1
|
Hatvany JB, Olsen ELP, Gallagher ES. Characterizing Theta-Emitter Generation for Use in Microdroplet Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39387805 DOI: 10.1021/jasms.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Theta emitters are useful for generating microdroplets for rapid-mixing reactions. Theta emitters are glass tips containing an internal septum that separates two channels. When used for mixing, the solutions from each channel are sprayed with mixing occurring during electrospray ionization (ESI) with reaction times on the order of microseconds to milliseconds. Theta emitters of increasing size cause the formation of ESI droplets of increasing size, which require longer times for desolvation and increase droplet lifetimes. Droplets with longer lifetimes provide more time for mixing and allow for increased reaction times prior to desolvation. Because theta emitters are typically produced in-house, there is a need to consistently pull tips with a variety of sizes. Herein, we characterize the effect of pull parameters on the generation of distinct-sized theta emitters using a P-1000 tip puller. Of the examined parameters, the velocity value had the largest impact on the channel diameter. This work also compares the effect of pulling parameters between single-channel and theta capillaries to examine how the internal septum in theta capillaries affects tip pulling. We demonstrate the utility of using theta emitters with different sizes for establishing distinct reaction times. Finally, we offer suggestions on producing theta emitters of various sizes while maintaining high repeatability. Through this work, we provide resources to establish a versatile and inexpensive rapid-mixing system for probing biologically relevant systems and performing rapid derivatizations.
Collapse
Affiliation(s)
- Jacob B Hatvany
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Emma-Le P Olsen
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
2
|
Edwards M, Freitas DP, Hirtzel EA, White N, Wang H, Davidson LA, Chapkin RS, Sun Y, Yan X. Interfacial Electromigration for Analysis of Biofluid Lipids in Small Volumes. Anal Chem 2023; 95:18557-18563. [PMID: 38050376 PMCID: PMC10862378 DOI: 10.1021/acs.analchem.3c04309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Lipids are important biomarkers within the field of disease diagnostics and can serve as indicators of disease progression and predictors of treatment effectiveness. Although lipids can provide important insight into how diseases initiate and progress, mass spectrometric methods for lipid characterization and profiling are limited due to lipid structural diversity, particularly the presence of various lipid isomers. Moreover, the difficulty of handling small-volume samples exacerbates the intricacies of biological analyses. In this work, we have developed a strategy that electromigrates a thin film of a small-volume biological sample directly to the air-liquid interface formed at the tip of a theta capillary. Importantly, we seamlessly integrated in situ biological lipid extraction with accelerated chemical derivatization, enabled by the air-liquid interface, and conducted isomeric structural characterization within a unified platform utilizing theta capillary nanoelectrospray ionization mass spectrometry, all tailored for small-volume sample analysis. We applied this unified platform to the analysis of lipids from small-volume human plasma and Alzheimer's disease mouse serum samples. Accelerated electro-epoxidation of unsaturated lipids at the interface allowed us to characterize lipid double-bond positional isomers. The unique application of electromigration of a thin film to the air-liquid interface in combination with accelerated interfacial reactions holds great potential in small-volume sample analysis for disease diagnosis and prevention.
Collapse
Affiliation(s)
- Madison
E. Edwards
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Dallas P. Freitas
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Erin A. Hirtzel
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Nicholas White
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Hongying Wang
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Laurie A. Davidson
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Robert S. Chapkin
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Yuxiang Sun
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Chen CJ, Williams ER. Variable Mixing with Theta Emitter Mass Spectrometry: Changing Solution Flow Rates with Emitter Position. Anal Chem 2023; 95:14777-14786. [PMID: 37729435 DOI: 10.1021/acs.analchem.3c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Two solutions can be rapidly mixed using theta glass emitters, with products measured using electrospray ionization mass spectrometry. The relative flow rates of the two emitter channels can be measured using different calibration compounds in each channel, or the flow rates are often assumed to be the same. The relative flow rates of each channel can be essentially the same when the emitters are positioned directly in front of the capillary entrance of a mass spectrometer, but the relative flow rates can be varied by up to 3 orders of magnitude by moving the position of the emitter tip ±1 cm in a direction that is perpendicular to the inner divider. Results of the emitter position on the different concentrations of reagents in the initially formed electrospray droplets are demonstrated through protein denaturation using a supercharging reagent as well as two different bimolecular reactions. The average charge state of myoglobin changed from +7.8 to +13.8 when 2.5% sulfolane was mixed with a 200 mM ammonium acetate solution containing the protein when the position of the emitter was scanned in front of the mass spectrometer inlet. The conversion ratio of a bimolecular reaction was changed from 0.98 to 0.04 with varying emitter positions. These results show that the relative flow rates must be carefully monitored because the droplet composition depends strongly on the position of the theta glass emitters. This method can be used to measure the dependence of reaction kinetics on different solution concentrations by using a single emitter and only two solutions.
Collapse
Affiliation(s)
- Casey J Chen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Sharif D, Rahman M, Mahmud S, Sultana MN, Attanayake K, DeBastiani A, Foroushani SH, Li P, Valentine SJ. In-droplet hydrogen-deuterium exchange to examine protein/peptide solution conformer heterogeneity. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9593. [PMID: 37430450 PMCID: PMC10348485 DOI: 10.1002/rcm.9593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023]
Abstract
RATIONALE Many different structure analysis techniques are not capable of probing the heterogeneity of solution conformations. Here, we examine the ability of in-droplet hydrogen-deuterium exchange (HDX) to directly probe solution conformer heterogeneity of a protein with mass spectrometry (MS) detection. METHODS Two vibrating capillary vibrating sharp-edge spray ionization (cVSSI) devices have been arranged such that they generate microdroplet plumes of the analyte and D2 O reagent, which coalesce to form reaction droplets where HDX takes place in the solution environment. The native HDX-MS setup has been first explored for two model peptides that have distinct structural compositions in solution. The effectiveness of the multidevice cVSSI-HDX in illustrating structural details has been further exploited to investigate coexisting solution-phase conformations of the protein ubiquitin. RESULTS In-droplet HDX reveals decreased backbone exchange for a model peptide that has a greater helix-forming propensity. Differences in intrinsic rates of the alanine and serine residues may account for much of the observed protection. The data allow the first estimates of backbone exchange rates for peptides undergoing in-droplet HDX. That said, the approach may hold greater potential for investigating the tertiary structure and structural transitions of proteins. For ubiquitin protein, HDX reactivity differences suggest that multiple conformers are present in native solutions. The addition of methanol to buffered aqueous solutions of ubiquitin results in increased populations of solution conformers of higher reactivity. Data analysis suggests that partially folded conformers such as the A-state of ubiquitin increase with methanol content; the native state may be preserved to a limited degree even under stronger denaturation conditions. CONCLUSION The deuterium uptake after in-droplet HDX has been observed to correspond to some degree with peptide backbone hydrogen protection based on differences in intrinsic rates of exchange. The presence of coexisting protein solution structures under native and denaturing solution conditions has been distinguished by the isotopic distributions of deuterated ubiquitin ions.
Collapse
Affiliation(s)
- Daud Sharif
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Mohammad Rahman
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Sultan Mahmud
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Mst Nigar Sultana
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Kushani Attanayake
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Anthony DeBastiani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Samira Hajian Foroushani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
5
|
Hatvany JB, Gallagher ES. Hydrogen/deuterium exchange for the analysis of carbohydrates. Carbohydr Res 2023; 530:108859. [PMID: 37290371 DOI: 10.1016/j.carres.2023.108859] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Carbohydrates and glycans are integral to many biological processes, including cell-cell recognition and energy storage. However, carbohydrates are often difficult to analyze due to the high degree of isomerism present. One method being developed to distinguish these isomeric species is hydrogen/deuterium exchange-mass spectrometry (HDX-MS). In HDX-MS, carbohydrates are exposed to a deuterated reagent and the functional groups with labile hydrogen atoms, including hydroxyls and amides, exchange with the 1 amu heavier isotope, deuterium. These labels can then be detected by MS, which monitors the mass increase with the addition of D-labels. The observed rate of exchange is dependent on the exchanging functional group, the accessibility of the exchanging functional group, and the presence of hydrogen bonds. Herein, we discuss how HDX has been applied in the solution-phase, gas-phase, and during MS ionization to label carbohydrates and glycans. Additionally, we compare differences in the conformations that are labeled, the labeling timeframes, and applications of each of these methods. Finally, we comment on future opportunities for development and use of HDX-MS to analyze glycans and glycoconjugates.
Collapse
Affiliation(s)
- Jacob B Hatvany
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA.
| |
Collapse
|
6
|
Brown SL, Zenaidee MA, Loo JA, Loo RRO, Donald WA. On the Mechanism of Theta Capillary Nanoelectrospray Ionization for the Formation of Highly Charged Protein Ions Directly from Native Solutions. Anal Chem 2022; 94:13010-13018. [DOI: 10.1021/acs.analchem.2c01654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Susannah L. Brown
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Muhammad A. Zenaidee
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States of America
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States of America
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States of America
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
7
|
Chen M, Shang Y, Bai H, Ma Q. Electromembrane Extraction and Dual-Channel Nanoelectrospray Ionization Coupled with a Miniature Mass Spectrometer: Incorporation of a Dicationic Ionic Liquid-Induced Charge Inversion Strategy. Anal Chem 2022; 94:9472-9480. [PMID: 35737371 DOI: 10.1021/acs.analchem.2c01921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Green analytical chemistry aims at developing analytical methods with minimum use and generation of hazardous substances for the protection of human health and the environment. To address this need, a green analytical protocol has been developed for the analysis of anionic compounds integrating electromembrane extraction (EME), dual-channel nanoelectrospray ionization (nanoESI), and a miniature mass spectrometer. Haloacetic acids (HAAs) have attracted considerable public concern due to their adverse effects on human health and were selected as model analytes for method development. A flat membrane EME device was developed and assembled in-house. Optimization of fundamental operational parameters was performed using single-factor test and response surface methodology. Both the EME acceptor phase and an imidazolium-based dicationic ionic liquid (DIL), 1,1-bis(3-methylimidazolium-1-yl) butylene difluoride (C4(MIM)2F2), were subjected to dual-channel nanoESI and miniature mass spectrometry analysis based on a charge inversion strategy, where positively charged complexes were formed. Enhancement in signal intensity by as much as 2 magnitudes was achieved in the positive-ion mode compared to the negative-ion mode in the absence of the dicationic ion-pairing agent. The developed protocol was validated, obtaining good recoveries ranging from 82.7 to 109.9% and satisfactory sensitivity with limits of detection (LODs) and quantitation (LOQs) in the ranges of 1-5 and 2-10 μg/L, respectively. The greenness of the analytical procedure was assessed with a calculated score of 0.71, indicating a high degree of greenness. The developed method was applied to the analysis of real environmental or municipal water samples (n = 16), exhibiting appealing potential for outside-the-laboratory applications.
Collapse
Affiliation(s)
- Meng Chen
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yuhan Shang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Hua Bai
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qiang Ma
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
8
|
Sun J, Yin Y, Li W, Jin O, Na N. CHEMICAL REACTION MONITORING BY AMBIENT MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2022; 41:70-99. [PMID: 33259644 DOI: 10.1002/mas.21668] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Chemical reactions conducted in different media (liquid phase, gas phase, or surface) drive developments of versatile techniques for the detection of intermediates and prediction of reasonable reaction pathways. Without sample pretreatment, ambient mass spectrometry (AMS) has been applied to obtain structural information of reactive molecules that differ in polarity and molecular weight. Commercial ion sources (e.g., electrospray ionization, atmospheric pressure chemical ionization, and direct analysis in real-time) have been reported to monitor substrates and products by offline reaction examination. While the interception or characterization of reactive intermediates with short lifetime are still limited by the offline modes. Notably, online ionization technologies, with high tolerance to salt, buffer, and pH, can achieve direct sampling and ionization of on-going reactions conducted in different media (e.g., liquid phase, gas phase, or surface). Therefore, short-lived intermediates could be captured at unprecedented timescales, and the reaction dynamics could be studied for mechanism examinations without sample pretreatments. In this review, via various AMS methods, chemical reaction monitoring and mechanism elucidation for different classifications of reactions have been reviewed. The developments and advances of common ionization methods for offline reaction monitoring will also be highlighted.
Collapse
Affiliation(s)
- Jianghui Sun
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Yiyan Yin
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Weixiang Li
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Ouyang Jin
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
9
|
Newsome GA, Cleland TP. In-Line Dopant Generation for Atmospheric Pressure Ionization Mass Spectrometry. Anal Chem 2021; 93:13527-13533. [PMID: 34590816 DOI: 10.1021/acs.analchem.1c02400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A concentric trace gas permeation tube that diffuses chemical reagents to a central carrier gas stream is used to drive chemical reaction pathways and influence gas-phase chemistry for a variety of atmospheric pressure ionization sources for mass spectrometry. Tunable permeation through the reservoir-jacketed polymer membrane is triggered by the heated gas moving through the tube, evaporating the dopant into a sheath dry gas or into a sample stream in room air without diluting the analyte concentration. The permeator is used to add dopants to an electrospray plume for analyte ion charge reduction and to perform hydrogen-deuterium exchange on biomolecules in different spray conditions. Dopants are also added to atmospheric pressure chemical ionization to favor the ionization of select components of diesel fuel. Atmospheric pressure photoionization is performed with the permeation tube in line with tubing transporting sample headspace to an enclosed discharge lamp. Toluene dopant from the permeator increases the proton transfer and charge exchange signal from clove oil and mothballs many times without exposing the laboratory to reagent fumes. Water permeation is also used to humidify the sample gas stream.
Collapse
Affiliation(s)
- G Asher Newsome
- Smithsonian Museum Conservation Institute, Suitland, Maryland 20746, United States
| | - Timothy P Cleland
- Smithsonian Museum Conservation Institute, Suitland, Maryland 20746, United States
| |
Collapse
|
10
|
Hu J, Wang T, Zhang WJ, Hao H, Yu Q, Gao H, Zhang N, Chen Y, Xia XH, Chen HY, Xu JJ. Dissecting the Flash Chemistry of Electrogenerated Reactive Intermediates by Microdroplet Fusion Mass Spectrometry. Angew Chem Int Ed Engl 2021; 60:18494-18498. [PMID: 34129259 DOI: 10.1002/anie.202106945] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 11/06/2022]
Abstract
A novel mass spectrometric method for probing the flash chemistry of electrogenerated reactive intermediates was developed based on rapid collision mixing of electrosprayed microdroplets by using a theta-glass capillary. The two individual microchannels of the theta-glass capillary are asymmetrically or symmetrically fabricated with a carbon bipolar electrode to produce intermediates in situ. Microdroplets containing the newly formed intermediates collide with those of the invoked reactants at sub-10 microsecond level, making it a powerful tool for exploring their ultrafast initial transformations. As a proof-of-concept, we present the identification of the key radical cation intermediate in the oxidative dimerization of 8-methyl-1,2,3,4-tetrahydroquinoline and also the first disclosure of previously hidden nitrenium ion involved reaction pathway in the C-H/N-H cross-coupling between N,N'-dimethylaniline and phenothiazine.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wen-Jun Zhang
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Han Hao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yun Chen
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
11
|
Hu J, Wang T, Zhang W, Hao H, Yu Q, Gao H, Zhang N, Chen Y, Xia X, Chen H, Xu J. Dissecting the Flash Chemistry of Electrogenerated Reactive Intermediates by Microdroplet Fusion Mass Spectrometry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Hu
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 211166 China
| | - Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wen‐Jun Zhang
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 211166 China
| | - Han Hao
- Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yun Chen
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 211166 China
| | - Xing‐Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
12
|
Lento C, Wilson DJ. Subsecond Time-Resolved Mass Spectrometry in Dynamic Structural Biology. Chem Rev 2021; 122:7624-7646. [PMID: 34324314 DOI: 10.1021/acs.chemrev.1c00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Life at the molecular level is a dynamic world, where the key players-proteins, oligonucleotides, lipids, and carbohydrates-are in a perpetual state of structural flux, shifting rapidly between local minima on their conformational free energy landscapes. The techniques of classical structural biology, X-ray crystallography, structural NMR, and cryo-electron microscopy (cryo-EM), while capable of extraordinary structural resolution, are innately ill-suited to characterize biomolecules in their dynamically active states. Subsecond time-resolved mass spectrometry (MS) provides a unique window into the dynamic world of biological macromolecules, offering the capacity to directly monitor biochemical processes and conformational shifts with a structural dimension provided by the electrospray charge-state distribution, ion mobility, covalent labeling, or hydrogen-deuterium exchange. Over the past two decades, this suite of techniques has provided important insights into the inherently dynamic processes that drive function and pathogenesis in biological macromolecules, including (mis)folding, complexation, aggregation, ligand binding, and enzyme catalysis, among others. This Review provides a comprehensive account of subsecond time-resolved MS and the advances it has enabled in dynamic structural biology, with an emphasis on insights into the dynamic drivers of protein function.
Collapse
Affiliation(s)
- Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
13
|
DeBastiani A, Majuta SN, Sharif D, Attanayake K, Li C, Li P, Valentine SJ. Characterizing Multidevice Capillary Vibrating Sharp-Edge Spray Ionization for In-Droplet Hydrogen/Deuterium Exchange to Enhance Compound Identification. ACS OMEGA 2021; 6:18370-18382. [PMID: 34308068 PMCID: PMC8296548 DOI: 10.1021/acsomega.1c02362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 05/10/2023]
Abstract
Multidevice capillary vibrating sharp-edge spray ionization (cVSSI) source parameters have been examined to determine their effects on conducting in-droplet hydrogen/deuterium exchange (HDX) experiments. Control experiments using select compounds indicate that the observed differences in mass spectral isotopic distributions obtained upon initiation of HDX result primarily from solution-phase reactions as opposed to gas-phase exchange. Preliminary studies have determined that robust HDX can only be achieved with the application of same-polarity voltage to both the analyte and the deuterium oxide reagent (D2O) cVSSI devices. Additionally, a similar HDX reactivity dependence on the voltage applied to the D2O device for various analytes is observed. Analyte and reagent flow experiments show that, for the multidevice cVSSI setup employed, there is a nonlinear dependence on the D2O reagent flow rate; increasing the D2O reagent flow by 100% results in only an ∼10-20% increase in deuterium incorporation for this setup. Instantaneous (subsecond) response times have been demonstrated in the initiation or termination of HDX, which is achieved by turning on or off the reagent cVSSI device piezoelectric transducer. The ability to distinguish isomeric species by in-droplet HDX is presented. Finally, a demonstration of a three-component cVSSI device setup to perform multiple (successive or in combination) in-droplet chemistries to enhance compound ionization and identification is presented and a hypothetical metabolomics workflow consisting of successive multidevice activation is briefly discussed.
Collapse
|
14
|
Affiliation(s)
- Martin Mayer
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103 Leipzig, Germany
| | - Knut R. Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Freitas D, Chen X, Cheng H, Davis A, Fallon B, Yan X. Recent Advances of In-Source Electrochemical Mass Spectrometry. Chempluschem 2021; 86:434-445. [PMID: 33689239 DOI: 10.1002/cplu.202100030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Hyphenation of electrochemistry (EC) and mass spectrometry has become a powerful tool to study redox processes. Approaches that can achieve this hyphenation include integrating chromatography/electrophoresis between electroinduced redox reactions and detection of products, coupling an EC flow cell to a mass spectrometer, and performing electrochemical reactions inside the ion source of a mass spectrometer. The first two approaches have been well reviewed elsewhere. This Minireview highlights the inherent electrochemical properties of many mass spectrometry ion sources and their roles in the coupling of electrochemistry and mass spectrometric analysis. Development of modified ion sources that allow the compatibility of electrochemistry with ionization processes is also surveyed. Applications of different in-source electrochemical devices are provided including intermediate capturing, bioanalytical studies, nanoparticle formation, electrosynthesis, and electrode imaging.
Collapse
Affiliation(s)
- Dallas Freitas
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Austin Davis
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Blake Fallon
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| |
Collapse
|
16
|
Urban RD, Fischer TG, Charvat A, Wink K, Krafft B, Ohla S, Zeitler K, Abel B, Belder D. On-chip mass spectrometric analysis in non-polar solvents by liquid beam infrared matrix-assisted laser dispersion/ionization. Anal Bioanal Chem 2021; 413:1561-1570. [PMID: 33479818 PMCID: PMC7921053 DOI: 10.1007/s00216-020-03115-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
By the on-chip integration of a droplet generator in front of an emitter tip, droplets of non-polar solvents are generated in a free jet of an aqueous matrix. When an IR laser irradiates this free liquid jet consisting of water as the continuous phase and the non-polar solvent as the dispersed droplet phase, the solutes in the droplets are ionized. This ionization at atmospheric pressure enables the mass spectrometric analysis of non-polar compounds with the aid of a surrounding aqueous matrix that absorbs IR light. This works both for non-polar solvents such as n-heptane and for water non-miscible solvents like chloroform. In a proof of concept study, this approach is applied to monitor a photooxidation of N-phenyl-1,2,3,4-tetrahydroisoquinoline. By using water as an infrared absorbing matrix, analytes, dissolved in non-polar solvents from reactions carried out on a microchip, can be desorbed and ionized for investigation by mass spectrometry.
Collapse
Affiliation(s)
- Raphael D Urban
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Tillmann G Fischer
- Institut für Organische Chemie, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Ales Charvat
- Leibniz-Institut für Oberflächenmodifizierung e.V., Abteilung Funktionale Oberflächen, Permoserstr. 15, 04318, Leipzig, Germany
| | - Konstantin Wink
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Benjamin Krafft
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Stefan Ohla
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Kirsten Zeitler
- Institut für Organische Chemie, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Bernd Abel
- Leibniz-Institut für Oberflächenmodifizierung e.V., Abteilung Funktionale Oberflächen, Permoserstr. 15, 04318, Leipzig, Germany
| | - Detlev Belder
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany.
| |
Collapse
|
17
|
Li X, Attanayake K, Valentine, Li P. Vibrating Sharp-edge Spray Ionization (VSSI) for voltage-free direct analysis of samples using mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35 Suppl 1:e8232. [PMID: 29993155 PMCID: PMC6529299 DOI: 10.1002/rcm.8232] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 10/14/2023]
Abstract
RATIONALE The development of miniaturized and field portable mass spectrometers could not succeed without a simple, compact, and robust ionization source. Here we present a voltage-free ionization method, Vibrating Sharp-edge Spray Ionization (VSSI), which can generate a spray of liquid samples using only one standard microscope glass slide to which a piezoelectric transducer is attached. Compared with existing ambient ionization methods, VSSI eliminates the need for a high electric field (~5000 V·cm-1 ) for spray generation, while sharing a similar level of simplicity and flexibility with the simplest direct ionization techniques currently available such as paper spray ionization (PSI) and other solid substrate-based electrospray ionization methods. METHODS The VSSI device was fabricated by attaching a piezoelectric transducer onto a standard glass microscope slide using epoxy glue. Liquid sample was aerosolized by either placing a droplet onto the vibrating edge of the glass slide or touching a wet surface with the glass edge. Mass spectrometric detection was achieved by placing the VSSI device 0.5-1 cm from the inlet of the mass spectrometer (Q-Exactive, ThermoScientific). RESULTS VSSI is demonstrated to ionize a diverse array of chemical species, including small organic molecules, carbohydrates, peptides, proteins, and nucleic acids. Preliminary sensitivity experiments show that high-quality mass spectra of acetaminophen can be obtained by consuming 100 femtomoles of the target. The dual spray of VSSI was also demonstrated by performing in-droplet denaturation of ubiquitin. Finally, due to the voltage-free nature and the direct-contact working mode of VSSI, it has been successfully applied for the detection of chemicals directly from human fingertips. CONCLUSIONS Overall, we report a compact ionization method based on vibrating sharp-edges. The simplicity and voltage-free nature of VSSI make it an attractive option for field portable applications or analyzing biological samples that are sensitive to high voltage or difficult to access by conventional ionization methods.
Collapse
Affiliation(s)
- Xiaojun Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Kushani Attanayake
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
18
|
Tycova A, Prikryl J, Kotzianova A, Datinska V, Velebny V, Foret F. Electrospray: More than just an ionization source. Electrophoresis 2020; 42:103-121. [PMID: 32841405 DOI: 10.1002/elps.202000191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022]
Abstract
Electrospraying (ES) is a potential-driven process of liquid atomization, which is employed in the field of analytical chemistry, particularly as an ionization technique for mass spectrometric analyses of biomolecules. In this review, we demonstrate the extraordinary versatility of the electrospray by overviewing the specifics and advanced applications of ES-based processing of low molecular mass compounds, biomolecules, polymers, nanoparticles, and cells. Thus, under suitable experimental conditions, ES can be used as a powerful tool for highly controlled deposition of homogeneous films or various patterns, which may sometimes even be organized into 3D structures. We also emphasize its capacity to produce composite materials including encapsulation systems and polymeric fibers. Further, we present several other, less common ES-based applications. This review provides an insight into the remarkable potential of ES, which can be very useful in the designing of innovative and unique strategies.
Collapse
Affiliation(s)
- Anna Tycova
- Institute of Analytical Chemistry of the CAS, Brno, 602 00, Czech Republic
| | - Jan Prikryl
- Institute of Analytical Chemistry of the CAS, Brno, 602 00, Czech Republic
| | - Adela Kotzianova
- R&D Department, Contipro a.s., Dolni Dobrouc, 561 02, Czech Republic
| | - Vladimira Datinska
- Institute of Analytical Chemistry of the CAS, Brno, 602 00, Czech Republic
| | - Vladimir Velebny
- R&D Department, Contipro a.s., Dolni Dobrouc, 561 02, Czech Republic
| | - Frantisek Foret
- Institute of Analytical Chemistry of the CAS, Brno, 602 00, Czech Republic
| |
Collapse
|
19
|
Kim HJ, Gallagher ES. Achieving multiple hydrogen/deuterium exchange timepoints of carbohydrate hydroxyls using theta-electrospray emitters. Analyst 2020; 145:3056-3063. [DOI: 10.1039/d0an00135j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microsecond reaction times for in-droplet hydrogen/deuterium exchange of carbohydrate hydroxyls have been varied by changing the opening sizes of theta-electrospray emitters.
Collapse
Affiliation(s)
- H. Jamie Kim
- Department of Chemistry and Biochemistry
- Baylor University
- Waco
- USA
| | | |
Collapse
|
20
|
Sun Y, Tsai M, Zhou W, Lu W, Liu J. Reaction Kinetics, Product Branching, and Potential Energy Surfaces of 1O 2-Induced 9-Methylguanine-Lysine Cross-Linking: A Combined Mass Spectrometry, Spectroscopy, and Computational Study. J Phys Chem B 2019; 123:10410-10423. [PMID: 31718186 DOI: 10.1021/acs.jpcb.9b08796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a kinetics and mechanistic study on the 1O2 oxidation of 9-methylguanine (9MG) and the cross-linking of the oxidized intermediate 2-amino-9-methyl-9H-purine-6,8-dione (9MOGOX) with Nα-acetyl-lysine-methyl ester (abbreviated as LysNH2) in aqueous solutions of different pH. Experimental measurements include the determination of product branching ratios and reaction kinetics using mass spectrometry and absorption spectroscopy, and the characterization of product structures by employing collision-induced dissociation. Strong pH dependence was revealed for both 9MG oxidation and the addition of nucleophiles (water and LysNH2) at the C5 position of 9MOGOX. The 1O2 oxidation rate constant of 9MG was determined to be 3.6 × 107 M-1·s-1 at pH 10.0 and 0.3 × 107 M-1·s-1 at pH 7.0, both of which were measured in the presence of 15 mM LysNH2. The ωB97XD density functional theory coupled with various basis sets and the SMD implicit solvation model was used to explore the reaction potential energy surfaces for the 1O2 oxidation of 9MG and the formation of C5-water and C5-LysNH2 adducts of 9MOGOX. Computational results have shed light on reaction pathways and product structures for the different ionization states of the reactants. The present work has confirmed that the initial 1O2 addition represents the rate-limiting step for the oxidative transformations of 9MG. All of the downstream steps are exothermic with respect to the starting reactants. The C5-cross-linking of 9MOGOX with LysNH2 significantly suppressed the formation of spiroiminodihydantoin (9MSp) resulting from the C5-water addition. The latter became dominant only at the low concentration (∼1 mM) of LysNH2.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry and Biochemistry , Queens College of the City University of New York , 65-30 Kissena Blvd. , Queens , New York 11367 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , 365 5th Avenue , New York , New York 10016 , United States
| | - Midas Tsai
- Department of Natural Sciences , LaGuardia Community College , 31-10 Thomson Avenue , Long Island City , New York 11101 , United States
| | - Wenjing Zhou
- Department of Chemistry and Biochemistry , Queens College of the City University of New York , 65-30 Kissena Blvd. , Queens , New York 11367 , United States
| | - Wenchao Lu
- Department of Chemistry and Biochemistry , Queens College of the City University of New York , 65-30 Kissena Blvd. , Queens , New York 11367 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , 365 5th Avenue , New York , New York 10016 , United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry , Queens College of the City University of New York , 65-30 Kissena Blvd. , Queens , New York 11367 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , 365 5th Avenue , New York , New York 10016 , United States
| |
Collapse
|
21
|
Lawal RO, Donnarumma F, Murray KK. Electrospray Photochemical Oxidation of Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2196-2199. [PMID: 31489562 PMCID: PMC6832858 DOI: 10.1007/s13361-019-02313-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/18/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Photooxidation of peptides and proteins by pulsed ultraviolet laser irradiation of an electrospray in the ion source of a mass spectrometer was demonstrated. A 193-nm excimer laser at 1.5-mJ pulse energy was focused with a cylindrical lens at the exit of a nanoelectrospray capillary and ions were sampled into a quadrupole time-of-flight mass spectrometer. A solution containing a peptide or protein and hydrogen peroxide was infused into the spray at a flow rate of 1 μL/min using a syringe pump. The laser creates OH radicals directly in the spray which modify biomolecules within the spray droplet. These results indicate that photochemical oxidation of proteins can be initiated directly within electrospray droplets and detected by mass spectrometry.
Collapse
Affiliation(s)
- Remilekun O Lawal
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
22
|
Majuta SN, Li C, Jayasundara K, Kiani Karanji A, Attanayake K, Ranganathan N, Li P, Valentine SJ. Rapid Solution-Phase Hydrogen/Deuterium Exchange for Metabolite Compound Identification. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1102-1114. [PMID: 30980382 DOI: 10.1007/s13361-019-02163-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 05/25/2023]
Abstract
Rapid, solution-phase hydrogen/deuterium exchange (HDX) coupled with mass spectrometry (MS) is demonstrated as a means for distinguishing small-molecule metabolites. HDX is achieved using capillary vibrating sharp-edge spray ionization (cVSSI) to allow sufficient time for reagent mixing and exchange in micrometer-sized droplets. Different compounds are observed to incorporate deuterium with varying efficiencies resulting in unique isotopic patterns as revealed in the MS spectra. Using linear regression techniques, parameters representing contribution to exchange by different hydrogen types can be computed. In this proof-of-concept study, the exchange parameters are shown to be useful in the retrodiction of the amount of deuterium incorporated within different compounds. On average, the exchange parameters retrodict the exchange level with ~ 2.2-fold greater accuracy than treating all exchangeable hydrogens equally. The parameters can be used to produce hypothetical isotopic distributions that agree (± 16% RMSD) with experimental measurements. These initial studies are discussed in light of their potential value for identifying challenging metabolite species.
Collapse
Affiliation(s)
- Sandra N Majuta
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Kinkini Jayasundara
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Ahmad Kiani Karanji
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Kushani Attanayake
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Nandhini Ranganathan
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
23
|
Xia Z, Williams ER. Effect of droplet lifetime on where ions are formed in electrospray ionization. Analyst 2019; 144:237-248. [DOI: 10.1039/c8an01824c] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The location of gaseous ion formation in electrospray ionization under native mass spectrometry conditions was investigated using theta emitters with tip diameters between 317 nm and 4.4 μm to produce droplets with lifetimes between 1 and 50 μs.
Collapse
Affiliation(s)
- Zijie Xia
- Department of Chemistry
- University of California
- Berkeley
- USA
| | | |
Collapse
|
24
|
Sundberg BN, Lagalante AF. Coaxial Electrospray Ionization for the Study of Rapid In-source Chemistry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2023-2029. [PMID: 29949060 DOI: 10.1007/s13361-018-2004-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Coaxial electrospray has been used effectively for several dual-emitter applications, but has not been utilized for the study of rapid in-source chemistry. In this paper, we report the fabrication of a coaxial, micro-volume dual-emitter through the modification of a manufacturer's standard electrospray probe. This modification creates rapid mixing inside the Taylor cone and the ability to manipulate fast reactions using a variety of solvents and analytes. We demonstrate its potential as a low-cost, dual-emitter assembly for diverse applications through three examples: relative ionization in a biphasic electrospray, hydrogen-deuterium exchange, and protein supercharging. Graphical Abstract.
Collapse
Affiliation(s)
- Brynn N Sundberg
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA
| | - Anthony F Lagalante
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA.
| |
Collapse
|
25
|
Li H, Vertes A. Solvent gradient electrospray for laser ablation electrospray ionization mass spectrometry. Analyst 2018; 142:2921-2927. [PMID: 28718844 DOI: 10.1039/c7an00819h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Most electrospray based ambient ionization techniques, e.g., laser ablation electrospray ionization (LAESI), utilize a fixed spray solution composition. Complex samples often contain compounds of different polarity that exhibit a wide range of solubilities in the electrospray solvent. Thus, the fixed spray solution composition limits the molecular coverage of these approaches. Two-barrel theta glass capillaries have been used for the rapid mixing of two solutions for manipulating fast reactions including protein folding, unfolding, and charge state distributions. Here, we present a new variant of LAESI mass spectrometry (MS) by scanning the high voltages applied to the two barrels of a theta glass capillary containing two different solvents. In the resulting gradient LAESI (g-LAESI), the composition of the spray solution is ramped between the two solvents in the barrels to facilitate the detection of compounds of diverse polarity and solubility. Dynamic ranges and limits of detection achieved for g-LAESI-MS were comparable to conventional LAESI-MS. We have demonstrated simultaneous detection of different types of chemical standards, and polar and less polar compounds from Escherichia coli cell pellets using g-LAESI-MS. Varying the spray solution composition in a gradient electrospray can benefit from the enhanced solubilities of different analytes in polar and less polar solvents, ultimately improving the molecular coverage in the direct analysis of biological samples.
Collapse
Affiliation(s)
- Hang Li
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC 20052, USA.
| | | |
Collapse
|
26
|
How can native mass spectrometry contribute to characterization of biomacromolecular higher-order structure and interactions? Methods 2018; 144:3-13. [PMID: 29704661 DOI: 10.1016/j.ymeth.2018.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/03/2018] [Accepted: 04/21/2018] [Indexed: 01/16/2023] Open
Abstract
Native mass spectrometry (MS) is an emerging approach for characterizing biomacromolecular structure and interactions under physiologically relevant conditions. In native MS measurement, intact macromolecules or macromolecular complexes are directly ionized from a non-denaturing solvent, and key noncovalent interactions that hold the complexes together can be preserved for MS analysis in the gas phase. This technique provides unique multi-level structural information such as conformational changes, stoichiometry, topology and dynamics, complementing conventional biophysical techniques. Despite the maturation of native MS and greatly expanded range of applications in recent decades, further dissemination is needed to make the community aware of such a technique. In this review, we attempt to provide an overview of the current body of knowledge regarding major aspects of native MS and explain how such technique contributes to the characterization of biomacromolecular higher-order structure and interactions.
Collapse
|
27
|
Wang H, Yong G, Brown SL, Lee HE, Zenaidee MA, Supuran CT, Donald WA. Supercharging protein ions in native mass spectrometry using theta capillary nanoelectrospray ionization mass spectrometry and cyclic alkylcarbonates. Anal Chim Acta 2018; 1003:1-9. [DOI: 10.1016/j.aca.2017.11.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/25/2017] [Indexed: 12/27/2022]
|
28
|
Mortensen DN, Williams ER. Microsecond and nanosecond polyproline II helix formation in aqueous nanodrops measured by mass spectrometry. Chem Commun (Camb) 2018; 52:12218-12221. [PMID: 27711437 DOI: 10.1039/c6cc06423j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 1.5 μs and <400 ns time constants for the formation of polyproline II helix structures in 21 and 16 residue peptides, respectively, are measured using rapid mixing from theta-glass emitters coupled with mass spectrometry. Results from these studies should serve as useful benchmarks for comparison with computational simulation results.
Collapse
Affiliation(s)
- Daniel N Mortensen
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
| |
Collapse
|
29
|
Xia Z, Williams ER. Protein-Glass Surface Interactions and Ion Desalting in Electrospray Ionization with Submicron Emitters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:194-202. [PMID: 29027129 DOI: 10.1007/s13361-017-1825-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 05/27/2023]
Abstract
Theta glass electrospray emitters can rapidly mix solutions to investigate fast reactions that occur as quickly as 1 μs, but emitters with submicron tips have the unusual properties of desalting protein ions and affecting the observed abundances of some proteins as a result of protein-surface interactions. The role of protein physical properties on ion signal was investigated using 1.7 ± 0.1 μm and 269 ± 7 nm emitters and 100 mM aqueous ammonium acetate or ammonium bicarbonate solutions. Protein ion desalting occurs for both positive and negative ions. The signal of a mixture of proteins with the 269 nm tips is time-dependent and the order in which ions of each protein is observed is related to the expected strengths of the protein-surface interactions. These results indicate that it is not just the high surface-to-volume ratio that plays a role in protein adsorption and reduction or absence of initial ion signal, but the small diffusion distance and extremely low flow rates of the smaller emitters can lead to complete adsorption of some proteins and loss of signal until the adsorption sites are filled and the zeta potential is significantly reduced. After about 30 min, signals for a protein mixture from the two different size capillaries are similar. These results show the advantages of submicron emitters but also indicate that surface effects must be taken into account in experiments using such small tips or that coating the emitter surface to prevent adsorption should be considered. Graphical Abstract.
Collapse
Affiliation(s)
- Zije Xia
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.
| |
Collapse
|
30
|
Lu W, Sun Y, Zhou W, Liu J. pH-Dependent Singlet O2 Oxidation Kinetics of Guanine and 9-Methylguanine: An Online Mass Spectrometry and Spectroscopy Study Combined with Theoretical Exploration. J Phys Chem B 2017; 122:40-53. [DOI: 10.1021/acs.jpcb.7b09515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wenchao Lu
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Yan Sun
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Wenjing Zhou
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
| | - Jianbo Liu
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
31
|
Yefremova Y, Danquah BD, Opuni KF, El-Kased R, Koy C, Glocker MO. Mass spectrometric characterization of protein structures and protein complexes in condensed and gas phase. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:445-459. [PMID: 29183193 DOI: 10.1177/1469066717722256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Proteins are essential for almost all physiological processes of life. They serve a myriad of functions which are as varied as their unique amino acid sequences and their corresponding three-dimensional structures. To fulfill their tasks, most proteins depend on stable physical associations, in the form of protein complexes that evolved between themselves and other proteins. In solution (condensed phase), proteins and/or protein complexes are in constant energy exchange with the surrounding solvent. Albeit methods to describe in-solution thermodynamic properties of proteins and of protein complexes are well established and broadly applied, they do not provide a broad enough access to life-science experimentalists to study all their proteins' properties at leisure. This leaves great desire to add novel methods to the analytical biochemist's toolbox. The development of electrospray ionization created the opportunity to characterize protein higher order structures and protein complexes rather elegantly by simultaneously lessening the need of sophisticated sample preparation steps. Electrospray mass spectrometry enabled us to translate proteins and protein complexes very efficiently into the gas phase under mild conditions, retaining both, intact protein complexes, and gross protein structures upon phase transition. Moreover, in the environment of the mass spectrometer (gas phase, in vacuo), analyte molecules are free of interactions with surrounding solvent molecules and, therefore, the energy of inter- and intramolecular forces can be studied independently from interference of the solvating environment. Provided that gas phase methods can give information which is relevant for understanding in-solution processes, gas phase protein structure studies and/or investigations on the characterization of protein complexes has rapidly gained more and more attention from the bioanalytical scientific community. Recent reports have shown that electrospray mass spectrometry provides direct access to six prime protein complex properties: stabilities, compositions, binding surfaces (epitopes), disassembly processes, stoichiometries, and thermodynamic parameters.
Collapse
Affiliation(s)
- Yelena Yefremova
- 1 Proteome Center Rostock, University of Rostock, Rostock, Germany
| | - Bright D Danquah
- 1 Proteome Center Rostock, University of Rostock, Rostock, Germany
| | | | - Reham El-Kased
- 3 Microbiology and Immunology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Cornelia Koy
- 1 Proteome Center Rostock, University of Rostock, Rostock, Germany
| | | |
Collapse
|
32
|
Bain RM, Sathyamoorthi S, Zare RN. “On‐Droplet” Chemistry: The Cycloaddition of Diethyl Azodicarboxylate and Quadricyclane. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ryan M. Bain
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | | - Richard N. Zare
- Department of Chemistry Stanford University Stanford CA 94305 USA
| |
Collapse
|
33
|
Bain RM, Sathyamoorthi S, Zare RN. “On‐Droplet” Chemistry: The Cycloaddition of Diethyl Azodicarboxylate and Quadricyclane. Angew Chem Int Ed Engl 2017; 56:15083-15087. [DOI: 10.1002/anie.201708413] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/19/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Ryan M. Bain
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | | - Richard N. Zare
- Department of Chemistry Stanford University Stanford CA 94305 USA
| |
Collapse
|
34
|
Jansson ET, Lai YH, Santiago JG, Zare RN. Rapid Hydrogen-Deuterium Exchange in Liquid Droplets. J Am Chem Soc 2017; 139:6851-6854. [PMID: 28481522 DOI: 10.1021/jacs.7b03541] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rate of hydrogen-deuterium exchange (HDX) in aqueous droplets of phenethylamine has been determined with submillisecond temporal resolution by mass spectrometry using nanoelectrospray ionization with a theta-capillary. The average speed of the microdroplets is measured using microparticle image velocimetry. The droplet travel time is varied from 20 to 320 μs by changing the distance between the emitter and the heated inlet to the mass spectrometer and the voltage applied to the emitter source. The droplets were found to accelerate by ∼30% during their observable travel time. Our droplet imaging shows that the theta-capillary produces two Taylor cone-jets (one per channel), causing mixing to take place from droplet fusion in the Taylor spray zone. Phenethylamine (ϕCH2CH2NH2) was chosen to study because it has only one functional group (-NH2) that undergoes rapid HDX. We model the HDX with a system of ordinary differential equations. The rate constant for the formation of -NH2D+ from -NH3+ is 3660 ± 290 s-1, and the rate constant for the formation of -NHD2+ from -NH2D+ is 3330 ± 270 s-1. The observed rates are about 3 times faster than what has been reported for rapidly exchangeable peptide side-chain groups in bulk measurements using stopped-flow kinetics and NMR spectroscopy. We also applied this technique to determine the HDX rates for a small 10-residue peptide, angiotensin I, in aqueous droplets, from which we found a 7-fold acceleration of HDX in the droplet compared to that in bulk solution.
Collapse
Affiliation(s)
- Erik T Jansson
- Department of Chemistry-BMC, Uppsala University , SE-751 24 Uppsala, Sweden.,Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Yin-Hung Lai
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University , Stanford, California 94305, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
35
|
Investigating the structural transitions of proteins during dissolution by mass spectrometry. Talanta 2017; 164:418-426. [DOI: 10.1016/j.talanta.2016.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022]
|
36
|
Qiu R, Zhang X, Luo H, Shao Y. Mass spectrometric snapshots for electrochemical reactions. Chem Sci 2016; 7:6684-6688. [PMID: 28451110 PMCID: PMC5355862 DOI: 10.1039/c6sc01978a] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/06/2016] [Indexed: 11/29/2022] Open
Abstract
A hybrid ultramicroelectrode containing one micro-carbon electrode and one empty micro-channel was employed to be a micro-electrochemical cell and a mass spectrometric nanospray emitter. This setup can combine MS with an electrode directly and provide in situ information about an electrochemical reaction. The mechanisms proposed by Bard et al. for a Ru(bpy)32+ (bpy = 2,2'-bipyridine) electrochemiluminescence (ECL) system were confirmed by the MS detection of key intermediates. The short-lived diimine intermediate of electrochemical oxidation of uric acid was also detected, which affirms that the novel technique is able to catch fleeting intermediates. These experimental results demonstrate that this new method is simple, easy to implement and can be coupled with many commercial mass spectrometric instruments to provide very useful information about electrochemical reactions.
Collapse
Affiliation(s)
- Ran Qiu
- Beijing National Laboratory for Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China . ;
| | - Xin Zhang
- Beijing National Laboratory for Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China . ;
| | - Hai Luo
- Beijing National Laboratory for Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China . ;
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China . ;
| |
Collapse
|
37
|
Mortensen DN, Williams ER. Ultrafast (1 μs) Mixing and Fast Protein Folding in Nanodrops Monitored by Mass Spectrometry. J Am Chem Soc 2016; 138:3453-60. [PMID: 26902747 DOI: 10.1021/jacs.5b13081] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of theta-glass emitters and mass spectrometry to monitor reactions that occur as fast as one μs is demonstrated. Acidified aqueous solutions containing unfolded proteins are mixed with aqueous ammonium acetate solutions to increase the solution pH and induce protein folding during nanoelectrospray ionization. Protein charge-state distributions show the extent to which folding occurs, and reaction times are obtained from known protein folding time constants. Shorter reaction times are obtained by decreasing the solution flow rate, and reaction times between 1.0 and 22 μs are obtained using flow rates between 48 and 2880 pL/s, respectively. Remarkably similar reaction times are obtained for three different proteins (Trp-cage, myoglobin, and cytochrome c) with folding time constants that differ by more than an order of magnitude (4.1, 7, and 57 μs, respectively), indicating that the reaction times obtained using rapid mixing from theta-glass emitters are independent of protein identity. A folding time constant of 2.2 μs is obtained for the formation of a β-hairpin structure of renin substrate tetradecapeptide, which is the fastest folding event measured using a rapid mixing technique. The 1.0 μs reaction time obtained here is about an order of magnitude lower than the shortest reaction time probed using a conventional mixer (8 μs). Moreover, this fast reaction time is obtained with a 48 pL/s flow rate, which is 2000-times less than the flow rate required to obtained the 8 μs reaction time using a conventional mixer. These results indicate that rapid mixing with theta-glass emitters can be used to access significantly faster reaction times while consuming substantially less sample than in conventional mixing apparatus.
Collapse
Affiliation(s)
- Daniel N Mortensen
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| |
Collapse
|
38
|
Liu F, Lu W, Yin X, Liu J. Mechanistic and Kinetic Study of Singlet O2 Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:59-72. [PMID: 26306590 DOI: 10.1007/s13361-015-1237-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/24/2015] [Indexed: 06/04/2023]
Abstract
We report a reaction apparatus developed to monitor singlet oxygen ((1)O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. (1)O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. (1)O2 concentrations in solution were linearly related to the emission intensities of airborne (1)O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an (1)O2 trapping agent. Products from (1)O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of (1)O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. (1)O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with (1)O2, evolution of methionine oxidation pathways at different ionization states and in different media is described.
Collapse
Affiliation(s)
- Fangwei Liu
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, Queens, NY, 11367, USA
| | - Wenchao Lu
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, Queens, NY, 11367, USA
| | - Xunlong Yin
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, Queens, NY, 11367, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, Queens, NY, 11367, USA.
| |
Collapse
|
39
|
Qiu R, Zhang C, Qin Z, Luo H. A multichannel rotating electrospray ionization mass spectrometry (MRESI): instrumentation and plume interactions. RSC Adv 2016. [DOI: 10.1039/c6ra06471j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A multichannel rotating electrospray ionization (MRESI) mass spectrometry method is described. Plume interactions are also systematically studied.
Collapse
Affiliation(s)
- Ran Qiu
- Beijing National Laboratory for Molecular Sciences
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
| | - Chengsen Zhang
- Department of Chemistry
- Indiana University-Purdue University Indianapolis
- Indianapolis
- USA
| | - Zhen Qin
- Institute of Materials
- China Academy of Engineering Physics
- Mianyang
- China
| | - Hai Luo
- Beijing National Laboratory for Molecular Sciences
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
| |
Collapse
|
40
|
Ingram AJ, Boeser CL, Zare RN. Going beyond electrospray: mass spectrometric studies of chemical reactions in and on liquids. Chem Sci 2016; 7:39-55. [PMID: 28757996 PMCID: PMC5508663 DOI: 10.1039/c5sc02740c] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022] Open
Abstract
There has been a burst in the number and variety of available ionization techniques to use mass spectrometry to monitor chemical reactions in and on liquids. Chemists have gained the capability to access chemistry at unprecedented timescales, and monitor reactions and detect intermediates under almost any set of conditions. Herein, recently developed ionization techniques that facilitate mechanistic studies of chemical processes are reviewed. This is followed by a discussion of our perspective on the judicious application of these and similar techniques in order to study reaction mechanisms.
Collapse
Affiliation(s)
- Andrew J Ingram
- Department of Chemistry , Stanford University , Stanford , CA 94305 , USA .
| | | | - Richard N Zare
- Department of Chemistry , Stanford University , Stanford , CA 94305 , USA .
| |
Collapse
|
41
|
Fisher CM, Hilger RT, Zhao F, McLuckey SA. Electroosmotically driven solution mixing in borosilicate theta glass nESI emitters. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1063-1070. [PMID: 28338258 DOI: 10.1002/jms.3620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 06/06/2023]
Abstract
The use of borosilicate theta glass capillaries as nanoelectrospray ionization emitters has recently been demonstrated as a method for mixing two solutions as they are sprayed into the mass spectrometer for analysis. All previous experiments resulted in a solution mixing timescale limited to the time the analytes spend in the Taylor cone and subsequent droplets (i.e. sub-millisecond timescale). In an effort to extend the solution mixing timescale to the milliseconds regime, we demonstrate that solution can be moved from one channel of the theta tip to the opposite channel via electroosmosis by applying a potential difference between the two wire electrodes inserted into each channel of the theta tip. First, we establish that electroosmosis is responsible for solution movement using fluorescence microscopy to track fluorescent tracer dyes. We then demonstrate the utility of this technique in varying the extent of denaturation of holomyoglobin to apomyoglobin on the millisecond timescale just prior to analysis by mass spectrometry. Finally, we induce additional turbulence for better mixing by applying a square wave potential to one of the wire electrodes while holding the opposite wire at a constant voltage between the low and high potentials of the square wave. This experiment was found to provide nearly complete mixing after a single cycle of the square wave. The use of electroosmosis significantly expands the flexibility of theta tips for altering solutions prior to nESI without the need for off-line sample manipulation. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Christine M Fisher
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Ryan T Hilger
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Feifei Zhao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| |
Collapse
|
42
|
|
43
|
Mortensen DN, Williams ER. Investigating protein folding and unfolding in electrospray nanodrops upon rapid mixing using theta-glass emitters. Anal Chem 2014; 87:1281-7. [PMID: 25525976 PMCID: PMC4303338 DOI: 10.1021/ac503981c] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Theta-glass emitters are used to
rapidly mix two solutions to induce
either protein folding or unfolding during nanoelectrospray (nanoESI).
Mixing acid-denatured myoglobin with an aqueous ammonium acetate solution
to increase solution pH results in protein folding during nanoESI.
A reaction time and upper limit to the droplet lifetime of 9 ±
2 μs is obtained from the relative abundance of the folded conformer
in these rapid mixing experiments compared to that obtained from solutions
at equilibrium and a folding time constant of 7 μs. Heme reincorporation
does not occur, consistent with the short droplet lifetime and the
much longer time constant for this process. Similar mixing experiments
with acid-denatured cytochrome c and the resulting
folding during nanoESI indicate a reaction time of between 7 and 25
μs depending on the solution composition. The extent of unfolding
of holo-myoglobin upon rapid mixing with theta-glass emitters is less
than that reported previously (Fisher
et al. 2014, 86, 4581−458824702054), a result
that is attributed to the much smaller, ∼1.5 μm, average
o.d. tips used here. These results indicate that the time frame during
which protein folding or unfolding can occur during nanoESI depends
both on the initial droplet size, which can be varied by changing
the emitter tip diameter, and on the solution composition. This study
demonstrates that protein folding or unfolding processes that occur
on the ∼10 μs time scale can be readily investigated
using rapid mixing with theta-glass emitters combined with mass spectrometry.
Collapse
Affiliation(s)
- Daniel N Mortensen
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | | |
Collapse
|
44
|
Mortensen D, Williams ER. Theta-glass capillaries in electrospray ionization: rapid mixing and short droplet lifetimes. Anal Chem 2014; 86:9315-21. [PMID: 25160559 PMCID: PMC4165459 DOI: 10.1021/ac502545r] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/26/2014] [Indexed: 02/06/2023]
Abstract
Double-barrel wire-in-a-capillary electrospray emitters prepared from theta-glass capillaries were used to mix solutions during the electrospray process. The relative flow rate of each barrel was continuously monitored with internal standards. The complexation reaction of 18-crown-6 and K(+), introduced from opposite barrels, reaches equilibrium during the electrospray process, suggesting that complete mixing also occurs. A simplified diffusion model suggests that mixing occurs in less than a millisecond, and contributions of turbulence, estimated from times of coalescing ballistic microdroplets, suggest that complete mixing occurs within a few microseconds. This mixing time is 2 orders of magnitude less than in any mixer previously coupled to a mass spectrometer. The reduction of 2,6-dichloroindophenol by l-ascorbic acid was performed using the theta-glass emitters and monitored using mass spectrometry. On the basis of the rate constant of this reaction in bulk solution, an apparent reaction time of 274 ± 60 μs was obtained. This reaction time is an upper limit to the droplet lifetime because the surface area to volume ratio and the concentration of reagents increase as the droplet evaporates and some product formation occurs in the Taylor cone prior to droplet formation. On the basis of increases in reaction rates measured by others in droplets compared to rates in bulk solution, the true droplet lifetime is likely 1-3 orders of magnitude less than the upper limit, i.e., between 27 μs and 270 ns. The rapid mixing and short droplet lifetime achieved in these experiments should enable the monitoring of many different fast reactions using mass spectrometry.
Collapse
Affiliation(s)
- Daniel
N. Mortensen
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Evan R. Williams
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
45
|
Zhang JT, Wang HY, Zhu W, Cai TT, Guo YL. Solvent-Assisted Electrospray Ionization for Direct Analysis of Various Compounds (Complex) from Low/Nonpolar Solvents and Eluents. Anal Chem 2014; 86:8937-42. [DOI: 10.1021/ac502656a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun-Ting Zhang
- National Center for Organic
Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Hao-Yang Wang
- National Center for Organic
Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Wei Zhu
- National Center for Organic
Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Ting-Ting Cai
- National Center for Organic
Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Yin-Long Guo
- National Center for Organic
Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
46
|
Fisher CM, Kharlamova A, McLuckey SA. Affecting Protein Charge State Distributions in Nano-Electrospray Ionization via In-Spray Solution Mixing Using Theta Capillaries. Anal Chem 2014; 86:4581-8. [PMID: 24702054 DOI: 10.1021/ac500721r] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Christine M. Fisher
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Anastasia Kharlamova
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
47
|
Li Y, Zhang N, Zhou Y, Wang J, Zhang Y, Wang J, Xiong C, Chen S, Nie Z. Induced dual-nanospray: a novel internal calibration method for convenient and accurate mass measurement. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1446-1449. [PMID: 23797862 DOI: 10.1007/s13361-013-0670-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 06/02/2023]
Abstract
Accurate mass information is of great importance in the determination of unknown compounds. An effective and easy-to-control internal mass calibration method will dramatically benefit accurate mass measurement. Here we reported a simple induced dual-nanospray internal calibration device which has the following three advantages: (1) the two sprayers are in the same alternating current field; thus both reference ions and sample ions can be simultaneously generated and recorded. (2) It is very simple and can be easily assembled. Just two metal tubes, two nanosprayers, and an alternating current power supply are included. (3)With the low-flow-rate character and the versatility of nanoESI, this calibration method is capable of calibrating various samples, even untreated complex samples such as urine and other biological samples with small sample volumes. The calibration errors are around 1 ppm in positive ion mode and 3 ppm in negative ion mode with good repeatability. This new internal calibration method opens up new possibilities in the determination of unknown compounds, and it has great potential for the broad applications in biological and chemical analysis.
Collapse
Affiliation(s)
- Yafeng Li
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zaikin VG, Borisov RS, Polovkov NY, Zhilyaev DI, Vinogradov AA, Ivanyuk AV. Characterization of low-molecular weight iodine-terminated polyethylenes by gas chromatography/mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with the use of derivatization. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2013; 19:163-173. [PMID: 24308197 DOI: 10.1255/ejms.1223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Gas chromatography/mass spectrometry (GC/MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry, in conjunction with various derivatization approaches, have been applied to structure determination of individual oligomers and molecular-mass distributions (MMD) in low-molecular mass polyethylene having an iodine terminus. Direct GC/MS analysis has shown that the samples under investigation composed of polyethyelene-iodides (major components) and n-alkanes. Exchange reaction with methanol in the presence of NaOH gave rise to methoxy-derivatives and n-alkenes. Electron ionization mass spectra have shown that the former contained terminal methoxy groups indicating the terminal position of the iodine atom in the initial oligomers. MMD parameters have been determined with the aid of MALDI mass spectrometry followed by preliminary derivatization-formation of covalently bonded charge through the reaction of iodides with triphenylphosphine, trialkylamines, pyridine or quinoline. The mass spectra revealed well-resolved peaks for cationic parts of derivatized oligomers allowing the determination of MMD. The latter values have been compared with those calculated from GC/MS data.
Collapse
Affiliation(s)
- Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky prospect 29, 119991 Moscow, Russian Federation.
| | | | | | | | | | | |
Collapse
|