1
|
Abstract
INTRODUCTION The prevalence of pituitary dysfunction is high following aneurysmal subarachnoid hemorrhage (aSAH) and when occurs it may contribute to residual symptoms of aSAH such as decreased cognition and quality of life. Hypopituitarism following aSAH may have non-specific, subtle symptoms and potentially serious consequences if remained undiagnosed. METHODS We reviewed the literature on epidemiology, pathophysiology, diagnostic methods and management of neuroendocrine changes after aSAH as well as on the impact of pituitary dysfunction on outcome of the patient. RESULTS The prevalence rates of pituitary dysfunction after aSAH varies greatly across studies due to different diagnostic methods, though growth hormone deficiency is generally the most frequently reported followed by adrenocorticotropic hormone, gonadotropin and thyroid stimulating hormone deficiencies. Pituitary deficiency tends to improve over time after aSAH but new onset deficiencies in chronic phase may also occur. There are no clinical parameters to predict the presence of hypopituitarism after aSAH. Age of the patient and surgical procedures are risk factors associated with development of hypopituitarism but the effect of pituitary dysfunction on outcome of the patient is not clear. Replacement of hypocortisolemia and hypothyroidism is essential but treatment of other hormonal insufficiencies should be individualized. CONCLUSIONS Hypopituitarism following aSAH necessitates screening despite lack of gold standard evaluation tests and cut-off values in the follow up, because missed diagnosis may lead to untoward consequences.
Collapse
Affiliation(s)
- Zuleyha Karaca
- Department of Endocrinology and Metabolism, Erciyes University Medical School, Kayseri, Turkey.
| | - Aysa Hacioglu
- Department of Endocrinology and Metabolism, Erciyes University Medical School, Kayseri, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology and Metabolism, Yeditepe University Medical School, Istanbul, Turkey
| |
Collapse
|
2
|
Stanisçuaski F, Te Brugge V, Carlini CR, Orchard I. Jack bean urease alters serotonin-induced effects on Rhodnius prolixus anterior midgut. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1078-1086. [PMID: 20223243 DOI: 10.1016/j.jinsphys.2010.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/01/2010] [Accepted: 03/01/2010] [Indexed: 05/28/2023]
Abstract
Urease isoforms from jack bean seeds are toxic to insects, and this entomotoxic effect is mostly due to the release of a peptide by insect digestive enzymes. We previously demonstrated that jack bean urease (JBU) has antidiuretic effects on Rhodnius prolixus Malpighian tubules, decreasing the serotonin-stimulated secretion of fluid. Now, we evaluate the toxicity of the intact JBU and its effect on R. prolixus anterior midgut, to further elucidate the mechanism of action of JBU in insects. JBU decreases the serotonin-induced fluid transport by the anterior midgut in vitro when injected into the lumen. A decrease in the levels of cAMP is observed in tissues treated with JBU (in the presence of serotonin). JBU also causes a dose-dependent increase in the frequency of serotonin-induced contractions in the anterior midgut, but does not alter the frequency of spontaneous contractions. The cyclooxygenase inhibitor indomethacin and the prostaglandin antagonist AH6809 block JBU's potentiation of serotonin-induced contractions, indicating that prostaglandins might act as second messengers for JBU action. Prostaglandin E(2) (PGE(2)) increases the frequency of serotonin-induced contractions, again supporting the role of prostaglandins as second messengers for JBU action. JBU and PGE(2) increase cGMP levels in the anterior midgut, indicating that this molecule might also be part of the JBU pathway.
Collapse
Affiliation(s)
- F Stanisçuaski
- Department of Biophysics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | | | |
Collapse
|
3
|
Santhanam AVR, Smith LA, Katusic ZS. Brain-derived neurotrophic factor stimulates production of prostacyclin in cerebral arteries. Stroke 2009; 41:350-6. [PMID: 20019327 DOI: 10.1161/strokeaha.109.564492] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE The role of brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B, in control of cerebral circulation is poorly understood. The present study was designed to investigate the cerebral vascular effects of BDNF in vivo. METHODS Replication incompetent adenovirus encoding either rat BDNF (AdBDNF) or green fluorescent protein was injected intracisternally into rabbits. Forty-eight hours later, animals were euthanized. Plasma and cerebrospinal fluid levels of BDNF were measured by enzyme-linked immunosorbent assay, vasomotor function of isolated basilar arteries was studied in organ chambers, protein expression in the basilar arteries was studied by Western blotting, prostanoid levels were measured by enzyme-linked immunosorbent assay, and cyclic adenosine 3',5'-monophosphate levels were measured by radioimmunoassay. RESULTS The levels of BDNF in the cerebrospinal fluid were significantly elevated in AdBDNF-treated rabbits as compared with adenovirus encoding green fluorescent protein-treated rabbits (37+/-5 ng/mL versus 0.006+/-0.003 ng/mL, respectively; P<0.05; n=14). Western blotting studies revealed that in basilar arteries, AdBDNF increased protein expression of prostacyclin synthase, whereas expression of endothelial nitric oxide synthase and phosphorylated (Ser 1177) endothelial nitric oxide synthase remained unchanged. During incubation with arachidonic acid (1 micromol/L), PGI(2) production and levels of cyclic adenosine 3',5'-monophosphate were significantly elevated only in AdBDNF-treated rabbit basilar arteries (P<0.05, n=6). Relaxations to acetylcholine (10(-9) to 10(-5) mol/L) and arachidonic acid (10(-9) to 10(-5) mol/L) were significantly potentiated in basilar arteries from rabbits injected with AdBDNF. Potentiation of relaxations to acetylcholine in AdBDNF-treated basilar arteries was inhibited by the nonselective cyclooxygenase inhibitor, indomethacin (10(-5) mol/L, P<0.05, n=6) and constitutive phospholipase A(2) inhibitor, AACOCF3 (2x10(-5) mol/L, P<0.05, n=5). CONCLUSIONS Our results demonstrate that in cerebral arteries, BDNF-induced activation of tropomyosin receptor kinase B receptor signaling in vivo promotes prostacyclin biosynthesis. These findings provide novel mechanistic insight into the vascular protective effect of BDNF in cerebral circulation.
Collapse
Affiliation(s)
- Anantha Vijay R Santhanam
- Departments of Anesthesiology, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minn 55905, USA
| | | | | |
Collapse
|
4
|
UENO D, YABUKI A, OBI T, SHIRAISHI M, NISHIO A, MIYAMOTO A. Characterization of bradykinin-induced endothelium-independent contraction in equine basilar artery. J Vet Pharmacol Ther 2009; 32:264-70. [DOI: 10.1111/j.1365-2885.2008.01037.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Okuno T, Yabuki A, Shiraishi M, Obi T, Miyamoto A. Histamine-induced modulation of vascular tone in the isolated chicken basilar artery: a possible involvement of endothelium. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:339-44. [PMID: 18280220 DOI: 10.1016/j.cbpc.2007.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
We investigated the histamine responsiveness of basilar arterial rings isolated from chicken. We also examined whether endothelial cells were involved in the histamine responsiveness and in resting vascular tone. Histamine induced concentration-dependent relaxations under condition of precontraction by 5-hydroxytryptamine. The concentration-response curve for histamine was shifted to the right by diphenhydramine (a H(1) receptor antagonist), cimetidine (a H(2) receptor antagonist) and Nomega-nitro-L-arginine (L-NNA, a nitric oxide synthase inhibitor); however, indomethacin (a cyclooxygenase inhibitor) had no significant effect on it. Treatment with L-NNA shifted the concentration-response curve of histamine to the right in the presence of cimetidine, but not in the presence of diphenhydramine. Treatment with cimetidine shifted the concentration-response curve of histamine to the right in the presence of diphenhydramine. L-NNA induced a contraction but indomethacin had no effect on the resting vascular tone. These results suggest that histamine-induced relaxation is mediated via activation of H(1) receptors located on endothelial cells and H(2) receptors located on smooth muscle cells. The main relaxing factor released from endothelial cells is probably nitric oxide. The resting vascular tone was modulated by spontaneously released nitric oxide, but not by prostaglandins or thromboxane A(2).
Collapse
Affiliation(s)
- Tadatsune Okuno
- Department of Veterinary Pharmacology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | |
Collapse
|
6
|
Kacem K, Sercombe C, Hammami M, Vicaut E, Sercombe R. Sympathectomy Causes Aggravated Lesions and Dedifferentiation in Large Rabbit Atherosclerotic Arteries without Involving Nitric Oxide. J Vasc Res 2006; 43:289-305. [PMID: 16651846 DOI: 10.1159/000093010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 02/19/2006] [Indexed: 11/19/2022] Open
Abstract
Previously [Histochem J 1997;29:279-286], we found that sympathectomy induced neointima formation in ear but not cerebral arteries of genetically hyperlipidemic rabbits. To clarify the influence of sympathetic nerves in atherosclerosis, and whether their influence involves vascular NO activity, we studied groups of normocholesterolemic intact (NI) and sympathectomized (NS), and hypercholesterolemic intact (HI) and sympathectomized (HS) rabbits (diet/6-hydroxydopamine for 79 days). Segments of basilar (BA) and femoral (FA) arteries were studied histochemically, to evaluate differentiation (anti-desmin, anti-vimentin, anti-h-caldesmon, and nuclear dye), by confocal microscopy, and by in vitro myography. In BAs, staining of NI and NS groups was similar. In hypercholesterolemic groups, a small neointima developed, more frequently in HS segments where smooth muscle cells (SMCs) positive for all antibodies appeared to be migrating into the neointima. In FAs, SMCs stained for the three antibodies in the NI group, but we observed desmin- and h-caldesmon-negative, vimentin-positive cells in some external medial layers of the NS, HI and HS groups, identical to adventitial fibroblasts. Large neointimas of the HS group contained vimentin-positive and largely desmin- and h-caldesmon-negative cells. Relaxation of BA or FA segments to acetylcholine was not decreased by sympathectomy. Sympathectomy increased the contraction of resting FAs to nitro-L-arginine (p = 0.0379). Thus, sympathectomy aggravates the tendency for FA SMCs to migrate and dedifferentiate, increasing atherosclerotic lesions, without decreasing NO activity, but has only minor effects on BAs.
Collapse
Affiliation(s)
- Kamel Kacem
- Unité de Pathologies Vasculaires, Faculté des Sciences de Bizerte, Jarzouna, Tunisia
| | | | | | | | | |
Collapse
|
7
|
Santhanam AVR, Smith LA, Nath KA, Katusic ZS. In vivo stimulatory effect of erythropoietin on endothelial nitric oxide synthase in cerebral arteries. Am J Physiol Heart Circ Physiol 2006; 291:H781-6. [PMID: 16565320 DOI: 10.1152/ajpheart.00045.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The discovery of tissue protective effects of erythropoietin has stimulated significant interest in erythropoietin (Epo) as a novel therapeutic approach to vascular protection. The present study was designed to determine the cerebral vascular effects of recombinant Epo in vivo. Recombinant adenoviral vectors (10(9) plaque-forming units/animal) encoding genes for human erythropoietin (AdEpo) and beta-galactosidase (AdLacZ) were injected into the cisterna magna of rabbits. After 48 h, basilar arteries were harvested for analysis of vasomotor function, Western blotting, and measurement of cGMP levels. Gene transfer of AdEpo increased the expressions of recombinant Epo and its receptor in the basilar arteries. Arteries exposed to recombinant Epo demonstrated attenuation of contractile responses to histamine (10(-9) to 10(-5) mol/l) (P < 0.05, n = 5). Endothelium-dependent relaxations to acetylcholine (10(-9) to 10(-5) mol/l) were significantly augmented (P < 0.05, n = 5), whereas endothelium-independent relaxations to a nitric oxide (NO) donor 2-(N,N-diethylamino)diazenolate-2-oxide sodium salt remained unchanged in AdEpo-transduced basilar arteries. Transduction with AdEpo increased the protein expression of endothelial NO synthase (eNOS) and phosphorylated the S1177 form of the enzyme. Basal levels of cGMP were significantly elevated in arteries transduced with AdEpo consistent with increased NO production. Our studies suggest that in cerebral circulation, Epo enhances endothelium-dependent vasodilatation mediated by NO. This effect could play an important role in the vascular protective effect of Epo.
Collapse
Affiliation(s)
- Anantha Vijay R Santhanam
- Department of Anesthesiology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
8
|
Watanabe Y, Faraci FM, Heistad DD. Activation of Rho-associated kinase during augmented contraction of the basilar artery to serotonin after subarachnoid hemorrhage. Am J Physiol Heart Circ Physiol 2005; 288:H2653-8. [PMID: 15665056 DOI: 10.1152/ajpheart.00923.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Delayed cerebral vasospasm after subarachnoid hemorrhage (SAH) may be due, in part, to altered regulation of arterial smooth muscle contraction. Contraction of cerebral arteries to serotonin is augmented after experimental SAH. We hypothesized that activation of Rho-associated kinase (Rho kinase) contributes to augmented contraction of cerebral arteries to serotonin after SAH. Autologous arterial blood (SAH) or artificial cerebrospinal fluid (control) was injected into the cisterna magna of anesthetized rabbits. At 2 days after injection, the basilar artery was excised and isometric contraction of arterial rings was recorded. Maximum contraction of the basilar artery to serotonin was augmented about fourfold in SAH compared with control rabbits ( P < 0.01). Contraction to histamine was similar in the two groups. Fasudil hydrochloride (3 μmol/l), an inhibitor of Rho kinase, markedly attenuated serotonin-induced contraction. Fasudil had little effect on contractions induced by histamine or phorbol 12,13-dibutyrate. In addition, phosphorylation of myosin phosphatase, a major target of Rho kinase in regulation of smooth muscle contraction, in the basilar artery was examined by Western blotting. In basilar arteries of SAH, but not control, rabbits, serotonin increased phosphorylation of myosin phosphatase about twofold at Thr853 of the myosin-targeting subunit. These results suggest that enhanced activation of Rho kinase contributes to augmented contraction of the basilar artery to serotonin after SAH.
Collapse
Affiliation(s)
- Yoshimasa Watanabe
- Dept. of Internal Medicine, Univ. of Iowa College of Medicine, 200 Hawkins Dr., Iowa City, IA 52242, USA
| | | | | |
Collapse
|
9
|
Sercombe R, Vicaut E, Oudart N, Sercombe C, Girard P. Acetylcholine-Induced Relaxation of Rabbit Basilar Artery In Vitro Is Rapidly Reduced by Reactive Oxygen Species in Acute Hyperglycemia. J Cardiovasc Pharmacol 2004; 44:507-16. [PMID: 15454861 DOI: 10.1097/01.fjc.0000141477.59748.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined the effects of acute hyperglycemia on the function of rabbit cerebral arteries in vitro. It was hypothesized that increased formation of reactive oxygen species (ROS) could occur, which could explain how hyperglycemia aggravates certain pathologic situations such as cerebral ischemia. Three-millimeter basilar artery segments were incubated in either normoglycemic (NG, 5.5 mM D-glucose) or hyperglycemic (HG, 25 mM D-glucose) solution containing 3.10(-6) M indomethacin. After 90 minutes equilibration, a test (=T1) of relaxation to acetylcholine (Ach) at three concentrations was performed on histamine-precontracted segments. Three further identical tests were performed (T2-T4), after 30-minute rest periods. Ach responses in NG solution were stable, whereas those in HG solution, although greater at T1, fell progressively from one test to the next (P < 0.0001 versus NG), whereas nitroprusside responses did not change. In separate experiments, this time-dependent fall in Ach responses was significantly prevented by superoxide dismutase (SOD) plus catalase (P = 0.0003), but not by SOD alone. It was also significantly prevented by the NAD(P)H oxidase inhibitors diphenyleneiodonium (P = 0.020) and apocynin (P = 0.0179), but not by allopurinol (xanthine oxidase inhibitor). Control experiments with l-glucose ruled out a hyperosmotic or non-specific glucose effect. We conclude that, in HG solution in vitro, rapidly increasing ROS production largely derived from NAD(P)H oxidase reduced relaxation to acetylcholine. The rapidity of this effect suggests that the function of these arteries may be affected during brief periods of hyperglycemia in vivo.
Collapse
Affiliation(s)
- Richard Sercombe
- Laboratory for Microcirculation Research, Faculty of Medicine, University Paris VII, Paris, France.
| | | | | | | | | |
Collapse
|
10
|
Moore MC, Geho WB, Lautz M, Farmer B, Neal DW, Cherrington AD. Portal serotonin infusion and glucose disposal in conscious dogs. Diabetes 2004; 53:14-20. [PMID: 14693692 DOI: 10.2337/diabetes.53.1.14] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Whether serotonin (5-hydroxytryptamine [5-HT]) enhances net hepatic glucose uptake (NHGU) during glucose infusion was examined in conscious 42-h-fasted dogs, using arteriovenous difference and tracer ([3-(3)H]glucose) techniques. Experiments consisted of equilibration (-120 to -30 min), basal (-30 to 0 min), and experimental (0-390 min) periods. During the experimental period, somatostatin, fourfold basal intraportal insulin, basal intraportal glucagon, and peripheral glucose (to double the hepatic glucose load) were infused. In one group of dogs (SER; n = 8), saline was infused intraportally from 0 to 90 min (P1), and 5-HT was infused intraportally at 10, 20, and 40 microg.kg(-1).min(-1) from 90 to 150 (P2), 150 to 210 (P3), and 210 to 270 (P4) min, respectively. In the other group (SAL; n = 8), saline was infused intraportally from 0 to 270 min. NHGU in SAL was 12.4 +/- 2.3, 14.9 +/- 2.7, 13.4 +/- 2.1, and 15.1 +/- 1.8 micromol.kg(-1).min(-1) in P1 to P4, respectively, whereas NHGU in SER averaged 13.2 +/- 3.0, 16.4 +/- 2.4, 19.0 +/- 2.4 (P < 0.05 vs. SAL), and 22.0 +/- 2.9 micromol.kg(-1).min(-1) (P < 0.05 vs. SAL). Nonhepatic glucose uptake ( micromol.kg(-1).min(-1)) in SAL was 31.7 +/- 4.9, 43.9 +/- 5.1, 55.1 +/- 5.6, and 66.2 +/- 8.6 during P1 to P4, respectively, whereas in SER, the corresponding values were 26.1 +/- 5.7, 31.6 +/- 9.4, 35.1 +/- 7.6 (P < 0.05 vs. SAL), and 34.7 +/- 7.7 (P < 0.05 vs. SAL). Intraportal 5-HT enhances NHGU but blunts nonhepatic glucose uptake, raising the possibility that hepatic-targeted 5-HT or 5-HT receptor agonists might reduce postprandial hyperglycemia.
Collapse
Affiliation(s)
- Mary Courtney Moore
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA.
| | | | | | | | | | | |
Collapse
|