1
|
Liu YA, Nong Y, Feng J, Li G, Sajda P, Li Y, Wang Q. Phase synchrony between prefrontal noradrenergic and cholinergic signals indexes inhibitory control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.17.594562. [PMID: 38798371 PMCID: PMC11118516 DOI: 10.1101/2024.05.17.594562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Inhibitory control is a critical executive function that allows animals to suppress their impulsive behavior in order to achieve certain goals or avoid punishment. We investigated norepinephrine (NE) and acetylcholine (ACh) dynamics and population neuronal activity in the prefrontal cortex (PFC) during inhibitory control. Using fluorescent sensors to measure extracellular levels of NE and ACh, we simultaneously recorded prefrontal NE and ACh dynamics in mice performing inhibitory control tasks. The prefrontal NE and ACh signals exhibited strong coherence at 0.4-0.8 Hz. Although inhibition of locus coeruleus (LC) neurons projecting to the PFC impaired inhibitory control, inhibiting LC neurons projecting to the basal forebrain (BF) caused a more profound impairment, despite an approximately 30% overlap between LC neurons projecting to the PFC and BF, as revealed by our tracing studies. The inhibition of LC neurons projecting to the BF did not diminish the difference in prefrontal NE/ACh signals between successful and failed trials; instead, it abolished the difference in NE-ACh phase synchrony between successful and failed trials, indicating that NE-ACh phase synchrony is a task-relevant neuromodulatory feature. Chemogenetic inhibition of cholinergic neurons that project to the LC region did not impair inhibitory control, nor did it abolish the difference in NE-ACh phase synchrony between successful or failed trials, further confirming the relevance of NE-ACh phase synchrony to inhibitory control. To understand the possible effect of NE-ACh synchrony on prefrontal population activity, we employed Neuropixels to record from the PFC during inhibitory control. The inhibition of LC neurons projecting to the BF not only reduced the number of prefrontal neurons encoding inhibitory control, but also disrupted population firing patterns representing inhibitory control, as revealed by a demixed principal component (dPCA) analysis. Taken together, these findings suggest that the LC modulates inhibitory control through its collective effect with cholinergic systems on population activity in the prefrontal cortex. Our results further indicate that NE-ACh phase synchrony is a critical neuromodulatory feature with important implications for cognitive control.
Collapse
|
2
|
Azocar VH, Petersson P, Fuentes R, Fuentealba JA. Differential phase-amplitude coupling in nucleus accumbens and orbitofrontal cortex reflects decision-making during a delay discounting task. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111064. [PMID: 38917880 DOI: 10.1016/j.pnpbp.2024.111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND The impulsive choice is characterized by the preference for a small immediate reward over a bigger delayed one. The mechanisms underlying impulsive choices are linked to the activity in the Nucleus Accumbens (NAc), the orbitofrontal cortex (OFC), and the dorsolateral striatum (DLS). While the study of functional connectivity between brain areas has been key to understanding a variety of cognitive processes, it remains unclear whether functional connectivity differentiates impulsive-control decisions. METHODS To study the functional connectivity both between and within NAc, OFC, and DLS during a delay discounting task, we concurrently recorded local field potential in NAc, OFC, and DLS in rats. We then quantified the degree of phase-amplitude coupling (PAC), coherence, and Granger Causality between oscillatory activities in animals exhibiting either a high (HI) or low (LI) tendency for impulsive choices. RESULTS Our results showed a differential pattern of PAC during decision-making in OFC and NAc, but not in DLS. While theta-gamma PAC in OFC was associated with self-control decisions, a higher delta-gamma PAC in both OFC and NAc biased decisions toward impulsive choices in both HI and LI groups. Furthermore, during the reward event, Granger Causality analysis indicated a stronger NAc➔OFC gamma contribution in the HI group, while the LI group showed a higher OFC➔NAc gamma contribution. CONCLUSIONS The overactivity in NAc during reward in the HI group suggests that exacerbated contribution of NAcCore can lead to an overvaluation of reward that biases the behavior toward the impulsive choice.
Collapse
Affiliation(s)
- V H Azocar
- School of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Chile; Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - P Petersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - R Fuentes
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - J A Fuentealba
- School of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
3
|
Protic D, Hagerman R. State-of-the-art therapies for fragile X syndrome. Dev Med Child Neurol 2024; 66:863-871. [PMID: 38385885 PMCID: PMC11144093 DOI: 10.1111/dmcn.15885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a full mutation (> 200 CGG repeats) in the FMR1 gene. FXS is the leading cause of inherited intellectual disabilities and the most commonly known genetic cause of autism spectrum disorder. Children with FXS experience behavioral and sleep problems, anxiety, inattention, learning difficulties, and speech and language delays. There are no approved medications for FXS; however, there are several interventions and treatments aimed at managing the symptoms and improving the quality of life of individuals with FXS. A combination of non-pharmacological therapies and pharmacotherapy is currently the most effective treatment for FXS. Currently, several targeted treatments, such as metformin, sertraline, and cannabidiol, can be used by clinicians to treat FXS. Gene therapy is rapidly developing and holds potential as a prospective treatment option. Soon its efficacy and safety in patients with FXS will be demonstrated. WHAT THIS PAPER ADDS: Targeted treatment of fragile X syndrome (FXS) is the best current therapeutic approach. Gene therapy holds potential as a prospective treatment for FXS in the future.
Collapse
Affiliation(s)
- Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine University of Belgrade, Belgrade, Serbia
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, Belgrade, Serbia
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, CA, USA
- Department of Pediatrics, University of California, Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
4
|
Koevoet D, Deschamps PKH, Kenemans JL. Catecholaminergic and cholinergic neuromodulation in autism spectrum disorder: A comparison to attention-deficit hyperactivity disorder. Front Neurosci 2023; 16:1078586. [PMID: 36685234 PMCID: PMC9853424 DOI: 10.3389/fnins.2022.1078586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by social impairments and restricted, repetitive behaviors. Treatment of ASD is notoriously difficult and might benefit from identification of underlying mechanisms that overlap with those disturbed in other developmental disorders, for which treatment options are more obvious. One example of the latter is attention-deficit hyperactivity disorder (ADHD), given the efficacy of especially stimulants in treatment of ADHD. Deficiencies in catecholaminergic systems [dopamine (DA), norepinephrine (NE)] in ADHD are obvious targets for stimulant treatment. Recent findings suggest that dysfunction in catecholaminergic systems may also be a factor in at least a subgroup of ASD. In this review we scrutinize the evidence for catecholaminergic mechanisms underlying ASD symptoms, and also include in this analysis a third classic ascending arousing system, the acetylcholinergic (ACh) network. We complement this with a comprehensive review of DA-, NE-, and ACh-targeted interventions in ASD, and an exploratory search for potential treatment-response predictors (biomarkers) in ASD, genetically or otherwise. Based on this review and analysis we propose that (1) stimulant treatment may be a viable option for an ASD subcategory, possibly defined by genetic subtyping; (2) cerebellar dysfunction is pronounced for a relatively small ADHD subgroup but much more common in ASD and in both cases may point toward NE- or ACh-directed intervention; (3) deficiency of the cortical salience network is sizable in subgroups of both disorders, and biomarkers such as eye blink rate and pupillometric data may predict the efficacy of targeting this underlying deficiency via DA, NE, or ACh in both ASD and ADHD.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands,*Correspondence: Damian Koevoet,
| | - P. K. H. Deschamps
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. L. Kenemans
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
5
|
Novoa C, Solano JL, Ballesteros-Acosta HN, Lamprea MR, Ortega LA. Nicotine Differentially Modulates Emotional-Locomotor Interactions for Adult or Adolescent Rats. REVISTA COLOMBIANA DE PSICOLOGÍA 2022. [DOI: 10.15446/rcp.v31n1.89822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Previous research has shown that exposure to nicotine and other drugs of abuse stimulate dopaminergic neurons in the mesolimbic circuit. Sustained activation of this circuit by prolonged exposure to drugs promotes locomotor sensitization. However, there are inconsistent reports about nicotine-induced locomotor sensitization when assessed among different developmental stages. We evaluated exploratory behavior on specific areas of the open field as an indicator of behavioral disinhibition and general locomotor activity as an indicator of nicotine-induced locomotor sensitization, to further explore the mechanisms underlying behavioral adaptations to nicotine exposure in animals from different developmental stages. We found that while adolescent and adult rats are equally responsive to nicotine-induced locomotor sensitization, nicotine disrupts inhibition of risk-related behavior only in adolescent rats. Together, our results suggest that chronic daily exposure to nicotine promotes potentiation of its stimulant effects on locomotor activity. In adolescents, this effect is accompanied by a decreased capacity to inhibit risk-related behaviors under the acute effect of the drug.
How to cite this article: Novoa, C., Solano, J. L., Ballesteros-Acosta, H., Lamprea, R. M., & Ortega, L. A. (2021). Nicotine Differentially Modulates Emotional-Locomotor Interactions for Adult or Adolescent Rats. Revista Colombiana de Psicología, 31(1), 13-22. https://doi.org/10.15446/rcp.v31n1.89822
Collapse
|
6
|
Risdiana N, Susilowati R, Nurwening Sholikhah E, Partadiredja G. The Effects of Erythrina subumbrans (Hassk.) Merr. Leaves Extract on Nicotine Withdrawal Syndrome and β2 nAChRs Expression in The Ventral Tegmental Area of Rats. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224901002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Erythrina subumbrans (Hassk.) Merr. is an alkaloid plant with dihydro-β-erythroidine (DhβE) content which is considered to block α4β2 nAChRs subtype and, therefore, may suppress the desire to use nicotine. This study aimed to investigate these possible effects of E.subumbrans (Hassk.) Merr. extract on nicotine withdrawal syndrome and β2 nAChRs expression in rats' ventral tegmental area (VTA). The rats were divided into six groups, i.e., control (OO), nicotine treated (NO), nicotine, and E. subumbrans (Hassk.) Merr.-treated (NE 100, NE 200, NE 400), and E. subumbrans (Hassk.) Merr.-treated (OE 200) groups. Nicotine was given ad libitum via drinking water with a step-wise increase of dosage every four days for 30 days. Somatic and affective signs were observed during the dark cycle of 24 hours abstinent period (days 31and 46). The expression of β2 nAChRs in the VTA was examined semi-quantitatively. It has been found that the rearing behavior of the NE 100 group was fewer on day 46 than on day 31. The body scratching behavior of the NE 100 group was fewer than that of the OO group on day 46. The front paws and penile licking behaviors of the NE 100 group were fewer than those of the NO group on day 46. The open arm entries of the NO group were fewer than that of the NE 200 group on day 46. The β2nAChRs expression of the NO group was lower than that of the OO group. E. Subumbrans (Hassk.) Merr. at a dosage of 100mg/kg BW may decrease some somatic signs of nicotine withdrawal syndrome.
Collapse
|
7
|
Buck JM, Yu L, Knopik VS, Stitzel JA. DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure†. Biol Reprod 2021; 105:644-666. [PMID: 34270696 PMCID: PMC8444709 DOI: 10.1093/biolre/ioab138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal smoking during pregnancy is associated with an ensemble of neurodevelopmental consequences in children and therefore constitutes a pressing public health concern. Adding to this burden, contemporary epidemiological and especially animal model research suggests that grandmaternal smoking is similarly associated with neurodevelopmental abnormalities in grandchildren, indicative of intergenerational transmission of the neurodevelopmental impacts of maternal smoking. Probing the mechanistic bases of neurodevelopmental anomalies in the children of maternal smokers and the intergenerational transmission thereof, emerging research intimates that epigenetic changes, namely DNA methylome perturbations, are key factors. Altogether, these findings warrant future research to fully elucidate the etiology of neurodevelopmental impairments in the children and grandchildren of maternal smokers and underscore the clear potential thereof to benefit public health by informing the development and implementation of preventative measures, prophylactics, and treatments. To this end, the present review aims to encapsulate the burgeoning evidence linking maternal smoking to intergenerational epigenetic inheritance of neurodevelopmental abnormalities, to identify the strengths and weaknesses thereof, and to highlight areas of emphasis for future human and animal model research therein.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| | - Li Yu
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
8
|
Íbias J, Nazarian A. Sex differences in nicotine-induced impulsivity and its reversal with bupropion in rats. J Psychopharmacol 2020; 34:1382-1392. [PMID: 32684065 PMCID: PMC7708527 DOI: 10.1177/0269881120937543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Enhancement in cognitive impulsivity and the resulting alterations in decision making serve as a contributing factor for the development and maintenance of substance-use disorders. Nicotine-induced increases in impulsivity has been previously reported in male humans and rodents. Although the potential for sex differences in nicotine-induced impulsivity has not been examined. AIMS AND METHODS In the present study, male and female Sprague Dawley rats were submitted to a delay discounting task, in which several consecutive measures of self-control were taken. Firstly, rats were tested with vehicle, and next with nicotine doses of 0.4 and 0.8 mg/kg. Thereafter, chronic treatment with bupropion started, and the animals were tested again. Half the animals continued to receive 0.8 mg/kg of nicotine, while the rest received nicotine and also a daily dose of 30 mg/kg of bupropion. RESULTS When the animals were first tested with nicotine, female rats showed a significant nicotine dose dependent increase of impulsive behaviour, whereas male rats only showed a decrease on their elections of the larger but delayed reward under the highest dose of 0.8 mg/kg of nicotine. Treatment with bupropion blocked the effect of nicotine on decision making in female rats, as they showed results close to their baseline levels. On the other hand, bupropion did not affect the nicotine-induced delay discounting in male rats. CONCLUSION These findings demonstrate sexually dimorphic effects of nicotine on cognitive impulsivity which may help to shed light on nicotine use vulnerabilities observed in women.
Collapse
Affiliation(s)
| | - Arbi Nazarian
- Correspondence: Arbi Nazarian, Ph.D., Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, USA. , (909) 469-5424
| |
Collapse
|
9
|
van Erp TG, Baker RA, Cox K, Okame T, Kojima Y, Eramo A, Potkin SG. Effect of brexpiprazole on control of impulsivity in schizophrenia: A randomized functional magnetic resonance imaging study. Psychiatry Res Neuroimaging 2020; 301:111085. [PMID: 32450497 DOI: 10.1016/j.pscychresns.2020.111085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 12/21/2022]
Abstract
Impulsivity in schizophrenia is a risk factor for suicide, drug abuse, and other risk-taking behaviors. This exploratory, multicenter, randomized, double-blind, functional magnetic resonance imaging (fMRI) study assessed the effects of brexpiprazole on brain regions that control impulsive behavior. Thirty-eight outpatients with stable schizophrenia and impulsivity symptoms were randomized to 6 weeks of brexpiprazole 2 or 4 mg/day. The prespecified outcome measure was blood oxygen-level dependent (BOLD) activation in the right ventrolateral prefrontal cortex (VLPFC) during performance of tasks associated with inhibition/control of impulsivity: the go/no-go task and stop-signal task. Secondary objectives evaluated the efficacy, safety and tolerability of brexpiprazole. Over 6 weeks, patients receiving brexpiprazole had no statistically significant change in right VLPFC BOLD activation during the go/no-go task, but showed a significant decrease in right VLPFC BOLD activation during the stop-signal task. Brexpiprazole was also associated with significantly improved stop-signal reaction time (SSRT). No worsening of psychiatric symptoms, functioning, or impulsivity occurred in these patients. No unexpected safety or tolerability concerns were identified. In conclusion, brexpiprazole treatment among patients with schizophrenia and impulsivity was associated with decreased right VLPFC activation and decreased SSRT, supportive of a benefit of brexpiprazole on inhibition-related brain activation and behavior. ClinicalTrials.gov identifier: NCT02194933.
Collapse
Affiliation(s)
- Theo Gm van Erp
- Clinical and Translational Neuroscience Laboratory, University of California-Irvine, Irvine, CA, United States; Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA, United States.
| | - Ross A Baker
- Otsuka Pharmaceutical Development & Commercialization Inc., Princeton, NJ, United States
| | - Kevin Cox
- Otsuka Pharmaceutical Development & Commercialization Inc., Princeton, NJ, United States
| | - Takao Okame
- Otsuka Pharmaceutical Co. Ltd., Kanda Tsukasa-machi, Chiyoda-ku, Tokyo101-8535, Japan
| | - Yoshitsugu Kojima
- Otsuka Pharmaceutical Co. Ltd., Kanda Tsukasa-machi, Chiyoda-ku, Tokyo101-8535, Japan
| | - Anna Eramo
- Lundbeck LLC, Deerfield, IL, United States
| | - Steven G Potkin
- University of California-Irvine, Irvine, CA, United States; Tibor Rubin Veterans Affairs Medical Center, Long Beach, CA, United States.
| |
Collapse
|
10
|
Kasparbauer AM, Petrovsky N, Schmidt PM, Trautner P, Weber B, Sträter B, Ettinger U. Effects of nicotine and atomoxetine on brain function during response inhibition. Eur Neuropsychopharmacol 2019; 29:235-246. [PMID: 30552041 DOI: 10.1016/j.euroneuro.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/21/2018] [Accepted: 12/01/2018] [Indexed: 12/29/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) agonist nicotine and the noradrenaline transporter inhibitor atomoxetine are widely studied substances due to their propensity to alleviate cognitive deficits in psychiatric and neurological patients and their beneficial effects on some aspects of cognitive functions in healthy individuals. However, despite growing evidence of acetylcholine-noradrenaline interactions, there are only very few direct comparisons of the two substances. Here, we investigated the effects of nicotine and atomoxetine on response inhibition in the stop-signal task and we characterised the neural correlates of these effects using blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) at 3T. Nicotine (7 mg dermal patch) and atomoxetine (60 mg per os) were applied to N = 26 young, healthy adults in a double-blind, placebo-controlled, cross-over, within-subjects design. BOLD images were collected during a stop-signal task that controlled for infrequency of stop trials. There were no drug effects on behavioural performance or subjective state measures. However, there was a pronounced upregulation of activation in bilateral prefrontal and left parietal cortex following nicotine during successful compared to unsuccessful stop trials. The effect of nicotine on BOLD during failed stop trials was correlated across individuals with a measure of trait impulsivity. Atomoxetine, however, had no discernible effects on BOLD. We conclude that nicotine effects on brain function during inhibitory control are most pronounced in individuals with higher levels of impulsivity. This finding is compatible with previous evidence of nicotine effects on stop-signal task performance in highly impulsive individuals and implicates the nAChR in the neural basis of impulsivity.
Collapse
Affiliation(s)
| | - Nadine Petrovsky
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, Germany
| | - Pia-Magdalena Schmidt
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, Germany
| | - Peter Trautner
- Institute of Experimental Epileptology and Cognition Research, University Hospital of Bonn, Bonn, Germany
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital of Bonn, Bonn, Germany; Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
| | - Birgitta Sträter
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, Germany.
| |
Collapse
|
11
|
Blonanserin suppresses impulsive action in rats. J Pharmacol Sci 2019; 141:127-130. [PMID: 31690490 DOI: 10.1016/j.jphs.2019.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
High impulsivity will increase the risk of criminal behavior, drug abuse, and suicide. We chose two drugs by following a strategy recently we proposed for identifying potential anti-impulsivity drugs, and examined the effects on impulsive action in rats by using a 3-choice serial reaction time task. We showed that the administration of blonanserin, an atypical antipsychotic, reduced impulsive actions in a U-shaped manner. 1-(2-Pyriidinyl)-piperazine, an active metabolite of buspirone or tandospirone, also slightly reduced impulsive actions, though it impaired motor functions. These results affirm the validity of our strategy, but require its refinement for developing anti-impulsivity drugs.
Collapse
|
12
|
Sasamori H, Ohmura Y, Yoshida T, Yoshioka M. Noradrenaline reuptake inhibition increases control of impulsive action by activating D1-like receptors in the infralimbic cortex. Eur J Pharmacol 2019; 844:17-25. [DOI: 10.1016/j.ejphar.2018.11.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 11/24/2022]
|
13
|
D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019; 10:509. [PMID: 31396113 PMCID: PMC6667748 DOI: 10.3389/fpsyt.2019.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
Addiction to psychostimulants like cocaine, methamphetamine, and nicotine poses a continuing medical and social challenge both in the United States and all over the world. Despite a desire to quit drug use, return to drug use after a period of abstinence is a common problem among individuals dependent on psychostimulants. Recovery for psychostimulant drug-dependent individuals is particularly challenging because psychostimulant drugs induce significant changes in brain regions associated with cognitive functions leading to cognitive deficits. These cognitive deficits include impairments in learning/memory, poor decision making, and impaired control of behavioral output. Importantly, these drug-induced cognitive deficits often impact adherence to addiction treatment programs and predispose abstinent addicts to drug use relapse. Additionally, these cognitive deficits impact effective social and professional rehabilitation of abstinent addicts. The goal of this paper is to review neural substrates based on animal studies that could be pharmacologically targeted to reverse psychostimulant-induced cognitive deficits such as impulsivity and impairment in learning and memory. Further, the review will discuss neural substrates that could be used to facilitate extinction learning and thus reduce emotional and behavioral responses to drug-associated cues. Moreover, the review will discuss some non-pharmacological approaches that could be used either alone or in combination with pharmacological compounds to treat the above-mentioned cognitive deficits. Psychostimulant addiction treatment, which includes treatment for cognitive deficits, will help promote abstinence and allow for better rehabilitation and integration of abstinent individuals into society.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, United States
| |
Collapse
|
14
|
Balachandran RC, Sieg ML, Tran CT, Clancy BM, Beaudin SA, Eubig PA. Cholinergic and dopaminergic interactions alter attention and response inhibition in Long-Evans rats performing the 5-choice serial reaction time task. Pharmacol Biochem Behav 2018; 175:160-173. [DOI: 10.1016/j.pbb.2018.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/30/2018] [Accepted: 10/24/2018] [Indexed: 01/07/2023]
|
15
|
Sasamori H, Ohmura Y, Kubo T, Yoshida T, Yoshioka M. Assessment of impulsivity in adolescent mice: A new training procedure for a 3-choice serial reaction time task. Behav Brain Res 2018; 343:61-70. [DOI: 10.1016/j.bbr.2018.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/26/2017] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
16
|
Pujol CN, Paasche C, Laprevote V, Trojak B, Vidailhet P, Bacon E, Lalanne L. Cognitive effects of labeled addictolytic medications. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:306-332. [PMID: 28919445 DOI: 10.1016/j.pnpbp.2017.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Alcohol, tobacco, and illegal drug usage is pervasive throughout the world, and abuse of these substances is a major contributor to the global disease burden. Many pharmacotherapies have been developed over the last 50years to target addictive disorders. While the efficacy of these pharmacotherapies is largely recognized, their cognitive impact is less known. However, all substance abuse disorders are known to promote cognitive disorders like executive dysfunction and memory impairment. These impairments are critical for the maintenance of addictive behaviors and impede cognitive behavioral therapies that are regularly administered in association with pharmacotherapies. It is also unknown if addictolytic medications have an impact on preexisting cognitive disorders, and if this impact is modulated by the indication of prescription, i.e. abstinence, reduction or substitution, or by the specific action of the medication. METHOD We reviewed the cognitive effects of labeled medications for tobacco addiction (varenicline, bupropion, nicotine patch and nicotine gums), alcohol addiction (naltrexone, nalmefene, baclofen, disulfiram, sodium oxybate, acamprosate), and opioid addiction (methadone, buprenorphine) in human studies. Studies were selected following MOOSE guidelines for systematic reviews of observational studies, using the keywords [Cognition] and [Cognitive disorders] and [treatment] for each medication. RESULTS 971 articles were screened and 77 studies met the inclusion criteria and were reported in this review (for alcohol abuse, n=21, for tobacco n=22, for opioid n=34. However, very few comparative clinical trials have explored the chronic effects of addictolytic medications on cognition in addictive behaviors, and there are no clinical trials on the cognitive impact of nalmefene in patients suffering from alcohol use disorders. DISCUSSION Although some medications seem to enhance cognition in patients suffering from cognitive disorders, others could promote cognitive impairments, and our work highlights a lack of literature on this subject. In conclusion, more comparative clinical trials are needed to better understand the cognitive impact of addictolytic medications.
Collapse
Affiliation(s)
- Camille Noélie Pujol
- Department of Neurosciences, Institute for Functional Genomics, INSERM U-661, CNRS UMR-5203, 34094 Montpellier, France
| | - Cecilia Paasche
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Vincent Laprevote
- Centre Psychothérapique de Nancy, Laxou, F-54520, France.; EA 7298, INGRES, Université de Lorraine, Vandoeuvre-lès-, Nancy F-54000, France; CHU Nancy, Maison des Addictions, Nancy, F-54000, France.
| | - Benoit Trojak
- Department of Psychiatry and Addictology, University Hospital of Dijon, France; EA 4452, LPPM, University of Burgundy, France.
| | - Pierre Vidailhet
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France; Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France..
| | - Elisabeth Bacon
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - Laurence Lalanne
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France; Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France..
| |
Collapse
|
17
|
Tsutsui-Kimura I, Ohmura Y, Yoshida T, Yoshioka M. Milnacipran affects mouse impulsive, aggressive, and depressive-like behaviors in a distinct dose-dependent manner. J Pharmacol Sci 2017; 134:181-189. [PMID: 28694090 DOI: 10.1016/j.jphs.2017.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/12/2022] Open
Abstract
Serotonin/noradrenaline reuptake inhibitors (SNRIs) are widely used for the treatment for major depressive disorder, but these drugs induce several side effects including increased aggression and impulsivity, which are risk factors for substance abuse, criminal involvement, and suicide. To address this issue, milnacipran (0, 3, 10, or 30 mg/kg), an SNRI and antidepressant, was intraperitoneally administered to mice prior to the 3-choice serial reaction time task, resident-intruder test, and forced swimming test to measure impulsive, aggressive, and depressive-like behaviors, respectively. A milnacipran dose of 10 mg/kg suppressed all behaviors, which was accompanied by increased dopamine and serotonin levels in the medial prefrontal cortex (mPFC) but not in the nucleus accumbens (NAc). Although the most effective dose for depressive-like behavior was 30 mg/kg, the highest dose increased aggressive behavior and unaffected impulsive behavior. Increased dopamine levels in the NAc could be responsible for the effects. In addition, the mice basal impulsivity was negatively correlated with the latency to the first agonistic behavior. Thus, the optimal dose range of milnacipran is narrower than previously thought. Finding drugs that increase serotonin and dopamine levels in the mPFC without affecting dopamine levels in the NAc is a potential strategy for developing novel antidepressants.
Collapse
Affiliation(s)
- Iku Tsutsui-Kimura
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo 160-8582, Japan; Japan Society for the Promotion of Science, Japan; Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
| | - Yu Ohmura
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
| | - Takayuki Yoshida
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Mitsuhiro Yoshioka
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
18
|
Mei X, Tian L, Xue Z, Li X. A working memory task reveals different patterns of impulsivity in male and female college students. Behav Processes 2017; 138:127-133. [PMID: 28279781 DOI: 10.1016/j.beproc.2017.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
Impulsivity is an important personality trait that affects people's lives every day. Because of the complicated structures and various measurements of impulsivity, the conclusion that whether there were gender differences on impulsivity remained controversial. In our study, we used delay discounting and probability discounting to measure impulsive choice and employed stop signal reaction time task (SSRT) to measure impulsive action within the same subjects. No inherent gender differences were found, either on impulsive choice or on impulsive action. However, after adding a working memory (WM) task, we found an interaction between gender and WM: males made more impulsive choices in the delay discounting task, but females remained no change, and this only occurred when the reward amount was large; in the SSRT, the males showed better inhibitory control under the WM load condition, but females did not. These results demonstrate that gender difference does not exist on impulsivity biologically, but the increased working memory load could affect the gender's sense of delay gratification and the ability of inhibitory control differently. These findings can contribute to the studies of gender differences on impulsivity and draw attention to the need for further research that gender factors should be considered more carefully when exploring the effects of working memory.
Collapse
Affiliation(s)
- Xiaolin Mei
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing 100048, China
| | - Lin Tian
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing 100048, China
| | - Zhaoxia Xue
- Department of Medical Psychology, College of Humanities & Social Science, Shanxi Medical University, Taiyuan 030001, China
| | - Xinwang Li
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
19
|
Ohmura Y, Sasamori H, Tsutsui-Kimura I, Izumi T, Yoshida T, Yoshioka M. Varenicline provokes impulsive action by stimulating α4β2 nicotinic acetylcholine receptors in the infralimbic cortex in a nicotine exposure status-dependent manner. Pharmacol Biochem Behav 2017; 154:1-10. [DOI: 10.1016/j.pbb.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/04/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|
20
|
Sfera A, Osorio C, Inderias LA, Parker V, Price AI, Cummings M. The Obesity-Impulsivity Axis: Potential Metabolic Interventions in Chronic Psychiatric Patients. Front Psychiatry 2017; 8:20. [PMID: 28243210 PMCID: PMC5303716 DOI: 10.3389/fpsyt.2017.00020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/25/2017] [Indexed: 12/20/2022] Open
Abstract
Pathological impulsivity is encountered in a broad range of psychiatric conditions and is thought to be a risk factor for aggression directed against oneself or others. Recently, a strong association was found between impulsivity and obesity which may explain the high prevalence of metabolic disorders in individuals with mental illness even in the absence of exposure to psychotropic drugs. As the overlapping neurobiology of impulsivity and obesity is being unraveled, the question asked louder and louder is whether they should be treated concomitantly. The treatment of obesity and metabolic dysregulations in chronic psychiatric patients is currently underutilized and often initiated late, making correction more difficult to achieve. Addressing obesity and metabolic dysfunction in a preventive manner may not only lower morbidity and mortality but also the excessive impulsivity, decreasing the risk for aggression. In this review, we take a look beyond psychopharmacological interventions and discuss dietary and physical therapy approaches.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, Psychiatry, Patton, CA, USA
| | | | | | | | - Amy I. Price
- Oxford University, Evidence Based Medicine, Oxford, UK
| | | |
Collapse
|
21
|
Usage de substances chez des patients hospitalisés pour rechute schizophrénique : étude transversale. ANNALES MEDICO-PSYCHOLOGIQUES 2016. [DOI: 10.1016/j.amp.2015.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Parikh V, Kutlu MG, Gould TJ. nAChR dysfunction as a common substrate for schizophrenia and comorbid nicotine addiction: Current trends and perspectives. Schizophr Res 2016; 171:1-15. [PMID: 26803692 PMCID: PMC4762752 DOI: 10.1016/j.schres.2016.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The prevalence of tobacco use in the population with schizophrenia is enormously high. Moreover, nicotine dependence is found to be associated with symptom severity and poor outcome in patients with schizophrenia. The neurobiological mechanisms that explain schizophrenia-nicotine dependence comorbidity are not known. This study systematically reviews the evidence highlighting the contribution of nicotinic acetylcholine receptors (nAChRs) to nicotine abuse in schizophrenia. METHODS Electronic data bases (Medline, Google Scholar, and Web of Science) were searched using the selected key words that match the aims set forth for this review. A total of 276 articles were used for the qualitative synthesis of this review. RESULTS Substantial evidence from preclinical and clinical studies indicated that dysregulation of α7 and β2-subunit containing nAChRs account for the cognitive and affective symptoms of schizophrenia and nicotine use may represent a strategy to remediate these symptoms. Additionally, recent meta-analyses proposed that early tobacco use may itself increase the risk of developing schizophrenia. Genetic studies demonstrating that nAChR dysfunction that may act as a shared vulnerability factor for comorbid tobacco dependence and schizophrenia were found to support this view. The development of nAChR modulators was considered an effective therapeutic strategy to ameliorate psychiatric symptoms and to promote smoking cessation in schizophrenia patients. CONCLUSIONS The relationship between schizophrenia and smoking is complex. While the debate for the self-medication versus addiction vulnerability hypothesis continues, it is widely accepted that a dysfunction in the central nAChRs represent a common substrate for various symptoms of schizophrenia and comorbid nicotine dependence.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States.
| | - Munir Gunes Kutlu
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States
| | - Thomas J Gould
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States
| |
Collapse
|
23
|
Wilmot B, Fry R, Smeester L, Musser ED, Mill J, Nigg JT. Methylomic analysis of salivary DNA in childhood ADHD identifies altered DNA methylation in VIPR2. J Child Psychol Psychiatry 2016; 57:152-60. [PMID: 26304033 PMCID: PMC4724325 DOI: 10.1111/jcpp.12457] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Peripheral epigenetic marks hold promise for understanding psychiatric illness and may represent fingerprints of gene-environment interactions. We conducted an initial examination of CpG methylation variation in children with or without attention-deficit/hyperactivity disorder (ADHD). METHODS Children age 7-12 were recruited, screened, evaluated and assigned to ADHD or non-ADHD groups by defined research criteria. Two independent age-matched samples were examined, a discovery set (n = 92, all boys, half control, half ADHD) and a confirmation set (n = 20, half ADHD, all boys). 5-methylcytosine levels were quantified in salivary DNA using the Illumina 450 K HumanMethylation array. Genes for which multiple probes were nominally significant and had a beta difference of at least 2% were evaluated for biological relevance and prioritized for confirmation and sequence validation. Gene pathways were explored and described. RESULTS Two genes met the criteria for confirmation testing, VIPR2 and MYT1L; both had multiple probes meeting cutoffs and strong biological relevance. Probes on VIPR2 passed FDR correction in the confirmation set and were confirmed through bisulfite sequencing. Enrichment analysis suggested involvement of gene sets or pathways related to inflammatory processes and modulation of monoamine and cholinergic neurotransmission. CONCLUSIONS Although it is unknown to what extent CpG methylation seen in peripheral tissue reflect transcriptomic changes in the brain, these initial results indicate that peripheral DNA methylation markers in ADHD may be promising and suggest targeted hypotheses for future study in larger samples.
Collapse
Affiliation(s)
- Beth Wilmot
- Division of Psychology, Oregon Health & Science University, Portland, OR
| | - Rebecca Fry
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC
| | - Lisa Smeester
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC
| | - Erica D. Musser
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Jonathan Mill
- University of Exeter Medical School, Exeter University, Exeter,Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Joel T. Nigg
- Division of Psychology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
24
|
Tian L, Qin X, Sun J, Li X, Wei L. Differential effects of co-administration of oxotremorine with SCH 23390 on impulsive choice in high-impulsive rats and low-impulsive rats. Pharmacol Biochem Behav 2016; 142:56-63. [PMID: 26772787 DOI: 10.1016/j.pbb.2016.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
The effect of acetylcholine on impulsive choice is thought to be due to interactions between cholinergic and dopaminergic systems, but this hypothesis has not been proven. This study investigated whether D1-like receptors were involved in the effects of the muscarinic cholinergic agonist oxotremorine on impulsive choice in high-impulsive rats (HI rats, n=8) and low-impulsive rats (LI rats, n=8) characterized by basal levels of impulsive choice in a delay-discounting task. The results revealed that oxotremorine (0.05mg/kg) significantly increased the choice of the large reinforcer in HI rats, whereas decreased the choice of the large reinforcer in LI rats. The D1-like antagonist SCH 23390 produced significant reductions in the large-reinforcer choice in HI rats (0.01mg/kg) and LI rats (0.005, 0.0075, and 0.01mg/kg). SCH 23390 significantly inhibited the increase in the choice of the large reinforcer induced by oxotremorine (0.05mg/kg) in HI rats at doses of 0.005 and 0.0075mg/kg, but enhanced the effect of oxotremorine in LI rats only at the dose of 0.0075mg/kg. These findings suggested that D1-like receptors might be involved in the differential effects of oxotremorine on impulsive choice between HI rats and LI rats.
Collapse
Affiliation(s)
- Lin Tian
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing 100048, China
| | - Xingna Qin
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing 100048, China
| | - Jinling Sun
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing 100048, China
| | - Xinwang Li
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing 100048, China.
| | - Li Wei
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
25
|
Bloem B, Poorthuis RB, Mansvelder HD. Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity. Front Neural Circuits 2014; 8:17. [PMID: 24653678 PMCID: PMC3949318 DOI: 10.3389/fncir.2014.00017] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/20/2014] [Indexed: 11/27/2022] Open
Abstract
Acetylcholine (ACh) release in the medial prefrontal cortex (mPFC) is crucial for normal cognitive performance. Despite the fact that many have studied how ACh affects neuronal processing in the mPFC and thereby influences attention behavior, there is still a lot unknown about how this occurs. Here we will review the evidence that cholinergic modulation of the mPFC plays a role in attention and we will summarize the current knowledge about the role between ACh receptors (AChRs) and behavior and how ACh receptor activation changes processing in the cortical microcircuitry. Recent evidence implicates fast phasic release of ACh in cue detection and attention. This review will focus mainly on the fast ionotropic nicotinic receptors and less on the metabotropic muscarinic receptors. Finally, we will review limitations of the existing studies and address how innovative technologies might push the field forward in order to gain understanding into the relation between ACh, neuronal activity and behavior.
Collapse
Affiliation(s)
- Bernard Bloem
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije UniversiteitAmsterdam, Netherlands
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridge, MA, USA
| | | | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije UniversiteitAmsterdam, Netherlands
| |
Collapse
|
26
|
Cannon J, McCarthy MM, Lee S, Lee J, Börgers C, Whittington MA, Kopell N. Neurosystems: brain rhythms and cognitive processing. Eur J Neurosci 2014; 39:705-19. [PMID: 24329933 PMCID: PMC4916881 DOI: 10.1111/ejn.12453] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/29/2013] [Accepted: 11/11/2013] [Indexed: 11/30/2022]
Abstract
Neuronal rhythms are ubiquitous features of brain dynamics, and are highly correlated with cognitive processing. However, the relationship between the physiological mechanisms producing these rhythms and the functions associated with the rhythms remains mysterious. This article investigates the contributions of rhythms to basic cognitive computations (such as filtering signals by coherence and/or frequency) and to major cognitive functions (such as attention and multi-modal coordination). We offer support to the premise that the physiology underlying brain rhythms plays an essential role in how these rhythms facilitate some cognitive operations.
Collapse
Affiliation(s)
- Jonathan Cannon
- Department of Mathematics and StatisticsBoston University111 Cummington MallBostonMA02215USA
| | - Michelle M. McCarthy
- Department of Mathematics and StatisticsBoston University111 Cummington MallBostonMA02215USA
| | - Shane Lee
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
| | - Jung Lee
- Department of Mathematics and StatisticsBoston University111 Cummington MallBostonMA02215USA
| | | | | | - Nancy Kopell
- Department of Mathematics and StatisticsBoston University111 Cummington MallBostonMA02215USA
| |
Collapse
|
27
|
Heugebaert TSA, Van Overtveldt M, De Blieck A, Wuyts B, Augustijns P, Ponce-Gámez E, Rivera A, De Groote D, Lefebvre RA, Wouters P, Meert T, Devulder J, Stevens CV. Synthesis of 1-substituted epibatidine analogues and their in vitro and in vivo evaluation as α4β2nicotinic acetylcholine receptor ligands. RSC Adv 2014. [DOI: 10.1039/c3ra44379e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Scott D, Taylor JR. Chronic nicotine attenuates phencyclidine-induced impulsivity in a mouse serial reaction time task. Behav Brain Res 2013; 259:164-73. [PMID: 24239695 DOI: 10.1016/j.bbr.2013.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/16/2013] [Accepted: 11/06/2013] [Indexed: 11/25/2022]
Abstract
Schizophrenia is a disorder characterized by positive, negative, and cognitive symptoms. While positive symptoms can be effectively treated with typical antipsychotic medication, which generally affects the dopaminergic system, negative and cognitive symptoms, including attentional deficits and impulsive behavior, are less sensitive to standard treatments. It has further been well documented that schizophrenic patients use tobacco products at a rate much higher than the general population, and this persists despite treatment. It has been argued this behavior may be a form of self-medication, to alleviate some symptoms of schizophrenia. It has further been posited that prefrontal glutamatergic hypofunction may underlie some aspects of schizophrenia, and in accordance with this model, systemic phencyclidine has been used to model the disease. We employed a modified 5-choice serial reaction time test, a paradigm that is often used to investigate many of the treatment-resistant symptoms of schizophrenia including impulsivity, selective attention, and sustained attention/cognitive vigilance, to determine the medicinal effects of nicotine. We demonstrate that chronic oral, but not acute injections of nicotine can selectively attenuate phencyclidine-induced increases in impulsivity without affecting other measures of attention. This suggests that nicotine use by schizophrenics may provide some relief of distinct symptoms that involve impulsive behaviors.
Collapse
Affiliation(s)
- Daniel Scott
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT, United States
| | - Jane R Taylor
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT, United States.
| |
Collapse
|
29
|
Pripfl J, Neumann R, Köhler U, Lamm C. Effects of transcranial direct current stimulation on risky decision making are mediated by 'hot' and 'cold' decisions, personality, and hemisphere. Eur J Neurosci 2013; 38:3778-85. [PMID: 24124667 DOI: 10.1111/ejn.12375] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/27/2013] [Accepted: 09/03/2013] [Indexed: 02/01/2023]
Abstract
Previous results point towards a lateralization of dorsolateral prefrontal cortex (DLPFC) function in risky decision making. While the right hemisphere seems involved in inhibitory cognitive control of affective impulses, the left DLPFC is crucial in the deliberative processing of information relevant for the decision. However, a lack of empirical evidence precludes definitive conclusions. The aim of our study was to determine whether anodal transcranial direct current stimulation (tDCS) over the right DLPFC with cathodal tDCS over the lDLPFC (anodal right/cathodal left) or vice versa (anodal left/cathodal right) differentially modulates risk-taking in a task [the Columbia Card Task (CCT)] specifically engaging affect-charged (Hot CCT) vs. deliberative (Cold CCT) decision making. The facilitating effect of the anodal stimulation on neuronal activity was emphasized by the use of a small anode and a big cathode. To investigate the role of individual differences in risk-taking, participants were either smokers or non-smokers. Anodal left/cathodal right stimulation decreased risk-taking in the 'cold' cognition version of the task, in both groups, probably by modulating deliberative processing. In the 'hot' version, anodal right/cathodal left stimulation led to opposite effects in smokers and non-smokers, which might be explained by the engagement of the same inhibitory control mechanism: in smokers, improved controllability of risk-seeking impulsivity led to more conservative decisions, while inhibition of risk-aversion in non-smokers resulted in riskier choices. These results provide evidence for a hemispheric asymmetry and personality-dependent tDCS effects in risky decision making, and may be important for clinical research on addiction and depression.
Collapse
Affiliation(s)
- Jürgen Pripfl
- Social, Cognitive and Affective Neuroscience (SCAN) Unit, Faculty of Psychology, University of Vienna, A-1010, Vienna, Austria
| | | | | | | |
Collapse
|
30
|
Lee JH, Whittington MA, Kopell NJ. Top-down beta rhythms support selective attention via interlaminar interaction: a model. PLoS Comput Biol 2013; 9:e1003164. [PMID: 23950699 PMCID: PMC3738471 DOI: 10.1371/journal.pcbi.1003164] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/16/2013] [Indexed: 02/02/2023] Open
Abstract
Cortical rhythms have been thought to play crucial roles in our cognitive abilities. Rhythmic activity in the beta frequency band, around 20 Hz, has been reported in recent studies that focused on neural correlates of attention, indicating that top-down beta rhythms, generated in higher cognitive areas and delivered to earlier sensory areas, can support attentional gain modulation. To elucidate functional roles of beta rhythms and underlying mechanisms, we built a computational model of sensory cortical areas. Our simulation results show that top-down beta rhythms can activate ascending synaptic projections from L5 to L4 and L2/3, responsible for biased competition in superficial layers. In the simulation, slow-inhibitory interneurons are shown to resonate to the 20 Hz input and modulate the activity in superficial layers in an attention-related manner. The predicted critical roles of these cells in attentional gain provide a potential mechanism by which cholinergic drive can support selective attention. Top-down signals originate from higher cognitive areas such as parietal and prefrontal cortex and propagate to earlier stages of the brain. They have been thought to be associated with selective attention, and recent physiological studies suggest that top-down signals in the beta frequency band can support selective attention. In this study, we employ a computational model to investigate potential mechanisms by which top-down beta rhythms can influence neural responses induced by presentation of stimuli. The model includes several cell types, reportedly crucial for generating cortical rhythmic activity in the gamma and beta frequency bands, and the simulation results show that top-down beta rhythms are capable of reproducing experimentally observed attentional effects on neural responses to visual stimuli. These modulatory effects of top-down beta rhythms are mainly induced via activation of ascending inhibition originating from deep layer slow inhibitory interneurons. Since the excitability of slow interneurons can be increased by cholinergic neuromodulators, these interneurons may mediate the effects of cholinergic tone on attention.
Collapse
Affiliation(s)
- Jung H Lee
- Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, United States of America.
| | | | | |
Collapse
|
31
|
Mocking RJT, Patrick Pflanz C, Pringle A, Parsons E, McTavish SF, Cowen PJ, Harmer CJ. Effects of short-term varenicline administration on emotional and cognitive processing in healthy, non-smoking adults: a randomized, double-blind, study. Neuropsychopharmacology 2013; 38:476-84. [PMID: 23072834 PMCID: PMC3547198 DOI: 10.1038/npp.2012.205] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 01/24/2023]
Abstract
Varenicline is an effective and increasingly prescribed drug for smoking cessation, but has been associated with depressive symptoms and suicidal behavior. However, it remains unclear whether those changes in mood and behavior are directly related to varenicline use, or caused by smoking cessation itself or reflects depression and suicidality rates in smokers, independent of treatment. To investigate the influence of varenicline on mood and behavior independent of smoking and smoking cessation, we assessed the effects of varenicline on emotional processing (a biomarker of depressogenic effects), emotion-potentiated startle reactivity, impulsivity (linked with suicidal behavior), and cognitive performance in non-smoking subjects. We used a randomized, double-blind design, in which we administered varenicline or placebo to healthy subjects over 7 days (0.5 mg/day first 3 days, then 1 mg/day). Cognitive and emotional processing was assessed by a battery of computerized tasks and recording of emotion-potentiated startle response. A total of 41 subjects were randomized, with 38 subjects included in the analysis. The varenicline group did not differ from placebo in terms of negative biases in emotional processing or mood. However, compared with placebo, the varenicline group scored higher on working and declarative memory. In conclusion, short-term varenicline use did not influence negative biases in emotional processing or impulsivity in non-smoking subjects, thereby not supporting direct depressogenic or suicidal risk behavior-inducing effects. In contrast, varenicline may have cognitive-enhancing effects.
Collapse
Affiliation(s)
- Roel JT Mocking
- University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Department of Psychiatry, Programme for Mood Disorders, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - C Patrick Pflanz
- University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Institute of Neuroscience and Medicine, BSc Programme in Clinical and Experimental Neuroscience, Jülich Research Centre, Institute of Neuroscience and Medicine, University of Cologne, Jülich, Germany
| | - Abbie Pringle
- University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | | | - Sarah F McTavish
- University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Phil J Cowen
- University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | | |
Collapse
|