1
|
Halvorson BD, Ward AD, Murrell D, Lacefield JC, Wiseman RW, Goldman D, Frisbee JC. Regulation of Skeletal Muscle Resistance Arteriolar Tone: Temporal Variability in Vascular Responses. J Vasc Res 2024:1-29. [PMID: 39362208 DOI: 10.1159/000541169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/25/2024] [Indexed: 10/05/2024] Open
Abstract
INTRODUCTION A full understanding of the integration of the mechanisms of vascular tone regulation requires an interrogation of the temporal behavior of arterioles across vasoactive challenges. Building on previous work, the purpose of the present study was to start to interrogate the temporal nature of arteriolar tone regulation with physiological stimuli. METHODS We determined the response rate of ex vivo proximal and in situ distal resistance arterioles when challenged by one-, two-, and three-parameter combinations of five major physiological stimuli (norepinephrine, intravascular pressure, oxygen, adenosine [metabolism], and intralumenal flow). Predictive machine learning models determined which factors were most influential in controlling the rate of arteriolar responses. RESULTS Results indicate that vascular response rate is dependent on the intensity of the stimulus used and can be severely hindered by altered environments, caused by application of secondary or tertiary stimuli. Advanced analytics suggest that adrenergic influences were dominant in predicting proximal arteriolar response rate compared to metabolic influences in distal arterioles. CONCLUSION These data suggest that the vascular response rate to physiologic stimuli can be strongly influenced by the local environment. Translating how these effects impact vascular networks is imperative for understanding how the microcirculation appropriately perfuses tissue across conditions.
Collapse
Affiliation(s)
- Brayden D Halvorson
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Aaron D Ward
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Departments of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Donna Murrell
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Departments of Oncology, University of Western Ontario, London, Ontario, Canada
| | - James C Lacefield
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- School of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Robert W Wiseman
- Departments of Physiology and Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Daniel Goldman
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jefferson C Frisbee
- Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Gao J, Liu X, Wang M, Zeng X, Wang Z, Wang Y, Lou J, Liu J, Zhao L. Adenosine protects cardiomyocytes against acrolein-induced cardiotoxicity by enhancing mitochondrial homeostasis, antioxidant defense, and autophagic flux via ERK-activated FoxO1 upregulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116799. [PMID: 39094450 DOI: 10.1016/j.ecoenv.2024.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/30/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Acrolein is a ubiquitous gaseous air pollutant and endogenous toxicant, which poses strong risk for oxidative stress-related diseases such as cardiovascular disease. Adenosine has been identified as potential therapeutic agent for age-related cardiovascular disease, while the molecular mechanisms underlying its cardioprotection remain elusive. In the present study, we investigated the myocardial protective effects and the mechanism of adenosine on acrolein-induced toxicity in H9c2 cells and primary neonatal rat cardiomyocytes. We found that acrolein caused apoptosis of cardiomyocytes resulting from oxidative damage, autophagy defect, and mitochondrial dysfunction, as evidenced by loss of mitochondrial membrane potential, impairment of mitochondrial biogenesis, dynamics, and oxidative phosphorylation, decrease of mitochondrial deoxyribonucleic acid (mtDNA) copy number and adenosine 5'-triphosphate (ATP) production. Adenosine pretreatment protected against acrolein-induced cardiotoxicity by maintaining mitochondrial homeostasis, activating the phase II detoxifying enzyme system, promoting autophagic flux, and alleviating mitochondrial-dependent apoptosis. We further demonstrated that the up-regulation of forkhead box protein O1 (FoxO1) mediated by extracellular regulated protein kinases (ERK) activation contributes to the cardioprotection of adenosine. These results expand the application of adenosine in cardioprotection to preventing myocardial damages induced by environmental pollutant acrolein exposure, and uncover the adenosine-ERK-FoxO1 axis as the underlying mechanism mediating the protection of mitochondrial homeostasis, Nrf2-mediated antioxidant defense and autophagic flux, shedding light on the better understanding about the pathological mechanism of cardiovascular disease caused by environmental pollutants and applications of adenosine in cardioprotection.
Collapse
Affiliation(s)
- Jing Gao
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Health and Science, Xi'an Physical Education University, Xi'an, Shaanxi, China
| | - Xuyun Liu
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Min Wang
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xin Zeng
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhen Wang
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Wang
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Lou
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiankang Liu
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China.
| | - Lin Zhao
- Department of Cardiology, First Affiliated Hospital, Cardiometabolic Innovation Center of Ministry of Education, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Mack CM, Tsui-Bowen A, Smith AR, Jensen KF, Kodavanti PRS, Moser VC, Mundy WR, Shafer TJ, Herr DW. Identification of neural-relevant toxcast high-throughput assay intended gene targets: Applicability to neurotoxicity and neurotoxicant putative molecular initiating events. Neurotoxicology 2024; 103:256-265. [PMID: 38977203 DOI: 10.1016/j.neuro.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The US EPA's Toxicity Forecaster (ToxCast) is a suite of high-throughput in vitro assays to screen environmental toxicants and predict potential toxicity of uncharacterized chemicals. This work examines the relevance of ToxCast assay intended gene targets to putative molecular initiating events (MIEs) of neurotoxicants. This effort is needed as there is growing interest in the regulatory and scientific communities about developing new approach methodologies (NAMs) to screen large numbers of chemicals for neurotoxicity and developmental neurotoxicity. Assay gene function (GeneCards, NCBI-PUBMED) was used to categorize gene target neural relevance (1 = neural, 2 = neural development, 3 = general cellular process, 3 A = cellular process critical during neural development, 4 = unlikely significance). Of 481 unique gene targets, 80 = category 1 (16.6 %); 16 = category 2 (3.3 %); 303 = category 3 (63.0 %); 97 = category 3 A (20.2 %); 82 = category 4 (17.0 %). A representative list of neurotoxicants (548) was researched (ex. PUBMED, PubChem) for neurotoxicity associated MIEs/Key Events (KEs). MIEs were identified for 375 compounds, whereas only KEs for 173. ToxCast gene targets associated with MIEs were primarily neurotransmitter (ex. dopaminergic, GABA)receptors and ion channels (calcium, sodium, potassium). Conversely, numerous MIEs associated with neurotoxicity were absent. Oxidative stress (OS) mechanisms were 79.1 % of KEs. In summary, 40 % of ToxCast assay gene targets are relevant to neurotoxicity mechanisms. Additional receptor and ion channel subtypes and increased OS pathway coverage are identified for potential future assay inclusion to provide more complete coverage of neural and developmental neural targets in assessing neurotoxicity.
Collapse
Affiliation(s)
- Cina M Mack
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | - Alicia R Smith
- Oak Ridge Institute for Science Education, Oak Ridge, TN 37830, USA.
| | - Karl F Jensen
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Prasada Rao S Kodavanti
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Virginia C Moser
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - William R Mundy
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Timothy J Shafer
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - David W Herr
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
4
|
Gashkina NA. Metal Toxicity: Effects on Energy Metabolism in Fish. Int J Mol Sci 2024; 25:5015. [PMID: 38732234 PMCID: PMC11084289 DOI: 10.3390/ijms25095015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Metals are dispersed in natural environments, particularly in the aquatic environment, and accumulate, causing adverse effects on aquatic life. Moreover, chronic polymetallic water pollution is a common problem, and the biological effects of exposure to complex mixtures of metals are the most difficult to interpret. In this review, metal toxicity is examined with a focus on its impact on energy metabolism. Mechanisms regulating adenosine triphosphate (ATP) production and reactive oxygen species (ROS) emission are considered in their dual roles in the development of cytotoxicity and cytoprotection, and mitochondria may become target organelles of metal toxicity when the transmembrane potential is reduced below its phosphorylation level. One of the main consequences of metal toxicity is additional energy costs, and the metabolic load can lead to the disruption of oxidative metabolism and enhanced anaerobiosis.
Collapse
Affiliation(s)
- Natalia A Gashkina
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin St., Moscow 119991, Russia
| |
Collapse
|
5
|
Cruz FF, Pereira TCB, da Costa KM, Bonan CD, Bogo MR, Morrone FB. Effect of adenosine treatment on ionizing radiation toxicity in zebrafish early life stages. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:521-534. [PMID: 37480487 DOI: 10.1007/s00210-023-02617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
The danger of ionizing radiation exposure to human health is a concern. Since its wide use in medicine and industry, the development of radioprotectors has been very significant. Adenosine exerts anti-inflammatory actions and promotes tissue protection and repair, by activating the P1 receptors (A1, A2A, A2B, and A3). Zebrafish (Danio rerio) is an appropriate tool in the fields of toxicology and pharmacology, including the evaluation of radiobiological outcomes and in the search for radioprotector agents. This study aims to evaluate the effect of adenosine in the toxicity induced by radiation in zebrafish. Embryos were treated with 1, 10, or 100 µM adenosine, 30 min before the exposure to 15 Gy of gamma radiation. Adenosine potentiated the effects of radiation in heart rate, body length, and pericardial edema. We evaluated oxidative stress, tissue remodeling and inflammatory. It was seen that 100 µM adenosine reversed the inflammation induced by radiation, and that A2A2 and A2B receptors are involved in these anti-inflammatory effects. Our results indicate that P1R activation could be a promising pharmacological strategy for radioprotection.
Collapse
Affiliation(s)
- Fernanda Fernandes Cruz
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Talita Carneiro Brandão Pereira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Kesiane Mayra da Costa
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maurício Reis Bogo
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Bueno Morrone
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
6
|
Kim M, Kim S, Yim J, Keam B, Kim TM, Jeon YK, Kim DW, Heo DS. Targeting CD73 to Overcomes Resistance to First-Generation EGFR Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. Cancer Res Treat 2023; 55:1134-1143. [PMID: 37218137 PMCID: PMC10582532 DOI: 10.4143/crt.2023.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023] Open
Abstract
PURPOSE In patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC), EGFR tyrosine kinase inhibitors (TKIs) improve response rate and survival. However, most patients eventually develop resistance. This study aimed to identify the role of CD73 in EGFR-mutant NSCLC and explore whether CD73 inhibition may serve as a therapeutic strategy in NSCLC patients with acquired resistance to EGFR-TKIs. MATERIALS AND METHODS We evaluated the prognostic role of CD73 expression in EGFR-mutant NSCLC using tumor samples from a single institution. We silenced CD73 in EGFR-TKI-resistant cell lines using short hairpin RNA (shRNA) targeting CD73 and also transfected a vector alone as a negative control. Using these cell lines, cell proliferation and viability assays, immunoblot assays, cell cycle analysis, colony-forming assays, flow cytometry, and apoptosis analysis were performed. RESULTS High expression of CD73 was associated with shorter survival in patients with metastatic EGFR-mutant NSCLC treated with first-generation EGFR-TKI. CD73 inhibition synergistically inhibited cell viability with first-generation EGFR-TKI treatment compared with the negative control. When CD73 inhibition and EGFR-TKI treatment were combined, G0/G1 cell cycle arrest was induced through the regulation of p21 and cyclin D1. In addition, the apoptosis rate was increased in CD73 shRNA-transfected cells treated with EGFR-TKI. CONCLUSION High expression of CD73 adversely affects the survival of patients with EGFR-mutant NSCLC. The study demonstrated that inhibiting CD73 in EGFR-TKI-resistant cell lines resulted in increased apoptosis and cell cycle arrest, which overcame the acquired resistance to first-generation EGFR-TKIs. Further research is needed to determine whether blocking CD73 plays a therapeutic role in EGFR-TKI-resistant patients with EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Miso Kim
- Cancer Research Institute, Seoul National University, Seoul,
Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Soyeon Kim
- Cancer Research Institute, Seoul National University, Seoul,
Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul,
Korea
| | - Jeemin Yim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University, Seoul,
Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University, Seoul,
Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Yoon Kyung Jeon
- Cancer Research Institute, Seoul National University, Seoul,
Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul,
Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Dong-Wan Kim
- Cancer Research Institute, Seoul National University, Seoul,
Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Dae Seog Heo
- Cancer Research Institute, Seoul National University, Seoul,
Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
7
|
Halvorson BD, Bao Y, Ward AD, Goldman D, Frisbee JC. Regulation of Skeletal Muscle Resistance Arteriolar Tone: Integration of Multiple Mechanisms. J Vasc Res 2023; 60:245-272. [PMID: 37769627 DOI: 10.1159/000533316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/27/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Physiological system complexity represents an imposing challenge to gaining insight into how arteriolar behavior emerges. Further, mechanistic complexity in arteriolar tone regulation requires that a systematic determination of how these processes interact to alter vascular diameter be undertaken. METHODS The present study evaluated the reactivity of ex vivo proximal and in situ distal resistance arterioles in skeletal muscle with challenges across the full range of multiple physiologically relevant stimuli and determined the stability of responses over progressive alterations to each other parameter. The five parameters chosen for examination were (1) metabolism (adenosine concentration), (2) adrenergic activation (norepinephrine concentration), (3) myogenic activation (intravascular pressure), (4) oxygen (superfusate PO2), and (5) wall shear rate (altered intraluminal flow). Vasomotor tone of both arteriole groups following challenge with individual parameters was determined; subsequently, responses were determined following all two- and three-parameter combinations to gain deeper insight into how stimuli integrate to change arteriolar tone. A hierarchical ranking of stimulus significance for establishing arteriolar tone was performed using mathematical and statistical analyses in conjunction with machine learning methods. RESULTS Results were consistent across methods and indicated that metabolic and adrenergic influences were most robust and stable across all conditions. While the other parameters individually impact arteriolar tone, their impact can be readily overridden by the two dominant contributors. CONCLUSION These data suggest that mechanisms regulating arteriolar tone are strongly affected by acute changes to the local environment and that ongoing investigation into how microvessels integrate stimuli regulating tone will provide a more thorough understanding of arteriolar behavior emergence across physiological and pathological states.
Collapse
Affiliation(s)
- Brayden D Halvorson
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Yuki Bao
- Department of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Aaron D Ward
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, London, Ontario, Canada
- Department of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| |
Collapse
|
8
|
da Silva TC, da Silveira TL, Dos Santos LV, Arantes LP, Martins RP, Soares FAA, Dalla Corte CL. Exogenous Adenosine Modulates Behaviors and Stress Response in Caenorhabditis elegans. Neurochem Res 2023; 48:117-130. [PMID: 36018438 DOI: 10.1007/s11064-022-03727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 01/11/2023]
Abstract
Adenosine, a purine nucleoside with neuromodulatory actions, is part of the purinergic signaling system (PSS). Caenorhabditis elegans is a free-living nematode found in soil, used in biological research for its advantages as an alternative experimental model. Since there is a lack of evidence of adenosine's direct actions and the PSS's participation in this animal, such an investigation is necessary. In this research, we aimed to test the effects of acute and chronic adenosine at 1, 5, and 10 mM on nematode's behaviors, morphology, survival after stress conditions, and on pathways related to the response to oxidative stress (DAF-16/FOXO and SKN-1) and genes products downstream these pathways (SOD-3, HSP-16.2, and GCS-1). Acute or chronic adenosine did not alter the worms' morphology analyzed by the worms' length, width, and area, nor interfered with reproductive behavior. On the other hand, acute and chronic adenosine modulated the defecation rate, pharyngeal pumping rate, and locomotion, in addition, to interacting with stress response pathways in C. elegans. Adenosine interfered in the speed and mobility of the worms analyzed. In addition, both acute and chronic adenosine presented modulatory effects on oxidative stress response signaling. Acute adenosine prevented the heat-induced-increase of DAF-16 activation and SOD-3 levels, while chronic adenosine per se induced DAF-16 activation and prevented heat-induced-increase of HSP-16.2 and SKN-1 levels. Together, these results indicate that exogenous adenosine has physiological and biochemical effects on C. elegans and describes possible purinergic signaling in worms.
Collapse
Affiliation(s)
- Thayanara Cruz da Silva
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Tássia Limana da Silveira
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Luiza Venturini Dos Santos
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Leticia Priscila Arantes
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Paraná, 85866-000, Brazil
| | - Rodrigo Pereira Martins
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Félix Alexandre Antunes Soares
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Cristiane Lenz Dalla Corte
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
9
|
Endurance Training and Exogenous Adenosine Infusion Mitigate Hippocampal Inflammation and Cell Death in a Rat Model of Cerebral Ischemia/Reperfusion Injury. ARCHIVES OF NEUROSCIENCE 2022. [DOI: 10.5812/ans.119236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Cerebral ischemia can cause irreversible structural and functional damages to the brain, especially to the hippocampus. Preconditioning with endurance training and endogenous adenosine infusion may reduce ischemia-associated damages. Objectives: This study aimed to evaluate the effect of preconditioning with endurance training and endogenous adenosine infusion on cell death in the hippocampal CA1 region following ischemia/reperfusion injuries in a rat model. Methods: Male Wistar rats were divided into five groups: (1) control (n = 8); (2) ischemia (n = 12); (3) endurance training + ischemia (n = 12); (4) adenosine infusion + ischemia (n = 12); and (5) endurance training + adenosine infusion + ischemia (n = 12). The rats in the training groups ran on a treadmill five days per week for eight weeks. In the adenosine infusion groups, the rats were injected 0.1 mg/mL/kg of adenosine intraperitoneally. Also, in the ischemic groups, both common carotid arteries were clamped for 45 minutes. Cresyl violet staining and real-time polymerase chain reaction (PCR) assay were used to evaluate cell death and cytokine gene expression, respectively. Results: Based on the present results, treatments, including endurance training + ischemia, adenosine infusion + ischemia, and endurance training + adenosine infusion + ischemia reduced the level of interleukin-6 (IL-6) and glutamate gene expression, respectively, compared to the group of ischemia only. In contrast, the expression of nerve growth factor (NGF) and adenosine receptor (A2A) genes increased by seven, four, and two folds in the endurance training + ischemia, adenosine infusion + ischemia, and endurance training + adenosine infusion + ischemia groups, respectively, compared to the group of ischemia only. Conclusions: Endurance training on a treadmill and exogenous adenosine infusion synergistically diminished cell death and reduced the expression of pro-inflammatory cytokines, while promoting the neurotrophic factor expression. When endurance training and adenosine infusion were used as stimulants before the induction of cerebral ischemia, they significantly reduced cell death.
Collapse
|
10
|
Osteocytic Connexin Hemichannels Modulate Oxidative Bone Microenvironment and Breast Cancer Growth. Cancers (Basel) 2021; 13:cancers13246343. [PMID: 34944962 PMCID: PMC8699531 DOI: 10.3390/cancers13246343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Osteocytes, the most abundant bone cell types embedded in the mineral matrix, express connexin 43 (Cx43) hemichannels that play important roles in bone remodeling and osteocyte survival. Estrogen deficiency decreases osteocytic Cx43 hemichannel activity and causes a loss in osteocytes' resistance to oxidative stress (OS). In this study, we showed that OS reduced the growth of both human (MDA-MB-231) and murine (Py8119) breast cancer cells. However, co-culturing these cells with osteocytes reduced the inhibitory effect of OS on breast cancer cells, and this effect was ablated by the inhibition of Cx43 hemichannels. Py8119 cells were intratibially implanted in the bone marrow of ovariectomized (OVX) mice to determine the role of osteocytic Cx43 hemichannels in breast cancer bone metastasis in response to OS. Two transgenic mice overexpressing dominant-negative Cx43 mutants, R76W and Δ130-136, were adopted for this study; the former inhibits gap junctions while the latter inhibits gap junctions and hemichannels. Under normal conditions, Δ130-136 mice had significantly more tumor growth in bone than that in WT and R76W mice. OVX increased tumor growth in R76W but had no significant effect on WT mice. In contrast, OVX reduced tumor growth in Δ130-136 mice. To confirm the role of OS, WT and Δ130-136 mice were administered the antioxidant N-acetyl cysteine (NAC). NAC increased tumor burden and growth in Δ130-136 mice but not in WT mice. Together, the data suggest that osteocytes and Cx43 hemichannels play pivotal roles in modulating the oxidative microenvironment and breast cancer growth in the bone.
Collapse
|
11
|
Savio LEB, Leite-Aguiar R, Alves VS, Coutinho-Silva R, Wyse ATS. Purinergic signaling in the modulation of redox biology. Redox Biol 2021; 47:102137. [PMID: 34563872 PMCID: PMC8479832 DOI: 10.1016/j.redox.2021.102137] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
Purinergic signaling is a cell communication pathway mediated by extracellular nucleotides and nucleosides. Tri- and diphosphonucleotides are released in physiological and pathological circumstances activating purinergic type 2 receptors (P2 receptors): P2X ion channels and P2Y G protein-coupled receptors. The activation of these receptors triggers the production of reactive oxygen and nitrogen species and alters antioxidant defenses, modulating the redox biology of cells. The activation of P2 receptors is controlled by ecto-enzymes named ectonucleotidases, E-NTPDase1/CD39 and ecto-5'-nucleotidase/CD73) being the most relevant. The first enzyme hydrolyzes adenosine triphosphate (ATP) and adenosine diphosphate (ADP) into adenosine monophosphate (AMP), and the second catalyzes the hydrolysis of AMP to adenosine. The activity of these enzymes is diminished by oxidative stress. Adenosine actives P1 G-coupled receptors that, in general, promote the maintenance of redox hemostasis by decreasing reactive oxygen species (ROS) production and increase antioxidant enzymes. Intracellular purine metabolism can also contribute to ROS generation via xanthine oxidase activity, which converts hypoxanthine into xanthine, and finally, uric acid. In this review, we describe the mechanisms of redox biology modulated by purinergic signaling and how this signaling may be affected by disturbances in the redox homeostasis of cells.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Tang D, Yan R, Sun Y, Kai G, Chen K, Li J. Material basis, effect, and mechanism of ethanol extract of Pinellia ternata tubers on oxidative stress-induced cell senescence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153275. [PMID: 32659678 DOI: 10.1016/j.phymed.2020.153275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/25/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The tuber of Pinellia ternata has been used for a thousand years in China. P. ternata possessed the activities of anti-emetic, sedative-hypnotic, anti-cancer, anti-asthmatic, anti-tussive, and anti-inflammatory. It is the representative of expectorant medicines in Traditional Chinese Medicine (TCM). Phlegm is the pathological product and a new pathogenic factor of the metabolite, which is analogous to the damage of oxidative stress. PURPOSE The objectives of the study were to investigate the protective activity and mechanism of ethanol extract of P. ternata tubers (PTE) and its main constituents on oxidative stress-induced cell senescence. METHODS H2O2 and AAPH were used to establish cellular senescence models. The anti-aging effects of PTE and its components were evaluated by SA-β-gal staining, flow cytometry, scanning electron microscope (SEM), and multiple microplate reader, the molecular mechanisms of them were investigated by qRT-PCR and Western Blot. RESULTS We found PTE exhibited the apparent effect on cell senescence, evidenced by inhibiting senescence β-Galactosidase (SA-β-gal) expression, lipofuscin accumulation, cell cycle arrest at the G2/M phase, oxidative damage and apoptosis, and increasing telomerase activity. Their mechanisms were related to increase expressions of SIRT1, forkhead box 3a (Foxo3a), Bcl-2, active regulator of SIRT1, RPS19BP1 (AROS), and Hu antigen R (HuR), but decrease Bax, p53 and deleted in breast cancer 1 (DBC1) levels. Furthermore, adenosine, and succinic acid, as the critical substances in PTE, could also inhibit SA-β-gal expression and cell cycle arrest, down-regulate the expression of Bax, and up-regulate Bcl-2, SirT1, and Foxo3a. CONCLUSIONS We have demonstrated that PTE slows down oxidative stress-induced cell senescence, and adenosine and succinic acid are the key active components.
Collapse
Affiliation(s)
- Ding Tang
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Renyi Yan
- Tianjin Ubasio Biotechnology Group Co., Ltd., Tianjin 300457, China
| | - Yuan Sun
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Guoyin Kai
- College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Keli Chen
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Juan Li
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China.
| |
Collapse
|
13
|
Ikram M, Park TJ, Ali T, Kim MO. Antioxidant and Neuroprotective Effects of Caffeine against Alzheimer's and Parkinson's Disease: Insight into the Role of Nrf-2 and A2AR Signaling. Antioxidants (Basel) 2020; 9:antiox9090902. [PMID: 32971922 PMCID: PMC7554764 DOI: 10.3390/antiox9090902] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
This paper reviews the results of studies conducted on the role of caffeine in the management of different neurological disorders, such as Parkinson's disease (PD) and Alzheimer's disease (AD). To highlight the potential role of caffeine in managing different neurodegenerative diseases, we identified studies by searching PubMed, Web of Science, and Google Scholar by scrutinizing the lists of pertinent publications. According to the collected overall findings, caffeine may reduce the elevated oxidative stress; inhibit the activation of adenosine A2A, thereby regulating the accumulation of Aβ; reduce the hyperphosphorylation of tau; and reduce the accumulation of misfolded proteins, such as α-synuclein, in Alzheimer's and Parkinson's diseases. The studies have suggested that caffeine has promising protective effects against different neurodegenerative diseases and that these effects may be used to tackle the neurological diseases and/or their consequences. Here, we review the ongoing research on the role of caffeine in the management of different neurodegenerative disorders, focusing on AD and PD. The current findings suggest that caffeine produces potent antioxidant, inflammatory, and anti-apoptotic effects against different models of neurodegenerative disease, including AD, PD, and other neurodegenerative disorders. Caffeine has shown strong antagonistic effects against the adenosine A2A receptor, which is a microglial receptor, and strong agonistic effects against nuclear-related factor-2 (Nrf-2), thereby regulating the cellular homeostasis at the brain by reducing oxidative stress, neuroinflammation, regulating the accumulation of α-synuclein in PD and tau hyperphosphorylation, amyloidogenesis, and synaptic deficits in AD, which are the cardinal features of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
| | - Tae Ju Park
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow 0747 657 5394, UK;
| | - Tahir Ali
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
14
|
Mossenta M, Busato D, Dal Bo M, Toffoli G. Glucose Metabolism and Oxidative Stress in Hepatocellular Carcinoma: Role and Possible Implications in Novel Therapeutic Strategies. Cancers (Basel) 2020; 12:E1668. [PMID: 32585931 PMCID: PMC7352479 DOI: 10.3390/cancers12061668] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/12/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) metabolism is redirected to glycolysis to enhance the production of metabolic compounds employed by cancer cells to produce proteins, lipids, and nucleotides in order to maintain a high proliferative rate. This mechanism drives towards uncontrolled growth and causes a further increase in reactive oxygen species (ROS), which could lead to cell death. HCC overcomes the problem generated by ROS increase by increasing the antioxidant machinery, in which key mechanisms involve glutathione, nuclear factor erythroid 2-related factor 2 (Nrf2), and hypoxia-inducible transcription factor (HIF-1α). These mechanisms could represent optimal targets for innovative therapies. The tumor microenvironment (TME) exerts a key role in HCC pathogenesis and progression. Various metabolic machineries modulate the activity of immune cells in the TME. The deregulated metabolic activity of tumor cells could impair antitumor response. Lactic acid-lactate, derived from the anaerobic glycolytic rate of tumor cells, as well as adenosine, derived from the catabolism of ATP, have an immunosuppressive activity. Metabolic reprogramming of the TME via targeted therapies could enhance the treatment efficacy of anti-cancer immunotherapy. This review describes the metabolic pathways mainly involved in the HCC pathogenesis and progression. The potential targets for HCC treatment involved in these pathways are also discussed.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.M.); (D.B.); (G.T.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.M.); (D.B.); (G.T.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.M.); (D.B.); (G.T.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.M.); (D.B.); (G.T.)
| |
Collapse
|
15
|
Ferguson L, Bhakta S, Fox KR, Wells G, Brucoli F. Synthesis and Biological Evaluation of a Novel C8-Pyrrolobenzodiazepine (PBD) Adenosine Conjugate. A Study on the Role of the PBD Ring in the Biological Activity of PBD-Conjugates. Molecules 2020; 25:E1243. [PMID: 32164166 PMCID: PMC7179398 DOI: 10.3390/molecules25051243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/16/2022] Open
Abstract
Here we sought to evaluate the contribution of the PBD unit to the biological activity of PBD-conjugates and, to this end, an adenosine nucleoside was attached to the PBD A-ring C8 position. A convergent approach was successfully adopted for the synthesis of a novel C8-linked pyrrolo(2,1-c)(1,4)benzodiazepine(PBD)-adenosine(ADN) hybrid. The PBD and adenosine (ADN) moieties were synthesized separately and then linked through a pentynyl linker. To our knowledge, this is the first report of a PBD connected to a nucleoside. Surprisingly, the compound showed no cytotoxicity against murine cells and was inactive against Mycobacterium aurum and M. bovis strains and did not bind to guanine-containing DNA sequences, as shown by DNase I footprinting experiments. Molecular dynamics simulations revealed that the PBD-ADN conjugate was poorly accommodated in the DNA minor groove of two DNA sequences containing the AGA-PBD binding motif, with the adenosine moiety of the ligand preventing the covalent binding of the PBD unit to the guanine amino group of the DNA duplex. These interesting findings shed further light on the ability of the substituents attached at the C8 position of PBDs to affect and modulate the biological and biophysical properties of PBD hybrids.
Collapse
Affiliation(s)
- Lindsay Ferguson
- School of Science, University of the West of Scotland, Paisley, Scotland PA1 2BE, UK
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London WC1E 7HX, UK
| | - Keith R. Fox
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Geoff Wells
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX, UK
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
16
|
Ticagrelor Increases SIRT1 and HES1 mRNA Levels in Peripheral Blood Cells from Patients with Stable Coronary Artery Disease and Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:ijms21051576. [PMID: 32106619 PMCID: PMC7084534 DOI: 10.3390/ijms21051576] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/13/2022] Open
Abstract
Ticagrelor is a powerful P2Y12 inhibitor with pleiotropic effects in the cardiovascular system. Consistently, we have reported that in patients with stable coronary artery disease (CAD) and concomitant chronic obstructive pulmonary disease (COPD) who underwent percutaneous coronary intervention (PCI), 1-month treatment with ticagrelor was superior in improving biological markers of endothelial function, compared with clopidogrel. The objective of this study was to investigate the mechanisms underlying these beneficial effects of ticagrelor by conducting molecular analyses of RNA isolated from peripheral blood cells of these patients. We determined mRNAs levels of markers of inflammation and oxidative stress, such as RORγt (T helper 17 cells marker), FoxP3 (regulatory T cells marker), NLRP3, ICAM1, SIRT1, Notch ligands JAG1 and DLL4, and HES1, a Notch target gene. We found that 1-month treatment with ticagrelor, but not clopidogrel, led to increased levels of SIRT1 and HES1 mRNAs. In patients treated with ticagrelor or clopidogrel, we observed a negative correlation among changes in both SIRT1 and HES1 mRNA and serum levels of Epidermal Growth Factor (EGF), a marker of endothelial dysfunction found to be reduced by ticagrelor treatment in our previous study. In conclusion, we report that in stable CAD/COPD patients ticagrelor positively regulates HES1 and SIRT1, two genes playing a protective role in the context of inflammation and oxidative stress. Our observations confirm and expand previous studies showing that the beneficial effects of ticagrelor in stable CAD/COPD patients may be, at least in part, mediated by its capacity to reduce systemic inflammation and oxidative stress.
Collapse
|
17
|
Rhodiola/Cordyceps-Based Herbal Supplement Promotes Endurance Training-Improved Body Composition But Not Oxidative Stress and Metabolic Biomarkers: A Preliminary Randomized Controlled Study. Nutrients 2019; 11:nu11102357. [PMID: 31623349 PMCID: PMC6835767 DOI: 10.3390/nu11102357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Rhodiola crenulata (R) and Cordyceps sinensis (C) are commonly used herbs that promote health in traditional Chinese medicine. These two herbs have also been shown to exhibit anti-inflammation and antioxidant functions. Regular endurance training reveals potent endurance capacity, body composition improvement, and metabolic-related biomarker benefits. However, it is not known whether the combination of Rhodiola crenulata and Cordyceps sinensis (RC) supplementation during endurance training provides additive health benefits. The purpose of this study was to investigate the effects of 8-week endurance training plus RC supplementation on body composition, oxidative stress, and metabolic biomarkers in young sedentary adults. Methods: Fourteen young sedentary adults (8M/6F) participated in this double-blind randomized controlled study. Participants were assigned to exercise training with placebo groups (PLA, n = 7, 4M/3F; age: 21.4 ± 0.4 years) and exercise training with the RC group (RC, 20 mg/kg/day; n = 7, 4M/3F; age: 21.7 ± 0.4 years). Both groups received identical exercise training for eight weeks. The body composition, circulating oxidative stress, and blood metabolic biomarkers were measured before and after the 8-week intervention. Results: Improvement in body composition profiles were significantly greater in the RC group (body weight: p = 0.044, BMI: p = 0.003, upper extremity fat mass: p = 0.032, lower extremity muscle mass: p = 0.029, trunk fat mass: p = 0.011) compared to the PLA group after training. The blood lipid profile and systemic oxidative stress makers (thiobarbituric reactive substanceand total antioxidant capacity) did not differ between groups. Although endurance training markedly improved endurance capacity and glycemic control ability (i.e., fast blood glucose, insulin, and HOMA index), there were no differences in these variables between treatments. Conclusions: In this preliminary investigation, we demonstrated that an 8-week RC supplementation (20 mg/kg/day) faintly enhanced endurance training-induced positive adaptations in body composition in young sedentary individuals, whereas the blood lipid profile and systemic oxidative stress states were not altered after such intervention.
Collapse
|
18
|
Adefegha SA, Oyeleye SI, Akintemi A, Okeke BM, Oboh G. Thyme (Thymus vulgaris) leaf extract modulates purinergic and cholinergic enzyme activities in the brain homogenate of 5-fluorouracil administered rats. Drug Chem Toxicol 2019; 43:43-50. [DOI: 10.1080/01480545.2019.1659310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Stephen Adeniyi Adefegha
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Sunday Idowu Oyeleye
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Abimbola Akintemi
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Bathlomew Maduka Okeke
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
19
|
Dormont F, Rouquette M, Mahatsekake C, Gobeaux F, Peramo A, Brusini R, Calet S, Testard F, Lepetre-Mouelhi S, Desmaële D, Varna M, Couvreur P. Translation of nanomedicines from lab to industrial scale synthesis: The case of squalene-adenosine nanoparticles. J Control Release 2019; 307:302-314. [PMID: 31260754 DOI: 10.1016/j.jconrel.2019.06.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
A large variety of nanoparticle-based delivery systems have become increasingly important for diagnostic and/or therapeutic applications. Yet, the numerous physical and chemical parameters that influence both the biological and colloidal properties of nanoparticles remain poorly understood. This complicates the ability to reliably produce and deliver well-defined nanocarriers which often leads to inconsistencies, conflicts in the published literature and, ultimately, poor translation to the clinics. A critical issue lies in the challenge of scaling-up nanomaterial synthesis and formulation from the lab to industrial scale while maintaining control over their diverse properties. Studying these phenomena early on in the development of a therapeutic agent often requires partnerships between the public and private sectors which are hard to establish. In this study, through the particular case of squalene-adenosine nanoparticles, we reported on the challenges encountered in the process of scaling-up nanomedicines synthesis. Here, squalene (the carrier) was functionalized and conjugated to adenosine (the active drug moiety) at an industrial scale in order to obtain large quantities of biocompatible and biodegradable nanoparticles. After assessing nanoparticle batch-to-batch consistency, we demonstrated that the presence of squalene analogs resulting from industrial scale-up may influence several features such as size, surface charge, protein adsorption, cytotoxicity and crystal structure. These analogs were isolated, characterized by multiple stage mass spectrometry, and their influence on nanoparticle properties further evaluated. We showed that slight variations in the chemical profile of the nanocarrier's constitutive material can have a tremendous impact on the reproducibility of nanoparticle properties. In a context where several generics of approved nanoformulated drugs are set to enter the market in the coming years, characterizing and solving these issues is an important step in the pharmaceutical development of nanomedicines.
Collapse
Affiliation(s)
- Flavio Dormont
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Marie Rouquette
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | | | - Frédéric Gobeaux
- CEA Saclay, CNRS UMR 3685, Université Paris-Saclay, 91191 Gif sur Yvette, France
| | - Arnaud Peramo
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Romain Brusini
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Serge Calet
- HOLOCHEM, Voie de l'Innovation, 27100 Val-de-Reuil, France
| | - Fabienne Testard
- CEA Saclay, CNRS UMR 3685, Université Paris-Saclay, 91191 Gif sur Yvette, France
| | - Sinda Lepetre-Mouelhi
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Didier Desmaële
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Mariana Varna
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
20
|
Huang X, Mao W, Zhang T, Wang M, Wang X, Li Y, Zhang L, Yao D, Cai X, Wang L. Baicalin promotes apoptosis and inhibits proliferation and migration of hypoxia-induced pulmonary artery smooth muscle cells by up-regulating A2a receptor via the SDF-1/CXCR4 signaling pathway. Altern Ther Health Med 2018; 18:330. [PMID: 30541517 PMCID: PMC6292092 DOI: 10.1186/s12906-018-2364-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022]
Abstract
Background Baicalin is a flavonoid compound that exerts specific pharmacological effect in attenuating the proliferation, migration, and apoptotic resistance of hypoxia-induced pulmonary artery smooth muscle cells (PASMCs). However, the underlying mechanism has not been fully elucidated yet. Although our previous studies had indicated that activation of A2aR attenuates CXCR expression, little is known about the relationship between A2aR and SDF-1/CXCR4 axis in hypoxic PASMCs. In this study, we aimed to investigate the effect of A2aR on the SDF-1/CXCR4 axis in hypoxic PASMCs, the mechanism underlying this effect, and whether baicalin exerts its protective functions though A2aR. Methods Rat PASMCs were cultured under normoxia/hypoxia and divided into nine groups: normoxia, hypoxia, hypoxia + AMD3100 (a CXCR4 antagonist), hypoxia + baicalin, hypoxia + negative virus, normoxia + A2aR knockdown, hypoxia + A2aR knockdown, hypoxia + CGS21680 (an A2aR agonist), and hypoxia + A2aR knockdown + baicalin. Lentiviral transfection methods were used to establish the A2aR knockdown model in PASMCs. Cells were incubated under hypoxic conditions for 24 h. Expression levels of A2aR, SDF-1, and CXCR4 were detected using RT-qPCR and western blot. The proliferation and migration rate were observed via CCK-8 and Transwell methods. Cell cycle distribution and cell apoptosis were measured by flow cytometry (FCM) and the In-Situ Cell Death Detection kit (Fluorescein). Results Under hypoxic conditions, levels of A2aR, SDF-1, and CXCR4 were significantly increased compared to those under normoxia. The trend of SDF-1 and CXCR4 being inhibited when A2aR is up-regulated was more obvious in the baicalin intervention group. Baicalin directly enhanced A2aR expression, and A2aR knockdown weakened the function of baicalin. SDF-1 and CXCR4 expression levels were increased in the hypoxia + A2aR knockdown group, as were the proliferation and migration rates of PASMCs, while the apoptotic rate was decreased. Baicalin and CGS21680 showed opposite effects. Conclusions Our data indicate that baicalin efficiently attenuates hypoxia-induced PASMC proliferation, migration, and apoptotic resistance, as well as SDF-1 secretion, by up-regulating A2aR and down-regulating the SDF-1/CXCR4 axis.
Collapse
|
21
|
Sek K, Mølck C, Stewart GD, Kats L, Darcy PK, Beavis PA. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int J Mol Sci 2018; 19:ijms19123837. [PMID: 30513816 PMCID: PMC6321150 DOI: 10.3390/ijms19123837] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a major role in the surveillance and control of malignant cells, with the presence of tumor infiltrating lymphocytes (TILs) correlating with better patient prognosis in multiple tumor types. The development of ‘checkpoint blockade’ and adoptive cellular therapy has revolutionized the landscape of cancer treatment and highlights the potential of utilizing the patient’s own immune system to eradicate cancer. One mechanism of tumor-mediated immunosuppression that has gained attention as a potential therapeutic target is the purinergic signaling axis, whereby the production of the purine nucleoside adenosine in the tumor microenvironment can potently suppress T and NK cell function. The production of extracellular adenosine is mediated by the cell surface ectoenzymes CD73, CD39, and CD38 and therapeutic agents have been developed to target these as well as the downstream adenosine receptors (A1R, A2AR, A2BR, A3R) to enhance anti-tumor immune responses. This review will discuss the role of adenosine and adenosine receptor signaling in tumor and immune cells with a focus on their cell-specific function and their potential as targets in cancer immunotherapy.
Collapse
Affiliation(s)
- Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Christina Mølck
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Australia.
| | - Lev Kats
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
- Department of Immunology, Monash University, Clayton 3052, Australia.
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| |
Collapse
|
22
|
Gholinejad M, Jafari Anarkooli I, Taromchi A, Abdanipour A. Adenosine decreases oxidative stress and protects H 2O 2-treated neural stem cells against apoptosis through decreasing Mst1 expression. Biomed Rep 2018; 8:439-446. [PMID: 29732147 DOI: 10.3892/br.2018.1083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
Overproduction of free radicals during oxidative stress induces damage to key biomolecules and activates programed cell death pathways. Neuronal cell death in the nervous system leads to a number of neurodegenerative diseases. The aim of the present study was to evaluate the neuroprotective effect of adenosine on inhibition of apoptosis induced by hydrogen peroxide (H2O2) in bone marrow-derived neural stem cells (B-dNSCs), with focus on its regulatory effect on the expression of mammalian sterile 20-like kinase 1 (Mst1), as a novel proapoptotic kinase. B-dNSCs were exposed to adenosine at different doses (2, 4, 6, 8 and 10 µM) for 48 h followed by 125 µM H2O2 for 30 min. Using MTT, terminal deoxynucleotidyl transferase dUTP nick-end labeling and real-time reverse transcription polymerase chain reaction assays, the effects of adenosine on cell survival, apoptosis and Mst1, nuclear factor (erythroid-derived 2)-like 2 and B-cell lymphoma 2 and adenosine A1 receptor expression were evaluated in pretreated B-dNSCs compared with controls (cells treated with H2O2 only). Firstly, results of the MTT assay indicated 6 µM adenosine to be the most protective dose in terms of promotion of cell viability. Subsequent assays using this dosage indicated that apoptosis rate and Mst1 expression in B-dNSCs pretreated with 6 µM adenosine were significantly decreased compared with the control group. These findings suggest that adenosine protects B-dNSCs against oxidative stress-induced cell death, and therefore, that it may be used to promote the survival rate of B-dNSCs and as a candidate for the treatment of oxidative stress-mediated neurological diseases.
Collapse
Affiliation(s)
- Masoumeh Gholinejad
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Iraj Jafari Anarkooli
- Department of Anatomy, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Amirhossein Taromchi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Alireza Abdanipour
- Department of Anatomy, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| |
Collapse
|
23
|
Peleli M, Carlstrom M. Adenosine signaling in diabetes mellitus and associated cardiovascular and renal complications. Mol Aspects Med 2017; 55:62-74. [DOI: 10.1016/j.mam.2016.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
|
24
|
Rodriguez-Brotons A, Bietiger W, Peronet C, Langlois A, Magisson J, Mura C, Sookhareea C, Polard V, Jeandidier N, Zal F, Pinget M, Sigrist S, Maillard E. Comparison of Perfluorodecalin and HEMOXCell as Oxygen Carriers for Islet Oxygenation in an In Vitro Model of Encapsulation. Tissue Eng Part A 2016; 22:1327-1336. [PMID: 27796164 DOI: 10.1089/ten.tea.2016.0064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transplantation of encapsulated islets in a bioartificial pancreas is a promising alternative to free islet cell therapy to avoid immunosuppressive regimens. However, hypoxia, which can induce a rapid loss of islets, is a major limiting factor. The efficiency of oxygen delivery in an in vitro model of bioartificial pancreas involving hypoxia and confined conditions has never been investigated. Oxygen carriers such as perfluorocarbons and hemoglobin might improve oxygenation. To verify this hypothesis, this study aimed to identify the best candidate of perfluorodecalin (PFD) or HEMOXCell® to reduce cellular hypoxia in a bioartificial pancreas in an in vitro model of encapsulation ex vivo. The survival, hypoxia, and inflammation markers and function of rat islets seeded at 600 islet equivalents (IEQ)/cm2 and under 2% pO2 were assessed in the presence of 50 μg/mL of HEMOXCell or 10% PFD with or without adenosine. Both PFD and HEMOXCell increased the cell viability and decreased markers of hypoxia (hypoxia-inducible factor mRNA and protein). In these culture conditions, adenosine had deleterious effects, including an increase in cyclooxygenase-2 and interleukin-6, in correlation with unregulated proinsulin release. Despite the effectiveness of PFD in decreasing hypoxia, no restoration of function was observed and only HEMOXCell had the capacity to restore insulin secretion to a normal level. Thus, it appeared that the decrease in cell hypoxia as well as the intrinsic superoxide dismutase activity of HEMOXCell were both mandatory to maintain islet function under hypoxia and confinement. In the context of islet encapsulation in a bioartificial pancreas, HEMOXCell is the candidate of choice for application in vivo.
Collapse
Affiliation(s)
| | - William Bietiger
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Claude Peronet
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Allan Langlois
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | | | - Carole Mura
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Cynthia Sookhareea
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Valerie Polard
- 4 HEMARINA Aéropôle Centre , Biotechnopôle, Morlaix, France
| | - Nathalie Jeandidier
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France .,2 Structure d'Endocrinologie, Diabète-Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg (HUS) , Strasbourg, France
| | - Franck Zal
- 4 HEMARINA Aéropôle Centre , Biotechnopôle, Morlaix, France
| | - Michel Pinget
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France .,2 Structure d'Endocrinologie, Diabète-Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg (HUS) , Strasbourg, France
| | - Séverine Sigrist
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Elisa Maillard
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| |
Collapse
|
25
|
CHEN WEITA, CHEN YAOCHANG, HSIEH MINGHSIUNG, HUANG SHIHYU, KAO YUHSUN, CHEN YIANN, LIN YUNGKUO, CHEN SHIHANN, CHEN YIJEN. The Uremic Toxin Indoxyl Sulfate Increases Pulmonary Vein and Atrial Arrhythmogenesis. J Cardiovasc Electrophysiol 2014; 26:203-10. [DOI: 10.1111/jce.12554] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/02/2014] [Accepted: 09/17/2014] [Indexed: 11/29/2022]
Affiliation(s)
- WEI-TA CHEN
- Division of Cardiovascular Medicine; Department of Internal Medicine; Wan Fang Hospital; Taipei Medical University; Taipei Taiwan
| | - YAO-CHANG CHEN
- Department of Biomedical Engineering and Institute of Physiology; National Defense Medical Center; Taipei Taiwan
| | - MING-HSIUNG HSIEH
- Division of Cardiovascular Medicine; Department of Internal Medicine; Wan Fang Hospital; Taipei Medical University; Taipei Taiwan
| | - SHIH-YU HUANG
- Graduate Institute of Clinical Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Division of Cardiology; Sijhih Cathay General Hospital; New Taipei City Taiwan
| | - YU-HSUN KAO
- Department of Medical Education and Research; Wan Fang Hospital; Taipei Medical University; Taipei Taiwan
| | - YI-ANN CHEN
- Division of Nephrology; Sijhih Cathay General Hospital; New Taipei City Taiwan
| | - YUNG-KUO LIN
- Division of Cardiovascular Medicine; Department of Internal Medicine; Wan Fang Hospital; Taipei Medical University; Taipei Taiwan
- Graduate Institute of Clinical Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - SHIH-ANN CHEN
- Division of Cardiology and Cardiovascular Research Center; Taipei Veterans General Hospital; Taipei Taiwan
| | - YI-JEN CHEN
- Division of Cardiovascular Medicine; Department of Internal Medicine; Wan Fang Hospital; Taipei Medical University; Taipei Taiwan
- Graduate Institute of Clinical Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
26
|
Pang XQ, Liu JY. GPCR A2AAR Agonist Binding and Induced Conformation Changes of Functional Switches. CHINESE J CHEM PHYS 2014. [DOI: 10.1063/1674-0068/27/01/29-38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Teng B, Smith JD, Rosenfeld ME, Robinet P, Davis ME, Morrison RR, Mustafa SJ. A₁ adenosine receptor deficiency or inhibition reduces atherosclerotic lesions in apolipoprotein E deficient mice. Cardiovasc Res 2014; 102:157-65. [PMID: 24525840 DOI: 10.1093/cvr/cvu033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The goal of this study was to determine whether the A1 adenosine receptor (AR) plays a role in atherosclerosis development and to explore its potential mechanisms. METHODS AND RESULTS Double knockout (DKO) mice, deficient in the genes encoding A1 AR and apolipoprotein E (apoE), demonstrated reduced atherosclerotic lesions in aortic arch (en face), aortic root, and innominate arteries when compared with apoE-deficient mice (APOE-KO) of the same age. Treating APOE-KO with an A1 AR antagonist (DPCPX) also led to a concentration-dependent reduction in lesions. The total plasma cholesterol and triglyceride levels were not different between DKO and APOE-KO; however, higher triglyceride was observed in DKO fed a high-fat diet. DKO also had higher body weights than APOE-KO. Plasma cytokine concentrations (IL-5, IL-6, and IL-13) were significantly lower in DKO. Proliferating cell nuclear antigen expression was also significantly reduced in the aorta from DKO. Despite smaller lesions in DKO, the composition of the innominate artery lesion and cholesterol loading and efflux from bone marrow-derived macrophages of DKO were not different from APOE-KO. CONCLUSION The A1 AR may play a role in the development of atherosclerosis, possibly due to its pro-inflammatory and mitogenic properties.
Collapse
Affiliation(s)
- Bunyen Teng
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, West Virginia University, 1 Medical Center Drive, Morgantown, WV, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Li S, Li X, Guo H, Liu S, Huang H, Liu N, Yang C, Tang P, Liu J. Intracellular ATP concentration contributes to the cytotoxic and cytoprotective effects of adenosine. PLoS One 2013; 8:e76731. [PMID: 24098558 PMCID: PMC3789704 DOI: 10.1371/journal.pone.0076731] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/24/2013] [Indexed: 02/04/2023] Open
Abstract
Extracellular adenosine (Ade) interacts with cells by two pathways: by activating cell surface receptors at nanomolar/micromolar concentrations; and by interfering with the homeostasis of the intracellular nucleotide pool at millimolar concentrations. Ade shows both cytotoxic and cytoprotective effects; however, the underlying mechanisms remain unclear. In the present study, the effects of adenosine-mediated ATP on cell viability were investigated. Adenosine treatment was found to be cytoprotective in the low intracellular ATP state, but cytotoxic under the normal ATP state. Adenosine-mediated cytotoxicity and cytoprotection rely on adenosine-derived ATP formation, but not via the adenosine receptor pathway. Ade enhanced proteasome inhibition-induced cell death mediated by ATP generation. These data provide a new pathway by which adenosine exerts dual biological effects on cell viability, suggesting an important role for adenosine as an ATP precursor besides the adenosine receptor pathway.
Collapse
Affiliation(s)
- Shujue Li
- Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
- Department of Urology, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaofen Li
- Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Haiping Guo
- Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Shouting Liu
- Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Hongbiao Huang
- Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ningning Liu
- Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangzhou Research Institute of Cardiovascular Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Changshan Yang
- Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ping Tang
- Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jinbao Liu
- Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
- * E-mail:
| |
Collapse
|
29
|
New approaches to thyroid hormones and purinergic signaling. J Thyroid Res 2013; 2013:434727. [PMID: 23956925 PMCID: PMC3730180 DOI: 10.1155/2013/434727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/20/2013] [Indexed: 12/22/2022] Open
Abstract
It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling.
Collapse
|
30
|
Tsentsevitsky A, Kovyazina I, Nikolsky E, Bukharaeva E, Giniatullin R. Redox-sensitive synchronizing action of adenosine on transmitter release at the neuromuscular junction. Neuroscience 2013; 248:699-707. [PMID: 23806718 DOI: 10.1016/j.neuroscience.2013.05.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/13/2013] [Accepted: 05/30/2013] [Indexed: 12/20/2022]
Abstract
The kinetics of neurotransmitter release was recognized recently as an important contributor to synaptic efficiency. Since adenosine is the ubiquitous modulator of presynaptic release in peripheral and central synapses, in the current project we studied the action of this purine on the timing of acetylcholine quantal release from motor nerve terminals in the skeletal muscle. Using extracellular recording from frog neuromuscular junction we tested the action of adenosine on the latencies of single quantal events in the pro-oxidant and antioxidant conditions. We found that adenosine, in addition to previously known inhibitory action on release probability, also synchronized release by removing quantal events with long latencies. This action of adenosine on release timing was abolished by oxidants whereas in the presence of the antioxidant the synchronizing action of adenosine was further enhanced. Interestingly, unlike the timing of release, the inhibitory action of adenosine on release probability was redox-independent. Modulation of release timing by adenosine was mediated by purinergic A1 receptors as it was eliminated by the specific A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and mimicked by the specific A1 agonist N(6)-cyclopentyl-adenosine. Consistent with data obtained from dispersion of single quantal events, adenosine also reduced the rise-time of multiquantal synaptic currents. The latter effect was reproduced in the model based on synchronizing effect of adenosine on release timing. Thus, adenosine which is generated at the neuromuscular junction from the breakdown of the co-transmitter ATP induces the synchronization of quantal events. The effect of adenosine on release timing should preserve the fidelity of synaptic transmission via "cost-effective" use of less transmitter quanta. Our findings also revealed important crosstalk between purinergic and redox modulation of synaptic processes which could take place in the elderly or in neuromuscular diseases associated with oxidative stress like lateral amyotrophic sclerosis.
Collapse
Affiliation(s)
- A Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | | | | | | | | |
Collapse
|
31
|
Zhong Y, Yang Z, Huang WC, Luo X. Adenosine, adenosine receptors and glaucoma: An updated overview. Biochim Biophys Acta Gen Subj 2013; 1830:2882-90. [DOI: 10.1016/j.bbagen.2013.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/21/2012] [Accepted: 01/07/2013] [Indexed: 01/30/2023]
|
32
|
Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity. J Neuroinflammation 2012; 9:198. [PMID: 22894638 PMCID: PMC3458985 DOI: 10.1186/1742-2094-9-198] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/01/2012] [Indexed: 02/07/2023] Open
Abstract
Background Neuroprotective and neurotrophic properties of leukemia inhibitory factor (LIF) have been widely reported. In the central nervous system (CNS), astrocytes are the major source for LIF, expression of which is enhanced following disturbances leading to neuronal damage. How astrocytic LIF expression is regulated, however, has remained an unanswered question. Since neuronal stress is associated with production of extracellular adenosine, we investigated whether LIF expression in astrocytes was mediated through adenosine receptor signaling. Methods Mouse cortical neuronal and astrocyte cultures from wild-type and adenosine A2B receptor knock-out animals, as well as adenosine receptor agonists/antagonists and various enzymatic inhibitors, were used to study LIF expression and release in astrocytes. When needed, a one-way analysis of variance (ANOVA) followed by Bonferroni post-hoc test was used for statistical analysis. Results We show here that glutamate-stressed cortical neurons induce LIF expression through activation of adenosine A2B receptor subtype in cultured astrocytes and require signaling of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs: p38 and ERK1/2), and the nuclear transcription factor (NF)-κB. Moreover, LIF concentration in the supernatant in response to 5′-N-ethylcarboxamide (NECA) stimulation was directly correlated to de novo protein synthesis, suggesting that LIF release did not occur through a regulated release pathway. Immunocytochemistry experiments show that LIF-containing vesicles co-localize with clathrin and Rab11, but not with pHogrin, Chromogranin (Cg)A and CgB, suggesting that LIF might be secreted through recycling endosomes. We further show that pre-treatment with supernatants from NECA-treated astrocytes increased survival of cultured cortical neurons against glutamate, which was absent when the supernatants were pre-treated with an anti-LIF neutralizing antibody. Conclusions Adenosine from glutamate-stressed neurons induces rapid LIF release in astrocytes. This rapid release of LIF promotes the survival of cortical neurons against excitotoxicity.
Collapse
|
33
|
Zaborina O, Zaborin A, Romanowski K, Babrowski T, Alverdy J. Host stress and virulence expression in intestinal pathogens: development of therapeutic strategies using mice and C. elegans. Curr Pharm Des 2011; 17:1254-60. [PMID: 21470113 DOI: 10.2174/138161211795703771] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/18/2011] [Indexed: 12/29/2022]
Abstract
The intestinal tract of a host exposed to extreme physiologic stress and modern medical intervention represents a relatively unexplored yet important area of infection research, given the frequency with which this site becomes colonized by highly pathogenic microorganisms that cause subsequent sepsis. Our laboratory has focused on the host tissue derived environmental cues that are released into the intestinal tract during extreme physiologic stress that induce the expression of virulence in colonizing pathogens with the goal of developing novel gut directed therapies that maintain host pathogen neutrality through the course of host stress. Here we demonstrate that maintenance of phosphate sufficiency/ abundance within the intestinal microenvironment may be considered as a universal strategy to prevent virulence activation across a broad range of pathogens that colonize the gut and cause sepsis, given that phosphate depletion occurs following stress and is a universal cue that activates the virulence of a wide variety of organisms. Using small animal models (Caenorhabditis elegans and mice) to create local phosphate depletion at sites of colonization of Pseudomonas aeruginosa, a common cause of lethal gut-derived sepsis, we demonstrate the importance of maintaining phosphate sufficiency to suppress the expression of a lethal phenotype during extreme physiologic stress. The molecular details and potential therapeutic implications are reviewed.
Collapse
Affiliation(s)
- Olga Zaborina
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
34
|
Cohen-Zinder M, Donthu R, Larkin DM, Kumar CG, Rodriguez-Zas SL, Andropolis KE, Oliveira R, Lewin HA. Multisite haplotype on cattle chromosome 3 is associated with quantitative trait locus effects on lactation traits. Physiol Genomics 2011; 43:1185-97. [DOI: 10.1152/physiolgenomics.00253.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The goal of this study was to identify candidate genes and DNA polymorphisms for quantitative trait loci (QTL) affecting milk yield (MY), fat yield (FY), and protein yield (PY) previously mapped to bovine chromosome 3 (BTA3). To accomplish this, 373 half-siblings sired by three bulls previously shown to be segregating for lactation trait QTL, and 263 additional sires in the U.S. Dairy Bull DNA Repository (DBDR) were genotyped for 2,500 SNPs within a 16.3 Mbp QTL critical region on BTA3. Targeted resequencing of ∼1.8 Mbp within the QTL critical region of one of the QTL heterozygous sires identified additional polymorphisms useful for association studies. Twenty-three single nucleotide polymorphisms (SNPs) within a fine-mapped region were associated with effects on breeding values for MY, FY, or PY in DBDR sires, of which five SNPs were in strong linkage disequilibrium in the population. This multisite haplotype included SNPs located within exons or promoters of four tightly linked genes: RAP1A, ADORA3, OVGP1, and C3H1orf88. An SNP within RAP1A showed strong evidence of a recent selective sweep based on integrated haplotype score and was also associated with breeding value for PY. Because of its known function in alveolar lumen formation in the mammary gland, RAP1A is thus a strong candidate gene for QTL effects on lactation traits. Our results provide a detailed assessment of a QTL region that will be a useful guide for complex traits analysis in humans and other noninbred species.
Collapse
Affiliation(s)
| | - Ravikiran Donthu
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Denis M. Larkin
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Charu Gupta Kumar
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sandra L. Rodriguez-Zas
- Institute for Genomic Biology, and
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Kalista E. Andropolis
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Rosane Oliveira
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Harris A. Lewin
- Institute for Genomic Biology, and
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
35
|
Desensitization of adenosine A(1) receptors in rat immature cortical neurons. Eur J Pharmacol 2011; 670:365-71. [PMID: 21946103 DOI: 10.1016/j.ejphar.2011.09.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 09/05/2011] [Accepted: 09/12/2011] [Indexed: 12/11/2022]
Abstract
Adenosine plays an important neuroprotective role in brain, usually mediated by the activation of adenosine A₁ receptors. Prolonged activation of a G-protein-coupled receptor generally leads to the partial loss of the responsiveness of receptor-mediated transduction pathways (desensitization). Rat immature cortical neurons were treated with 100 nM⁻N⁶-phenylisopropyladenosine (R-PIA), a selective A₁ receptor agonist, and the effect on adenosine A₁ receptor/adenylyl cyclase pathway was studied. Incubation with R-PIA for 6, 12, 24 and 48 h elicited a time-dependent decrease in adenosine A₁ receptors in plasma membranes (92, 58, 43 and 26% of control, respectively), which was associated with variations in microsomal fraction (21, 56, 124 and 233% of control, respectively), suggesting the internalization and down-regulation of adenosine A₁ receptors. Moreover, real-time PCR assays showed a significant increase in mRNA levels coding adenosine A₁ receptor after the longest treatment period (48 h). In addition, αGi₁₋₂ protein levels detected in microsomes and mRNA levels coding αGi₁ protein were increased after 48 h of treatment with R-PIA, suggesting the synthesis of new αGi₁ proteins. Finally, adenylyl cyclase inhibition elicited by 2-Chloro-N6-cyclopentyladenosine (CPA), a selective adenosine A₁ receptor agonist, was significantly reduced after 12, 24 and 48h of treatment (37, 24 and 23%, respectively) as compared to controls (54%), suggesting the desensitization of adenosine A₁ receptor/adenylyl cyclase pathway. These results suggest that adenosine A₁ receptors desensitize slowly after prolonged receptor activation in immature cortical neurons, showing mechanisms of desensitization similar to those described not only in fetal but also in adult rat brain.
Collapse
|
36
|
Jawad H, Boccaccini AR, Ali NN, Harding SE. Assessment of cellular toxicity of TiO2 nanoparticles for cardiac tissue engineering applications. Nanotoxicology 2010; 5:372-80. [PMID: 20858044 DOI: 10.3109/17435390.2010.516844] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Because of the increased use of titanium dioxide (TiO2) nanoparticles (NPs) in tissue engineering (TE), and in new constructs for cardiac TE, their effect was studied on three relevant cell types: Adult rat ventricular cardiomyocytes, human embryonic stem cell-derived cardiomyocytes (hESC-CM) and fibroblasts. For adult rat myocytes, 10 μg/mL TiO2 NPs showed no significant effect on myocyte survival over 24 h or acute myocyte contractility. Increasing the concentration to 100 μg/mL was seen to reduce contraction amplitude (p < 0.05). For hESC-CM, 10 μg/mL TiO2 reduced the beating rate significantly by 24 h. No arrhythmias or cessation of beating were observed in either cell type. Culturing fibroblasts in 5-150 μg/mL TiO2 significantly reduced cell proliferation at day 4 and increased cell death. We conclude that there may be modest but potentially adverse effects of TiO2 NPs if used in fast degrading polymers for myocardial tissue engineering (MTE) applications.
Collapse
Affiliation(s)
- Hedeer Jawad
- Department of Materials, National Heart and Lung Institute , Imperial College London , UK
| | | | | | | |
Collapse
|
37
|
Adenosine postconditioning protects against myocardial ischemia–reperfusion injury though modulate production of TNF-α and prevents activation of transcription factor NF-kappaB. Mol Biol Rep 2010; 38:531-8. [DOI: 10.1007/s11033-010-0137-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/23/2010] [Indexed: 12/18/2022]
|
38
|
Adenosine A(3) receptor suppresses prostate cancer metastasis by inhibiting NADPH oxidase activity. Neoplasia 2010; 11:1132-45. [PMID: 19881949 DOI: 10.1593/neo.09744] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/11/2009] [Accepted: 07/13/2009] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed and second most lethal malignancy in men, due mainly to a lack of effective treatment for the metastatic disease. A number of recent studies have shown that activation of the purine nucleoside receptor, adenosine A(3) receptor (A(3)AR), attenuates proliferation of melanoma, colon, and prostate cancer cells. In the present study, we determined whether activation of the A(3)AR reduces the ability of prostate cancer cells to migrate in vitro and metastasize in vivo. Using severe combined immunodeficient mice, we show that proliferation and metastasis of AT6.1 rat prostate cancer cells were decreased by the administration of A(3)AR agonist N(6)-(3-iodobenzyl) adenosine-5'-N-methyluronamide. In vitro studies show that activation of A(3)AR decreased high basal nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity present in these cells, along with the expression of Rac1 and p47(phox) subunits of this enzyme. Inhibition of NADPH oxidase activity by the dominant-negative RacN17 or short interfering (si)RNA against p47(phox) reduced both the generation of reactive oxygen species and the invasion of these cells on Matrigel. In addition, we show that membrane association of p47(phox) and activation of NADPH oxidase is dependent on the activity of the extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase pathway. We also provide evidence that A(3)AR inhibits ERK1/2 activity in prostate cancer cells through inhibition of adenylyl cyclase and protein kinase A. We conclude that activation of the A(3)AR in prostate cancer cells reduces protein kinase A-mediated stimulation of ERK1/2, leading to reduced NADPH oxidase activity and cancer cell invasiveness.
Collapse
|
39
|
Jajoo S, Mukherjea D, Kumar S, Sheth S, Kaur T, Rybak LP, Ramkumar V. Role of beta-arrestin1/ERK MAP kinase pathway in regulating adenosine A1 receptor desensitization and recovery. Am J Physiol Cell Physiol 2009; 298:C56-65. [PMID: 19828838 DOI: 10.1152/ajpcell.00190.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure of cells to adenosine receptor (AR) agonists leads to receptor uncoupling from G proteins and downregulation of the A(1)AR. The receptor levels on the cell surface generally recover on withdrawal of the agonist, because of either translocation of the sequestered A(1)AR back to plasma membrane or de novo synthesis of A(1)AR. To examine the mechanism(s) underlying A(1)AR downregulation and recovery, we treated ductus deferens tumor (DDT(1) MF-2) cells with the agonist R-phenylisopropyladenosine (R-PIA) and showed a decrease in membrane A(1)AR levels by 24 h, which was associated with an unexpected 11-fold increase in A(1)AR mRNA. Acute exposure of these cells to R-PIA resulted in a rapid translocation of beta-arrestin1 to the plasma membrane. Knockdown of beta-arrestin1 by short interfering RNA (siRNA) blocked R-PIA-mediated downregulation of the A(1)AR, suppressed R-PIA-dependent ERK1/2 and activator protein-1 (AP-1) activity, and reduced the induction of A(1)AR mRNA. Withdrawal of the agonist after a 24-h exposure resulted in rapid recovery of plasma membrane A(1)AR. This was dependent on the de novo protein synthesis and on the activity of ERK1/2 but independent of beta-arrestin1 and nuclear factor-kappaB. Together, these data suggest that exposure to A(1)AR agonist stimulates ERK1/2 activity via beta-arrestin1, which subserves receptor uncoupling and downregulation, in addition to the induction of A(1)AR expression. We propose that such a pathway ensures both the termination of the agonist signal and recovery by priming the cell for rapid de novo synthesis of A(1)AR once the drug is terminated.
Collapse
Affiliation(s)
- Sarvesh Jajoo
- PO Box 19629, SIU School of Medicine, Springfield, IL 62794, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Reduced expression and desensitization of adenosine A1 receptor/adenylyl cyclase pathway after chronic (−)N6-phenylisopropyladenosine intake during pregnancy. Neuroscience 2009; 163:524-32. [DOI: 10.1016/j.neuroscience.2009.06.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 06/22/2009] [Accepted: 06/22/2009] [Indexed: 02/07/2023]
|
41
|
Adenosine-A1 Receptors Activation Restores the Suppressed Cardioprotective Effects of Ischemic Preconditioning in Hyperhomocysteinemic Rat Hearts. J Cardiovasc Pharmacol 2009; 54:204-12. [DOI: 10.1097/fjc.0b013e3181b04cc5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Simoni J, Villanueva-Meyer J, Simoni G, Moeller JF, Wesson DE. Control of oxidative reactions of hemoglobin in the design of blood substitutes: role of the ascorbate-glutathione antioxidant system. Artif Organs 2009; 33:115-26. [PMID: 19178455 DOI: 10.1111/j.1525-1594.2008.00695.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Uncontrolled oxidative reactions of hemoglobin (Hb) are still the main unresolved problem for Hb-based blood substitute developers. Spontaneous oxidation of acellular ferrous Hb into a nonfunctional ferric Hb generates superoxide anion. Hydrogen peroxide, formed after superoxide anion dismutation, may react with ferrous/ferric Hb to produce toxic ferryl Hb, fluorescent heme degradation products, and/or protein-based free radicals. In the presence of free iron released from heme, superoxide anion and hydrogen peroxide might react via the Haber-Weiss and Fenton reactions to generate the hydroxyl radical. These highly reactive oxygen and heme species may not only be involved in shifting the cellular redox balance to the oxidized state that facilitates signal transduction and pro-inflammatory gene expression, but could also be involved in cellular and organ injury, and generation of vasoactive compounds such as isoprostanes and angiotensins. It is believed that these toxic species may be formed after administration of Hb-based blood substitutes, particularly in ischemic patients with a diminished ability to control oxidative reactions. Although varieties of antioxidant strategies have been suggested, this in vitro study examined the ability of the ascorbate-glutathione antioxidant system in preventing Hb oxidation and formation of its ferryl intermediate. The results suggest that although ascorbate is effective in reducing the formation of ferryl Hb, glutathione protects heme against excessive oxidation. Ascorbate without glutathione failed to protect the red blood cell membranes against Hb/hydrogen peroxide-mediated peroxidation. This study provides evidence that the ascorbate-glutathione antioxidant system is essential in attenuation of the pro-oxidant potential of redox active acellular Hbs, and superior to either ascorbate or glutathione alone.
Collapse
Affiliation(s)
- Jan Simoni
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
| | | | | | | | | |
Collapse
|
43
|
Kalkan S, Ozdemir D, Ergur BU, Hazardın NU, Akgun A, Topcu A, Kaplan YC, Hocaoglu N, Oransay K, Tuncok Y. Protective Effect of an Adenosine A1Receptor Agonist Against Metamidophos-Induced Toxicity and Brain Oxidative Stress. Toxicol Mech Methods 2009; 19:148-53. [DOI: 10.1080/15376510802355141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
|
45
|
Ohlemiller KK. Recent findings and emerging questions in cochlear noise injury. Hear Res 2008; 245:5-17. [PMID: 18790034 PMCID: PMC2610263 DOI: 10.1016/j.heares.2008.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/12/2008] [Accepted: 08/19/2008] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin K Ohlemiller
- Fay and Carl Simons Center for the Biology of Hearing and Deafness, Central Institute for the Deaf at Washington University, Department of Otolaryngology, Washington University Medical School, St. Louis, MO 63110, USA.
| |
Collapse
|
46
|
Sousa T, Pinho D, Morato M, Marques-Lopes J, Fernandes E, Afonso J, Oliveira S, Carvalho F, Albino-Teixeira A. Role of superoxide and hydrogen peroxide in hypertension induced by an antagonist of adenosine receptors. Eur J Pharmacol 2008; 588:267-76. [PMID: 18519134 DOI: 10.1016/j.ejphar.2008.04.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 04/02/2008] [Accepted: 04/09/2008] [Indexed: 11/16/2022]
Abstract
Treatment of Wistar rats for 7 days with 1,3-dipropyl-8-sulfophenylxanthine (DPSPX), an antagonist of adenosine receptors, induces long-lasting hypertension associated with marked changes in vascular structure and reactivity and renin-angiotensin system activation. This study aimed at evaluating the role of oxidative stress in the development of DPSPX-induced hypertension and also at identifying the relative contribution of superoxide radical (O2.-) vs hydrogen peroxide (H2O2). Vascular and systemic prooxidant/antioxidant status was evaluated in sham (saline, i.p., 7 days) and DPSPX (90 microg/kg/h, i.p., 7 days)-treated rats. Systolic blood pressure was determined by invasive and non-invasive methods. The activity of vascular NADPH oxidase, superoxide dismutase (SOD), catalase and glutathione peroxidase was assayed by fluorometric/spectrophotometric methods. H2O2 levels were measured using an Amplex Red Hydrogen Peroxide kit. Plasma thiobarbituric acid reactive substances and plasma antioxidant capacity were also measured. In addition we tested the effects of antioxidants or inhibitors of reactive oxygen species generation on blood pressure, vascular hyperplasia and oxidative stress parameters. DPSPX-hypertensive rats showed increased activity of vascular NADPH oxidase, SOD, catalase and glutathione peroxidase, as well as increased H2O2 generation. DPSPX-hypertensive rats also had increased plasma lipid peroxidation and decreased plasma antioxidant capacity. Treatment with apocynin (1.5 mmol/l, per os, 14 days), or with polyethylene glycol (PEG)-catalase (10,000 U/kg/day, i.p., 8 days), prevented the DPSPX-induced effects on blood pressure, vascular structure and H2O2 levels. Tempol (3 mmol/l, per os, 14 days) failed to inhibit these changes, unless PEG-catalase was co-administered. It is concluded that O2.- generation with subsequent formation of H2O2 plays a major role in the development of DPSPX-induced hypertension.
Collapse
Affiliation(s)
- Teresa Sousa
- Institute of Pharmacology and Therapeutics, Faculty of Medicine of Porto and IBMC, University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ribé D, Sawbridge D, Thakur S, Hussey M, Ledent C, Kitchen I, Hourani S, Li JM. Adenosine A2A receptor signaling regulation of cardiac NADPH oxidase activity. Free Radic Biol Med 2008; 44:1433-42. [PMID: 18206127 PMCID: PMC2889612 DOI: 10.1016/j.freeradbiomed.2007.12.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/17/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
Abstract
Cardiac tissues express constitutively an NADPH oxidase, which generates reactive oxygen species (ROS) and is involved in redox signaling. Myocardial metabolism generates abundant adenosine, which binds to its receptors and plays important roles in cardiac function. The adenosine A2A receptor (A2AR) has been found to be expressed in cardiac myocytes and coronary endothelial cells. However, the role of the A2AR in the regulation of cardiac ROS production remains unknown. We found that knockout of A2AR significantly decreased (39+/-8%) NADPH-dependent O2- production in mouse hearts compared to age (10 weeks)-matched wild-type controls. This was accompanied by a significant decrease in Nox2 (a catalytic subunit of NADPH oxidase) protein expression, and down-regulation of ERK1/2, p38MAPK, and JNK phosphorylation (all P<0.05). In wild-type mice, intraperitoneal injection of the selective A2AR antagonist SCH58261 (3-10 mg/kg body weight for 90 min) inhibited phosphorylation of p47phox (a regulatory subunit of Nox2), which was accompanied by a down-regulated cardiac ROS production (48+/-8%), and decreased JNK and ERK1/2 activation by 54+/-28% (all P<0.05). In conclusion, A2AR through MAPK signaling regulates p47phox phosphorylation and cardiac ROS production by NADPH oxidase. Modulation of A2AR activity may have potential therapeutic applications in controlling ROS production by NADPH oxidase in the heart.
Collapse
Affiliation(s)
- David Ribé
- Cardiovascular Research, Division of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - David Sawbridge
- Cardiovascular Research, Division of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Sapna Thakur
- Cardiovascular Research, Division of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Martin Hussey
- Cardiovascular Research, Division of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | | | - Ian Kitchen
- Cardiovascular Research, Division of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Susanna Hourani
- Cardiovascular Research, Division of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Jian-Mei Li
- Cardiovascular Research, Division of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
- Corresponding author. (J.-M. Li)
| |
Collapse
|
48
|
Wunderlich JE, Needleman BJ, Chen Z, Yu JG, Wang Y, Grants I, Mikami DJ, Melvin WS, Cooke HJ, Christofi FL. Dual purinergic synaptic transmission in the human enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2008; 294:G554-66. [PMID: 18079280 DOI: 10.1152/ajpgi.00500.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Based on findings in rodents, we sought to test the hypothesis that purinergic modulation of synaptic transmission occurs in the human intestine. Time series analysis of intraneuronal free Ca(2+) levels in submucosal plexus (SMP) from Roux-en-Y specimens was done using Zeiss LSM laser-scanning confocal fluo-4 AM Ca(2+) imaging. A 3-s fiber tract stimulation (FTS) was used to elicit a synaptic Ca(2+) response. Short-circuit current (I(sc) = chloride secretion) was recorded in mucosa-SMP in flux chambers. A distension reflex or electrical field stimulation was used to study I(sc) responses. Ca(2+) imaging was done in 1,222 neurons responding to high-K(+) depolarization from 61 surgical cases. FTS evoked synaptic Ca(2+) responses in 62% of recorded neurons. FTS caused frequency-dependent Ca(2+) responses (0.1-100 Hz). FTS Ca(2+) responses were inhibited by Omega-conotoxin (70%), hexamethonium (50%), TTX, high Mg(2+)/low Ca(2+) (< or = 100%), or capsaicin (25%). A P2Y(1) receptor (P2Y(1)R) antagonist, MRS-2179 or PLC inhibitor U-73122, blocked FTS responses (75-90%). P2Y(1)R-immunoreactivity occurred in 39% of vasoactive intestinal peptide-positive neurons. The selective adenosine A(3) receptor (AdoA(3)R) agonist 2-chloro-N(6)-(3-iodobenzyl)adenosine-5'-N-methylcarboxamide (2-Cl-IBMECA) caused concentration- and frequency-dependent inhibition of FTS Ca(2+) responses (IC(50) = 8.5 x 10(-8) M). The AdoA(3)R antagonist MRS-1220 augmented such Ca(2+) responses; 2-Cl-IBMECA competed with MRS-1220. Knockdown of AdoA(1)R with 8-cyclopentyl-3-N-(3-{[3-(4-fluorosulphonyl)benzoyl]-oxy}-propyl)-1-N-propyl-xanthine did not prevent 2-Cl-IBMECA effects. MRS-1220 caused 31% augmentation of TTX-sensitive distension I(sc) responses. The SMP from Roux-en-Y patients is a suitable model to study synaptic transmission in human enteric nervous system (huENS). The P2Y(1)/Galphaq/PLC/inositol 1,3,5-trisphosphate/Ca(2+) signaling pathway, N-type Ca(2+) channels, nicotinic receptors, and extrinsic nerves contribute to neurotransmission in huENS. Inhibitory AdoA(3)R inhibit nucleotide or cholinergic transmission in the huENS.
Collapse
Affiliation(s)
- J E Wunderlich
- Department of Anesthesiology, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bilkei-Gorzo A, Abo-Salem OM, Hayallah AM, Michel K, Müller CE, Zimmer A. Adenosine receptor subtype-selective antagonists in inflammation and hyperalgesia. Naunyn Schmiedebergs Arch Pharmacol 2008; 377:65-76. [PMID: 18188542 DOI: 10.1007/s00210-007-0252-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 12/14/2007] [Indexed: 12/22/2022]
Abstract
In this study, we examined the effects of systemic and local administration of the subtype-selective adenosine receptor antagonists PSB-36, PSB-1115, MSX-3, and PSB-10 on inflammation and inflammatory hyperalgesia. Pharmacological blockade of adenosine receptor subtypes after systemic application of antagonists generally led to a decreased edema formation after formalin injection and, with the exception of A(3) receptor antagonism, also after the carrageenan injection. The selective A(2B) receptor antagonist PSB-1115 showed a biphasic, dose-dependent effect in the carrageenan test, increasing edema formation at lower doses and reducing it at a high dose. A(1) and A(2B) antagonists diminished pain-related behaviors in the first phase of the formalin test, while the second, inflammatory phase was attenuated by A(2B) and A(3) antagonists. The A(2B) antagonist was particularly potent in reducing inflammatory pain dose-dependently reaching the maximum effect at a low dose of 3 mg/kg. Inflammatory hyperalgesia was totally eliminated by the A(2A) antagonist MSX-3 at a dose of 10 mg/kg. In contrast to the A(1) antagonist, the selective antagonists of A(2A), A(2B), and A(3) receptors were also active upon local administration. Our results demonstrate that the blockade of adenosine receptor subtypes can decrease the magnitude of inflammatory responses. Selective A(2A) antagonists may be useful for the treatment of inflammatory hyperalgesia, while A(2B) antagonists have potential as analgesic drugs for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
|