1
|
Camarini R, Marianno P, Costa BY, Palombo P, Noto AR. Environmental enrichment and complementary clinical interventions as therapeutic approaches for alcohol use disorder in animal models and humans. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:323-354. [PMID: 39523059 DOI: 10.1016/bs.irn.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alcohol use disorder (AUD) is a multifactorial disorder arising from a complex interplay of various genetic, environmental, psychological, and social factors. Environmental factors influence alcohol misuse and can lead to AUD. While stress plays a crucial role in the onset and progression of this disorder, environmental enrichment (EE) also influences ethanol-induced behavioral and neurobiological responses. These alterations include reduced ethanol consumption, diminished operant self-administration, attenuated behavioral sensitization, and enhanced conditioned place preference. EE exerts modulatory effects on multiple neurobiological processes, such as the brain-derived neurotrophic factor/TrkB signaling pathway, the oxytocinergic system, and the hypothalamic-pituitary-adrenal axis. EE, which includes stimulating activities to counteract ethanol effects in animal studies, has parallels in human intervention that have shown potential benefits. Physical activity, cognitive behavioral therapy, and meditation, alongside techniques involving cognitive stimulation, social interaction, and recreational activities, may lead to more effective therapeutic outcomes in treatments of AUD.
Collapse
Affiliation(s)
- Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil.
| | - Priscila Marianno
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil
| | - Beatriz Yamada Costa
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil
| | - Paola Palombo
- Department of Psychobiology, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Ana Regina Noto
- Department of Psychobiology, Universidade Federal de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Smith KB, Murack M, Sharani SA, Ismail N. Environmental Enrichment Cage for Laboratory Mice: A Downloadable Alternative. Curr Protoc 2024; 4:e913. [PMID: 38230543 DOI: 10.1002/cpz1.913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Environmentally enriched housing (EE) provides a stimulating and species-typical environment that enhances brain plasticity and cognition, while reducing disease severity in laboratory animals. However, standardizing EE protocols has been challenging due to issues such as variability, high pricing, or limited laboratory space. To address these challenges, we present a replicable and cost-efficient cage protocol that is accessible to researchers with limited resources and space constraints. The protocol is designed to provide a stimulating and species-typical environment for the animals. It incorporates elements such as social interaction, physical exercise, cognitive stimulation, manipulable objects, environmental variability, and sensory stimulation. As evidenced in our previous studies using our protocol, users can expect to observe similar neuroplastic and health-wise benefits that accompany EE experimental paradigms. These included straightforward step-by-step guide, which allows for construction of functional EE cages in under 8 hr. Basic knowledge of 3D printing and laser cutting is required, but no advanced skills are necessary. The protocol enables researchers to create stimulating and replicable environments that promote animal welfare, enhance brain plasticity, and yield valuable experimental results for low cost. © 2024 Wiley Periodicals LLC. Basic Protocol: An effective and cost-efficient environmental enrichment cage designed to encourage standardization amongst laboratory protocols.
Collapse
Affiliation(s)
- Kevin B Smith
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Michael Murack
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Sara Al Sharani
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Nafissa Ismail
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
- University of Ottawa LIFE Research Institute, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Restoring Age-Related Cognitive Decline through Environmental Enrichment: A Transcriptomic Approach. Cells 2022; 11:cells11233864. [PMID: 36497123 PMCID: PMC9736066 DOI: 10.3390/cells11233864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cognitive decline is one of the greatest health threats of old age and the maintenance of optimal brain function across a lifespan remains a big challenge. The hippocampus is considered particularly vulnerable but there is cross-species consensus that its functional integrity benefits from the early and continuous exercise of demanding physical, social and mental activities, also referred to as environmental enrichment (EE). Here, we investigated the extent to which late-onset EE can improve the already-impaired cognitive abilities of lifelong deprived C57BL/6 mice and how it affects gene expression in the hippocampus. To this end, 5- and 24-month-old mice housed in standard cages (5mSC and 24mSC) and 24-month-old mice exposed to EE in the last 2 months of their life (24mEE) were subjected to a Barnes maze task followed by next-generation RNA sequencing of the hippocampal tissue. Our analyses showed that late-onset EE was able to restore deficits in spatial learning and short-term memory in 24-month-old mice. These positive cognitive effects were reflected by specific changes in the hippocampal transcriptome, where late-onset EE affected transcription much more than age (24mSC vs. 24mEE: 1311 DEGs, 24mSC vs. 5mSC: 860 DEGs). Remarkably, a small intersection of 72 age-related DEGs was counter-regulated by late-onset EE. Of these, Bcl3, Cttnbp2, Diexf, Esr2, Grb10, Il4ra, Inhba, Rras2, Rps6ka1 and Socs3 appear to be particularly relevant as key regulators involved in dendritic spine plasticity and in age-relevant molecular signaling cascades mediating senescence, insulin resistance, apoptosis and tissue regeneration. In summary, our observations suggest that the brains of aged mice in standard cage housing preserve a considerable degree of plasticity. Switching them to EE proved to be a promising and non-pharmacological intervention against cognitive decline.
Collapse
|
4
|
Environmental enrichment mitigates PTSD-like behaviors in adult male rats exposed to early life stress by regulating histone acetylation in the hippocampus and amygdala. J Psychiatr Res 2022; 155:120-136. [PMID: 36029624 DOI: 10.1016/j.jpsychires.2022.07.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
Early life stress (ELS) can cause long-term changes in gene expression, affect cognition, mood, and behavior, and increase susceptibility to post-traumatic stress disorder (PTSD) in adulthood, in which the histone acetylation plays a crucial role. Studies have found that environmental enrichment (EE) mitigated the unfavorable outcomes of ELS. However, the underlying mechanism of the histone acetylation is not yet completely clear. The purpose of this study was to explore the effect of EE on the histone acetylation after ELS. In this study, using single prolonged stress (SPS) paradigm in early adolescent rats explored the long-term effects of ELS on behavior, the activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs), as well as the acetylation levels of the lysine 9 site of histone H3 (H3K9) and lysine 12 site of histone H4 (H4K12) in the hippocampus and amygdala. Meanwhile, the protective effects of EE intervention were examined. We found that adult male rats exposed to ELS showed behavioral changes, including reduced locomotor activity, increased anxiety-like behaviors, impaired spatial learning and memory, enhanced contextual and cued fear memory, and the HATs/HDACs ratio and acetyl H3K9 (Ac-H3K9) and acetyl H4K12 (Ac-H4K12) were increased in the hippocampus and decreased in the amygdala. Furthermore, EE attenuated the behavioral abnormalities from ELS, possibly through down-regulating the activity of HATs in the hippocampus and up-regulating HDACs activities in the amygdala. These finding suggested that EE could ameliorate ELS-induced PTSD-like behaviors by regulating histone acetylation in the hippocampus and amygdala, reducing the susceptibility to PTSD in adulthood.
Collapse
|
5
|
Hillman TC, Idnani R, Wilson CG. An Inexpensive Open-Source Chamber for Controlled Hypoxia/Hyperoxia Exposure. Front Physiol 2022; 13:891005. [PMID: 35903067 PMCID: PMC9315218 DOI: 10.3389/fphys.2022.891005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding hypoxia/hyperoxia exposure requires either a high-altitude research facility or a chamber in which gas concentrations are precisely and reproducibly controlled. Hypoxia-induced conditions such as hypoxic-ischemic encephalopathy (HIE), obstructive or central apneas, and ischemic stroke present unique challenges for the development of models with acute or chronic hypoxia exposure. Many murine models exist to study these conditions; however, there are a variety of different hypoxia exposure protocols used across laboratories. Experimental equipment for hypoxia exposure typically includes flow regulators, nitrogen concentrators, and premix oxygen/nitrogen tanks. Commercial hypoxia/hyperoxia chambers with environmental monitoring are incredibly expensive and require proprietary software with subscription fees or highly expensive software licenses. Limitations exist in these systems as most are single animal systems and not designed for extended or intermittent hypoxia exposure. We have developed a simple hypoxia chamber with off-the-shelf components, and controlled by open-source software for continuous data acquisition of oxygen levels and other environmental factors (temperature, humidity, pressure, light, sound, etc.). Our chamber can accommodate up to two mouse cages and one rat cage at any oxygen level needed, when using a nitrogen concentrator or premixed oxygen/nitrogen tank with a flow regulator, but is also scalable. Our system uses a Python-based script to save data in a text file using modules from the sensor vendor. We utilized Python or R scripts for data analysis, and we have provided examples of data analysis scripts and acquired data for extended exposure periods (≤7 days). By using FLOS (Free-Libre and open-source) software and hardware, we have developed a low-cost and customizable system that can be used for a variety of exposure protocols. This hypoxia/hyperoxia exposure chamber allows for reproducible and transparent data acquisition and increased consistency with a high degree of customization for each experimenter’s needs.
Collapse
Affiliation(s)
- Tyler C. Hillman
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | - Ryan Idnani
- Department of Bioengineering, College of Engineering, University of California, Berkeley, CA, United States
| | - Christopher G. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
- Department of Pediatrics, School of Medicine, Loma Linda University Medical Center Loma Linda University, Loma Linda, CA, United States
- *Correspondence: Christopher G. Wilson,
| |
Collapse
|
6
|
Yuan T, Orock A, Greenwood-VanMeerveld B. An enriched environment reduces chronic stress-induced visceral pain through modulating microglial activity in the central nucleus of the amygdala. Am J Physiol Gastrointest Liver Physiol 2022; 322:G223-G233. [PMID: 34877892 PMCID: PMC8793868 DOI: 10.1152/ajpgi.00307.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cognitive behavioral therapy (CBT) improves the quality of life for patients with brain-gut disorders; however, the underlying mechanisms of CBT remain to be explored. Previously, we showed that environmental enrichment (EE), an experimental paradigm that mirrors positive behavioral intervention, ameliorates chronic stress-induced visceral hypersensitivity in a rodent model via mechanisms involving altered activity in the central nucleus of amygdala (CeA). In the present study, we investigated whether microglia-mediated synaptic plasticity in the CeA is a potential mechanism underlying the protective effects of EE against stress-induced visceral hypersensitivity. We stereotaxically implanted corticosterone (CORT) micropellets onto the dorsal margin of the CeA shown previously to induce colonic hypersensitivity. Animals were housed in EE cages or standard cages for 14 days after CORT implantation. Visceral sensitivity was assessed via visceromotor behavioral response to colorectal distension. Microglial morphology, microglia-mediated synaptic engulfment, and the expression of synaptic pruning-related signals complement component 1q (C1q), complement component 3 (C3), and C3 receptor (C3R) were measured using immunofluorescence and RNAscope assay. We found that housing CORT implanted rats in EE cages for 14 days attenuated visceral hypersensitivity in both male and female rats as compared with control rats maintained in standard housing. EE reduced CORT-induced microglial remodeling and microglia-mediated synaptic pruning with reduced C1q and CR3, but not C3, expression. Our data suggest that exposure to EE is sufficient to ameliorate stress-induced visceral pain via reducing amygdala microglia-modulated neuronal plasticity.NEW & NOTEWORTHY Clinical studies show that cognitive behavioral therapy (CBT) is effective in ameliorating visceral pain in patient with irritable bowel syndrome (IBS), yet the underlying mechanisms remain unexplored. By using environmental enrichment (EE), an experimental paradigm that mirrors positive behavioral intervention, we demonstrated that microglia-mediated synaptic plasticity in the CeA explains, plays a role, at least in part, in the positive effects of EE to reduce visceral hypersensitivity.
Collapse
Affiliation(s)
- Tian Yuan
- 1Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Albert Orock
- 1Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Beverley Greenwood-VanMeerveld
- 1Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,2Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma
| |
Collapse
|
7
|
Gu JY, Xu YW, Feng LP, Dong J, Zhao LQ, Liu C, Wang HY, Zhang XY, Song C, Wang CH. Enriched environment mitigates depressive behavior by changing the inflammatory activation phenotype of microglia in the hippocampus of depression model rats. Brain Res Bull 2021; 177:252-262. [PMID: 34653561 DOI: 10.1016/j.brainresbull.2021.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Inflammation mediated by microglia has been shown to be involved in the pathogenesis of depression. The enriched environment (EE) can improve depression-like behaviors and reduce inflammatory reactions, but it is unclear whether this is by changing the inflammatory activation phenotype of microglia. METHOD A depression rat model was established using chronic unpredictable stress (CUS) for four weeks. The rats were then treated with EE or fluoxetine administration during the following three weeks. Behavior tests including sucrose preference, forced swimming and open field were applied to evaluate the depression-like behaviors of rats at the baseline period prior to CUS, the end of fourth week and at the end of the seventh week. Microglial activation and hippocampal neuro-inflammation were detected on postmortem using immunofluorescence, western blotting, and real-time polymerase reaction (PCR). RESULT The results showed that severe depressive-like behavior was induced by four weeks of CUS. Changes in peripheral blood inflammatory cytokines were detected by ELISA. Immunofluorescent staining showed the IBA-1 of microglia activation marker level significantly increased in affected rats. The hippocampal microglial activation state was determined by measuring the increased levels of iNOS an M1 marker and the decreased levels of CD206, an M2 marker. The activation of NF-κB upregulation of inflammatory cytokines in the hippocampus and factors such as IL-10 were decreased. This study showed that EE and chronic fluoxetine treatment alleviated the depressive-like behavior induced by chronic stress and significantly inhibited microglial activation, activated NF-κB inflammasome and increased pro-inflammatory cytokines. CONCLUSION EE can alleviate depression-like behavior by modulating the phenotype of microglia, inhibiting pro-inflammatory genes, and promoting anti-inflammatory genes. Furthermore, EE can effectively reduce the phosphorylation and expression levels of NF-κB.
Collapse
Affiliation(s)
- Jing-Yang Gu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Yao-Wei Xu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Lai-Peng Feng
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Jiao Dong
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Li-Qin Zhao
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Cong Liu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Hui-Ying Wang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Chang-Hong Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China.
| |
Collapse
|
8
|
Barbosa-Méndez S, López-Morado C, Salazar-Juárez A. Mirtazapine-induced decrease in cocaine sensitization is enhanced by environmental enrichment in rats. Pharmacol Biochem Behav 2021; 208:173237. [PMID: 34274360 DOI: 10.1016/j.pbb.2021.173237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 02/03/2023]
Abstract
Several studies have reported that mirtazapine attenuated the induction and expression of cocaine-induced locomotor sensitization. Animals placed in enriched housing environments have shown a decrease in cocaine-induced locomotor activity and sensitization. In addition, it has been suggested that a pharmacological treatment combined with a behavioral intervention increases the efficacy of the former. Thus, the objective of this study was to determine if dosing of mirtazapine in an enriched housing environment enhanced the mirtazapine-induced decrease on the induction and expression of cocaine-induced locomotor sensitization. Wistar male rats were dosed with cocaine (10 mg/kg, i.p.). During the drug-withdrawal phase, mirtazapine (30 mg/kg, i.p.) was administered under standard and enriched housing environmental conditions. The environmental enrichment consisted of housing the animals in enclosures with plastic toys, tunnels, and running wheels. After each administration, locomotor activity for each animal was recorded for 30 min. The study found that treatment with mirtazapine in an enriched housing environment produced an enhanced and persistent attenuation of the induction and expression of cocaine-induced locomotor sensitization. Additionally, it reduced the duration of cocaine-induced locomotor activity in the expression phase of locomotor sensitization. Dosing of mirtazapine in an enriched housing environment enhanced the effectiveness of mirtazapine to decrease cocaine-induced locomotor sensitization. This suggests the potential use of enriched environments to enhance the effect of mirtazapine.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370, Mexico
| | - Casandra López-Morado
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370, Mexico
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370, Mexico.
| |
Collapse
|
9
|
Huang Y, Jiang H, Zheng Q, Fok AHK, Li X, Lau CG, Lai CSW. Environmental enrichment or selective activation of parvalbumin-expressing interneurons ameliorates synaptic and behavioral deficits in animal models with schizophrenia-like behaviors during adolescence. Mol Psychiatry 2021; 26:2533-2552. [PMID: 33473150 DOI: 10.1038/s41380-020-01005-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Synaptic deficit-induced excitation and inhibition (E/I) imbalance have been implicated in the pathogenesis of schizophrenia. Using in vivo two-photon microscopy, we examined the dynamic plasticity of dendritic spines of pyramidal neurons (PNs) and "en passant" axonal bouton of parvalbumin-expressing interneurons (PVINs) in the frontal association (FrA) cortex in two adolescent mouse models with schizophrenia-like behaviors. Simultaneous imaging of PN dendritic spines and PV axonal boutons showed that repeated exposure to N-methyl-D-aspartate receptor (NMDAR) antagonist MK801 during adolescence disrupted the normal developmental balance of excitatory and inhibitory synaptic structures. This MK801-induced structural E/I imbalance significantly correlated with animal recognition memory deficits and could be ameliorated by environmental enrichment (EE). In addition, selective chemogenetic activation of PVINs in the FrA mimicked the effects of EE on both synaptic plasticity and animal behavior, while selective inhibition of PVIN abolished EE's beneficial effects. Electrophysiological recordings showed that chronic MK801 treatment significantly suppressed the frequency of mEPSC/mIPSC ratio of layer (L) 2/3 PNs and significantly reduced the resting membrane potential of PVINs, the latter was rescued by selective activation of PVINs. Such manipulations of PVINs also showed similar effects in PV-Cre; ErbB4fl/fl animal model with schizophrenia-like behaviors. EE or selective activation of PVINs in the FrA restored behavioral deficits and structural E/I imbalance in adolescent PV-Cre; ErbB4fl/fl mice, while selective inhibition of PVINs abolished EE's beneficial effects. Our findings suggest that the PVIN activity in the FrA plays a crucial role in regulating excitatory and inhibitory synaptic structural dynamics and animal behaviors, which may provide a potential therapeutic target for schizophrenia treatment.
Collapse
Affiliation(s)
- Yuhua Huang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hehai Jiang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Qiyu Zheng
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Albert Hiu Ka Fok
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaoyang Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - C Geoffrey Lau
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong. .,State Key Laboratory of Cognitive and Brain Research, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
10
|
Fan Z, Chen J, Li L, Wang H, Gong X, Xu H, Wu L, Yan C. Environmental enrichment modulates HPA axis reprogramming in adult male rats exposed to early adolescent stress. Neurosci Res 2021; 172:63-72. [PMID: 33901553 DOI: 10.1016/j.neures.2021.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/27/2022]
Abstract
Exposure to early stressful events increases susceptibility to post-traumatic stress disorder (PTSD) in adulthood, in which the hypothalamic-pituitary-adrenal (HPA) axis plays a crucial role. Studies have found that environmental enrichment (EE) mitigates the detrimental outcomes of early adversity. However, the HPA-related mechanism remains unclear. In this study, we used the single prolonged stress (SPS) paradigm to explore the long-term effects of early adolescent stress on behavior, HPA axis activity, as well as expression levels of the glucocorticoid receptor (GR), mineralocorticoid receptor (MR), corticotropin-releasing hormone receptor 1 (CRF1R) and CRF2R in the hypothalamus and hippocampus. Meanwhile, the protective effects of EE intervention were examined. We found that adult male rats exposed to adolescent stress showed reduced locomotor activity, increased anxiety-like behaviors, enhanced contextual fear memory, elevated basal plasma ACTH levels, and enhanced HPA negative feedback inhibition, as indicated by decreased plasma ACTH levels in the dexamethasone suppression test (DST). Furthermore, EE normalized the behavioral abnormalities and enhanced HPA negative feedback in stressed rats, possibly through down-regulating GR expression in the hippocampus and hypothalamus. These findings suggested that EE could ameliorate adolescent stress-induced PTSD-like behaviors and aberrant reprogramming of the HPA axis, reducing the risk of developing PTSD in adulthood.
Collapse
Affiliation(s)
- Zhixin Fan
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jie Chen
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ling Li
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hanzhang Wang
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiayu Gong
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hanfang Xu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lili Wu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Can Yan
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Stevens JS, van Rooij SJH, Jovanovic T. Developmental Contributors to Trauma Response: The Importance of Sensitive Periods, Early Environment, and Sex Differences. Curr Top Behav Neurosci 2019; 38:1-22. [PMID: 27830573 PMCID: PMC5425320 DOI: 10.1007/7854_2016_38] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review considers early factors that interact with development to contribute to later trauma responses, including developmental sensitive periods, the effects of early environment, and the emergence of sex differences. We also describe development of neural substrates that have been associated with posttraumatic stress disorder and specifically focus on fear behavior and circuitry. Emerging evidence suggests that there may be developmental shifts around age 10 in these underlying circuits that may contribute to vulnerability. We also discuss age-related changes in the importance of caregiver availability as positive buffering factors. Hormonal changes later in development with onset during puberty appear to further shape development trajectories toward risk or resilience. We highlight these recent findings as well as the great need for further longitudinal research from middle childhood through early adulthood.
Collapse
Affiliation(s)
- Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 49 Jesse Hill Jr Dr, Suite 331, Atlanta, GA, 30303, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 49 Jesse Hill Jr Dr, Suite 331, Atlanta, GA, 30303, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 49 Jesse Hill Jr Dr, Suite 331, Atlanta, GA, 30303, USA.
| |
Collapse
|
12
|
Faatehi M, Basiri M, Nezhadi A, Shabani M, Masoumi-Ardakani Y, Soltani Z, Nozari M. Early enriched environment prevents cognitive impairment in an animal model of schizophrenia induced by MK-801: Role of hippocampal BDNF. Brain Res 2019; 1711:115-119. [DOI: 10.1016/j.brainres.2019.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/25/2018] [Accepted: 01/20/2019] [Indexed: 12/16/2022]
|
13
|
Juvenile stress leads to long-term immunological metaplasticity-like effects on inflammatory responses in adulthood. Neurobiol Learn Mem 2018; 154:12-21. [DOI: 10.1016/j.nlm.2017.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
|
14
|
Abstract
Affect and emotion are defined as “an essential part of the process of an organism's interaction with stimuli.” Similar to affect, the immune response is the “tool” the body uses to interact with the external environment. Thanks to the emotional and immunological response, we learn to distinguish between what we like and what we do not like, to counteract a broad range of challenges, and to adjust to the environment we are living in. Recent compelling evidence has shown that the emotional and immunological systems share more than a similarity of functions. This review article will discuss the crosstalk between these two systems and the need for a new scientific area of research called affective immunology. Research in this field will allow a better understanding and appreciation of the immunological basis of mental disorders and the emotional side of immune diseases.
Collapse
Affiliation(s)
- Fulvio D'Acquisto
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Excessive Sensory Stimulation during Development Alters Neural Plasticity and Vulnerability to Cocaine in Mice. eNeuro 2016; 3:eN-NWR-0199-16. [PMID: 27588306 PMCID: PMC4994069 DOI: 10.1523/eneuro.0199-16.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 12/16/2022] Open
Abstract
Early life experiences affect the formation of neuronal networks, which can have a profound impact on brain function and behavior later in life. Previous work has shown that mice exposed to excessive sensory stimulation during development are hyperactive and novelty seeking, and display impaired cognition compared with controls. In this study, we addressed the issue of whether excessive sensory stimulation during development could alter behaviors related to addiction and underlying circuitry in CD-1 mice. We found that the reinforcing properties of cocaine were significantly enhanced in mice exposed to excessive sensory stimulation. Moreover, although these mice displayed hyperactivity that became more pronounced over time, they showed impaired persistence of cocaine-induced locomotor sensitization. These behavioral effects were associated with alterations in glutamatergic transmission in the nucleus accumbens and amygdala. Together, these findings suggest that excessive sensory stimulation in early life significantly alters drug reward and the neural circuits that regulate addiction and attention deficit hyperactivity. These observations highlight the consequences of early life experiences and may have important implications for children growing up in today's complex technological environment.
Collapse
|
16
|
Matsuda T. Psychopharmacological Studies in Mice. YAKUGAKU ZASSHI 2016; 136:737-50. [PMID: 27150930 DOI: 10.1248/yakushi.15-00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since 1998, when the laboratory of Medicinal Pharmacology was established in the Graduate School of Pharmaceutical Sciences, Osaka University, I have been interested in psychopharmacological research topics. During this period, we identified a number of novel regulatory mechanisms that control the prefrontal dopamine system through functional interaction between serotonin1A and dopamine D2 receptors or between serotonin1A and σ1 receptors. Our findings suggest that strategies that enhance the prefrontal dopamine system may have therapeutic potential in the treatment of psychiatric disorders. We also found that environmental factors during development strongly impact the psychological state in adulthood. Furthermore, we clarified the pharmacological profiles of the acetylcholinesterase inhibitors donepezil, galantamine, and rivastigmine, providing novel insights into their mechanisms of action. Finally, we developed the female encounter test, a novel method for evaluating motivation in mice. This simple method should help advance future psychopharmacological research. In this review, we summarize the major findings obtained from our recent studies in mice.
Collapse
Affiliation(s)
- Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
17
|
Gender Differences in the Neurobiology of Anxiety: Focus on Adult Hippocampal Neurogenesis. Neural Plast 2016; 2016:5026713. [PMID: 26885403 PMCID: PMC4738969 DOI: 10.1155/2016/5026713] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/30/2015] [Accepted: 12/06/2015] [Indexed: 12/14/2022] Open
Abstract
Although the literature reports a higher incidence of anxiety disorders in women, the majority of basic research has focused on male rodents, thus resulting in a lack of knowledge on the neurobiology of anxiety in females. Bridging this gap is crucial for the design of effective translational interventions in women. One of the key brain mechanisms likely to regulate anxious behavior is adult hippocampal neurogenesis (AHN). This review paper aims to discuss the evidence on the differences between male and female rodents with regard to anxiety-related behavior and physiology, with a special focus on AHN. The differences between male and female physiologies are greatly influenced by hormonal differences. Gonadal hormones and their fluctuations during the estrous cycle have often been identified as agents responsible for sexual dimorphism in behavior and AHN. During sexual maturity, hormone levels fluctuate cyclically in females more than in males, increasing the stress response and the susceptibility to anxiety. It is therefore of great importance that future research investigates anxiety and other neurophysiological aspects in the female model, so that results can be more accurately applicable to the female population.
Collapse
|
18
|
Chabry J, Nicolas S, Cazareth J, Murris E, Guyon A, Glaichenhaus N, Heurteaux C, Petit-Paitel A. Enriched environment decreases microglia and brain macrophages inflammatory phenotypes through adiponectin-dependent mechanisms: Relevance to depressive-like behavior. Brain Behav Immun 2015. [PMID: 26209808 DOI: 10.1016/j.bbi.2015.07.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Regulation of neuroinflammation by glial cells plays a major role in the pathophysiology of major depression. While astrocyte involvement has been well described, the role of microglia is still elusive. Recently, we have shown that Adiponectin (ApN) plays a crucial role in the anxiolytic/antidepressant neurogenesis-independent effects of enriched environment (EE) in mice; however its mechanisms of action within the brain remain unknown. Here, we show that in a murine model of depression induced by chronic corticosterone administration, the hippocampus and the hypothalamus display increased levels of inflammatory cytokines mRNA, which is reversed by EE housing. By combining flow cytometry, cell sorting and q-PCR, we show that microglia from depressive-like mice adopt a pro-inflammatory phenotype characterized by higher expression levels of IL-1β, IL-6, TNF-α and IκB-α mRNAs. EE housing blocks pro-inflammatory cytokine gene induction and promotes arginase 1 mRNA expression in brain-sorted microglia, indicating that EE favors an anti-inflammatory activation state. We show that microglia and brain-macrophages from corticosterone-treated mice adopt differential expression profiles for CCR2, MHC class II and IL-4recα surface markers depending on whether the mice are kept in standard environment or EE. Interestingly, the effects of EE were abolished when cells are isolated from ApN knock-out mouse brains. When injected intra-cerebroventricularly, ApN, whose level is specifically increased in cerebrospinal fluid of depressive mice raised in EE, rescues microglia phenotype, reduces pro-inflammatory cytokine production by microglia and blocks depressive-like behavior in corticosterone-treated mice. Our data suggest that EE-induced ApN increase within the brain regulates microglia and brain macrophages phenotype and activation state, thus reducing neuroinflammation and depressive-like behaviors in mice.
Collapse
Affiliation(s)
- Joëlle Chabry
- Université de Nice Sophia Antipolis, 06103 Nice, France; Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 06560 Valbonne, France
| | - Sarah Nicolas
- Université de Nice Sophia Antipolis, 06103 Nice, France; Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 06560 Valbonne, France
| | - Julie Cazareth
- Université de Nice Sophia Antipolis, 06103 Nice, France; Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 06560 Valbonne, France
| | - Emilie Murris
- Université de Nice Sophia Antipolis, 06103 Nice, France; Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 06560 Valbonne, France
| | - Alice Guyon
- Université de Nice Sophia Antipolis, 06103 Nice, France; Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 06560 Valbonne, France
| | - Nicolas Glaichenhaus
- Université de Nice Sophia Antipolis, 06103 Nice, France; Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 06560 Valbonne, France
| | - Catherine Heurteaux
- Université de Nice Sophia Antipolis, 06103 Nice, France; Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 06560 Valbonne, France
| | - Agnès Petit-Paitel
- Université de Nice Sophia Antipolis, 06103 Nice, France; Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 06560 Valbonne, France.
| |
Collapse
|
19
|
Ayhan Y, McFarland R, Pletnikov MV. Animal models of gene-environment interaction in schizophrenia: A dimensional perspective. Prog Neurobiol 2015; 136:1-27. [PMID: 26510407 DOI: 10.1016/j.pneurobio.2015.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/07/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Schizophrenia has long been considered as a disorder with multifactorial origins. Recent discoveries have advanced our understanding of the genetic architecture of the disease. However, even with the increase of identified risk variants, heritability estimates suggest an important contribution of non-genetic factors. Various environmental risk factors have been proposed to play a role in the etiopathogenesis of schizophrenia. These include season of birth, maternal infections, obstetric complications, adverse events at early childhood, and drug abuse. Despite the progress in identification of genetic and environmental risk factors, we still have a limited understanding of the mechanisms whereby gene-environment interactions (G × E) operate in schizophrenia and psychoses at large. In this review we provide a critical analysis of current animal models of G × E relevant to psychotic disorders and propose that dimensional perspective will advance our understanding of the complex mechanisms of these disorders.
Collapse
Affiliation(s)
- Yavuz Ayhan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Hacettepe University Faculty of Medicine, Department of Psychiatry, Turkey
| | - Ross McFarland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA.
| |
Collapse
|
20
|
Data calibration and reduction allows to visualize behavioural profiles of psychosocial influences in mice towards clinical domains. Eur Arch Psychiatry Clin Neurosci 2015; 265:483-96. [PMID: 25236183 DOI: 10.1007/s00406-014-0532-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/02/2014] [Indexed: 02/02/2023]
Abstract
Psychosocial stress-particularly in combination with genetic vulnerability-is a critical environmental risk factor for psychiatric diseases in humans. Isolation rearing (IR) and social defeat (SD) paradigms model psychosocial risk factors in rodents, while enriched environment (EE) protects them from behavioural deficits. Studying the influence of various environmental conditions, e.g., on genetic mouse models can help to dissect the complex gene-environment relationships underlying human psychiatric diseases. Such studies may require analysing multiple mouse cohorts; however, the comparability of behavioural experiments is challenging and often compromised by practical limitations such as group sizes and influences of handling. Therefore, protocol standardization as well as appropriate statistical normalization is necessary to compare different experiments. In this study, we analysed two independent cohorts to compare the behavioural profiles of wild-type male mice subjected to IR and SD. In both cases, EE conditions served as a reference. Multivariate statistics was applied to merge the data from individual measures into broader categories (such as curiosity, anxiety and fear memory) by estimating their calibrated joint effect within a category. Plotting and overlaying these calibrated effect sizes in a single graph allowed intuitive comparison of IR and SD behavioural profiles. This approach allows analysing multiple behavioural tests at once, which is more relevant to psychiatric syndromes than focusing on single behavioural measures. Our method revealed that motivation and fear memory are impaired by both conditions, whereas ambulation and pain sensitivity are affected only by IR and curiosity is mainly diminished upon SD. Thus, IR could be a paradigm of choice in studies focusing on positive symptoms, while SD might be more relevant for negative and cognitive symptoms.
Collapse
|
21
|
Nicolas S, Veyssière J, Gandin C, Zsürger N, Pietri M, Heurteaux C, Glaichenhaus N, Petit-Paitel A, Chabry J. Neurogenesis-independent antidepressant-like effects of enriched environment is dependent on adiponectin. Psychoneuroendocrinology 2015; 57:72-83. [PMID: 25889841 DOI: 10.1016/j.psyneuen.2015.03.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/24/2015] [Accepted: 03/21/2015] [Indexed: 12/16/2022]
Abstract
Environmental enrichment (EE) that combines voluntary physical exercise, sensory and social stimuli, causes profound changes in rodent brain at molecular, anatomical and behavioral levels. Here, we show that EE efficiently reduces anxiety and depression-like behaviors in a mouse model of depression induced by long-term administration of corticosterone. Mechanisms underlying EE-related beneficial effects remain largely unexplored; however, our results point toward adiponectin, an adipocyte-secreted protein, as a main contributor. Indeed, adiponectin-deficient (adipo(-/-)) mice did not benefit from all the EE-induced anxiolytic and antidepressant-like effects as evidenced by their differential responses in a series of behavioral tests. Conversely, a single intravenous injection of exogenous adiponectin restored the sensitivity of adipo(-/-) mice to EE-induced behavioral benefits. Interestingly, adiponectin depletion did not prevent the hippocampal neurogenesis induced by EE. Therefore, antidepressant properties of adiponectin are likely to be related to changes in signaling in the hypothalamus rather than through hippocampal-neurogenesis mechanisms. Additionally, EE did not modify the plasma levels of adiponectin but may favor the passage of adiponectin from the blood to the cerebrospinal fluid. Our findings provide advances in the understanding of the anxiolytic and antidepressant-like effects of EE and highlight adiponectin as a pivotal mediator.
Collapse
Affiliation(s)
- Sarah Nicolas
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 7275, Centre National de la Recherche Scientifique 660, route des lucioles, 06560 Valbonne, France; Université de Nice Sophia Antipolis, 28, avenue Valrose, 06103 Nice, France
| | - Julie Veyssière
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 7275, Centre National de la Recherche Scientifique 660, route des lucioles, 06560 Valbonne, France; Université de Nice Sophia Antipolis, 28, avenue Valrose, 06103 Nice, France
| | - Carine Gandin
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 7275, Centre National de la Recherche Scientifique 660, route des lucioles, 06560 Valbonne, France; Université de Nice Sophia Antipolis, 28, avenue Valrose, 06103 Nice, France
| | - Nicole Zsürger
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 7275, Centre National de la Recherche Scientifique 660, route des lucioles, 06560 Valbonne, France; Université de Nice Sophia Antipolis, 28, avenue Valrose, 06103 Nice, France
| | - Mariel Pietri
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 7275, Centre National de la Recherche Scientifique 660, route des lucioles, 06560 Valbonne, France; Université de Nice Sophia Antipolis, 28, avenue Valrose, 06103 Nice, France
| | - Catherine Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 7275, Centre National de la Recherche Scientifique 660, route des lucioles, 06560 Valbonne, France; Université de Nice Sophia Antipolis, 28, avenue Valrose, 06103 Nice, France
| | - Nicolas Glaichenhaus
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 7275, Centre National de la Recherche Scientifique 660, route des lucioles, 06560 Valbonne, France; Université de Nice Sophia Antipolis, 28, avenue Valrose, 06103 Nice, France
| | - Agnès Petit-Paitel
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 7275, Centre National de la Recherche Scientifique 660, route des lucioles, 06560 Valbonne, France; Université de Nice Sophia Antipolis, 28, avenue Valrose, 06103 Nice, France
| | - Joëlle Chabry
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 7275, Centre National de la Recherche Scientifique 660, route des lucioles, 06560 Valbonne, France; Université de Nice Sophia Antipolis, 28, avenue Valrose, 06103 Nice, France.
| |
Collapse
|
22
|
Ota Y, Ago Y, Tanaka T, Hasebe S, Toratani Y, Onaka Y, Hashimoto H, Takuma K, Matsuda T. Anxiolytic-like effects of restraint during the dark cycle in adolescent mice. Behav Brain Res 2015; 284:103-11. [DOI: 10.1016/j.bbr.2015.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/01/2015] [Accepted: 02/05/2015] [Indexed: 01/16/2023]
|
23
|
Zelena D. The janus face of stress on reproduction: from health to disease. Int J Endocrinol 2015; 2015:458129. [PMID: 25945091 PMCID: PMC4405284 DOI: 10.1155/2015/458129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 12/16/2022] Open
Abstract
Parenthood is a fundamental feature of all known life. However, infertility has been recognized as a public health issue worldwide. But even when the offspring are conceived, in utero problems can lead to immediate (abortion), early (birth), and late (adulthood) consequences. One of the most studied factors is stress. However, stress response is, per se, of adaptive nature allowing the organism to cope with challenges. Stressors lead to deterioration if one is faced with too long lasting, too many, and seemingly unsolvable situations. In stress adaptation the hypothalamus-pituitary-adrenocortical axis and the resulting glucocorticoid elevation are one of the most important mechanisms. At cellular level stress can be defined as an unbalance between production of free radicals and antioxidant defenses. Oxidative stress is widely accepted as an important pathogenic mechanism in different diseases including infertility. On the other hand, the goal of free radical production is to protect the cells from infectious entities. This review aims to summarize the negative and positive influence of stress on reproduction as a process leading to healthy progeny. Special emphasis was given to the balance at the level of the organism and cells.
Collapse
Affiliation(s)
- Dóra Zelena
- Hungarian Academy of Sciences, Institute of Experimental Medicine, Szigony 43, Budapest 1083, Hungary
- *Dóra Zelena:
| |
Collapse
|
24
|
Ago Y, Tanaka T, Ota Y, Kitamoto M, Imoto E, Takuma K, Matsuda T. Social crowding in the night-time reduces an anxiety-like behavior and increases social interaction in adolescent mice. Behav Brain Res 2014; 270:37-46. [DOI: 10.1016/j.bbr.2014.04.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 11/30/2022]
|
25
|
Shevelkin AV, Ihenatu C, Pletnikov MV. Pre-clinical models of neurodevelopmental disorders: focus on the cerebellum. Rev Neurosci 2014; 25:177-94. [PMID: 24523305 PMCID: PMC4052755 DOI: 10.1515/revneuro-2013-0049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/31/2013] [Indexed: 12/24/2022]
Abstract
Recent studies have advanced our understanding of the role of the cerebellum in non-motor behaviors. Abnormalities in the cerebellar structure have been demonstrated to produce changes in emotional, cognitive, and social behaviors resembling clinical manifestations observed in patients with autism spectrum disorders (ASD) and schizophrenia. Several animal models have been used to evaluate the effects of relevant environmental and genetic risk factors on the cerebellum development and function. However, very few models of ASD and schizophrenia selectively target the cerebellum and/or specific cell types within this structure. In this review, we critically evaluate the strength and weaknesses of these models. We will propose that the future progress in this field will require time- and cell type-specific manipulations of disease-relevant genes, not only selectively in the cerebellum, but also in frontal brain areas connected with the cerebellum. Such information can advance our knowledge of the cerebellar contribution to non-motor behaviors in mental health and disease.
Collapse
|
26
|
Turner KM, Burne THJ. Interaction of genotype and environment: effect of strain and housing conditions on cognitive behavior in rodent models of schizophrenia. Front Behav Neurosci 2013; 7:97. [PMID: 23914162 PMCID: PMC3728474 DOI: 10.3389/fnbeh.2013.00097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/16/2013] [Indexed: 11/22/2022] Open
Abstract
Schizophrenia is associated with many genetic and environmental risk factors and there is growing evidence that the interactions between genetic and environmental "hits" are critical for disease onset. Animal models of schizophrenia have traditionally used specific strain and housing conditions to test potential risk factors. As the field moves towards testing gene (G) x environment (E) interactions the impact of these choices should be considered. Given the surge of research focused on cognitive deficits, we have examined studies of cognition in rodents from the perspective of GxE interactions, in which strain or housing manipulations have been varied. Behavior is clearly altered by these factors, yet few animal models of schizophrenia have investigated cognitive deficits using different strain and housing conditions. It is important to recognise the large variation in behavior observed when using different strain and housing combinations because GxE interactions may mask or exacerbate cognitive outcomes. Further consideration will improve our understanding of GxE interactions and the underlying neurobiology of cognitive impairments in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Karly M. Turner
- Queensland Brain Institute, The University of Queensland, St. Lucia, BrisbaneQLD, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, The University of Queensland, St. Lucia, BrisbaneQLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, WacolQLD, Australia
| |
Collapse
|
27
|
Kannan G, Sawa A, Pletnikov MV. Mouse models of gene-environment interactions in schizophrenia. Neurobiol Dis 2013; 57:5-11. [PMID: 23748077 DOI: 10.1016/j.nbd.2013.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/10/2013] [Accepted: 05/20/2013] [Indexed: 01/20/2023] Open
Abstract
Gene-environment interactions (GEIs) likely play significant roles in the pathogenesis of schizophrenia and underlie differences in pathological, behavioral, and clinical presentations of the disease. Findings from epidemiology and psychiatric genetics have assisted in the generation of animal models of GEI relevant to schizophrenia. These models may provide a foundation for elucidating the molecular, cellular, and circuitry mechanisms that mediate GEI in schizophrenia. Here we critically review current mouse models of GEI related to schizophrenia, describe directions for their improvement, and propose endophenotypes to provide a more tangible basis for molecular studies of pathways of GEI and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Geetha Kannan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|