1
|
Cagnin S, Pontisso P, Martini A. SerpinB3: A Multifaceted Player in Health and Disease-Review and Future Perspectives. Cancers (Basel) 2024; 16:2579. [PMID: 39061218 PMCID: PMC11274807 DOI: 10.3390/cancers16142579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
SerpinB3, a member of the serine-protease inhibitor family, has emerged as a crucial player in various physiological and pathological processes. Initially identified as an oncogenic factor in squamous cell carcinomas, SerpinB3's intricate involvement extends from fibrosis progression and cancer to cell protection in acute oxidative stress conditions. This review explores the multifaceted roles of SerpinB3, focusing on its implications in fibrosis, metabolic syndrome, carcinogenesis and immune system impairment. Furthermore, its involvement in tissue protection from oxidative stress and wound healing underscores its potential as diagnostic and therapeutic tool. Recent studies have described the therapeutic potential of targeting SerpinB3 through its upstream regulators, offering novel strategies for cancer treatment development. Overall, this review underscores the importance of further research to fully elucidate the mechanisms of action of SerpinB3 and to exploit its therapeutic potential across various medical conditions.
Collapse
Affiliation(s)
| | - Patrizia Pontisso
- Department of Medicine, University of Padova, 35123 Padova, Italy; (S.C.); (A.M.)
| | | |
Collapse
|
2
|
Chinellato M, Gasparotto M, Quarta S, Ruvoletto M, Biasiolo A, Filippini F, Spiezia L, Cendron L, Pontisso P. 1-Piperidine Propionic Acid as an Allosteric Inhibitor of Protease Activated Receptor-2. Pharmaceuticals (Basel) 2023; 16:1486. [PMID: 37895957 PMCID: PMC10610151 DOI: 10.3390/ph16101486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
In the last decades, studies on the inflammatory signaling pathways in multiple pathological contexts have revealed new targets for novel therapies. Among the family of G-protein-coupled Proteases Activated Receptors, PAR2 was identified as a driver of the inflammatory cascade in many pathologies, ranging from autoimmune disease to cancer metastasis. For this reason, many efforts have been focused on the development of potential antagonists of PAR2 activity. This work focuses on a small molecule, 1-Piperidine Propionic Acid (1-PPA), previously described to be active against inflammatory processes, but whose target is still unknown. Stabilization effects observed by cellular thermal shift assay coupled to in-silico investigations, including molecular docking and molecular dynamics simulations, suggested that 1-PPA binds PAR2 in an allosteric pocket of the receptor inactive conformation. Functional studies revealed the antagonist effects on MAPKs signaling and on platelet aggregation, processes mediated by PAR family members, including PAR2. Since the allosteric pocket binding 1-PPA is highly conserved in all the members of the PAR family, the evidence reported here suggests that 1-PPA could represent a promising new small molecule targeting PARs with antagonistic activity.
Collapse
Affiliation(s)
- Monica Chinellato
- Department of Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (S.Q.); (M.R.); (A.B.)
| | - Matteo Gasparotto
- Department of Biology, University of Padova, 35121 Padova, Italy; (M.G.); (F.F.); (L.C.)
| | - Santina Quarta
- Department of Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (S.Q.); (M.R.); (A.B.)
| | - Mariagrazia Ruvoletto
- Department of Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (S.Q.); (M.R.); (A.B.)
| | - Alessandra Biasiolo
- Department of Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (S.Q.); (M.R.); (A.B.)
| | - Francesco Filippini
- Department of Biology, University of Padova, 35121 Padova, Italy; (M.G.); (F.F.); (L.C.)
| | - Luca Spiezia
- Department of Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (S.Q.); (M.R.); (A.B.)
| | - Laura Cendron
- Department of Biology, University of Padova, 35121 Padova, Italy; (M.G.); (F.F.); (L.C.)
| | - Patrizia Pontisso
- Department of Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (S.Q.); (M.R.); (A.B.)
| |
Collapse
|
3
|
Huang Y, Zhao X, Zhang Q, Yang X, Hou G, Peng C, Jia M, Zhou L, Yamamoto T, Zheng J. Novel therapeutic perspectives for crescentic glomerulonephritis through targeting parietal epithelial cell activation and proliferation. Expert Opin Ther Targets 2023; 27:55-69. [PMID: 36738160 DOI: 10.1080/14728222.2023.2177534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Kidney injury is clinically classified as crescentic glomerulonephritis (CrGN) when ≥50% of the glomeruli in a biopsy sample contain crescentic lesions. However, current strategies, such as systemic immunosuppressive therapy and plasmapheresis for CrGN, are partially effective, and these drugs have considerable systemic side effects. Hence, targeted therapy to prevent glomerular crescent formation and expansion remains an unmet clinical need. AREAS COVERED Hyperproliferative parietal epithelial cells (PECs) are the main constituent cells of the glomerular crescent with cell-tracing evidence. Crescents obstruct the flow of primary urine, pressure the capillaries, and degenerate the affected nephrons. We reviewed the markers of PEC activation and proliferation, potential therapeutic effects of thrombin and thrombin receptor inhibitors, and how podocytes cross-talk with PECs. These experiments may help identify potential early specific targets for the prevention and treatment of glomerular crescentic injury. EXPERT OPINION Inhibiting PEC activation and proliferation in CrGN can alleviate glomerular crescent progression, which has been supported by preclinical studies with evidence of genetic deletion. Clarifying the outcome of PEC transformation to the podocyte phenotype and suppressing thrombin, thrombin receptors, and PEC hyperproliferation in early therapeutic strategies will be the research goals in the next ten years.
Collapse
Affiliation(s)
- Yanjie Huang
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Qiushuang Zhang
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mengzhen Jia
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Li Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Tatsuo Yamamoto
- Department of Nephrology, Fujieda Municipal General Hospital, 4-1-11 Surugadai, Fujieda, Japan
| | - Jian Zheng
- Institute of Pediatrics of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Han Y, Tian L, Ma F, Tesch G, Vesey DA, Gobe GC, Lohman RJ, Morais C, Suen JY, Fairlie DP, Nikolic-Paterson DJ. Pharmacological inhibition of protease-activated receptor-2 reduces crescent formation in rat nephrotoxic serum nephritis. Clin Exp Pharmacol Physiol 2019; 46:456-464. [PMID: 30811624 DOI: 10.1111/1440-1681.13077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 01/06/2023]
Abstract
Glomerular crescent formation is a hallmark of rapidly progressive forms of glomerulonephritis. Thrombosis and macrophage infiltration are features of crescent formation in human and experimental kidney disease. Protease-activated receptor-2 (PAR-2) is a G-protein coupled receptor that links coagulation and inflammation. This study investigated whether pharmacological inhibition of PAR-2 can suppress glomerular crescent formation in rat nephrotoxic serum nephritis (NTN). Disease was induced in Wistar Kyoto rats by immunisation with sheep IgG followed by administration of sheep nephrotoxic serum. Rats (n = 8/group) received the PAR-2 antagonist (GB88, 10 mg/kg/p.o.), vehicle or no treatment starting 3 days before nephrotoxic serum injection and continuing until day 14. Vehicle and untreated rats developed thrombosis and macrophage infiltration in the glomerular tuft and Bowman's space in conjunction with prominent crescent formation. Activation of JNK signalling and proliferation in parietal epithelial cells was associated with crescent formation. GB88 treatment significantly reduced crescent formation with a substantial reduction in glomerular thrombosis, reduced macrophage infiltration in Bowman's space, and reduced activation of parietal epithelial cells. However, GB88 did not protect against the development of proteinuria, renal function impairment, inflammation or tubular cell damage in the NTN model. In conclusion, PAR-2 plays a specific role in glomerular crescent formation by promoting glomerular thrombosis, macrophage accumulation in Bowman's space and activation of parietal epithelial cells.
Collapse
Affiliation(s)
- Yingjie Han
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.,Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Lifang Tian
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.,Department of Nephrology, Second Affiliated Hospital of Xi'an, Shannxi Province, China
| | - Frank Ma
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.,Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Greg Tesch
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.,Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - David A Vesey
- Faculty of Medicine, Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland, Brisbane, Queensland, Australia.,Department of Nephrology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Glenda C Gobe
- Faculty of Medicine, Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland, Brisbane, Queensland, Australia.,Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Rink-Jan Lohman
- Centre for Inflammation and Disease Research and ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christudas Morais
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Centre for Inflammation and Disease Research and ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jacky Y Suen
- Centre for Inflammation and Disease Research and ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Centre for Inflammation and Disease Research and ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.,Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Chao HH, Chen PY, Hao WR, Chiang WP, Cheng TH, Loh SH, Leung YM, Liu JC, Chen JJ, Sung LC. Lipopolysaccharide pretreatment increases protease-activated receptor-2 expression and monocyte chemoattractant protein-1 secretion in vascular endothelial cells. J Biomed Sci 2017; 24:85. [PMID: 29141644 PMCID: PMC5688698 DOI: 10.1186/s12929-017-0393-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 11/07/2017] [Indexed: 01/22/2023] Open
Abstract
Background This study investigated whether lipopolysaccharide (LPS) increase protease-activated receptor-2 (PAR-2) expression and enhance the association between PAR-2 expression and chemokine production in human vascular endothelial cells (ECs). Methods The morphology of ECs was observed through microphotography in cultured human umbilical vein ECs (EA. hy926 cells) treated with various LPS concentrations (0, 0.25, 0.5, 1, and 2 μg/mL) for 24 h, and cell viability was assessed using the MTT assay. Intracellular calcium imaging was performed to assess agonist (trypsin)-induced PAR-2 activity. Western blotting was used to explore the LPS-mediated signal transduction pathway and the expression of PAR-2 and adhesion molecule monocyte chemoattractant protein-1 (MCP-1) in ECs. Results Trypsin stimulation increased intracellular calcium release in ECs. The calcium influx was augmented in cells pretreated with a high LPS concentration (1 μg/mL). After 24 h treatment of LPS, no changes in ECs viability or morphology were observed. Western blotting revealed that LPS increased PAR-2 expression and enhanced trypsin-induced extracellular signal-regulated kinase (ERK)/p38 phosphorylation and MCP-1 secretion. However, pretreatment with selective ERK (PD98059), p38 mitogen-activated protein kinase (MAPK) (SB203580) inhibitors, and the selective PAR-2 antagonist (FSLLRY-NH2) blocked the effects of LPS-activated PAR-2 on MCP-1 secretion. Conclusions Our findings provide the first evidence that the bacterial endotoxin LPS potentiates calcium mobilization and ERK/p38 MAPK pathway activation and leads to the secretion of the pro-inflammatory chemokine MCP-1 by inducing PAR-2 expression and its associated activity in vascular ECs. Therefore, PAR-2 exerts vascular inflammatory effects and plays an important role in bacterial infection-induced pathological responses. Electronic supplementary material The online version of this article (10.1186/s12929-017-0393-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hung-Hsing Chao
- Division of Cardiovascular Surgery, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan.,Department of Surgery, School of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Po-Yuan Chen
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Wen-Rui Hao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Wei-Ping Chiang
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, 40402, Taiwan.,Department of Pharmacology & Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, 114, Taiwan
| | - Shih-Hurng Loh
- Department of Pharmacology & Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, 114, Taiwan
| | - Yuk-Man Leung
- Department of Physiology, School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New Taipei City, 23561, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jin-Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, China Medical University, Taichung, 40402, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Li-Chin Sung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New Taipei City, 23561, Taiwan. .,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
6
|
Menou A, Duitman J, Flajolet P, Sallenave JM, Mailleux AA, Crestani B. Human airway trypsin-like protease, a serine protease involved in respiratory diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L657-L668. [DOI: 10.1152/ajplung.00509.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 01/12/2023] Open
Abstract
More than 2% of all human genes are coding for a complex system of more than 700 proteases and protease inhibitors. Among them, serine proteases play extraordinary, diverse functions in different physiological and pathological processes. The human airway trypsin-like protease (HAT), also referred to as TMPRSS11D and serine 11D, belongs to the emerging family of cell surface proteolytic enzymes, the type II transmembrane serine proteases (TTSPs). Through the cleavage of its four major identified substrates, HAT triggers specific responses, notably in epithelial cells, within the pericellular and extracellular environment, including notably inflammatory cytokine production, inflammatory cell recruitment, or anticoagulant processes. This review summarizes the potential role of this recently described protease in mediating cell surface proteolytic events, to highlight the structural features, proteolytic activity, and regulation, including the expression profile of HAT, and discuss its possible roles in respiratory physiology and disease.
Collapse
Affiliation(s)
- Awen Menou
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - JanWillem Duitman
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Pauline Flajolet
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Jean-Michel Sallenave
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Arnaud André Mailleux
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Bruno Crestani
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
- APHP, Hôpital Bichat, Service de Pneumologie A, Paris, France
| |
Collapse
|
7
|
Yau MK, Liu L, Suen JY, Lim J, Lohman RJ, Jiang Y, Cotterell AJ, Barry GD, Mak JYW, Vesey DA, Reid RC, Fairlie DP. PAR2 Modulators Derived from GB88. ACS Med Chem Lett 2016; 7:1179-1184. [PMID: 27994760 DOI: 10.1021/acsmedchemlett.6b00306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/10/2016] [Indexed: 11/29/2022] Open
Abstract
PAR2 antagonists have potential for treating inflammatory, respiratory, gastrointestinal, neurological, and metabolic disorders, but few antagonists are known. Derivatives of GB88 (3) suggest that all four of its components bind at distinct PAR2 sites with the isoxazole, cyclohexylalanine, and isoleucine determining affinity and selectivity, while the C-terminal substituent determines agonist/antagonist function. Here we report structurally similar PAR2 ligands with opposing functions (agonist vs antagonist) upon binding to PAR2. A biased ligand AY117 (65) was found to antagonize calcium release induced by PAR2 agonists trypsin and hexapeptide 2f-LIGRLO-NH2 (IC50 2.2 and 0.7 μM, HT29 cells), but it was a selective PAR2 agonist in inhibiting cAMP stimulation and activating ERK1/2 phosphorylation. It showed anti-inflammatory properties both in vitro and in vivo.
Collapse
Affiliation(s)
- Mei-Kwan Yau
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ligong Liu
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jacky Y. Suen
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Junxian Lim
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rink-Jan Lohman
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yuhong Jiang
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adam J. Cotterell
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Grant D. Barry
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeffrey Y. W. Mak
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David A. Vesey
- Centre
for Kidney Research, Department of Medicine, The University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia
| | - Robert C. Reid
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division
of Chemistry and Structural Biology, Centre for Inflammation and Disease
Research and ARC Centre of Excellence in Advanced Molecular Imaging,
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
8
|
Zhang X, Wang Z, Yin B, Wu H, Tang S, Wu L, Su Y, Lin Y, Liu X, Pang B, Kemper N, Hartung J, Bao E. A complex of trypsin and chymotrypsin effectively inhibited growth of pathogenic bacteria inducing cow mastitis and showed synergistic antibacterial activity with antibiotics. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
McNulty AL, Leddy HA, Liedtke W, Guilak F. TRPV4 as a therapeutic target for joint diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:437-50. [PMID: 25519495 PMCID: PMC4361386 DOI: 10.1007/s00210-014-1078-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
Abstract
Biomechanical factors play a critical role in regulating the physiology as well as the pathology of multiple joint tissues and have been implicated in the pathogenesis of osteoarthritis. Therefore, the mechanisms by which cells sense and respond to mechanical signals may provide novel targets for the development of disease-modifying osteoarthritis drugs (DMOADs). Transient receptor potential vanilloid 4 (TRPV4) is a Ca(2+)-permeable cation channel that serves as a sensor of mechanical or osmotic signals in several musculoskeletal tissues, including cartilage, bone, and synovium. The importance of TRPV4 in joint homeostasis is apparent in patients harboring TRPV4 mutations, which result in the development of a spectrum of skeletal dysplasias and arthropathies. In addition, the genetic knockout of Trpv4 results in the development of osteoarthritis and decreased osteoclast function. In engineered cartilage replacements, chemical activation of TRPV4 can reproduce many of the anabolic effects of mechanical loading to accelerate tissue growth and regeneration. Overall, TRPV4 plays a key role in transducing mechanical, pain, and inflammatory signals within joint tissues and thus is an attractive therapeutic target to modulate the effects of joint diseases. In pathological conditions in the joint, when the delicate balance of TRPV4 activity is altered, a variety of different tools could be utilized to directly or indirectly target TRPV4 activity.
Collapse
Affiliation(s)
- Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710
| | - Holly A. Leddy
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710
| | - Wolfgang Liedtke
- Department of Neurology and Duke University Clinics for Pain and Palliative Care, Duke University Medical Center, Durham, NC 27710
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
10
|
Bakele M, Lotz-Havla AS, Jakowetz A, Carevic M, Marcos V, Muntau AC, Gersting SW, Hartl D. An interactive network of elastase, secretases, and PAR-2 protein regulates CXCR1 receptor surface expression on neutrophils. J Biol Chem 2015; 289:20516-25. [PMID: 24914212 DOI: 10.1074/jbc.m114.575803] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CXCL8 (IL-8) recruits and activates neutrophils through the G protein-coupled chemokine receptor CXCR1. We showed previously that elastase cleaves CXCR1 and thereby impairs antibacterial host defense. However, the molecular intracellular machinery involved in this process remained undefined. Here we demonstrate by using flow cytometry, confocal microscopy, subcellular fractionation, co-immunoprecipitation, and bioluminescence resonance energy transfer that combined α- and γ-secretase activities are functionally involved in elastase-mediated regulation of CXCR1 surface expression on human neutrophils, whereas matrix metalloproteases are dispensable. We further demonstrate that PAR-2 is stored in mobilizable compartments in neutrophils. Bioluminescence resonance energy transfer and co-immunoprecipitation studies showed that secretases, PAR-2, and CXCR1 colocalize and physically interact in a novel protease/secretase-chemokine receptor network. PAR-2 blocking experiments provided evidence that elastase increased intracellular presenilin-1 expression through PAR-2 signaling. When viewed in combination, these studies establish a novel functional network of elastase, secretases, and PAR-2 that regulate CXCR1 expression on neutrophils. Interfering with this network could lead to novel therapeutic approaches in neutrophilic diseases, such as cystic fibrosis or rheumatoid arthritis.
Collapse
|
11
|
Moss CR, Gilbert CA, Gabriel SA, Gu Q. Protease-activated receptor-2 inhibits BK channel activity in bronchopulmonary sensory neurons. Neurosci Lett 2015; 589:13-8. [PMID: 25578948 DOI: 10.1016/j.neulet.2015.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/27/2014] [Accepted: 01/07/2015] [Indexed: 11/17/2022]
Abstract
Activation of protease-activated receptor-2 (PAR2) contributes to airway inflammation and airway hypersensitivity, the hallmark features of allergic asthma; and a neurogenic mechanism involving hypersensitivity of bronchopulmonary sensory nerves has been indicated. Large-conductance Ca(2+)-activated potassium (BK) channels are known to play an important role in shaping neuronal excitability. The aim of this study was to investigate the potential regulation of BK channel activities by PAR2 activation in vagal bronchopulmonary sensory neurons. Our results showed that pretreatment with PAR2-activating peptide (PAR2-AP; 100μM, 120s), but not its control peptide PAR2-RP, significantly reduced BK current density in these neurons. Inhibition of phospholipase C, PKC, PKA or MEK/ERK signaling pathway did not prevent the suppression of BK current by PAR2 activation; whereas intracellular application of Ca(2+) chelator BAPTA-AM completely abolished the PAR2 regulation of BK current. In addition, our results demonstrated that activation of PAR2 increased excitability of bronchopulmonary sensory neurons, in a similar manner as displayed by a direct BK channel blockade. In summary, our data suggest that suppression of BK channel activity contributes to PAR2 activation-induced hyperexcitability of vagal bronchopulmonary sensory neurons.
Collapse
Affiliation(s)
- Charles R Moss
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College Street, Macon, GA 31207, USA
| | - Carolyn A Gilbert
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College Street, Macon, GA 31207, USA
| | - Sabry A Gabriel
- Department of Family Medicine, Mercer University School of Medicine and Medical Center of Central Georgia, Macon, GA 31207, USA
| | - Qihai Gu
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College Street, Macon, GA 31207, USA
| |
Collapse
|
12
|
Inaba H, Sugita H, Kuboniwa M, Iwai S, Hamada M, Noda T, Morisaki I, Lamont RJ, Amano A. Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cell Microbiol 2013; 16:131-45. [PMID: 23991831 DOI: 10.1111/cmi.12211] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/02/2013] [Accepted: 08/15/2013] [Indexed: 02/06/2023]
Abstract
Recent epidemiological studies have revealed a significant association between periodontitis and oral squamous cell carcinoma (OSCC). Furthermore, matrix metalloproteinase 9 (MMP9) is implicated in the invasion and metastasis of tumour cells. We examined the involvement of Porphyromonas gingivalis, a periodontal pathogen, in OSCC invasion through induced expression of proMMP and its activation. proMMP9 was continuously secreted from carcinoma SAS cells, while P. gingivalis infection increased proenzyme expression and subsequently processed it to active MMP9 in culture supernatant, which enhanced cellular invasion. In contrast, Fusobacterium nucleatum, another periodontal organism, failed to demonstrate such activities. The effects of P. gingivalis were observed with highly invasive cells, but not with the low invasivetype. P. gingivalis also stimulated proteinase-activated receptor 2 (PAR2) and enhanced proMMP9 expression, which promoted cellular invasion. P. gingivalis mutants deficient in gingipain proteases failed to activate MMP9. Infected SAS cells exhibited activation of ERK1/2, p38, and NF-kB, and their inhibitors diminished both proMMP9-overexpression and cellular invasion. Together, our results show that P. gingivalis activates the ERK1/2-Ets1, p38/HSP27, and PAR2/NF-kB pathways to induce proMMP9 expression, after which the proenzyme is activated by gingipains to promote cellular invasion of OSCC cell lines. These findings suggest a novel mechanism of progression and metastasis of OSCC associated with periodontitis.
Collapse
Affiliation(s)
- Hiroaki Inaba
- Department of Oral Frontier Biology, Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hoffman J, Flynn AN, Tillu DV, Zhang Z, Patek R, Price TJ, Vagner J, Boitano S. Lanthanide labeling of a potent protease activated receptor-2 agonist for time-resolved fluorescence analysis. Bioconjug Chem 2012; 23:2098-104. [PMID: 22994402 DOI: 10.1021/bc300300q] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protease activated receptor-2 (PAR(2)) is one of four G-protein coupled receptors (GPCRs) that can be activated by exogenous or endogenous proteases, which cleave the extracellular amino-terminus to expose a tethered ligand and subsequent G-protein signaling. Alternatively, PAR(2) can be activated by peptide or peptidomimetic ligands derived from the sequence of the natural tethered ligand. Screening of novel ligands that directly bind to PAR(2) to agonize or antagonize the receptor has been hindered by the lack of a sensitive, high-throughput, affinity binding assay. In this report, we describe the synthesis and use of a modified PAR(2) peptidomimetic agonist, 2-furoyl-LIGRLO-(diethylenetriaminepentaacetic acid)-NH(2) (2-f-LIGRLO-dtpa), designed for lanthanide-based time-resolved fluorescence screening. We first demonstrate that 2-f-LIGRLO-dtpa is a potent and specific PAR(2) agonist across a full spectrum of in vitro assays. We then show that 2-f-LIGRLO-dtpa can be utilized in an affinity binding assay to evaluate the ligand-receptor interactions between known high potency peptidomimetic agonists (2-furoyl-LIGRLO-NH(2), 2-f-LIGRLO; 2-aminothiazol-4-yl-LIGRL-NH(2), 2-at-LIGRL; 6-aminonicotinyl-LIGRL-NH(2), 6-an-LIGRL) and PAR(2). A separate N-terminal peptidomimetic modification (3-indoleacetyl-LIGRL-NH(2), 3-ia-LIGRL) that does not activate PAR(2) signaling was used as a negative control. All three peptidomimetic agonists demonstrated sigmoidal competitive binding curves, with the more potent agonists (2-f-LIGRLO and 2-at-LIGRL) displaying increased competition. In contrast, the control peptide (3-ia-LIGRL) displayed limited competition for PAR(2) binding. In summary, we have developed a europium-containing PAR(2) agonist that can be used in a highly sensitive affinity binding assay to screen novel PAR(2) ligands in a high-throughput format. This ligand can serve as a critical tool in the screening and development of PAR(2) ligands.
Collapse
Affiliation(s)
- Justin Hoffman
- Department of Physiology, Arizona Health Sciences Center, 1501 North Campbell Avenue, Tucson, AZ 85724-5030, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chymotrypsin both directly modulates bacterial growth and asserts ampicillin degradation-mediated protective effect on bacteria. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0512-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
Li R, Zhu Z, Reiser G. Specific phosphorylation of αA-crystallin is required for the αA-crystallin-induced protection of astrocytes against staurosporine and C2-ceramide toxicity. Neurochem Int 2012; 60:652-8. [PMID: 22414529 DOI: 10.1016/j.neuint.2012.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/13/2012] [Accepted: 02/24/2012] [Indexed: 12/17/2022]
Abstract
We previously reported that αA-crystallin and protease-activated receptor are involved in protection of astrocytes against C2-ceramide- and staurosporine-induced cell death (Li et al., 2009). Here, we investigated the molecular mechanism of αA-crystallin-mediated cytoprotection. We found that the expression of mutants mimicking specific phosphorylation of αA-crystallin increases the protection of astrocytes. However, the expression of mutants mimicking unphosphorylation of αA-crystallin results in loss of protection. These data revealed that the phosphorylation of αA-crystallin at Ser122 and Ser148 is required for protection. Furthermore, we explored the mechanism of cytoprotection of astrocytes by αA-crystallin. Application of specific inhibitors of p38 and ERK abrogates the protection of astrocytes by over-expression of αA-crystallin. Thus, p38 and ERK contribute to protective processes by αA-crystallin. This is comparable to our previous results which demonstrated that p38 and ERK regulated protease-activated receptor-2 (PAR-2)/αB-crystallin-mediated cytoprotection. Furthermore, we found that PAR-2 activation increases the expression of αA-crystallin. Thus, endogenous αA-crystallin protects astrocytes via mechanisms, which regulate the expression and/or phosphorylation status of αA-crystallin.
Collapse
Affiliation(s)
- Rongyu Li
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Straße 44, 39120 Magdeburg, Germany
| | | | | |
Collapse
|
16
|
Takei-Taniguchi R, Imai Y, Ishikawa C, Sakaguchi Y, Nakagawa N, Tsuda T, Hollenberg MD, Yamanishi K. Interleukin-17- and protease-activated receptor 2-mediated production of CXCL1 and CXCL8 modulated by cyclosporine A, vitamin D3 and glucocorticoids in human keratinocytes. J Dermatol 2011; 39:625-31. [PMID: 22211698 DOI: 10.1111/j.1346-8138.2011.01462.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor which mediates a variety of functions in the skin including cutaneous inflammation. SLIGKV-NH(2) , an agonist peptide for PAR2, enhanced the interleukin (IL)-17-induced production of two CXC chemokines, CXCL1 (GRO-α) and CXCL8 (IL-8), in normal human epidermal keratinocytes (NHEK) in a concentration-dependent manner. The enhanced production of those chemokines was suppressed by a PAR2-specific siRNA. The SLIGKV-NH(2) -induced production of both CXCL1 and CXCL8 was markedly reduced by cyclosporine A. The enhanced production of CXCL1 was suppressed by 1α, 24R-dihydroxyvitamin D(3) , an active form of vitamin D(3) , and weakly by glucocorticoids, dexamethasone and clobetasol propionate, whereas production of CXCL8 was not altered by any of those receptor agonists. In psoriatic skin, the thickened upper spinous layer of the epidermis was positive for PAR2 protein and the expression of the IL17A mRNA was increased. These results suggest that the IL-17-induced pro-inflammatory reaction is enhanced by the activation of PAR2 in keratinocytes, and that the effect of PAR2 is differentially modulated by cyclosporine A, the active form of vitamin D(3) and glucocorticoids.
Collapse
|
17
|
Goh FG, Midwood KS. Intrinsic danger: activation of Toll-like receptors in rheumatoid arthritis. Rheumatology (Oxford) 2011; 51:7-23. [PMID: 21984766 DOI: 10.1093/rheumatology/ker257] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RA is a debilitating disorder that manifests as chronic localized synovial and systemic inflammation leading to progressive joint destruction. Recent advances in the molecular basis of RA highlight the role of both the innate and adaptive immune system in disease pathogenesis. Specifically, data obtained from in vivo animal models and ex vivo human tissue explants models has confirmed the central role of Toll-like receptors (TLRs) in RA. TLRs are pattern recognition receptors (PRRs) that constitute one of the primary host defence mechanisms against infectious and non-infectious insult. This receptor family is activated by pathogen-associated molecular patterns (PAMPs) and by damage-associated molecular patterns (DAMPs). DAMPs are host-encoded proteins released during tissue injury and cell death that activate TLRs during sterile inflammation. DAMPs are also proposed to drive aberrant stimulation of TLRs in the RA joint resulting in increased expression of cytokines, chemokines and proteases, perpetuating a vicious inflammatory cycle that constitutes the hallmark chronic inflammation of RA. In this review, we discuss the signalling mechanisms of TLRs, the central function of TLRs in the pathogenesis of RA, the role of endogenous danger signals in driving TLR activation within the context of RA and the current preclinical and clinical strategies available to date in therapeutic targeting of TLRs in RA.
Collapse
Affiliation(s)
- Fui G Goh
- Kennedy Institute of Rheumatology Division, Matrix Biology Department, Faculty of Medicine, Imperial College of Science, Technology and Medicine, 65 Aspenlea Road, Hammersmith, London W6 8LH, UK
| | | |
Collapse
|
18
|
Flynn AN, Tillu DV, Asiedu MN, Hoffman J, Vagner J, Price TJ, Boitano S. The protease-activated receptor-2-specific agonists 2-aminothiazol-4-yl-LIGRL-NH2 and 6-aminonicotinyl-LIGRL-NH2 stimulate multiple signaling pathways to induce physiological responses in vitro and in vivo. J Biol Chem 2011; 286:19076-88. [PMID: 21467041 PMCID: PMC3099721 DOI: 10.1074/jbc.m110.185264] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 03/07/2011] [Indexed: 12/31/2022] Open
Abstract
Protease-activated receptor-2 (PAR(2)) is one of four protease-activated G-protein-coupled receptors. PAR(2) is expressed on multiple cell types where it contributes to cellular responses to endogenous and exogenous proteases. Proteolytic cleavage of PAR(2) reveals a tethered ligand that activates PAR(2) and two major downstream signaling pathways: mitogen-activated protein kinase (MAPK) and intracellular Ca(2+) signaling. Peptides or peptidomimetics can mimic binding of the tethered ligand to stimulate signaling without the nonspecific effects of proteases. The most commonly used peptide activators of PAR(2) (e.g. SLIGRL-NH(2) and SLIGKV-NH(2)) lack potency at the receptor. However, although the potency of 2-furoyl-LIGRLO-NH(2) (2-f-LIGRLO-NH(2)) underscores the use of peptidomimetic PAR(2) ligands as a mechanism to enhance pharmacological action at PAR(2), 2-f-LIGRLO-NH(2) has not been thoroughly evaluated. We evaluated the known agonist 2-f-LIGRLO-NH(2) and two recently described pentapeptidomimetic PAR(2)-specific agonists, 2-aminothiazol-4-yl-LIGRL-NH(2) (2-at-LIGRL-NH(2)) and 6-aminonicotinyl-LIGRL-NH(2) (6-an-LIGRL-NH(2)). All peptidomimetic agonists stimulated PAR(2)-dependent in vitro physiological responses, MAPK signaling, and Ca(2+) signaling with an overall rank order of potency of 2-f-LIGRLO-NH(2) ≈ 2-at-LIGRL-NH(2) > 6-an-LIGRL-NH(2) ≫ SLIGRL-NH(2). Because PAR(2) plays a major role in pathological pain conditions and to test potency of the peptidomimetic agonists in vivo, we evaluated these agonists in models relevant to nociception. All three agonists activated Ca(2+) signaling in nociceptors in vitro, and both 2-at-LIGRL-NH(2) and 2-f-LIGRLO-NH(2) stimulated PAR(2)-dependent thermal hyperalgesia in vivo. We have characterized three high potency ligands that can be used to explore the physiological role of PAR(2) in a variety of systems and pathologies.
Collapse
Affiliation(s)
- Andrea N. Flynn
- From the Departments of Physiology and
- Bio5 Collaborative Research Institute, and
- Arizona Respiratory Center, Arizona Health Sciences Center, Tucson, Arizona 85724
| | | | | | - Justin Hoffman
- From the Departments of Physiology and
- Bio5 Collaborative Research Institute, and
- Arizona Respiratory Center, Arizona Health Sciences Center, Tucson, Arizona 85724
| | | | | | - Scott Boitano
- From the Departments of Physiology and
- Bio5 Collaborative Research Institute, and
- Arizona Respiratory Center, Arizona Health Sciences Center, Tucson, Arizona 85724
| |
Collapse
|
19
|
Leyden J, Wallo W. The mechanism of action and clinical benefits of soy for the treatment of hyperpigmentation. Int J Dermatol 2011; 50:470-7. [DOI: 10.1111/j.1365-4632.2010.04765.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Mannowetz N, Würdinger R, Zippel A, Aumüller G, Wennemuth G. Expression of proteinase-activated receptor-2 (PAR2) is androgen-dependent in stromal cell line (hPCPs) from benign prostatic hyperplasia. Prostate 2010; 70:1350-8. [PMID: 20623639 DOI: 10.1002/pros.21170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Growth properties of the prostate are regulated by a variety of hormones and growth factors. Benign prostatic hyperplasia (BPH) is characterized by abnormal epithelial and stromal proliferation. Varying androgen hormone levels in elderly men are correlated with abnormal proliferations of the prostate. Proteinase-activated receptor-2 (PAR2), a subtype of G-protein-coupled receptors, is known to induce multiple biological processes. It could also play a key role in the proliferation and metastasis of prostate cancer, but its effect on BPH pathogenesis is to a great extent unknown. METHODS Localization of PAR2 was determined both in pathologically altered and in normal prostate tissues by using immunohistochemical techniques. PAR2 activity was assessed by measuring changes in intracellular calcium [Ca(2+)](i) following stimulation of cultured stromal cells with a PAR2 agonist (trypsin) and a synthetic PAR2-activating peptide (AP). DHT-dependence of PAR2 expression in prostate cancer and prostatic stromal cell lines was examined with semi-quantitative and quantitative PCR. Cultured stromal cells (hPCPs) were stimulated with PAR2 AP and cell proliferation was determined through [(3)H]-thymidine incorporation. RESULTS In comparison to normal prostate, PAR2 expression was increased in BPH stroma. DHT induced a higher expression of PAR2 when sub-physiological DHT-levels were used. Higher levels of DHT produced reduced PAR2 expression. A mitogenic effect was induced by applying PAR2 AP to hPCPs-cells. CONCLUSIONS In conclusion, we found that PAR2 expression is hormone-dependent in prostatic stromal cells with a negative correlation and we consider it to be an important factor in mitogenesis in BPH.
Collapse
Affiliation(s)
- Nadja Mannowetz
- Department of Anatomy and Cell Biology, University of Homburg/Saar, Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
21
|
Goh FG, Ng PY, Nilsson M, Kanke T, Plevin R. Dual effect of the novel peptide antagonist K-14585 on proteinase-activated receptor-2-mediated signalling. Br J Pharmacol 2010; 158:1695-704. [PMID: 19917067 DOI: 10.1111/j.1476-5381.2009.00415.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Here we have examined the effects of the novel peptide antagonist N-[1-(2,6-dichlorophenyl)methyl]-3-(1-pyrrolidinylmethyl)-1H-indol-5-yl]aminocarbonyl]-glycinyl-L-lysinyl-L-phenylalanyl-N-benzhydrylamide (K-14585) on proteinase-activated receptor (PAR)(2)-mediated intracellular signalling events. EXPERIMENTAL APPROACH Using NCTC2544 cells expressing PAR(2), we assessed the effects of K-14585 on PAR(2)-mediated [(3)H] inositol phosphate accumulation, MAP kinase activation, p65 NFkappaB phosphorylation and DNA binding and IL-8 production. KEY RESULTS Pretreatment with K-14585 (5 microM) inhibited [(3)H] inositol phosphate levels stimulated by PAR(2)-activating peptide Ser-Leu-Ile-Gly-Lys-Val (SLIGKV-OH) in PAR(2)-expressing NCTC2544 cells. K-14585 pretreatment did not influence PAR(2)-mediated extracellular regulated kinase activation but inhibited p38 MAP kinase phosphorylation. At a higher concentration (30 microM), K-14585 alone stimulated p38 MAP kinase activation. These effects were replicated in EAhy926 cells, endogenously expressing PAR(2), but not in parental or PAR(4)-expressing NCTC2544 cells, suggesting these effects were PAR(2)-dependent. SLIGKV-mediated stimulation of p38 MAP kinase phosphorylation was substantially reduced by the G(q/11) inhibitor YM-254890, without affecting K-14585-mediated phosphorylation. Pretreatment with K-14585 inhibited PAR(2)-mediated p65 NFkappaB phosphorylation and NFkappaB-DNA binding. K-14585 (30 microM) alone stimulated comparable NFkappaB reporter activity to SLIGKV-OH. K-14585 inhibited SLIGKV-stimulated IL-8 production, but given alone increased IL-8. While SLIGKV-induced IL-8 formation was reduced by both SB203580 and YM-254890, the response to K-14585 was sensitive to SB203580 but not YM-254890. CONCLUSIONS AND IMPLICATIONS These data reveal that K-14585 has a duality of action functioning both as an antagonist and agonist due to either partial agonist actions or possible agonist-directed signalling. The data also suggest two modes of p38 MAP kinase activation emanating from PAR(2), one G(q/11)-dependent and the other G(q/11)-independent.
Collapse
Affiliation(s)
- Fui Goon Goh
- Division of Physiology & Pharmacology, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | | | | | |
Collapse
|
22
|
Helyes Z, Sándor K, Borbély E, Tékus V, Pintér E, Elekes K, Tóth DM, Szolcsányi J, McDougall JJ. Involvement of transient receptor potential vanilloid 1 receptors in protease-activated receptor-2-induced joint inflammation and nociception. Eur J Pain 2009; 14:351-8. [PMID: 19683949 DOI: 10.1016/j.ejpain.2009.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 06/23/2009] [Accepted: 07/21/2009] [Indexed: 02/03/2023]
Abstract
Protease-activated receptor-2 (PAR-2) is a G-protein-coupled receptor activated through proteolytic cleavage. It is localized on epithelial, endothelial and inflammatory cells, as well as on transient receptor potential vanilloid 1 (TRPV1) receptor-expressing neurones. It plays an important role in inflammatory/nociceptive processes. Since there are few reports concerning PAR-2 function in joints, the effects of intraarticular PAR-2 activation on joint pain and inflammation were studied. Secondary hyperalgesia/allodynia, spontaneous weight distribution, swelling and inflammatory cytokine production were measured and the involvement of TRPV1 ion channels was investigated in rats and mice. Injection of the PAR-2 receptor agonist SLIGRL-NH(2) into the knee decreased touch sensitivity and weight bearing of the ipsilateral hindlimb in both species. Secondary mechanical allodynia/hyperalgesia and impaired weight distribution were significantly reduced by the TRPV1 antagonist SB366791 in rats and by the genetic deletion of this receptor in mice. PAR-2 activation did not cause significant joint swelling, but increased IL-1beta concentration which was not influenced by the lack of the TRPV1 channel. For comparison, intraplantar SLIGRL-NH(2) evoked similar primary mechanical hyperalgesia and impaired weight distribution in both WT and TRPV1 deficient mice, but oedema was smaller in the knockouts. The inactive peptide, LRGILS-NH(2), injected into either site did not induce any inflammatory or nociceptive changes. These data provide evidence for a significant role of TRPV1 receptors in secondary mechanical hyperalgesia/allodynia and spontaneous pain induced by PAR-2 receptor activation in the knee joint. Although intraplantar PAR-2 activation-induced oedema is also TRPV1 receptor-mediated, primary mechanical hyperalgesia, impaired weight distribution and IL-1beta production are independent of this channel.
Collapse
Affiliation(s)
- Zs Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, H-7624 Pécs, Szigeti u. 12., Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ramelli G, Fuertes S, Narayan S, Busso N, Acha-Orbea H, So A. Protease-activated receptor 2 signalling promotes dendritic cell antigen transport and T-cell activation in vivo. Immunology 2009; 129:20-7. [PMID: 19845798 DOI: 10.1111/j.1365-2567.2009.03144.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Deficiency of protease-activated receptor-2 (PAR2) modulates inflammation in several models of inflammatory and autoimmune disease, although the underlying mechanism(s) are not understood. PAR2 is expressed on endothelial and immune cells, and is implicated in dendritic cell (DC) differentiation. We investigated in vivo the impact of PAR2 activation on DCs and T cells in PAR2 wild-type (WT) and knockout (KO) mice using a specific PAR2 agonist peptide (AP2). PAR2 activation significantly increased the frequency of mature CD11c(high) DCs in draining lymph nodes 24 hr after AP2 administration. Furthermore, these DCs exhibited increased expression of major histocompatibility complex (MHC) class II and CD86. A significant increase in activated (CD44(+) CD62(-)) CD4(+) and CD8(+) T-cell frequencies was also observed in draining lymph nodes 48 hr after AP2 injection. No detectable change in DC or T-cell activation profiles was observed in the spleen. The influence of PAR2 signalling on antigen transport to draining lymph nodes was assessed in the context of delayed-type hypersensitivity. PAR2 WT mice that were sensitized by skin-painting with fluorescein isothiocyanate (FITC) to induce delayed-type hypersensitivity possessed elevated proportion of FITC(+) DCs in draining lymph nodes 24 hr after FITC painting when compared with PAR2 KO mice (0.95% versus 0.47% of total lymph node cells). Collectively, these results demonstrate that PAR2 signalling promotes DC trafficking to the lymph nodes and subsequent T-cell activation, and thus provides an explanation for the pro-inflammatory effect of PAR2 in animal models of inflammation.
Collapse
Affiliation(s)
- Giancarlo Ramelli
- Service of Rheumatology, Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Li R, Rohatgi T, Hanck T, Reiser G. Alpha A-crystallin and alpha B-crystallin, newly identified interaction proteins of protease-activated receptor-2, rescue astrocytes from C2-ceramide- and staurosporine-induced cell death. J Neurochem 2009; 110:1433-44. [PMID: 19558454 DOI: 10.1111/j.1471-4159.2009.06226.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protease-activated receptor-2 (PAR-2) is a G protein-coupled receptor activated by trypsin and other trypsin-like serine proteases. The widely expressed PAR-2 is involved in inflammation response but the physiological/pathological roles of PAR-2 in the nervous system are still uncertain. In the present study, we report novel PAR-2 interaction proteins, alphaA-crystallin and alphaB-crystallin. These 20 kDa proteins have been implicated in neurodegenerative diseases like Alexander's disease, Creutzfeldt-Jacob disease, Alzheimer's disease, and Parkinson's disease. Results from yeast two-hybrid assay using the cytoplasmic C-tail of PAR-2 as bait suggested that alphaA-crystallin interacts with PAR-2. We further demonstrate the in vitro and cellular in vivo interaction of C-tail of PAR-2 as well as of full-length PAR-2 with alphaA(alphaB)-crystallins. We use pull-down, co-immunoprecipitation, and co-localization assays. Analysis of alphaA-crystallin deletion mutants showed that amino acids 120-130 and 136-154 of alphaA-crystallin are required for the interaction with PAR-2. Co-immunoprecipitation experiments ruled out an interaction of alphaA(alphaB)-crystallins with PAR-1, PAR-3, and PAR-4. This demonstrates that alphaA(alphaB)-crystallins are PAR-2-specific interaction proteins. Moreover, we investigated the functional role of PAR-2 and alpha-crystallins in astrocytes. Evidence is presented to show that PAR-2 activation and increased expression of alpha-crystallins reduced C2-ceramide- and staurosporine-induced cell death in astrocytes. Thus, both PAR-2 and alpha-crystallins are involved in cytoprotection in astrocytes.
Collapse
Affiliation(s)
- Rongyu Li
- Medizinische Fakultät, Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Magdeburg 39120, Germany
| | | | | | | |
Collapse
|
25
|
Sandberg WJ, Halvorsen B, Yndestad A, Smith C, Otterdal K, Brosstad FR, Frøland SS, Olofsson PS, Damås JK, Gullestad L, Hansson GK, Øie E, Aukrust P. Inflammatory Interaction Between LIGHT and Proteinase-Activated Receptor-2 in Endothelial Cells. Circ Res 2009; 104:60-8. [DOI: 10.1161/circresaha.108.188078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interaction between inflammatory cytokines and endothelial cells is a critical step in atherogenesis leading to endothelial dysfunction and inflammation. We have previously reported that the tumor necrosis factor superfamily member LIGHT could be involved in atherogenesis through its ability to promote vascular inflammation. In the present study we identified proteinase-activated receptor (PAR)-2 as an inflammatory mediator that was markedly enhanced by LIGHT in endothelial cells. We also found that LIGHT acted synergistically with PAR-2 activation to promote enhanced release of the proatherogenic chemokines interleukin-8 and monocyte chemoattractant protein-1, underscoring that the interaction between LIGHT and PAR-2 is biologically active, promoting potent inflammatory effects. We showed that the LIGHT-mediated upregulation of PAR-2 in endothelial cells is mediated through the HVEM receptor, involving Jun N-terminal kinase signaling pathways. A LIGHT-mediated upregulation of PAR-2 mRNA levels was also found in human monocytes when these cells were preactivated by tumor necrosis factor α. We have previously demonstrated increased plasma levels of LIGHT in unstable angina patients, and here we show a similar pattern for PAR-2 expression in peripheral blood monocytes. We also found that LIGHT, LIGHT receptors, and PAR-2 showed enhanced expression, and, to some degree, colocalization in endothelial cells and macrophages, in the atherosclerotic plaques of ApoE
−/−
mice, suggesting that the inflammatory interaction between LIGHT and PAR-2 also may be operating in vivo within an atherosclerotic lesion. Our findings suggest that LIGHT/PAR-2–driven inflammation could be a pathogenic loop in atherogenesis potentially representing a target for therapy in this disorder.
Collapse
Affiliation(s)
- Wiggo J. Sandberg
- From the Research Institute for Internal Medicine (W.J.S., B.H., A.Y., C.S., K.O., F.R.B., S.S.F., J.K.D., P.A.), Section of Clinical Immunology and Infectious Diseases (S.S.F., J.K.D., P.A.), and Department of Cardiology (L.G., E.O.), Rikshosptalet University Hospital, University of Oslo, Norway; and Department of Medicine and Center for Molecular Medicine (P.S.O., G.K.H.), Karolinska Institute, Stockholm, Sweden
| | - Bente Halvorsen
- From the Research Institute for Internal Medicine (W.J.S., B.H., A.Y., C.S., K.O., F.R.B., S.S.F., J.K.D., P.A.), Section of Clinical Immunology and Infectious Diseases (S.S.F., J.K.D., P.A.), and Department of Cardiology (L.G., E.O.), Rikshosptalet University Hospital, University of Oslo, Norway; and Department of Medicine and Center for Molecular Medicine (P.S.O., G.K.H.), Karolinska Institute, Stockholm, Sweden
| | - Arne Yndestad
- From the Research Institute for Internal Medicine (W.J.S., B.H., A.Y., C.S., K.O., F.R.B., S.S.F., J.K.D., P.A.), Section of Clinical Immunology and Infectious Diseases (S.S.F., J.K.D., P.A.), and Department of Cardiology (L.G., E.O.), Rikshosptalet University Hospital, University of Oslo, Norway; and Department of Medicine and Center for Molecular Medicine (P.S.O., G.K.H.), Karolinska Institute, Stockholm, Sweden
| | - Camilla Smith
- From the Research Institute for Internal Medicine (W.J.S., B.H., A.Y., C.S., K.O., F.R.B., S.S.F., J.K.D., P.A.), Section of Clinical Immunology and Infectious Diseases (S.S.F., J.K.D., P.A.), and Department of Cardiology (L.G., E.O.), Rikshosptalet University Hospital, University of Oslo, Norway; and Department of Medicine and Center for Molecular Medicine (P.S.O., G.K.H.), Karolinska Institute, Stockholm, Sweden
| | - Kari Otterdal
- From the Research Institute for Internal Medicine (W.J.S., B.H., A.Y., C.S., K.O., F.R.B., S.S.F., J.K.D., P.A.), Section of Clinical Immunology and Infectious Diseases (S.S.F., J.K.D., P.A.), and Department of Cardiology (L.G., E.O.), Rikshosptalet University Hospital, University of Oslo, Norway; and Department of Medicine and Center for Molecular Medicine (P.S.O., G.K.H.), Karolinska Institute, Stockholm, Sweden
| | - Frank R. Brosstad
- From the Research Institute for Internal Medicine (W.J.S., B.H., A.Y., C.S., K.O., F.R.B., S.S.F., J.K.D., P.A.), Section of Clinical Immunology and Infectious Diseases (S.S.F., J.K.D., P.A.), and Department of Cardiology (L.G., E.O.), Rikshosptalet University Hospital, University of Oslo, Norway; and Department of Medicine and Center for Molecular Medicine (P.S.O., G.K.H.), Karolinska Institute, Stockholm, Sweden
| | - Stig S. Frøland
- From the Research Institute for Internal Medicine (W.J.S., B.H., A.Y., C.S., K.O., F.R.B., S.S.F., J.K.D., P.A.), Section of Clinical Immunology and Infectious Diseases (S.S.F., J.K.D., P.A.), and Department of Cardiology (L.G., E.O.), Rikshosptalet University Hospital, University of Oslo, Norway; and Department of Medicine and Center for Molecular Medicine (P.S.O., G.K.H.), Karolinska Institute, Stockholm, Sweden
| | - Peder S. Olofsson
- From the Research Institute for Internal Medicine (W.J.S., B.H., A.Y., C.S., K.O., F.R.B., S.S.F., J.K.D., P.A.), Section of Clinical Immunology and Infectious Diseases (S.S.F., J.K.D., P.A.), and Department of Cardiology (L.G., E.O.), Rikshosptalet University Hospital, University of Oslo, Norway; and Department of Medicine and Center for Molecular Medicine (P.S.O., G.K.H.), Karolinska Institute, Stockholm, Sweden
| | - Jan K. Damås
- From the Research Institute for Internal Medicine (W.J.S., B.H., A.Y., C.S., K.O., F.R.B., S.S.F., J.K.D., P.A.), Section of Clinical Immunology and Infectious Diseases (S.S.F., J.K.D., P.A.), and Department of Cardiology (L.G., E.O.), Rikshosptalet University Hospital, University of Oslo, Norway; and Department of Medicine and Center for Molecular Medicine (P.S.O., G.K.H.), Karolinska Institute, Stockholm, Sweden
| | - Lars Gullestad
- From the Research Institute for Internal Medicine (W.J.S., B.H., A.Y., C.S., K.O., F.R.B., S.S.F., J.K.D., P.A.), Section of Clinical Immunology and Infectious Diseases (S.S.F., J.K.D., P.A.), and Department of Cardiology (L.G., E.O.), Rikshosptalet University Hospital, University of Oslo, Norway; and Department of Medicine and Center for Molecular Medicine (P.S.O., G.K.H.), Karolinska Institute, Stockholm, Sweden
| | - Göran K. Hansson
- From the Research Institute for Internal Medicine (W.J.S., B.H., A.Y., C.S., K.O., F.R.B., S.S.F., J.K.D., P.A.), Section of Clinical Immunology and Infectious Diseases (S.S.F., J.K.D., P.A.), and Department of Cardiology (L.G., E.O.), Rikshosptalet University Hospital, University of Oslo, Norway; and Department of Medicine and Center for Molecular Medicine (P.S.O., G.K.H.), Karolinska Institute, Stockholm, Sweden
| | - Erik Øie
- From the Research Institute for Internal Medicine (W.J.S., B.H., A.Y., C.S., K.O., F.R.B., S.S.F., J.K.D., P.A.), Section of Clinical Immunology and Infectious Diseases (S.S.F., J.K.D., P.A.), and Department of Cardiology (L.G., E.O.), Rikshosptalet University Hospital, University of Oslo, Norway; and Department of Medicine and Center for Molecular Medicine (P.S.O., G.K.H.), Karolinska Institute, Stockholm, Sweden
| | - Pål Aukrust
- From the Research Institute for Internal Medicine (W.J.S., B.H., A.Y., C.S., K.O., F.R.B., S.S.F., J.K.D., P.A.), Section of Clinical Immunology and Infectious Diseases (S.S.F., J.K.D., P.A.), and Department of Cardiology (L.G., E.O.), Rikshosptalet University Hospital, University of Oslo, Norway; and Department of Medicine and Center for Molecular Medicine (P.S.O., G.K.H.), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
26
|
Mite and Cockroach Allergens Activate Protease-Activated Receptor 2 and Delay Epidermal Permeability Barrier Recovery. J Invest Dermatol 2008; 128:1930-9. [DOI: 10.1038/jid.2008.13] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Blakeney JS, Reid RC, Le GT, Fairlie DP. Nonpeptidic Ligands for Peptide-Activated G Protein-Coupled Receptors. Chem Rev 2007; 107:2960-3041. [PMID: 17622179 DOI: 10.1021/cr050984g] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jade S Blakeney
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
28
|
Bushell T. The emergence of proteinase-activated receptor-2 as a novel target for the treatment of inflammation-related CNS disorders. J Physiol 2007; 581:7-16. [PMID: 17347265 PMCID: PMC2075212 DOI: 10.1113/jphysiol.2007.129577] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The signalling molecules that are involved in inflammatory pathways are now thought to play a part in many disorders of the central nervous system (CNS). In common with peripheral chronic inflammatory diseases such a rheumatoid arthritis and ulcerative colitis, evidence now exists for the involvement of inflammatory cytokines, for example tumour necrosis factor (TNF) and interleukins (IL), in neurological disorders. A common factor observed with the up-regulation of these cytokines in peripheral inflammatory diseases, is the increased expression of the proteinase-activated receptor (PAR) subtype PAR-2. Indeed, recent evidence suggests that targeting PAR-2 helps reduce joint swelling observed in animal models of arthritis. So could targeting this receptor prove to be useful in treating those CNS disorders where inflammatory processes are thought to play an intrinsic role? The aim of this review is to summarize the emerging data regarding the role of PAR-2 in neuroinflammation and ischaemic injury and discuss its potential as an exciting new target for the prevention and/or treatment of CNS disorders.
Collapse
Affiliation(s)
- Trevor Bushell
- Strathclyde Institute for Pharmacy & Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 NR, UK.
| |
Collapse
|
29
|
Seitz I, Hess S, Schulz H, Eckl R, Busch G, Montens HP, Brandl R, Seidl S, Schömig A, Ott I. Membrane-type serine protease-1/matriptase induces interleukin-6 and -8 in endothelial cells by activation of protease-activated receptor-2: potential implications in atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27:769-75. [PMID: 17255532 DOI: 10.1161/01.atv.0000258862.61067.14] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The serine protease MT-SP1/matriptase plays an important role in cell migration and matrix degradation. Hepatocyte growth factor (HGF), urokinase-type plasminogen activator (uPA), and protease-activated receptor 2 (PAR-2) have been identified as in vitro substrates of MT-SP1/matriptase. Because PAR-2 is expressed in endothelial cells and contributes to inflammatory processes, we sought to investigate the effects of MT-SP1/matriptase on endothelial cytokine expression and analyzed MT-SP1/matriptase expression in vascular cells and atherosclerotic lesions. METHODS AND RESULTS In endothelial cells, recombinant MT-SP1/matriptase dose-dependently induced interleukin (IL)-8 and IL-6 mRNA and protein expression dependent on its proteolytic activity. MT-SP1/matriptase time-dependently induced phosphorylation of p38 MAPK and p42/44 MAPK. Inhibitor experiments revealed that p38 MAPK and PKCalpha were necessary for IL-8 induction. PAR-2 downregulation abolished and PAR-2 overexpression augmented MT-SP1/matriptase-induced IL-8 expression as evidence for PAR-2 signaling. In human atherectomies, MT-SP1/matriptase was expressed in blood cells adherent to the endothelium. Concordantly, basal MT-SP1/matriptase expression was detected in isolated monocytes. Coincubation of monocytes and endothelial cells resulted in an increased IL-8 release, which was reduced after downregulation of endothelial PAR-2 and monocytic MT-SP1/matriptase. CONCLUSION MT-SP1/matriptase induces release of proinflammatory cytokines in endothelial cells through activation of PAR-2. MT-SP1/matriptase is expressed in monocytes, thus, interaction of monocytic MT-SP1/matriptase with endothelial PAR-2 may contribute to atherosclerosis.
Collapse
Affiliation(s)
- Isabell Seitz
- Deutsches Herzzentrum und 1. Medizinische Klinik, Technische Universität München, 80636 München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gloro R, Ducrotte P, Reimund JM. Protease-activated receptors: potential therapeutic targets in irritable bowel syndrome? Expert Opin Ther Targets 2007; 9:1079-95. [PMID: 16185159 DOI: 10.1517/14728222.9.5.1079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protease-activated receptors (PARs) are a family of four G-protein-coupled receptors (PAR-1 to PAR-4) activated by the proteolytic cleavage of their N-terminal extracellular domain. This activation first involves the recognition of the extracellular domain by proteases, such as thrombin, but also trypsin or tryptase which are particularly abundant in the gastrointestinal tract, both under physiological circumstances and in several digestive diseases. Activation of PARs, particularly of PAR-1 and -2, modulates intestinal functions, such as gastrointestinal motility, visceral nociception, mucosal inflammatory response, and epithelial functions (intestinal secretion and permeability). As these physiological properties have been shown to be altered in various extents and combinations in different clinical presentations of irritable bowel syndrome, PARs appear as putative targets for future therapeutic intervention in these patients.
Collapse
Affiliation(s)
- Romain Gloro
- Centre Hospitalier Universitaire de Caen, Service d'Hépato-Gastro-Entérologie et Nutrition, Avenue de la Côte de Nacre, 14033 Caen Cedex, France
| | | | | |
Collapse
|
31
|
Freund-Michel V, Frossard N. Inflammatory conditions increase expression of protease-activated receptor-2 by human airway smooth muscle cells in culture. Fundam Clin Pharmacol 2006; 20:351-7. [PMID: 16867018 DOI: 10.1111/j.1472-8206.2006.00418.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The protease-activated receptor-2 (PAR-2) has been implicated in airway inflammation and bronchial hyperresponsiveness. We wondered whether inflammatory conditions may upregulate PAR-2 expression by the human airway smooth muscle. To do so, we treated human airway smooth muscle cells (HASMC) in primary culture with interleukin-1beta (IL-1beta), a pro-inflammatory and asthma-associated cytokine. Cells were starved for 24 h and incubated with or without IL-1beta. Online fluorescent polymerase chain reaction after reverse transcription quantified PAR-2 mRNA, and Western blotting measured PAR-2 protein expression. PAR-2 was constitutively expressed by HASMC in primary culture, and IL-1beta (10 U/mL) time dependently elevated PAR-2 mRNA with a maximum of 4.7-fold after 1.5 h (P < 0.01), and PAR-2 protein expression with a maximum of 1.5-fold after 24 h (P < 0.01). The concentration dependence of the IL-1beta effect (0.1-30 U/mL) confirmed a maximal increase of PAR-2 expression at 10 U/mL. Our study clearly shows that IL-1beta upregulates PAR-2 mRNA and protein expression by HASMC in culture. This increased expression of PAR-2 in inflammatory conditions may have functional consequences in the bronchial dysfunction of asthmatic airways.
Collapse
Affiliation(s)
- Véronique Freund-Michel
- EA 3771 Inflammation and Environment in Asthma, Faculté de Pharmacie, Université Louis Pasteur-Strasbourg I, Illkirch, France.
| | | |
Collapse
|
32
|
Soreide K, Janssen EA, Körner H, Baak JPA. Trypsin in colorectal cancer: molecular biological mechanisms of proliferation, invasion, and metastasis. J Pathol 2006; 209:147-56. [PMID: 16691544 DOI: 10.1002/path.1999] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trypsin is involved in colorectal carcinogenesis and promotes proliferation, invasion, and metastasis. Although a well-known pancreatic digestive enzyme, trypsin has also been found in other tissues and various cancers, most importantly of the colorectum. Moreover, colorectal cancers with trypsin expression have a poor prognosis and shorter disease-free survival. Biological understanding of how trypsin causes cancer progression is emerging. It seems to act both directly and indirectly through a 'proteinase-antiproteinase-system', and by activation of other proteinase cascades. Invasion of the basal membrane by cancer cells may be promoted directly by trypsin digestion of type I collagen. Trypsin activates, and is co-expressed with matrix metalloproteinases (MMPs), which are known to facilitate invasion and metastasis. MMP-2, MMP-7, and MMP-9 are co-expressed together with trypsin and seem to be of particular importance in proliferation, progression, and invasion. MMPs may play a role in both conversion from adenoma to carcinoma, and in the initiation of invasion and metastasis. Co-segregation of trypsin and MMPs within the tumour environment is important for the activation of MMPs, and may explain the deleterious effect of trypsin on prognosis in colorectal cancer. Trypsin and proteinase-activated receptor 2 (PAR-2) act together in an autocrine loop that promotes proliferation, invasion, and metastasis through various mechanisms, of which prostaglandin synthesis is important. Stimulated by trypsin, both MMP and PAR-2 may activate the mitogenic MAPK-ERK pathway through activation of the epidermal growth factor receptor. Experimental trypsin inhibition is feasible but not very effective, and trypsin as a target for clinical therapy is unlikely to be successful owing to its universal distribution. However, as the pathways of trypsin and co-activated protein cascades emerge, biological understanding of colorectal carcinogenesis will be further illuminated and may pave the way for prognosticators, predictors, and novel targets of therapy.
Collapse
Affiliation(s)
- K Soreide
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | | | | | | |
Collapse
|