1
|
Yang M, Zhao W, Wang Z, Liu J, Sun X, Wang S. Detection of key gene InDels in JAK/STAT pathway and their associations with growth traits in four Chinese sheep breeds. Gene 2023; 888:147750. [PMID: 37657690 DOI: 10.1016/j.gene.2023.147750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE The Janus kinase/signal transducer and transporter activator (JAK/STAT) signaling pathway plays crucial roles in lipid metabolism, glucose metabolism and cell senescence, suggesting that they are potential candidate genes affecting growth traits in animals. The present study aimed to evaluate the association between InDels in the JAK/STAT pathway and growth traits of four Chinese sheep breeds, including Tong sheep, Hu sheep, Small-tailed Han sheep and Lanzhou fat-tailed sheep. RESULTS Seventy-six indel loci of 11 genes in JAK/STAT were detected, and three genotypes were selected at four loci by PCR amplification, electrophoresis and sequencing, including one locus in STAT3, one locus in STAT5A, and two loci in JAK1. The Correlation analysis indicated that there was no significant correlation between STAT3 and growth traits in four sheep breeds (P > 0.05); STAT5A was significantly associated with body height, rump width and tube circumference in Hu sheep and body length in Tong sheep (P < 0.05); JAK1 was significantly correlated with body height, body oblique length, cross height and tube circumference in Hu sheep (P < 0.05) and body oblique length, cross height and tube circumference in small-tailed Han sheep (P < 0.05). CONCLUSION Overall, our results indicated a potential association between the growth traits of sheep and the InDels of JAK1 and STAT5A.
Collapse
Affiliation(s)
- Mengzhe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wanxia Zhao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Ziteng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junhai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
2
|
Liang D, Liu L, Zhao Y, Luo Z, He Y, Li Y, Tang S, Tang J, Chen N. Targeting extracellular matrix through phytochemicals: a promising approach of multi-step actions on the treatment and prevention of cancer. Front Pharmacol 2023; 14:1186712. [PMID: 37560476 PMCID: PMC10407561 DOI: 10.3389/fphar.2023.1186712] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Extracellular matrix (ECM) plays a pivotal and dynamic role in the construction of tumor microenvironment (TME), becoming the focus in cancer research and treatment. Multiple cell signaling in ECM remodeling contribute to uncontrolled proliferation, metastasis, immune evasion and drug resistance of cancer. Targeting trilogy of ECM remodeling could be a new strategy during the early-, middle-, advanced-stages of cancer and overcoming drug resistance. Currently nearly 60% of the alternative anticancer drugs are derived from natural products or active ingredients or structural analogs isolated from plants. According to the characteristics of ECM, this manuscript proposes three phases of whole-process management of cancer, including prevention of cancer development in the early stage of cancer (Phase I); prevent the metastasis of tumor in the middle stage of cancer (Phase II); provide a novel method in the use of immunotherapy for advanced cancer (Phase III), and present novel insights on the contribution of natural products use as innovative strategies to exert anticancer effects by targeting components in ECM. Herein, we focus on trilogy of ECM remodeling and the interaction among ECM, cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), and sort out the intervention effects of natural products on the ECM and related targets in the tumor progression, provide a reference for the development of new drugs against tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Dan Liang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunjie Zhao
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Zhenyi Luo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yadi He
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Barrios-Nolasco A, Domínguez-López A, Miliar-García A, Cornejo-Garrido J, Jaramillo-Flores ME. Anti-Inflammatory Effect of Ethanolic Extract from Tabebuia rosea (Bertol.) DC., Quercetin, and Anti-Obesity Drugs in Adipose Tissue in Wistar Rats with Diet-Induced Obesity. Molecules 2023; 28:molecules28093801. [PMID: 37175211 PMCID: PMC10180162 DOI: 10.3390/molecules28093801] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is characterized by the excessive accumulation of fat, which triggers a low-grade chronic inflammatory process. Currently, the search for compounds with anti-obesogenic effects that help reduce body weight, as well as associated comorbidities, continues. Among this group of compounds are plant extracts and flavonoids with a great diversity of action mechanisms associated with their beneficial effects, such as anti-inflammatory effects and/or as signaling molecules. In the bark of Tabebuia rosea tree, there are different classes of metabolites with anti-inflammatory properties, such as quercetin. Therefore, the present work studied the effect of the ethanolic extract of T. rosea and quercetin on the mRNA of inflammation markers in obesity compared to the drugs currently used. Total RNA was extracted from epididymal adipose tissue of high-fat diet-induced obese Wistar rats treated with orlistat, phentermine, T. rosea extract, and quercetin. The rats treated with T. rosea and quercetin showed 36 and 31% reductions in body weight compared to the obese control, and they likewise inhibited pro-inflammatory molecules: Il6, Il1b, Il18, Lep, Hif1a, and Nfkb1 without modifying the expression of Socs1 and Socs3. Additionally, only T. rosea overexpressed Lipe. Both T. rosea and quercetin led to a reduction in the expression of pro-inflammatory genes, modifying signaling pathways, which led to the regulation of the obesity-inflammation state.
Collapse
Affiliation(s)
- Alejandro Barrios-Nolasco
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, Alcaldía Gustavo A. Madero, Ciudad de Mexico 07320, Mexico
| | - Aarón Domínguez-López
- Laboratorio de Biología Molecular, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Angel Miliar-García
- Laboratorio de Biología Molecular, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Jorge Cornejo-Garrido
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, Alcaldía Gustavo A. Madero, Ciudad de Mexico 07320, Mexico
| | - María Eugenia Jaramillo-Flores
- Laboratorio de Polímeros, Department de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, Wilfrido Massieu s/n esq. Manuel I. Stampa. Col. Unidad Profesional Adolfo López Mateos, Alcaldía Gustavo A. Madero, Ciudad de Mexico 07738, Mexico
| |
Collapse
|
4
|
Anti-Inflammatory and Chondroprotective Effects Induced by Phenolic Compounds from Onion Waste Extracts in ATDC-5 Chondrogenic Cell Line. Antioxidants (Basel) 2022; 11:antiox11122381. [PMID: 36552589 PMCID: PMC9774380 DOI: 10.3390/antiox11122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis is a prevalent degenerative condition that is closely related to the destruction and inflammation of cartilage. The high prevalence of this pathology exhorts researchers to search for novel therapeutic approaches. Vegetable-fruit wastes have emerged as a promising origin of anti-inflammatory and antioxidant compounds that, in some cases, may also exert chondroprotective effects. This study aims to decipher the potential of onion waste products in the inhibition of molecular events involved in osteoarthritis. Onion extracts showed a high content of phenolic compounds and antioxidant properties. Cytocompatibility was demonstrated in the chondrogenic cell line ATDC-5, exerting viability percentages higher than 90% and a slight increase in the S phase cycle cell. The induction of inflammation mediated by the lipopolysaccharide and onion extracts' treatment substantially inhibited molecular markers related to inflammation and cartilage degradation, highlighting the promising application of onion extracts in biomedical approaches. The in silico analyses suggested that the results could be attributed to protocatechuic, ellagic, and vanillic acids' greater cell membrane permeability. Our work provides distinctive information about the possible application of waste onion extracts as functional components with anti-inflammatory and chondroprotective characteristics in osteoarthritis.
Collapse
|
5
|
Kim HP. The Long Search for Pharmacologically Useful Anti-Inflammatory Flavonoids and Their Action Mechanisms: Past, Present, and Future. Biomol Ther (Seoul) 2022; 30:117-125. [PMID: 35131949 PMCID: PMC8902448 DOI: 10.4062/biomolther.2022.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 11/23/2022] Open
Abstract
Flavonoids are known to exert anti-inflammatory effects. Their pharmacological activities have been proved using various in vitro and in vivo models. Although their action spectrum and potencies are not adequate to alleviate acute inflammatory disorders, they have the potential to treat chronic inflammatory diseases. Recent investigations have revealed that inflammatory processes are involved in many disease processes and conditions. Some examples are skin disorders, cartilage diseases, metabolic inflammatory diseases, and aging. The effects of flavonoids on these disorders have been examined. Several possible application areas for flavonoids have been studied. Local treatment of these disorders with flavonoids is favorable to avoid systemic transformation. In this review, the findings based on the experimental results from my laboratory are summarized and the future possibility of using flavonoids clinically is discussed.
Collapse
Affiliation(s)
- Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| |
Collapse
|
6
|
Pharmaceutical therapeutics for articular regeneration and restoration: state-of-the-art technology for screening small molecular drugs. Cell Mol Life Sci 2021; 78:8127-8155. [PMID: 34783870 PMCID: PMC8593173 DOI: 10.1007/s00018-021-03983-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/20/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage damage caused by sports injury or osteoarthritis (OA) has gained increased attention as a worldwide health burden. Pharmaceutical treatments are considered cost-effective means of promoting cartilage regeneration, but are limited by their inability to generate sufficient functional chondrocytes and modify disease progression. Small molecular chemical compounds are an abundant source of new pharmaceutical therapeutics for cartilage regeneration, as they have advantages in design, fabrication, and application, and, when used in combination, act as powerful tools for manipulating cellular fate. In this review, we present current achievements in the development of small molecular drugs for cartilage regeneration, particularly in the fields of chondrocyte generation and reversion of chondrocyte degenerative phenotypes. Several clinically or preclinically available small molecules, which have been shown to facilitate chondrogenesis, chondrocyte dedifferentiation, and cellular reprogramming, and subsequently ameliorate cartilage degeneration by targeting inflammation, matrix degradation, metabolism, and epigenetics, are summarized. Notably, this review introduces essential parameters for high-throughput screening strategies, including models of different chondrogenic cell sources, phenotype readout methodologies, and transferable advanced systems from other fields. Overall, this review provides new insights into future pharmaceutical therapies for cartilage regeneration.
Collapse
|
7
|
Shivnath N, Siddiqui S, Rawat V, Khan MS, Arshad M. Solanum xanthocarpum fruit extract promotes chondrocyte proliferation in vitro and protects cartilage damage in collagenase induced osteoarthritic rats (article reference number: JEP 114028). JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114028. [PMID: 33775807 DOI: 10.1016/j.jep.2021.114028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/26/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteoarthritis (OA), a degenerative joint disease, is characterized by cartilage erosion and matrix degradation. Solanum xanthocarpum Schrad. & Wendl. fruits (SXF) and leaves have long been used as folk remedy in the treatment of pain in rheumatism. AIM OF THE STUDY This study was aimed to investigate the phytochemical components and protective benefits of SXF on in vitro chondrocytes proliferation, and in vivo suppression of collagenase-induced OA. MATERIALS AND METHODS Phytochemical components in ethanolic SXF extract were evaluated using gas chromatography-mass spectrometry (GC-MS). Effect of SXF on in vitro cell proliferation of primary chondrocytes was determined by cell proliferation assay and cell cycle analysis by flow cytometry. OA was induced in the right knees of rats through intra-articular injection of collagenase type-II. To evaluate in vivo preventive function of SXF, body weight, blood ALP, histopathological changes in the knee joint, proteoglycan, and collagen content were determined. The mRNA expression of COL-2, MMP-3 and COX-2 genes through qRT-PCR was studied. Antioxidant activities, total phenolics and flavonoid contents of SXF were also examined. RESULTS GC-MS analysis revealed that SXF constitutes 28 phytochemicals including flavonoids (3-methoxy apigenin, quercetin, luteolin), tannin (quinic acid), terpenes (oleanolic acid, lupeol, psi.psi carotene), phytosterols (campesterol, stigmasterol, β-sitosterol), and ascorbic acid. In vitro studies demonstrated that SXF enhanced the cell proliferation in a dose-dependent manner and has no cytotoxic effect on primary chondrocytes. In vivo study suggests that SXF protects the cartilage destruction induced by collagenase. The histological study revealed that SXF restored the synthesis of collagen and proteoglycan, vital factors for cartilage restoration, and reduced the arthritic score. An up-regulation in COL-2 expression and suppression of MMP-3 and COX-2 were detected by qRT-PCR analysis. Thus, in vivo study suggests the protective effects of SXF on cartilage destruction induced by collagenase. CONCLUSIONS Our results imply that SXF benefits and ameliorates OA by enhancing the chondrocytes proliferation and preventing the articular cartilage damage through the restoration of their structural molecules, arthritic score reduction, suppression of MMP-3 and COX-2 expression level and up regulation of COL-2 genes expression. These results suggest that SXF could be a promising alternative treatment candidate for osteoarthritis.
Collapse
Affiliation(s)
- Neelam Shivnath
- Molecular Endocrinology Lab, Department of Zoology, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India.
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, Uttar Pradesh, India
| | - Vineeta Rawat
- Molecular Endocrinology Lab, Department of Zoology, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Mohd Sajid Khan
- Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India; Department of Biochemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Md Arshad
- Molecular Endocrinology Lab, Department of Zoology, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India; Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|
8
|
Martinez-Armenta C, Camacho-Rea MC, Martínez-Nava GA, Espinosa-Velázquez R, Pineda C, Gomez-Quiroz LE, López-Reyes A. Therapeutic Potential of Bioactive Compounds in Honey for Treating Osteoarthritis. Front Pharmacol 2021; 12:642836. [PMID: 33967778 PMCID: PMC8097136 DOI: 10.3389/fphar.2021.642836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of joint tissue homeostasis induces articular degenerative changes and musculoskeletal diseases such as osteoarthritis. This pathology represents the first cause of motor disability in individuals over 60 years of age, impacting their quality of life and the costs of health systems. Nowadays, pharmacological treatments for cartilage disease have failed to achieve full tissue regeneration, resulting in a functional loss of the joint; therefore, joint arthroplasty is the gold standard procedure to cure this pathology in severe cases of Osteoarthritis. A different treatment is the use of anti-inflammatory drugs which mitigate pain and inflammation in some degree, but without significant inhibition of disease progression. In this sense, new therapeutic alternatives based on natural compounds have been proposed to delay osteoarthritis progression, particularly those agents that regulate articular homeostasis. Preclinical studies have shown a therapeutic application of honey and its bioactive compounds, ranging from treating wounds, coughs, skin infections, and are also used as a biological stimulant by exerting antioxidant and anti-inflammatory properties. In this article, we reviewed the current medicinal applications of honey with particular emphasis on its use regulating articular homeostasis by inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Carlos Martinez-Armenta
- Posgrado en Biología Experimental, Dirección de Ciencias Biológicas y de La Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, Mexico
| | - María Carmen Camacho-Rea
- Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | | | - Carlos Pineda
- División de Enfermedades Musculo-esqueléticas y Reumáticas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Luis Enrique Gomez-Quiroz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Alberto López-Reyes
- Facultad de Ciencias de La Salud, Universidad Anáhuac México Sur, Ciudad de México, Mexico.,Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| |
Collapse
|
9
|
Pérez-Lozano ML, Cesaro A, Mazor M, Esteve E, Berteina-Raboin S, Best TM, Lespessailles E, Toumi H. Emerging Natural-Product-Based Treatments for the Management of Osteoarthritis. Antioxidants (Basel) 2021; 10:265. [PMID: 33572126 PMCID: PMC7914872 DOI: 10.3390/antiox10020265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is a complex degenerative disease in which joint homeostasis is disrupted, leading to synovial inflammation, cartilage degradation, subchondral bone remodeling, and resulting in pain and joint disability. Yet, the development of new treatment strategies to restore the equilibrium of the osteoarthritic joint remains a challenge. Numerous studies have revealed that dietary components and/or natural products have anti-inflammatory, antioxidant, anti-bone-resorption, and anabolic potential and have received much attention toward the development of new therapeutic strategies for OA treatment. In the present review, we provide an overview of current and emerging natural-product-based research treatments for OA management by drawing attention to experimental, pre-clinical, and clinical models. Herein, we review current and emerging natural-product-based research treatments for OA management.
Collapse
Affiliation(s)
- Maria-Luisa Pérez-Lozano
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
| | - Annabelle Cesaro
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
| | - Marija Mazor
- Center for Proteomics, Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000 Rijeka, Croatia;
| | - Eric Esteve
- Service de Dermatologie, Centre Hospitalier Régional d′Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France;
| | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique ICOA, Université d’Orléans-Pôle de Chimie, UMR CNRS 7311, Rue de Chartres-BP 6759, CEDEX 2, 45067 Orléans, France;
| | - Thomas M. Best
- Department of Orthopedics, Division of Sports Medicine, Health Sports Medicine Institute, University of Miami, Coral Gables, FL 33146, USA;
| | - Eric Lespessailles
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
- Centre Hospitalier Régional d’Orléans, Institut Département de Rhumatologie, 45067 Orléans, France
| | - Hechmi Toumi
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
- Centre Hospitalier Régional d’Orléans, Institut Département de Rhumatologie, 45067 Orléans, France
| |
Collapse
|
10
|
Estakhri F, Panjehshahin MR, Tanideh N, Gheisari R, Mahmoodzadeh A, Azarpira N, Gholijani N. The effect of kaempferol and apigenin on allogenic synovial membrane-derived stem cells therapy in knee osteoarthritic male rats. Knee 2020; 27:817-832. [PMID: 32336589 DOI: 10.1016/j.knee.2020.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 02/10/2020] [Accepted: 03/18/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Based on the anti-inflammatory and anti-oxidant properties of kaempferol and apigenin, we hypothesized that co-injection of these phytochemicals would increase the effectiveness of cell therapy in knee osteoarthritic rats. METHODS Anterior cruciate ligament transection (ACLT) was used to induce osteoarthritis (OA). Animals were treated by weekly intra-articular injections of kaempferol (10 or 20 μM) and/or isolated MSCs from synovial membrane (SMMSCs) (3 × 106 cells), a mixture of apigenin (0.1 μM) and kaempferol alone or SMMSCs, hyaluronic acid or PBS (group size n = 6), for three weeks. After three months, the levels of IL-1β, tumor necrosis factor alpha (TNF-α), superoxide dismutase (SOD) and malondialdehyde (MDA) were measured in the cartilage homogenate. Furthermore, relative expressions of collagen II2a1, aggrecan, IL-1β, TNF-α, inducible nitric oxide synthase (iNOS), SOX-9, MMP-3 and MMP-13 were assessed using real-time PCR. Radiological evaluation, before/after treatments, and histopathological assessments were carried out to evaluate the knees. RESULTS Non-toxic concentrations of kaempferol and apigenin determined to be 10, 20 μM and 0.1, 0.3 μM, respectively. In comparison with the OA group, the levels of TNF-α, IL-1β and MDA significantly decreased in OA + MSCs + kaempferol + apigenin group and a significant increase in SOD level was observed. The levels of MMP-13, MMP-3, TNF-α, IL-1β, iNOS were significantly decreased in the groups of OA + MSCs + A0.1 μM + K10 μM and OA + MSCs + K20 μM. Co-treatment of kaempferol and apigenin increased the gene expression levels of collagen IIa1, aggrecan and SOX-9 genes. CONCLUSION We showed that kaempferol and apigenin potentially increase the efficiency of OA cell therapy in the rat model of ACLT-induced OA.
Collapse
Affiliation(s)
- Firoozeh Estakhri
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Panjehshahin
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal and Natural Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Rasoul Gheisari
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasser Gholijani
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Hasan UH, Uttra AM, Qasim S, Ikram J, Saleem M, Niazi ZR. Phytochemicals targeting matrix metalloproteinases regulating tissue degradation in inflammation and rheumatoid arthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153134. [PMID: 31812101 DOI: 10.1016/j.phymed.2019.153134] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 10/26/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
PURPOSE Matrix metalloproteinases, zinc dependent proteolytic enzymes, have significant implications in extracellular matrix degradation associated with tissue damage in inflammation and Rheumatoid arthritis. Numerous orchestrated pathways affects instigation and blockade of metalloproteinases as well as various factors that increase the expression of MMPs including inflammatory cytokines, hormones and growth factors. Direct inhibition of these proteolytic enzymes or modulation of these pathways can provide protection against tissue destruction in inflammation and rheumatoid arthritis. Inclination towards use of plant derived phytochemicals to prevent tissue damage has been increasing day by day. Diversity of phytochemicals have been known to directly inhibit metalloproteinases. Hence, thorough knowledge of phytochemicals is very important in novel drug discovery. METHODS Present communication evaluates various classes of phytochemicals, in effort to unveil the lead molecules as potential therapeutic agents, for prevention of MMPs mediated tissue damage in inflammation and rheumatoid arthritis. Data have been analyzed through different search engines. RESULTS Numerous phytochemicals have been studied for their role as MMPs inhibitors which can be processed further to develop into useful drugs for the treatment of inflammation and rheumatoid arthritis. CONCLUSION In search of new drugs, phytochemicals like flavonoids, glycosides, alkaloids, lignans & terpenes offer a wide canvas to develop into valuable forthcoming medicaments.
Collapse
Affiliation(s)
- Umme Habiba Hasan
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy University of Sargodha, Sargodha, Pakistan
| | - Ambreen Malik Uttra
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy University of Sargodha, Sargodha, Pakistan
| | - Sumera Qasim
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy University of Sargodha, Sargodha, Pakistan
| | - Javaria Ikram
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy University of Sargodha, Sargodha, Pakistan
| | - Muhammad Saleem
- University College of Pharmacy, University of Punjab Lahore, Lahore, Pakistan
| | - Zahid Rasul Niazi
- Department of Basic medical science, Faculty of Pharmacy, Gomal University, DI Khan, KPK, Pakistan
| |
Collapse
|
12
|
Flavonoid VI-16 protects against DSS-induced colitis by inhibiting Txnip-dependent NLRP3 inflammasome activation in macrophages via reducing oxidative stress. Mucosal Immunol 2019; 12:1150-1163. [PMID: 31152156 DOI: 10.1038/s41385-019-0177-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/04/2023]
Abstract
Emerging evidence suggests that NLRP3 inflammasome was associated with various kinds of immunological diseases including colitis. However, there are few drugs targeting inflammasomes in the treatment of colitis. Several flavonoids have been found to affect the inflammasome pathway, but the mechanism is still confusing. Here we report that VI-16, a synthetic flavonoid compound, exerts potent anti-inflammatory effects on macrophages in DSS-induced colitis mice, which intervened in the activation of NLRP3 inflammasome without affecting intestinal epithelial cells. However, the protection of VI-16 against DSS-induced colitis was dependent on NLRP3 expression in hematopoietic cells. Furthermore, this inhibitory effect of VI-16 was found to be at least partially achieved by decreasing the mitochondrial ROS generation without affecting autophagy. Further studies confirm that VI-16 inhibits the binding of Txnip to NLRP3 by reducing oxidative stress and ultimately inhibits NLRP3 inflammasome. This demonstrates the ability of VI-16 to inhibit the NLRP3 inflammasome activation and its potential use in the treatment of inflammatory bowel disease.
Collapse
|
13
|
Huang Q, Han L, Lv R, Ling L. Magnolol exerts anti-asthmatic effects by regulating Janus kinase-signal transduction and activation of transcription and Notch signaling pathways and modulating Th1/Th2/Th17 cytokines in ovalbumin-sensitized asthmatic mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:251-261. [PMID: 31297009 PMCID: PMC6609269 DOI: 10.4196/kjpp.2019.23.4.251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
Allergic asthma, is a common chronic inflammatory disease of the airway presenting with airway hyperresponsiveness and airway remodelling. T helper cells-derived cytokines are critically associated with asthma pathogenesis. Janus kinase-signal transduction and activation of transcription (JAK/STAT) signaling is found to be involved in asthma. Magnolol is a plant-derived bioactive compound with several pharmacological effects. The study aimed to assess the effects of magnolol in ovalbumin (OVA)-induced asthmatic model. BALB/c mice were sensitized and challenged with OVA. Magnolol (12.5, 25, or 50 mg/kg body weight) was administered to separate groups of animals. Dexamethasone was used as the positive control. Cellular infiltration into the bronchoalveolar lavage fluid (BALF) were reduced on magnolol treatment. The levels of Th2 and Th17 cytokines were reduced with noticeably raised levels of interferon gamma. Lung function was improved effectively along with restoration of bronchial tissue architecture. OVA-specific immunoglobulin E levels in serum and BALF were decreased by magnolol. Magnolol reduced Th17 cell population and effectively modulated the JAK-STAT and Notch 1 signaling. The results suggest the promising use of magnolol in therapy for allergic asthma.
Collapse
Affiliation(s)
- Qi Huang
- Department of Gerontology, Wujiang Hospital Affiliated to Nantong University, Suzhou, Jiangsu 215505, China
| | - Lele Han
- Department of Gerontology, Wujiang Hospital Affiliated to Nantong University, Suzhou, Jiangsu 215505, China
| | - Rong Lv
- Department of Gerontology, Wujiang Hospital Affiliated to Nantong University, Suzhou, Jiangsu 215505, China
| | - Ling Ling
- Department of Gerontology, Wujiang Hospital Affiliated to Nantong University, Suzhou, Jiangsu 215505, China
| |
Collapse
|
14
|
Lim H, Heo MY, Kim HP. Flavonoids: Broad Spectrum Agents on Chronic Inflammation. Biomol Ther (Seoul) 2019; 27:241-253. [PMID: 31006180 PMCID: PMC6513185 DOI: 10.4062/biomolther.2019.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Flavonoids are major plant constituents with numerous biological/pharmacological actions both in vitro and in vivo. Of these actions, their anti-inflammatory action is prominent. They can regulate transcription of many proinflammatory genes such as cyclooxygenase-2/inducible nitric oxide synthase and many cytokines/chemokines. Recent studies have demonstrated that certain flavonoid derivatives can affect pathways of inflammasome activation and autophagy. Certain flavonoids can also accelerate the resolution phase of inflammation, leading to avoiding chronic inflammatory stimuli. All these pharmacological actions with newly emerging activities render flavonoids to be potential therapeutics for chronic inflammatory disorders including arthritic inflammation, meta-inflammation, and inflammaging. Recent findings of flavonoids are summarized and future perspectives are presented in this review.
Collapse
Affiliation(s)
- Hyun Lim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Moon Young Heo
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
15
|
Identifying chondroprotective diet-derived bioactives and investigating their synergism. Sci Rep 2018; 8:17173. [PMID: 30464238 PMCID: PMC6249298 DOI: 10.1038/s41598-018-35455-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/06/2018] [Indexed: 01/18/2023] Open
Abstract
Osteoarthritis (OA) is a multifactorial disease and nutrition is a modifiable factor that may contribute to disease onset or progression. A detailed understanding of mechanisms through which diet-derived bioactive molecules function and interact in OA is needed. We profiled 96 diet-derived, mainly plant-based bioactives using an in vitro model in chondrocytes, selecting four candidates for further study. We aimed to determine synergistic interactions between bioactives that affected the expression of key genes in OA. Selected bioactives, sulforaphane, apigenin, isoliquiritigenin and luteolin, inhibited one or more interleukin-1-induced metalloproteinases implicated in OA (MMP1, MMP13, ADAMTS4, ADAMTS5). Isoliquiritigenin and luteolin showed reactive oxygen species scavenging activity in chondrocytes whereas sulforaphane had no effect and apigenin showed only a weak trend. Sulforaphane inhibited the IL-1/NFκB and Wnt3a/TCF/Lef pathways and increased TGFβ/Smad2/3 and BMP6/Smad1/5/8 signalling. Apigenin showed potent inhibition of the IL-1/NFκB and TGFβ/Smad2/3 pathways, whereas luteolin showed only weak inhibition of the IL-1/NFκB pathway. All four bioactives inhibited cytokine-induced aggrecan loss from cartilage tissue explants. The combination of sulforaphane and isoliquiritigenin was synergistic for inhibiting MMP13 gene expression in chondrocytes. We conclude that dietary-derived bioactives may be important modulators of cartilage homeostasis and synergistic relationships between bioactives may have an anti-inflammatory and chondroprotective role.
Collapse
|
16
|
Huang X, Pan Q, Mao Z, Wang P, Zhang R, Ma X, Chen J, You H. Kaempferol inhibits interleukin‑1β stimulated matrix metalloproteinases by suppressing the MAPK‑associated ERK and P38 signaling pathways. Mol Med Rep 2018; 18:2697-2704. [PMID: 30015923 PMCID: PMC6102739 DOI: 10.3892/mmr.2018.9280] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/28/2018] [Indexed: 01/06/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease in older adults. A number of previous studies have demonstrated that natural flavonoids can serve as promising therapeutic drugs for OA. Kaempferol, a phytochemical ingredient mainly present in various fruits, has exhibited its prominent anti-inflammatory and antioxidant effects in numerous diseases. However, whether Kaempferol ameliorates the deterioration of arthritis remains to be elucidated. The aim of the present study was to investigate the therapeutic role of Kaempferol on OA in rat chondrocytes. The results revealed that Kaempferol significantly inhibited the interleukin (IL)-1β-induced protein expression of inflammatory mediators such as inducible nitric oxide synthase and cyclo-oxygenase-2. In addition, the common matrix degrading enzymes [matrix metalloproteinase (MMP)-1, MMP-3, MMP-13 and a disintegrin and metalloproteinase with thrombospondin motif-5] induced by IL-1β were also suppressed by Kaempferol, and consequently abolished the degradation of collagen II. Furthermore, the anti-inflammatory effect of Kaempferol was mediated by the inhibition of the mitogen activated protein kinase-associated extracellular signal-regulated kinase and P38 signaling pathways. These results collectively indicated that Kaempferol can potentially prevent OA development and serve as a novel pharmacological target in the treatment of OA.
Collapse
Affiliation(s)
- Xiaojian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qiyong Pan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zekai Mao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Pengcheng Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaohu Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jingyuan Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
17
|
Lim H, Min DS, Park H, Kim HP. Flavonoids interfere with NLRP3 inflammasome activation. Toxicol Appl Pharmacol 2018; 355:93-102. [PMID: 29960001 DOI: 10.1016/j.taap.2018.06.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
NOD-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome is a component of innate immunity, and is responsible for producing mature IL-1β and -18. Several flavonoids were found to affect inflammasome pathway, but the mechanism of action is still obscure. To elucidate the effects on NLRP3 inflammasome pathway and to determine the structure-activity relationships, NLRP3 inflammasome in differentiated THP-1 cells was activated via treatment with monosodium urate (MSU) crystals. Levels of mature IL-1β, NLRP3 inflammasome components and apoptosis-associated speck-like protein containing a CARD (caspase recruitment domain) (ASC) oligomerization were investigated and the mechanisms of action were also elucidated. Among the 56 flavonoids initially tested, only flavone, 2',4'-dihhydroxyflavone, 3',4'-dichloroflavone, 4',5,7-trihydroxyflavone (apigenin), 3,4',5,7-tetrahydroxyflavone (kaempferol) and 3,3',4',5,7-pentahydroxyflavone (quercetin) significantly inhibited IL-1β production at 10 μM. Apigenin, kaempferol and 3',4'-dichloroflavone inhibited ASC oligomerization without affecting the ASC level in cell lysates. Apigenin also inhibited absent in melanoma 2 (AIM2) inflammasome-related pathway, but not NLR family CARD domain-containing protein 4 (NLRC4) inflammasome activation. The action of apigenin on NLRP3 inflammasome activation is mediated partly via inhibition of phosphorylation of spleen tyrosine kinase/protein tyrosine kinase 2 (Syk/Pyk2) pathway. Furthermore, orally administered apigenin (100 mg/kg) strongly reduced the number of neutrophils and monocytes in MSU-induced peritonitis in mice. The present study, for the first time, demonstrated the structure-activity profiles of flavonoids in NLRP3 inflammasome activation and mechanisms of cellular action. Certain flavonoids including apigenin are expected to ameliorate the inflammatory symptoms in autoinflammatory diseases associated with NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Hyun Lim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dong Suk Min
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Haeil Park
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
18
|
Lim H, Min DS, Yun HE, Kim KT, Sun YN, Dat LD, Kim YH, Kim HP. Impressic acid from Acanthopanax koreanum, possesses matrix metalloproteinase-13 down-regulating capacity and protects cartilage destruction. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:73-81. [PMID: 28735730 DOI: 10.1016/j.jep.2017.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/04/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthopanax koreanum (Araliaceae) has been used in traditional medicine for enhancing vitality, rheumatism, and bone-related pains. But its activity on cartilage protection has not been known yet. AIM OF THE STUDY Matrix metalloproteinase (MMP)-13 has an important role in degrading cartilage materials under pathologic conditions such as arthritis. The present study was designed to find the inhibitory activity of impressic acid on MMP-13 expression and cartilage protective action. MATERIALS AND METHODS 70% ethanol extract of Acanthopanax koreanum leaves and impressic acid, a major constituent isolated from the same plant materials, were examined on MMP-13 down-regulating capacity in IL-1β-treated human chondrocyte cell line (SW1353) and rabbit cartilage explants. RESULTS In IL-1β-treated SW1353 cells, impressic acid significantly and concentration-dependently inhibited MMP-13 expression at 0.5-10μM. Impressic acid was found to be able to inhibit MMP-13 expression by blocking the phosphorylation of signal transducer and activator of transcription-1/-2 (STAT-1/-2) and activation of c-Jun and c-Fos among the cellular signaling pathways involved. Further, impressic acid was found to inhibit the expression of MMP-13 mRNA (47.7% inhibition at 10μM), glycosaminoglycan release (42.2% reduction at 10μM) and proteoglycan loss in IL-1-treated rabbit cartilage explants culture. In addition, a total of 21 lupane-type triterpenoids structurally-related to impressic acid were isolated from the same plant materials and their suppressive activities against MMP-13 expression were also examined. Among these derivatives, compounds 2, 3, 16, and 18 clearly down-regulated MMP-13 expression. However, impressic acid was more potent than these derivatives in down-regulating MMP-13 expression. CONCLUSIONS Impressic acid, its related triterpenoids, and A. koreanum extract have potential as therapeutic agents to prevent cartilage degradation by inhibiting matrix protein degradation.
Collapse
Affiliation(s)
- Hyun Lim
- College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Dong Suk Min
- College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Han Eul Yun
- College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Kil Tae Kim
- College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Ya Nan Sun
- College of Pharmacy, Chungnam National University, Daejeon 305-764, South Korea
| | - Le Duc Dat
- College of Pharmacy, Catholic University of Deagu, Gyeongsan 712-702, South Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, South Korea.
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea.
| |
Collapse
|
19
|
Sato K, Mera H, Wakitani S, Takagi M. Effect of epigallocatechin-3-gallate on the increase in type II collagen accumulation in cartilage-like MSC sheets. Biosci Biotechnol Biochem 2017; 81:1241-1245. [PMID: 28485205 DOI: 10.1080/09168451.2017.1282809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
With the aim to increase type II collagen content in the scaffold-free cartilage-like cell sheet using human bone marrow mesenchymal stem cells, we examined the effect of epigallocatechin-3-gallate (EGCG) addition to the chondrogenic medium for the cell sheet culture. The addition of EGCG (10 μM) increased the content of type II collagen 2-fold, while the addition did not markedly change the expression level of the genes encoding type II collagen and Sox 9. The reactive oxygen species level in the cells in cell sheets was thought to be too low to suppress the accumulation of type II collagen. On the other hand, the addition of EGCG markedly decreased both the matrix metalloproteinase-13 concentration in the supernatant of cell sheet culture and the type II collagen degradation activity in that supernatant. Taken together, EGCG may enhance the accumulation of type II collagen by suppressing type II collagen degradation.
Collapse
Affiliation(s)
- Keigo Sato
- a Division of Biotechnology and Macromolecular Chemistry , Graduate School of Engineering, Hokkaido University , Sapporo , Japan
| | - Hisashi Mera
- b School of Health and Sports Sciences , Mukogawa Women's University , Nishinomiya , Japan.,c Foundation for Biomedical Research and Innovation, International Medical Device Alliance , Kobe , Japan
| | - Shigeyuki Wakitani
- b School of Health and Sports Sciences , Mukogawa Women's University , Nishinomiya , Japan
| | - Mutsumi Takagi
- a Division of Biotechnology and Macromolecular Chemistry , Graduate School of Engineering, Hokkaido University , Sapporo , Japan
| |
Collapse
|
20
|
Mária J, Ingrid Ž. Effects of bioactive compounds on senescence and components of senescence associated secretory phenotypes in vitro. Food Funct 2017; 8:2394-2418. [DOI: 10.1039/c7fo00161d] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Senescence is a permanent cell cycle arrest that is accompanied by changes in cell morphology and physiology occurringin vitroandin vivo.
Collapse
Affiliation(s)
- Janubová Mária
- Institute of Medical Chemistry
- Biochemistry and Clinical Biochemistry
- Medical Faculty
- Comenius University
- 813 72 Bratislava
| | - Žitňanová Ingrid
- Institute of Medical Chemistry
- Biochemistry and Clinical Biochemistry
- Medical Faculty
- Comenius University
- 813 72 Bratislava
| |
Collapse
|
21
|
Wang P, Li SS, Wang XH. Myricetin Exerts Anti-osteoarthritic Effects in IL-1β Stimulated SW1353 Cells via Regulating Matrix Metalloproteinases and Modulating JNK/P38MAPK/Ap-1/c-Fos and JAK/STAT Signalling. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.440.450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Park JS, Lee HJ, Lee DY, Jo HS, Jeong JH, Kim DH, Nam DC, Lee CJ, Hwang SC. Chondroprotective Effects of Wogonin in Experimental Models of Osteoarthritis in vitro and in vivo. Biomol Ther (Seoul) 2015; 23:442-8. [PMID: 26336584 PMCID: PMC4556204 DOI: 10.4062/biomolther.2015.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/26/2015] [Accepted: 06/09/2015] [Indexed: 01/01/2023] Open
Abstract
We evaluated the chondroprotective effects of wogonin by investigating its effects on the gene expression and production of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as on production of MMP-3 in the rat knee. Rabbit articular chondrocytes were cultured in a monolayer, and RT-PCR was used to measure interleukin-1β (IL-1β)-induced expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), and type II collagen. In rabbit articular chondrocytes, the effects of wogonin on IL-1β-induced production and proteolytic activity of MMP-3 were investigated using western blot analysis and casein zymography, respectively. The effect of wogonin on MMP-3 protein production was also examined in vivo. In rabbit articular chondrocytes, wogonin inhibited the expression of MMP-3, MMP-1, MMP-13, and ADAMTS-4, but increased expression of type II collagen. Furthermore, wogonin inhibited the production and proteolytic activity of MMP-3 in vitro, and inhibited production of MMP-3 protein in vivo. These results suggest that wogonin can regulate the gene expression and production of MMP-3, by directly acting on articular chondrocytes.
Collapse
Affiliation(s)
- Jin Sung Park
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hyun Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Dong Yeong Lee
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Ho Seung Jo
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jin Hoon Jeong
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dong Hee Kim
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dae Cheol Nam
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Sun-Chul Hwang
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 660-701, Republic of Korea
| |
Collapse
|
23
|
Caliskan SG, Bilgin MD, Kozaci LD. Effect of Pulsed Electromagnetic Field on MMP-9 and TIMP-1 Levels in Chondrosarcoma Cells Stimulated with IL-1β. Asian Pac J Cancer Prev 2015; 16:2701-5. [DOI: 10.7314/apjcp.2015.16.7.2701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
24
|
Inhibition of matrix metalloproteinase-13 expression in IL-1β-treated articular chondrocytes by a steroidal saponin, spicatoside A, and its cellular mechanisms of action. Arch Pharm Res 2015; 38:1108-16. [PMID: 25712888 DOI: 10.1007/s12272-015-0581-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/19/2015] [Indexed: 01/07/2023]
Abstract
Matrix metalloproteinase-13 (MMP-13) plays a critical role in degrading major collagens in human cartilage under some pathological conditions such as osteoarthritis. To establish the therapeutic potential against cartilage degradation, the effects of 12 naturally-occurring triterpenoids and steroids on MMP-13 induction were examined in the human chondrocyte cell line, SW1353. They included coreanoside F1, suavissimoside R1, spicatoside A, 25(S)-ruscogenin, methyl protogracillin, hederagenin, loniceroside A, loniceroside B, loniceroside C, smilaxin A, smilaxin C, and ursolic acid. Among these, only spicatoside A and 25(S)-ruscogenin were found to inhibit MMP-13 expression in IL-1β-treated SW1353 cells at a pharmacologically-relevant concentration of 10 μM. These effects were also supported by the finding that spicatoside A (20 μM) reduced glycosaminoglycan release from IL-1α-treated rabbit joint cartilage culture to some degree. When the cellular mechanisms of action of spicatoside A in MMP-13 inhibition were investigated, the blocking point was not found among the MMP-13 signaling molecules examined such as mitogen-activated protein kinases, activator protein-1, and nuclear transcription factor-κB. Instead, spicatoside A was found to reduce MMP-13 mRNA stability. All of these findings suggest that spicatoside A and 25(S)-ruscogenin have a therapeutic potential for protecting against cartilage breakdown in arthritic disorders.
Collapse
|
25
|
Patel K, Singh GK, Patel DK. A Review on Pharmacological and Analytical Aspects of Naringenin. Chin J Integr Med 2014; 24:551-560. [PMID: 25501296 DOI: 10.1007/s11655-014-1960-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2014] [Indexed: 01/29/2023]
Abstract
Flavonoids are a widely distributed group of phytochemicals having benzo-pyrone nucleus, and more than 4,000 different flavonoids have been described and categorized into flavonols, flavones, flavanones, isoflavones, catechins and anthocyanidins. Flavonoids occurs naturally in fruits, vegetables, nuts, and beverages such as coffee, tea, and red wine, as well as in medical herbs. Flavonoids are responsible for the different colors of plant parts and are important constituents of the human diet. Flavanoids have different pharmacological activities, such as antioxidant, anti-allergic, antibacterial, anti-inflammatory, antimutagenic and anticancer activity. Naringenin belongs to the flavanones and is mainly found in fruits (grapefruit and oranges) and vegetables. Pharmacologically, it has anticancer, antimutagenic, anti-inflammatory, antioxidant, antiproliferative and antiatherogenic activities. Naringenin is used for the treatments of osteoporosis, cancer and cardiovascular diseases, and showed lipid-lowering and insulin-like properties. In the present review, detailed pharmacological and analytical aspects of naringenin have been presented, which revealed the impressive pharmacological profile and the possible usefulness in the treatment of different types of diseases in the future. The information provided in this communication will act as an important source for development of effective medicines for the treatment of various disorders.
Collapse
Affiliation(s)
- Kanika Patel
- G.L.A Institute of Pharmaceutical Research, Mathura, India
| | - Gireesh Kumar Singh
- Department of Pharmaceutics, Institute of Technology, Banaras Hindu University, Varanasi, 221005, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutics, Institute of Technology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
26
|
Green JA, Hirst-Jones KL, Davidson RK, Jupp O, Bao Y, MacGregor AJ, Donell ST, Cassidy A, Clark IM. The potential for dietary factors to prevent or treat osteoarthritis. Proc Nutr Soc 2014; 73:278-88. [PMID: 24572502 DOI: 10.1017/s0029665113003935] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease for which there are no disease-modifying drugs. It is a leading cause of disability in the UK. Increasing age and obesity are both major risk factors for OA and the health and economic burden of this disease will increase in the future. Focusing on compounds from the habitual diet that may prevent the onset or slow the progression of OA is a strategy that has been under-investigated to date. An approach that relies on dietary modification is clearly attractive in terms of risk/benefit and more likely to be implementable at the population level. However, before undertaking a full clinical trial to examine potential efficacy, detailed molecular studies are required in order to optimise the design. This review focuses on potential dietary factors that may reduce the risk or progression of OA, including micronutrients, fatty acids, flavonoids and other phytochemicals. It therefore ignores data coming from classical inflammatory arthritides and nutraceuticals such as glucosamine and chondroitin. In conclusion, diet offers a route by which the health of the joint can be protected and OA incidence or progression decreased. In a chronic disease, with risk factors increasing in the population and with no pharmaceutical cure, an understanding of this will be crucial.
Collapse
Affiliation(s)
- Jonathan A Green
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Rose K Davidson
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Orla Jupp
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Simon T Donell
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Aedín Cassidy
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Ian M Clark
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
27
|
Lin Y, Wang F, Zhang GL. Natural products and their derivatives regulating the janus kinase/signal transducer and activator of transcription pathway. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2014; 16:800-812. [PMID: 25076196 DOI: 10.1080/10286020.2014.929573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
Janus kinase/signal transducer and activator of transcriptions (JAK/STAT) signaling pathway is one of the major signaling pathways involved in a variety of human physiological and pathological process. The proteins of JAK/STAT pathway or interferon response element (such as JAK, STAT, Src, SOCS, 2'5'-OAS, and ISRE) might be as drug targets for the study of physiological processes and treatment of related diseases, including cell proliferation, differentiation, apoptosis and immune processes, inflammation, cancer, arthritis, asthma, diabetes, and other diseases. This review attempts to summarize the current status of natural products and their derivatives (2002-2013) regulating the proteins or transcription elements of JAK/STAT signaling pathway to supply a new direction or drug targets for the discovery of new drugs.
Collapse
Affiliation(s)
- Yuan Lin
- a Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041 , China
| | | | | |
Collapse
|
28
|
Lee JH, Lim H, Shehzad O, Kim YS, Kim HP. Ginsenosides from Korean red ginseng inhibit matrix metalloproteinase-13 expression in articular chondrocytes and prevent cartilage degradation. Eur J Pharmacol 2013; 724:145-51. [PMID: 24384406 DOI: 10.1016/j.ejphar.2013.12.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 12/02/2013] [Accepted: 12/09/2013] [Indexed: 11/16/2022]
Abstract
Among the mammalian matrix metalloproteinases (MMPs), MMP-1, -3 and -13 are collagenases. Particularly, MMP-13 is important for the degradation of major collagens in cartilage under certain pathological conditions such as osteoarthritis. To establish a potential therapeutic strategy for cartilage degradation disorders, the effects of 11 ginseng saponins (ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rg5, Rk1 and F4) on MMP-13 induction were examined in a human chondrocyte cell line, SW1353. Among these, several saponins including ginsenoside Rc, Rd, Rf, Rg3 and F4 were found to inhibit MMP-13 expression in IL-1β-treated SW1353 cells at non-cytotoxic concentrations (1-50 μM). The most prominent inhibitors were ginsenosides F4 and Rg3. Ginsenoside F4 inhibited MMP-13 expression 33.5% (P<0.05), 57.9% (P<0.01) and 90.0% (P<0.01) at 10, 30 and 50 μM, respectively. Significantly, ginsenoside F4 was found to strongly inhibit activation of p38 mitogen-activated protein kinase in signal transduction pathways (86.6 and 100.0% inhibition at 30 and 50 μM, P<0.01). The MMP-13 inhibitory effect was also supported by the finding that ginsenosides F4 and Rg3 reduced glycosaminoglycan release from IL-1α-treated rabbit joint cartilage culture to some degree. Taken together, these results indicate that several ginsenosides inhibit MMP-13 expression in IL-1β-treated chondrocytes. Ginsenoside F4 and Rg3 blocked cartilage breakdown in rabbit cartilage tissue culture. Thus, it is suggested that certain ginsenosides have therapeutic potential for preventing cartilage collagen matrix breakdown in diseased tissues such as those found in patients with arthritic disorders.
Collapse
Affiliation(s)
- Je Hyeong Lee
- College of Pharmacy, Kangwon National University, Chunchon 200-701, Republic of Korea
| | - Hyun Lim
- College of Pharmacy, Kangwon National University, Chunchon 200-701, Republic of Korea
| | - Omer Shehzad
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yeong Shik Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chunchon 200-701, Republic of Korea.
| |
Collapse
|
29
|
Li B, Suemaru K, Kitamura Y, Gomita Y, Araki H, Cui R. Imipramine-induced c-Fos expression in the medial prefrontal cortex is decreased in the ACTH-treated rats. J Biochem Mol Toxicol 2013; 27:486-91. [PMID: 23922220 DOI: 10.1002/jbt.21510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/20/2013] [Accepted: 06/28/2013] [Indexed: 11/11/2022]
Abstract
Previous studies have shown that the antidepressive-like effect of tricyclic antidepressants is blocked by repeated treatments with adrenocorticotropic hormone (ACTH). However, little is known about the neuroanatomy underlying the mechanism of the imipramine treatment-resistant depression model. In the present study, first experimental evidence showed no significant difference of the serum imipramine concentrations between the saline and ACTH-treated rats. In further study, imipramine produced significant increases in the c-Fos expression in the medial prefrontal cortex (mPFC), the dentate gyrus of the hippocampus (DGH), and the central nucleus of the amygdala (CeA), in rats repeatedly treated with saline. The imipramine-increased c-Fos immunoreactivity was suppressed in the mPFC of rats repeatedly treated with ACTH. However, there was no significant difference in c-Fos expression in the DGH and CeA between ACTH- and saline-treated rats. These results suggest that the mPFC is maybe involved in effects of the imipramine in the ACTH-treated rats.
Collapse
Affiliation(s)
- Bingjin Li
- School of Life Science, Northeast Normal University, Changchun, 130024, People's Republic of China; Division of Hospital Pharmacy, Ehime University Medical School, Ehime, 791-0295, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Lou C, Zhang F, Yang M, Zhao J, Zeng W, Fang X, Zhang Y, Zhang C, Liang W. Naringenin decreases invasiveness and metastasis by inhibiting TGF-β-induced epithelial to mesenchymal transition in pancreatic cancer cells. PLoS One 2012; 7:e50956. [PMID: 23300530 PMCID: PMC3530567 DOI: 10.1371/journal.pone.0050956] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 10/29/2012] [Indexed: 12/21/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) promotes cellular motility, invasiveness and metastasis during embryonic development and tumorigenesis. Transforming growth factor-β (TGF-β) signaling pathway is a key regulator of EMT. A lot of evidences suggest that this process is Smad3-dependent. Herein we showed that exposure of aspc-1 and panc-1 pancreatic cancer cells to TGF-β1 resulted in characteristic morphological alterations of EMT, and enhancement of cell motility and gemcitabine (Gem) resistance along with an up-regulation of EMT markers genes such as vimentin, N-cadherin, MMP2 and MMP9. Naringenin (Nar) down-regulated EMT markers expression in both mRNA and protein levels by inhibiting TGF-β1/Smad3 signal pathway in the pancreatic cancer cells. Consequently, Nar suppressed the cells migration and invasion and reversed their resistance to Gem.
Collapse
Affiliation(s)
- Changjie Lou
- Department of Gastrointestinal Medical Oncology, The Affiliated Third Hospital of Harbin Medical University, Institute of Prevention and Treatment of Cancer of Heilongjiang Province, Harbin, People's Republic of China
- Protein & Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Fayun Zhang
- Protein & Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ming Yang
- Department of Gastrointestinal Medical Oncology, The Affiliated Third Hospital of Harbin Medical University, Institute of Prevention and Treatment of Cancer of Heilongjiang Province, Harbin, People's Republic of China
| | - Juan Zhao
- Department of Gastrointestinal Medical Oncology, The Affiliated Third Hospital of Harbin Medical University, Institute of Prevention and Treatment of Cancer of Heilongjiang Province, Harbin, People's Republic of China
| | - Wenfeng Zeng
- Protein & Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaocui Fang
- Protein & Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, The Affiliated Third Hospital of Harbin Medical University, Institute of Prevention and Treatment of Cancer of Heilongjiang Province, Harbin, People's Republic of China
| | - Chunling Zhang
- Protein & Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wei Liang
- Protein & Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
31
|
PENG MX, ZHANG HW, CHEN BA. Main signal pathways underlying the molecular mechanisms of the antitumor effects of wogonin. Chin J Nat Med 2012. [DOI: 10.1016/s1875-5364(12)60079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Lu YC, Hsiao G, Lin KH, Hsieh MS, Jayakumar T, Wu TS, Sheu JR. Cinnamophilin Isolated from Cinnamomum philippinense
Protects against Collagen Degradation in Human Chondrocytes. Phytother Res 2012; 27:892-9. [DOI: 10.1002/ptr.4812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 01/25/2023]
Affiliation(s)
- Yung-Chang Lu
- Graduate Institute of Clinical Medicine, College of Medicine; Taipei Medical University; Taipei Taiwan
- Department of Orthopedic Surgery; Mackay Memorial Hospital; Taipei
- Department of Leisure Sports and Health Management, College of Humanities and Sciences; St. John's University; Tamsui Taipei Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Kuan-Hung Lin
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Ming-Shium Hsieh
- Graduate Institute of Clinical Medicine, College of Medicine; Taipei Medical University; Taipei Taiwan
- Department of Orthopedic Surgery; En Chu Kong Hospital; Sanshia Taipei Taiwan
| | - Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Tian-Shung Wu
- Graduate Institute of Clinical Medicine, College of Medicine; Taipei Medical University; Taipei Taiwan
- School of Pharmacy; China Medical University; Taichung Taiwan
- Department of Chemistry; National Cheng Kung University; Tainan Taiwan
- Chinese Medicine Research and Development Center; China Medical University Hospital; Taichung Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Clinical Medicine, College of Medicine; Taipei Medical University; Taipei Taiwan
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
33
|
Wang B, Zhang XH, Zhu RM, Yang MF, Li ML, Wu XW, Xu XB. Expression and role of SOCS3 in severe acute pancreatitis in rats. Shijie Huaren Xiaohua Zazhi 2011; 19:3212-3216. [DOI: 10.11569/wcjd.v19.i31.3212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the mechanism of action of suppressor of cytokine signaling 3 (SOCS3) in experimental severe acute pancreatitis (SAP) in rats.
METHODS: A rat model of SAP was reproduced by retrograde injection of 4% sodium taurocholate into the biliopancreatic duct. Thirty-two male SD rats were randomly and equally assigned into four groups: normal control group (NC) and three SAP groups (6, 12 and 18 h). Serum amylase (AMY) was measured dynamically. Pathological changes in the pancreas and lung were observed under a light microscope. The concentrations of IL-6 and IL-18 were determined by ELISA. The localization and expression of SOCS3 protein in the pancreas were detected by immunohistochemical staining and Western blotting.
RESULTS: Compared to the NC group, serum level of AMY increased significantly in the three SAP groups (2675.18 ± 278.32, 3541.15 ± 215.43, 4568.89 ± 357.86 vs 651.38 ± 52.94, all P < 0.05). Pancreatic injuries revealed under a light microscope were gradually aggravated with disease progression. Serum concentrations of IL-6 and IL-18 in the SAP groups increased significantly compared to the NC group (all P < 0.05). The levels of SOCS3 protein in the SAP groups increased significantly compared to the NC group (all P < 0.05). The changes in SOCS3 protein expression were correlated with the severity of pancreatic injury and serum concentrations of IL-6 and IL-18.
CONCLUSION: SOCS3 plays an important role in inhibiting inflammatory reaction in rats with SAP.
Collapse
|