1
|
Evaluating the abuse potential of psychedelic drugs as part of the safety pharmacology assessment for medical use in humans. Neuropharmacology 2018; 142:89-115. [PMID: 29427652 DOI: 10.1016/j.neuropharm.2018.01.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/07/2018] [Accepted: 01/31/2018] [Indexed: 11/21/2022]
Abstract
Psychedelics comprise drugs come from various pharmacological classes including 5-HT2A agonists, indirect 5-HT agonists, e.g., MDMA, NMDA antagonists and κ-opioid receptor agonists. There is resurgence in developing psychedelics to treat psychiatric disorders with high unmet clinical need. Many, but not all, psychedelics are schedule 1 controlled drugs (CDs), i.e., no approved medical use. For existing psychedelics in development, regulatory approval will require a move from schedule 1 to a CD schedule for drugs with medical use, i.e., schedules 2-5. Although abuse of the psychedelics is well documented, a systematic preclinical and clinical evaluation of the risks they pose in a medical-use setting does not exist. We describe the non-clinical tests required for a regulatory evaluation of abuse/dependence risks, i.e., drug-discrimination, intravenous self-administration and physical dependence liability. A synopsis of the existing data for the various types of psychedelics is provided and we describe our findings with psychedelic drugs in these models. FDA recently issued its guidance on abuse/dependence evaluation of drug-candidates (CDER/FDA, 2017). We critically review the guidance, discuss the impact this document will have on non-clinical abuse/dependence testing, and offer advice on how non-clinical abuse/dependence experiments can be designed to meet not only the expectations of FDA, but also other regulatory agencies. Finally, we offer views on how these non-clinical tests can be refined to provide more meaningful information to aid the assessment of the risks posed by CNS drug-candidates for abuse and physical dependence. This article is part of the Special Issue entitled 'Psychedelics: New Doors, Altered Perceptions'.
Collapse
|
2
|
Mori T, Sawaguchi T. [Underlying Mechanisms of Methamphetamine-Induced Self-Injurious Behavior and Lethal Effects in Mice]. Nihon Eiseigaku Zasshi 2018; 73:51-56. [PMID: 29386447 DOI: 10.1265/jjh.73.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Relatively high doses of psychostimulants induce neurotoxicity on the dopaminergic system and self-injurious behavior (SIB) in rodents. However the underlying neuronal mechanisms of SIB remains unclear. Dopamine receptor antagonists, N-methyl-D-aspartic acid (NMDA) receptor antagonists, Nitric Oxide Synthase (NOS) inhibitors and free radical scavengers significantly attenuate methamphetamine-induced SIB. These findings indicate that activation of dopamine as well as NMDA receptors followed by radical formation and oxidative stress, especially when mediated by NOS activation, is associated with methamphetamine-induced SIB. On the other hand, an increase in the incidence of polydrug abuse is a major problem worldwide. Coadministered methamphetamine and morphine induced lethality in more than 80% in mice, accompanied by an increase in the number of poly (ADP-ribose) polymerase (PARP)-immunoreactive cells in the heart, kidney and liver. The lethal effect and the increase in the incidence of rupture or PARP-immunoreactive cells induced by the coadministration of methamphetamine and morphine were significantly attenuated by pretreatment with a phospholipase A2 inhibitor or a radical scavenger, or by cooling of body from 30 to 90 min after drug administration. These results suggest that free radicals play an important role in the increased lethality induced by the coadministration of methamphetamine and morphine. Therefore, free radical scavengers and cooling are beneficial for preventing death that is induced by the coadministration of methamphetamine and morphine. These findings may help us better understand for masochistic behavior, which is a clinical phenomenon on SIB, as well as polydrug-abuse-induced acute toxicity.
Collapse
Affiliation(s)
- Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Toshiko Sawaguchi
- National Institute of Public Health, Minsitry of Health Labour & Welfare.,Department of Legal Medicine, Showa University School of Medicine
| |
Collapse
|
3
|
Mori T, Suzuki T. The Discriminative Stimulus Properties of Hallucinogenic and Dissociative Anesthetic Drugs. Curr Top Behav Neurosci 2018; 39:141-152. [PMID: 27586539 DOI: 10.1007/7854_2016_29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The subjective effects of drugs are related to the kinds of feelings they produce, such as euphoria or dysphoria. One of the methods that can be used to study these effects is the drug discrimination procedure. Many researchers have been trying to elucidate the mechanisms that underlie the discriminative stimulus properties of abused drugs (e.g., alcohol, psychostimulants, and opioids). Over the past two decades, patterns of drug abuse have changed, so that club/recreational drugs such as phencyclidine (PCP), 3,4-methylenedioxymethamphetamine (MDMA), ketamine, and cannabinoid, which induce perceptual distortions, like hallucinations, are now more commonly abused, especially in younger generations. In particular, the abuse of designer drugs, which aim to mimic the subjective effects of psychostimulants (e.g., MDMA or amphetamines), has been problematic. However, the mechanisms of the discriminative stimulus effects of hallucinogenic and dissociative anesthetic drugs are not yet fully clear. This chapter focuses on recent findings regarding hallucinogenic and dissociative anesthetic drug-induced discriminative stimulus properties in animals.
Collapse
Affiliation(s)
- Tomohisa Mori
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Hoshi, Japan
| | - Tsutomu Suzuki
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Hoshi, Japan.
| |
Collapse
|
4
|
The ketamine analogue methoxetamine generalizes to ketamine discriminative stimulus in rats. Behav Pharmacol 2016; 27:204-10. [PMID: 26866970 DOI: 10.1097/fbp.0000000000000221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Methoxetamine (MXE) is a chemical analogue of ketamine. Originally proposed as a ketamine-like fast-acting antidepressant, owing to similar N-methyl-D-aspartate blocker properties, it is now scheduled for reports of hallucinations and psychosis similar to ketamine and lysergic acid. As little is known about the addictive properties of MXE, the aim of this study was to investigate the similarity between discriminative stimuli of MXE and ketamine, as well as to provide data and protocols that could be used in the future for the characterization of novel ketamine-like drugs. The paradigm used was a two-lever operant conditioning paradigm in which rats were trained to discriminate ketamine (7.5 mg/kg/ml, intraperitoneal) from vehicle. Generalization tests were performed with MXE (0.0625, 0.125, 0.25, 0.5, or 1.0). We also tested the N-methyl-D-aspartate channel blocker MK-801 (0.005-0.1), lysergic acid (0.025-0.30), a serotonergic drug that had similar hallucinogenic effects as ketamine and methamphetamine (0.15-0.60) a drug with no generalization with ketamine, injected intraperitoneally presession (mg/kg). MXE and MK-801 fully generalized to ketamine. Lysergic acid and methamphetamine partially substituted for the ketamine stimulus, although the highest lysergic acid dose showed a 77.7% generalization. The present findings suggest that investigation of 'ketamine-like compounds' should explore not only substances with chemical analogy and common molecular mechanisms with ketamine, but also with similar psychopharmacological effects.
Collapse
|
5
|
Involvement of dopamine D2 receptor signal transduction in the discriminative stimulus effects of the κ-opioid receptor agonist U-50,488H in rats. Behav Pharmacol 2013; 24:275-81. [PMID: 23838963 DOI: 10.1097/fbp.0b013e3283635f6b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have reported previously that the inhibition of both dopaminergic and psychotomimetic/hallucinogenic components plays a role in the discriminative stimulus effects of U-50,488H. However, the mechanisms that underlie the discriminative stimulus effects of U-50,488H, and especially the component that plays a significant role, have not yet been clarified. The present study was designed to further investigate the mechanism(s) of the discriminative stimulus effects of the κ-opioid receptor agonist U-50,488H in rats that had been trained to discriminate between 3.0 mg/kg U-50,488H and saline. The dopamine D2 receptor antagonist sulpiride, but not the D1 receptor antagonist SCH23390, generalized to the discriminative stimulus effects of U-50,488H. The mood-stabilizing agents lithium chloride and valproic acid, which have attenuating effects on the Akt/GSK3 pathway, also partially generalized to the discriminative stimulus effects of U-50,488H. In contrast, the 5-HT-related compound racemic 3,4-methylenedioxymethamphetamine, the cannabinoid receptor agonist WIN55,212-2, and the μ-opioid receptor agonist morphine failed to generalize to the discriminative stimulus effects of U-50,488H. These results suggest that the inhibition of the dopaminergic activity mediated by the postsynaptic D2 receptor, followed by suppression of the Akt/GSK3 pathway may be critical for the induction of the discriminative stimulus effects induced by U-50,488H.
Collapse
|
6
|
Yoshizawa K, Narita M, Suzuki T. [Psychological dependence on opioid analgesics]. Nihon Yakurigaku Zasshi 2013; 142:22-27. [PMID: 23842224 DOI: 10.1254/fpj.142.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
7
|
Mori T, Yoshizawa K, Shibasaki M, Suzuki T. Discriminative stimulus effects of hallucinogenic drugs: a possible relation to reinforcing and aversive effects. J Pharmacol Sci 2012; 120:70-6. [PMID: 22986365 DOI: 10.1254/jphs.12r08cp] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The subjective effects of drugs are related to the kinds of feelings they produce, such as euphoria or dysphoria. One of the methods that can be used to study these effects is the drug discrimination procedure. Many researchers are trying to elucidate the mechanisms that underlie the discriminative stimulus effects of abused drugs (e.g., alcohol, psychostimulants, and opioids). Over the past two decades, the patterns of drug abuse have changed, so that club/recreational drugs such as phencyclidine (PCP), 3,4-methylenedioxymethamphetamine (MDMA), lysergic acid diethylamide (LSD), and ketamine, which induce perceptual distortions, like hallucinations, are now more commonly abused, especially in younger generations. However, the mechanisms of the discriminative stimulus effects of hallucinogenic drugs are not yet fully clear. This review will briefly focus on the recent findings regarding hallucinogenic/psychotomimetic drug-induced discriminative stimulus effects in animals. In summary, recent research has demonstrated that there are at least two plausible mechanisms that can explain the cue of the discriminative stimulus effects of hallucinogenic drugs; one is mediated mainly by 5-HT(2) receptors, and the other is mediated through sigma-1 (σ(1))-receptor chaperone regulated by endogenous hallucinogenic ligand.
Collapse
Affiliation(s)
- Tomohisa Mori
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | |
Collapse
|
8
|
Mori T, Yoshizawa K, Nomura M, Isotani K, Torigoe K, Tsukiyama Y, Narita M, Suzuki T. Sigma-1 receptor function is critical for both the discriminative stimulus and aversive effects of the kappa-opioid receptor agonist U-50488H. Addict Biol 2012; 17:717-24. [PMID: 21392175 DOI: 10.1111/j.1369-1600.2010.00306.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study was undertaken to identify possible similarities between the effects of kappa-opioid receptor agonist, N-methyl-D-aspartate-receptor antagonist, and sigma receptor agonist on the discriminative stimulus effects of U-50488H, and the possible involvement of sigma receptors in the discriminative stimulus and aversive effects of U-50488H. The kappa-opioid receptor agonist U-50488H produced significant place aversion as measured by the conditioned place preference procedure, and this effect was completely abolished by treatment with the putative sigma-1 receptor antagonist NE-100. In addition, phencyclidine (+)-SKF-10047 and (+)-pentazocine, which are sigma receptor agonists, generalized to the discriminative stimulus effects of U-50488H in rats that had been trained to discriminate between U-50488H (3.0 mg/kg) and saline. Furthermore, NE-100 significantly attenuated the discriminative stimulus effects of U-50488H and the U-50488H-like discriminative stimulus effects of phencyclidine. These results suggest that the sigma-1 receptor is responsible for both the discriminative stimulus effects and aversive effects of U-50488H.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Animals
- Anisoles/pharmacology
- Avoidance Learning/drug effects
- Conditioning, Psychological/drug effects
- Discrimination Learning/drug effects
- Discrimination, Psychological/drug effects
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Male
- Narcotic Antagonists/pharmacology
- Pentazocine/pharmacology
- Phenazocine/analogs & derivatives
- Phenazocine/pharmacology
- Phencyclidine/pharmacology
- Propylamines/pharmacology
- Rats
- Rats, Inbred F344
- Rats, Sprague-Dawley
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, sigma/antagonists & inhibitors
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Tomohisa Mori
- Hoshi University School of Pharmacy and Pharmaceutical Science, Japan Wakayama Medical University Hospital, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci 2012; 69:857-96. [PMID: 22002579 PMCID: PMC11114766 DOI: 10.1007/s00018-011-0844-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
Abstract
The dynorphin/κ-opioid receptor system has been implicated in the pathogenesis and pathophysiology of several psychiatric disorders. In the present review, we present evidence indicating a key role for this system in modulating neurotransmission in brain circuits that subserve mood, motivation, and cognitive function. We overview the pharmacology, signaling, post-translational, post-transcriptional, transcriptional, epigenetic and cis regulation of the dynorphin/κ-opioid receptor system, and critically review functional neuroanatomical, neurochemical, and pharmacological evidence, suggesting that alterations in this system may contribute to affective disorders, drug addiction, and schizophrenia. We also overview the dynorphin/κ-opioid receptor system in the genetics of psychiatric disorders and discuss implications of the reviewed material for therapeutics development.
Collapse
Affiliation(s)
- H. A. Tejeda
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201 USA
| | - T. S. Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
| | - R. Henriksson
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Clinical Neuroscience, Karolinska Institutet, CMM, L8:04, 17176 Stockholm, Sweden
| |
Collapse
|
10
|
Yoshizawa K, Narita M, Saeki M, Narita M, Isotani K, Horiuchi H, Imai S, Kuzumaki N, Suzuki T. Activation of extracellular signal-regulated kinase is critical for the discriminative stimulus effects induced by U-50,488H. Synapse 2011; 65:1052-61. [PMID: 21465566 DOI: 10.1002/syn.20937] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 03/24/2011] [Indexed: 11/08/2022]
Abstract
We previously demonstrated that the discriminative stimulus effects of the κ-opioid receptor agonist U-50,488H were associated with its aversive effects in rats. However, its molecular signaling mechanisms are not fully understood. The aim of this study was to investigate the intracellular signaling that plays a role in mediating the discriminative stimulus effect induced by U-50,488H. To better understand the involvement of molecular signaling mechanisms in the discriminative stimulus effects of U-50,488H, rats were subjected to a drug discrimination paradigm, and levels of immunoreactivity and mRNA expression were determined in these rats. Although U-50,488H-trained rats did not show changes in the mRNA expression of typical dopamine (DA) receptors, NMDA receptor subunits, or transcriptional activators, there were remarkable changes in the levels of immunoreactivity of several phosphorylated protein kinases. The levels of immunoreactivity of phosphorylated p38 MAPK and phosphorylated calcium/calmodulin-dependent protein kinase II (CaMKII) were significantly increased in the nucleus accumbens and amygdala in lever-press, yoked and discrimination groups compared to a naive group. Furthermore, the level of phosphorylated cAMP response element-binding protein was also increased in both the discrimination and yoked groups. In contrast, the immunoreactivity of phosphorylated extracellular signaling-regulated kinase (ERK 1/2) was specifically increased in the discrimination group. These results suggest that the ERK signaling pathway in the nucleus accumbens and amygdala may be critical for the expression of the discriminative stimulus effects of U-50,488H.
Collapse
Affiliation(s)
- Kazumi Yoshizawa
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Salvinorin A fails to substitute for the discriminative stimulus effects of LSD or ketamine in Sprague–Dawley rats. Pharmacol Biochem Behav 2010; 96:260-5. [DOI: 10.1016/j.pbb.2010.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 05/05/2010] [Accepted: 05/12/2010] [Indexed: 11/17/2022]
|
12
|
Nemeth CL, Paine TA, Rittiner JE, Béguin C, Carroll FI, Roth BL, Cohen BM, Carlezon WA. Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats. Psychopharmacology (Berl) 2010; 210:263-74. [PMID: 20358363 PMCID: PMC2869248 DOI: 10.1007/s00213-010-1834-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/10/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Disruptions in perception and cognition are characteristic of psychiatric conditions such as schizophrenia. Studies of pharmacological agents that alter perception and cognition in humans might provide a better understanding of the brain substrates of these complex processes. One way to study these states in rodents is with tests that require attention and visual perception for correct performance. METHODS We examined the effects of two drugs that cause disruptions in perception and cognition in humans-the kappa-opioid receptor (KOR) agonist salvinorin A (salvA; 0.125-4.0 mg/kg) and the non-competitive NMDA receptor antagonist ketamine (0.63-20 mg/kg)-on behavior in rats using the 5-choice serial reaction time task (5CSRTT), a food-motivated test that quantifies attention. We also compared the binding profiles of salvA and ketamine at KORs and NMDA receptors. RESULTS SalvA and ketamine produced the same pattern of disruptive effects in the 5CSRTT, characterized by increases in signs often associated with reduced motivation (omission errors) and deficits in processing (elevated latencies to respond correctly). Sessions in which rats were fed before testing suggest that reduced motivation produces a subtly different pattern of behavior. Pretreatment with the KOR antagonist JDTic (10 mg/kg) blocked all salvA effects and some ketamine effects. Binding and function studies revealed that ketamine is a full agonist at KORs, although not as potent or selective as salvA. CONCLUSIONS SalvA and ketamine have previously under-appreciated similarities in their behavioral effects and pharmacological profiles. By implication, KORs might be involved in some of the cognitive abnormalities observed in psychiatric disorders such as schizophrenia.
Collapse
Affiliation(s)
- Christina L. Nemeth
- Behavioral Genetics Laboratory, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Tracie A. Paine
- Behavioral Genetics Laboratory, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Joseph E. Rittiner
- Department of Pharmacology and NIMH Psychoactive Drug Screening Program, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Cécile Béguin
- Behavioral Genetics Laboratory, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - F. Ivy Carroll
- Research Triangle Institute, Organic and Medicinal Chemistry, Research Triangle Park, NC 27709, USA
| | - Bryan L. Roth
- Department of Pharmacology and NIMH Psychoactive Drug Screening Program, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Bruce M. Cohen
- Behavioral Genetics Laboratory, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - William A. Carlezon
- Behavioral Genetics Laboratory, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA,Department of Psychiatry, McLean Hospital, MRC 217, 115 Mill Street, Belmont, MA 02478, USA,
| |
Collapse
|
13
|
Yoshikawa S, Hareyama N, Ikeda K, Kurokawa T, Nakajima M, Nakao K, Mochizuki H, Ichinose H. Effects of TRK-820, a selective kappa opioid receptor agonist, on rat schizophrenia models. Eur J Pharmacol 2009; 606:102-8. [DOI: 10.1016/j.ejphar.2009.01.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 01/14/2009] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
|
14
|
Abstract
This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, United States.
| |
Collapse
|