1
|
Lupu A, Fotea S, Jechel E, Starcea IM, Ioniuc I, Knieling A, Salaru DL, Sasaran MO, Cirstea O, Revenco N, Mihai CM, Lupu VV, Nedelcu AH. Is oxidative stress - antioxidants imbalance the physiopathogenic core in pediatric obesity? Front Immunol 2024; 15:1394869. [PMID: 39176098 PMCID: PMC11338799 DOI: 10.3389/fimmu.2024.1394869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Despite the early recognition of obesity as an epidemic with global implications, research on its pathogenesis and therapeutic approach is still on the rise. The literature of the 21st century records an excess weight found in up to 1/3 of children. Both the determining factors and its systemic effects are multiple and variable. Regarding its involvement in the potentiation of cardio-vascular, pulmonary, digestive, metabolic, neuro-psychic or even dermatological diseases, the information is already broadly outlined. The connection between the underlying disease and the associated comorbidities seems to be partially attributable to oxidative stress. In addition to these, and in the light of the recent COVID-19 pandemic, the role played by oxidative stress in the induction, maintenance and potentiation of chronic inflammation among overweight children and adolescents becomes a topic of interest again. Thus, this review's purpose is to update general data on obesity, with an emphasis on the physiopathological mechanisms that underlie it and involve oxidative stress. At the same time, we briefly present the latest principles of pathology diagnosis and management. Among these, we will mainly emphasize the impact played by endogenous and exogenous antioxidants in the evolutionary course of pediatric obesity. In order to achieve our objectives, we will refer to the most recent studies published in the specialized literature.
Collapse
Affiliation(s)
- Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, Romania
| | - Elena Jechel
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Ileana Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anton Knieling
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Maria Oana Sasaran
- Pediatrics, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Olga Cirstea
- Pediatrics, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Neli Revenco
- Pediatrics, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | | | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
2
|
Hamed M, Zaghloul A, Halawani SH, Fatani BA, Alshareef B, Almalki A, Alsharif E, ALhothaly QA, Alhadhrami S, Abd Elmoneim HM. Prevalence of Overweight/Obesity Associated With Anemia Among Female Medical Students at Umm Al-Qura University in Makkah, Saudi Arabia: A Cross-Sectional Study. Cureus 2024; 16:e57081. [PMID: 38681278 PMCID: PMC11052665 DOI: 10.7759/cureus.57081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction The obesity epidemic has been linked to a wide range of health and nutritional problems, including anemia, which is often caused by impaired iron metabolism. The World Health Organization considers anemia and obesity to be global health issues among adolescent girls and women experiencing menstruation. This study aims to examine the association between iron deficiency anemia and obesity/overweight among female medical students. Methodology This cross-sectional descriptive study conducted as an online self-administered questionnaire. Furthermore, blood samples were collected from 206 students to evaluate the complete blood count, iron and lipid profile. Results The convenience sampling technique was used and a total of 206 students were enrolled in the study. The average body mass index (BMI) was 22.51 ± 3.25, with 83.5% (n = 172) falling within the normal weight range, 12.6% (n = 26) as overweight, and 3.9% (n = 8) as obese. Anemia was present in 16.0% (n = 33) of the participants overall. Higher prevalence of anemia was observed among overweight participants with 10 out of 26 (38.5%) subjects compared to obese with two out of eight (25.0%) and normal weight 21 out of 172 (12.2%); this difference was highly significant (P = 0.005). Individuals with anemia exhibited a significant association with those experiencing a diet full of unhealthy fats and carbohydrates (P = 0.05) and a diet containing all essential nutrients (P = 0.01). There is no statistically significant correlation between anemia prevalence and participants' response to the presence of signs of anemia, physical activity or other dietary habits. Obese participants had a significantly higher mean value of triglycerides (129.5 ± 20.5) compared to normal weight and overweight participants (74.5 ± 12.02 and 51.2 ± 15.04), respectively (P = 0.001). Conclusion A dependable assembly exists between obesity and overweight in cases of iron deficient anemia. The prevalence of iron deficiency anemia was substantially higher among overweight/obese females, highlighting that overweight/obesity signifies both quantitative and qualitative malnutrition. A high BMI was associated with elevated triglycerides, typically considered indicators of obesity. This association may suggest compromised iron homeostasis.
Collapse
Affiliation(s)
- Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Amal Zaghloul
- Department of Clinical Pathology (Hematology), Faculty of Medicine, Ain Shams University, Cairo, EGY
| | - Saeed H Halawani
- Department of Hematology and Immunology, Faculty of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Bushra A Fatani
- Department of Medicine and Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Bashair Alshareef
- Department of Medicine and Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Aisha Almalki
- Department of Medicine and Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Esraa Alsharif
- Department of Medicine and Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Qamar A ALhothaly
- Department of Medicine and Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Salma Alhadhrami
- Department of Medicine and Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, SAU
| | - Hanan M Abd Elmoneim
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, SAU
| |
Collapse
|
3
|
Duan G, Li J, Duan Y, Zheng C, Guo Q, Li F, Zheng J, Yu J, Zhang P, Wan M, Long C. Mitochondrial Iron Metabolism: The Crucial Actors in Diseases. Molecules 2022; 28:29. [PMID: 36615225 PMCID: PMC9822237 DOI: 10.3390/molecules28010029] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Iron is a trace element necessary for cell growth, development, and cellular homeostasis, but insufficient or excessive level of iron is toxic. Intracellularly, sufficient amounts of iron are required for mitochondria (the center of iron utilization) to maintain their normal physiologic function. Iron deficiency impairs mitochondrial metabolism and respiratory activity, while mitochondrial iron overload promotes ROS production during mitochondrial electron transport, thus promoting potential disease development. This review provides an overview of iron homeostasis, mitochondrial iron metabolism, and how mitochondrial iron imbalances-induced mitochondrial dysfunction contribute to diseases.
Collapse
Affiliation(s)
- Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengna Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Yu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengliao Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Cimin Long
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Qiu F, Wu L, Yang G, Zhang C, Liu X, Sun X, Chen X, Wang N. The role of iron metabolism in chronic diseases related to obesity. Mol Med 2022; 28:130. [PMID: 36335331 PMCID: PMC9636637 DOI: 10.1186/s10020-022-00558-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity is one of the major public health problems threatening the world, as well as a potential risk factor for chronic metabolic diseases. There is growing evidence that iron metabolism is altered in obese people, however, the highly refined regulation of iron metabolism in obesity and obesity-related complications is still being investigated. Iron accumulation can affect the body’s sensitivity to insulin, Type 2 diabetes, liver disease and cardiovascular disease. This review summarized the changes and potential mechanisms of iron metabolism in several chronic diseases related to obesity, providing new clues for future research.
Collapse
|
5
|
Bjørklund G, Peana M, Pivina L, Dosa A, Aaseth J, Semenova Y, Chirumbolo S, Medici S, Dadar M, Costea DO. Iron Deficiency in Obesity and after Bariatric Surgery. Biomolecules 2021; 11:biom11050613. [PMID: 33918997 PMCID: PMC8142987 DOI: 10.3390/biom11050613] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Iron deficiency (ID) is particularly frequent in obese patients due to increased circulating levels of acute-phase reactant hepcidin and adiposity-associated inflammation. Inflammation in obese subjects is closely related to ID. It induces reduced iron absorption correlated to the inhibition of duodenal ferroportin expression, parallel to the increased concentrations of hepcidin. Obese subjects often get decreased inflammatory response after bariatric surgery, accompanied by decreased serum hepcidin and therefore improved iron absorption. Bariatric surgery can induce the mitigation or resolution of obesity-associated complications, such as hypertension, insulin resistance, diabetes mellitus, and hyperlipidemia, adjusting many parameters in the metabolism. However, gastric bypass surgery and sleeve gastrectomy can induce malabsorption and may accentuate ID. The present review explores the burden and characteristics of ID and anemia in obese patients after bariatric surgery, accounting for gastric bypass technique (Roux-en-Y gastric bypass-RYGB) and sleeve gastrectomy (SG). After bariatric surgery, obese subjects' iron status should be monitored, and they should be motivated to use adequate and recommended iron supplementation.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
- Correspondence: (G.B.); (M.P.)
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
- Correspondence: (G.B.); (M.P.)
| | - Lyudmila Pivina
- Department of Neurology, Ophthalmology and Otolaryngology, Semey Medical University, 071400 Semey, Kazakhstan; (L.P.); (Y.S.)
- CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, 071400 Semey, Kazakhstan
| | - Alexandru Dosa
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.D.); (D.-O.C.)
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, 2380 Brumunddal, Norway;
| | - Yuliya Semenova
- Department of Neurology, Ophthalmology and Otolaryngology, Semey Medical University, 071400 Semey, Kazakhstan; (L.P.); (Y.S.)
- CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, 071400 Semey, Kazakhstan
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
- CONEM Scientific Secretary, 37134 Verona, Italy
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31975/148, Iran;
| | - Daniel-Ovidiu Costea
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.D.); (D.-O.C.)
| |
Collapse
|