability of bEnd3 cells in response to H2O2. Interestingly, activation of CRHR1 was found to reverse the effects resulting from blockade/silencing of both S1PR2 and S1PR3. In bEnd3 monolayer, blockade/knockdown of S1PR2 reduced the endothelial hyperpermeability and suppressed the tight junction protein ZO-1 redistribution caused by H2O2, along with the inhibition of p38, ERK and cPLA2 phosphorylation. On the contrary, suppression/silencing of S1PR3 further promoted H2O2-induced endothelial hyperpermeability and ZO-1 redistribution, accompanied by the increased phosphorylation of p38, ERK and cPLA2. In the presence of CRH, the effects resulting from the suppression of both S1PR2 and S1PR3 were abolished. Our results elucidate a possible linkage between CRHR1 and S1PR2/S1PR3 involving in the regulation of endothelial monolayer permeability under oxidative stress condition.
Collapse
|
13
|
Popov SV, Prokudina ES, Mukhomedzyanov AV, Naryzhnaya NV, Ma H, Zurmanova JM, der Ven PFMV, Maslov LN. Cardioprotective and Vasoprotective Effects of Corticotropin-Releasing Hormone and Urocortins: Receptors and Signaling. J Cardiovasc Pharmacol Ther 2021; 26:575-584. [PMID: 34351805 DOI: 10.1177/1074248420985301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite the recent progress in research and therapy, cardiovascular diseases are still the most common cause of death worldwide, thus new approaches are still needed. The aim of this review is to highlight the cardioprotective potential of urocortins and corticotropin-releasing hormone (CRH) and their signaling. It has been documented that urocortins and CRH reduce ischemic and reperfusion (I/R) injury, prevent reperfusion ventricular tachycardia and fibrillation, and improve cardiac contractility during reperfusion. Urocortin-induced increase in cardiac tolerance to I/R depends mainly on the activation of corticotropin-releasing hormone receptor-2 (CRHR2) and its downstream pathways including tyrosine kinase Src, protein kinase A and C (PKA, PKCε) and extracellular signal-regulated kinase (ERK1/2). It was discussed the possibility of the involvement of interleukin-6, Janus kinase-2 and signal transducer and activator of transcription 3 (STAT3) and microRNAs in the cardioprotective effect of urocortins. Additionally, phospholipase-A2 inhibition, mitochondrial permeability transition pore (MPT-pore) blockade and suppression of apoptosis are involved in urocortin-elicited cardioprotection. Chronic administration of urocortin-2 prevents the development of postinfarction cardiac remodeling. Urocortin possesses vasoprotective and vasodilator effect; the former is mediated by PKC activation and prevents an impairment of endothelium-dependent coronary vasodilation after I/R in the isolated heart, while the latter includes both cAMP and cGMP signaling and its downstream targets. As CRHR2 is expressed by both cardiomyocytes and vascular endothelial cells. Urocortins mediate both endothelium-dependent and -independent relaxation of coronary arteries.
Collapse
Affiliation(s)
- Sergey V Popov
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Ekaterina S Prokudina
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Alexander V Mukhomedzyanov
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Huijie Ma
- Department of Physiology, 12553Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jitka M Zurmanova
- Department of Physiology, Faculty of Science, 37740Charles University, Prague, Czech Republic
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, 9374University of Bonn, Bonn, Germany
| | - Leonid N Maslov
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| |
Collapse
|
14
|
Stress and Nasal Allergy: Corticotropin-Releasing Hormone Stimulates Mast Cell Degranulation and Proliferation in Human Nasal Mucosa. Int J Mol Sci 2021; 22:ijms22052773. [PMID: 33803422 PMCID: PMC7967145 DOI: 10.3390/ijms22052773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Psychological stress exacerbates mast cell (MC)-dependent inflammation, including nasal allergy, but the underlying mechanisms are not thoroughly understood. Because the key stress-mediating neurohormone, corticotropin-releasing hormone (CRH), induces human skin MC degranulation, we hypothesized that CRH may be a key player in stress-aggravated nasal allergy. In the current study, we probed this hypothesis in human nasal mucosa MCs (hM-MCs) in situ using nasal polyp organ culture and tested whether CRH is required for murine M-MC activation by perceived stress in vivo. CRH stimulation significantly increased the number of hM-MCs, stimulated both their degranulation and proliferation ex vivo, and increased stem cell factor (SCF) expression in human nasal mucosa epithelium. CRH also sensitized hM-MCs to further CRH stimulation and promoted a pro-inflammatory hM-MC phenotype. The CRH-induced increase in hM-MCs was mitigated by co-administration of CRH receptor type 1 (CRH-R1)-specific antagonist antalarmin, CRH-R1 small interfering RNA (siRNA), or SCF-neutralizing antibody. In vivo, restraint stress significantly increased the number and degranulation of murine M-MCs compared with sham-stressed mice. This effect was mitigated by intranasal antalarmin. Our data suggest that CRH is a major activator of hM-MC in nasal mucosa, in part via promoting SCF production, and that CRH-R1 antagonists such as antalarmin are promising candidate therapeutics for nasal mucosa neuroinflammation induced by perceived stress.
Collapse
|
15
|
Lopresti AL, Smith SJ, Drummond PD. Modulation of the hypothalamic-pituitary-adrenal (HPA) axis by plants and phytonutrients: a systematic review of human trials. Nutr Neurosci 2021; 25:1704-1730. [PMID: 33650944 DOI: 10.1080/1028415x.2021.1892253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The hypothalamic-pituitary-adrenal (HPA) axis plays a central role in the stress response. Plants, herbs, spices, and plant-based nutrients may influence HPA-axis activity. OBJECTIVE To evaluate randomised controlled, human trials assessing the effects of single plants or phytonutrients on HPA-axis related hormones. METHODS A systematic review of PubMed, Cochrane library, and the Cumulative Index to Nursing and Allied Health Literature was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Inclusion criteria comprised of human, randomised controlled studies with a control intervention examining the effects of a single herb, spice, plant, or extract on pre- and post-changes in blood, saliva, urine, or hair concentrations of cortisol, cortisone, corticotrophin-releasing hormone, or adrenocorticotropic hormone. Databases were searched from inception until October 2020. RESULTS Fifty-two studies were identified examining the effects of ashwagandha, Korean ginseng, St John's Wort, cannabidiol, Rhodiola rosea, curcumin, cherry juice, asparagus, Jiaogulan, Black cohosh, Siberian ginseng, Bacopa monnieri, blueberries, green tea, Caralluma fimbriata, cashew apple juice, melon, American ginseng, Ginkgo biloba, grape juice, grapefruit juice, rosella, hops, mangosteen, holy basil, and pomegranate juice. Due to significant variability in study designs, the effect of phytonutrients on HPA-axis activity in humans was unclear. The most consistent finding was a morning, cortisol-lowering effect from ashwagandha supplementation. CONCLUSION For most phytonutrients, the effects of supplementation on HPA-axis activity in humans is unclear. Before more definitive conclusions about the effects of phytonutrients on the HPA-axis can be made, further research is required.
Collapse
Affiliation(s)
- Adrian L Lopresti
- Clinical Research Australia, Perth, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| | - Stephen J Smith
- Clinical Research Australia, Perth, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| | - Peter D Drummond
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| |
Collapse
|
16
|
Lee Y, Ma EL, Patel M, Kim G, Howe C, Pothoulakis C, Kim YS, Im E, Rhee SH. Corticotropin-Releasing Hormone Receptor Alters the Tumor Development and Growth in Apcmin/+ Mice and in a Chemically-Induced Model of Colon Cancer. Int J Mol Sci 2021; 22:ijms22031043. [PMID: 33494263 PMCID: PMC7864487 DOI: 10.3390/ijms22031043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
The neuroendocrine circuit of the corticotropin-releasing hormone (CRH) family peptides, via their cognate receptors CRHR1 and CRHR2, copes with psychological stress. However, peripheral effects of the CRH system in colon cancer remains elusive. Thus, we investigate the role of CRHR1 and CRHR2 in colon cancer. Human colon cancer biopsies were used to measure the mRNA levels of the CRH family by quantitative real-time PCR. Two animal models of colon cancer were used: Apcmin/+ mice and azoxymethane (AOM)/dextran sulfate sodium (DSS)-treated mice. The mRNA levels of CRHR2 and UCN III are reduced in human colon cancer tissues compared to those of normal tissues. Crhr1 deletion suppresses the tumor development and growth in Apcmin/+ mice, while Crhr2 deficiency exacerbates the tumorigenicity. Crhr1 deficiency not only inhibits the expression of tumor-promoting cyclooxygenase 2, but also upregulates tumor-suppressing phospholipase A2 in Apcmin/+ mice; however, Crhr2 deficiency does not change these expressions. In the AOM/DSS model, Crhr2 deficiency worsens the tumorigenesis. In conclusion, Crhr1 deficiency confers tumor-suppressing effects in Apcmin/+ mice, but Crhr2 deficiency worsens the tumorigenicity in both Apcmin/+ and AOM/DSS-treated mice. Therefore, pharmacological inhibitors of CRHR1 or activators of CRHR2 could be of significance as anti-colon cancer drugs.
Collapse
Affiliation(s)
- Yunna Lee
- College of Pharmacy, Pusan National University, Busan 46241, Korea;
| | - Elise L. Ma
- Inflammatory Bowel Disease Center, and Center for Systems Biomedicine, Vatcher and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; (E.L.M.); (C.P.)
| | - Marisa Patel
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (M.P.); (G.K.); (C.H.)
| | - Gayoung Kim
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (M.P.); (G.K.); (C.H.)
| | - Cody Howe
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (M.P.); (G.K.); (C.H.)
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, and Center for Systems Biomedicine, Vatcher and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; (E.L.M.); (C.P.)
| | - Yong Sung Kim
- Digestive Disease Research Institute and GutnFood Healthcare Inc., School of Medicine, Wonkwang University, Iksan 54538, Korea;
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan 46241, Korea;
- Correspondence: (E.I.); (S.H.R.); Tel.: +82-51-510-2812 (E.I.); +1-248-370-4162 (S.H.R.)
| | - Sang Hoon Rhee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (M.P.); (G.K.); (C.H.)
- Correspondence: (E.I.); (S.H.R.); Tel.: +82-51-510-2812 (E.I.); +1-248-370-4162 (S.H.R.)
| |
Collapse
|
17
|
Ma S, Shen Q, Zhao LH, Mao C, Zhou XE, Shen DD, de Waal PW, Bi P, Li C, Jiang Y, Wang MW, Sexton PM, Wootten D, Melcher K, Zhang Y, Xu HE. Molecular Basis for Hormone Recognition and Activation of Corticotropin-Releasing Factor Receptors. Mol Cell 2020; 77:669-680.e4. [PMID: 32004470 DOI: 10.1016/j.molcel.2020.01.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/07/2019] [Accepted: 01/07/2020] [Indexed: 01/13/2023]
Abstract
Corticotropin-releasing factor (CRF) and the three related peptides urocortins 1-3 (UCN1-UCN3) are endocrine hormones that control the stress responses by activating CRF1R and CRF2R, two members of class B G-protein-coupled receptors (GPCRs). Here, we present two cryoelectron microscopy (cryo-EM) structures of UCN1-bound CRF1R and CRF2R with the stimulatory G protein. In both structures, UCN1 adopts a single straight helix with its N terminus dipped into the receptor transmembrane bundle. Although the peptide-binding residues in CRF1R and CRF2R are different from other members of class B GPCRs, the residues involved in receptor activation and G protein coupling are conserved. In addition, both structures reveal bound cholesterol molecules to the receptor transmembrane helices. Our structures define the basis of ligand-binding specificity in the CRF receptor-hormone system, establish a common mechanism of class B GPCR activation and G protein coupling, and provide a paradigm for studying membrane protein-lipid interactions for class B GPCRs.
Collapse
Affiliation(s)
- Shanshan Ma
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingya Shen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li-Hua Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Chunyou Mao
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - X Edward Zhou
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Dan-Dan Shen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Parker W de Waal
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Peng Bi
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chuntao Li
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ming-Wei Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Patrick M Sexton
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052 VIC, Australia
| | - Denise Wootten
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052 VIC, Australia
| | - Karsten Melcher
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Yan Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Yang LZ, Chen Y. Research on the Effects of the Chronic Treatment With Different Doses of Urocortin 2 in Heart Failure Rats. Dose Response 2019; 17:1559325819860018. [PMID: 31263386 PMCID: PMC6595674 DOI: 10.1177/1559325819860018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022] Open
Abstract
Corticotropin-releasing factor (CRF) receptor type 2 (CRF2) exists in both cardiomyocytes and neurocytes. The purpose of this research was to explore if chronic treatment with urocortin 2 (UCN2), a CRF2 receptor agonist, at different doses can improve prognosis and regulate the expression of CRF2 receptor and calcium handling proteins without any adverse effects on behavior in heart failure. Heart failure was established in Sprague-Dawley rats and was confirmed by echocardiography. Heart failure rats were injected intraperitoneally with UCN2 (5, 10, or 20 µg·kg−1·d−1) for 30 days. Survival rate, cardiac function, expressions of cardiac CRF2 receptor, RyR2, SERCA2, and hypothalamic and hippocampal c-FOS, CRF receptor type 1 (CRF1) and CRF2 receptor were determined. Behavior was evaluated by Morris Water-Maze and Open-Field tests. Results showed that chronic peripheral UCN2 treatment improved survival rate in a dose–response manner and increased cardiac function and expression of CRF2 receptor and SERCA2 in heart failure, especially at the high dosage. Moreover, cellular-fos (c-FOS), CRF1 receptor, and CRF2 receptor expressions of both hypothalamic and hippocampal tissues were significantly increased in high dosage group. Furthermore, the behavior tests suggested that chronic UCN2 treatment did not exacerbate stress/anxiety-like behavior in HF. In conclusion, chronic peripheral treatment with UCN2 increases survival in a dose–response manner in heart failure rats without inducing stress/anxiety-like behavior.
Collapse
Affiliation(s)
- Li-Zhen Yang
- Division of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Chen
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|