1
|
Ren X, Su W, Li S, Zhao T, Huang Q, Wang Y, Wang X, Zhang X, Wei J. Immunogenicity and Therapeutic Efficacy of a Sendai-Virus-Vectored HSV-2 Vaccine in Mouse and Guinea Pig Models. Vaccines (Basel) 2023; 11:1752. [PMID: 38140157 PMCID: PMC10747028 DOI: 10.3390/vaccines11121752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND To date, there is no licensed vaccine for preventing herpes simplex virus type 2 (HSV-2). The current treatment to address the infection and prevent its transmission is not always satisfactory. METHODS We constructed two recombinant vectors, one encoding HSV-2 glycoprotein D (gD, SeV-dF/HSV-2-gD) and one encoding HSV-2-infected cell protein 27 (ICP27, SeV-dF/HSV-2-ICP27), based on a replication-defective Sendai virus through reverse genetics, collectively comprising a combinatorial HSV-2 therapeutic vaccine candidate. The immunogenicity and proper immunization procedure for this vaccine were explored in a murine model. The therapeutic effect that helps prevent recurrent HSV-2 disease was evaluated in HSV-2-infected guinea pigs. RESULTS Both a robust humoral immune response and a cellular immune response, characterized by the neutralizing antibody titer and the IFN-γ level, respectively, were elicited in BALB/c mice. A further study of cellular immunogenicity in mice revealed that T lymphocytes were successfully enhanced with the desirable secretion of several cytokines. In HSV-2-seropositive guinea pigs, vaccination could reduce the severity of HSV-2 in terms of recurrent lesions, duration of recurrent outbreak, and frequency of recurrence by 58.66%, 45.34%, and 45.09%, respectively, while viral shedding was also significantly inhibited in the vaccine-treated group compared to the group treated with phosphate-buffered saline. CONCLUSIONS The replication-defective recombinant Sendai viruses conveying HSV-2-gD and ICP27 proteins showed great immunogenicity and potential for preventing recurrent HSV-2 disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiangbo Wei
- Weijiangbo Laboratory, National Vaccine and Serum Institute, Beijing 101111, China; (X.R.); (W.S.); (S.L.); (T.Z.); (Q.H.); (Y.W.); (X.W.); (X.Z.)
| |
Collapse
|
2
|
Govender Y, Morrison CS, Chen PL, Gao X, Yamamoto H, Chipato T, Anderson S, Barbieri R, Salata R, Doncel GF, Fichorova RN. Cervical and systemic innate immunity predictors of HIV risk linked to genital herpes acquisition and time from HSV-2 seroconversion. Sex Transm Infect 2023; 99:311-316. [PMID: 36104248 PMCID: PMC10011014 DOI: 10.1136/sextrans-2022-055458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/25/2022] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES To examine innate immunity predictors of HIV-1 acquisition as biomarkers of HSV-2 risk and biological basis for epidemiologically established HIV-1 predisposition in HSV-2 infected women. METHODS We analysed longitudinal samples from HIV-1 negative visits of 1019 women before and after HSV-2 acquisition. We measured cervical and serum biomarkers of inflammation and immune activation previously linked to HIV-1 risk. Protein levels were Box-Cox transformed and ORs for HSV-2 acquisition were calculated based on top quartile or below/above median levels for all HSV-2 negative visits. Bivariate analysis determined the likelihood of HSV-2 acquisition by biomarker levels preceding infection. Linear mixed-effects models evaluated if biomarkers differed by HSV-2 status defined as negative, incident or established infections with an established infection cut-off starting at 6 months. RESULTS In the cervical compartment, two biomarkers of HIV-1 risk (low SLPI and high BD-2) also predicted HSV-2 acquisition. In addition, HSV-2 acquisition was associated with IL-1β, IL-6, IL-8, MIP-3α, ICAM-1 and VEGF when below median levels. Systemic immunity predictors of HSV-2 acquisition were high sCD14 and IL-6, with highest odds when concomitantly increased (OR=2.23, 1.49-3.35). Concomitant systemic and mucosal predictors of HSV-2 acquisition risk included (1) serum top quartile sCD14 with cervical low SLPI, VEGF and ICAM-1, or high BD-2; (2) serum high IL-6 with cervical low VEGF and ICAM-1, SLPI, IL-1β and IL-6; and (3) serum low C reactive protein with cervical high BD-2 (the only combination also predictive of HIV-1 acquisition). Most cervical biomarkers were decreased after HSV-2 acquisition compared with the HSV-2 negative visits, with incident infections associated with a larger number of suppressed cervical biomarkers and lower serum IL-6 levels compared with established infections. CONCLUSIONS A combination of systemic immunoinflammatory and cervical immunosuppressed states predicts HSV-2 acquisition. A persistently suppressed innate immunity during incident HSV-2 infection may add to the increased HIV-1 susceptibility.
Collapse
Affiliation(s)
- Yashini Govender
- Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Charles S Morrison
- Global Health and Population Research, FHI 360, Durham, North Carolina, USA
| | - Pai-Lien Chen
- Global Health and Population Research, FHI 360, Durham, North Carolina, USA
| | - Xiaoming Gao
- Global Health and Population Research, FHI 360, Durham, North Carolina, USA
| | - Hidemi Yamamoto
- Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tsungai Chipato
- Obstetrics and Gynecology, University of Zimbabwe, Harare, Zimbabwe
| | - Sharon Anderson
- Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Robert Barbieri
- Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Salata
- Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gustavo F Doncel
- Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA
- CONRAD, Arlington, Virginia, USA
| | - Raina Nakova Fichorova
- Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Fernandez OE, Gudipati S, Ko D, Boucher A, Brar I. Papillomatous Anogenital Lesions in a Patient With Human Immunodeficiency Virus. Clin Infect Dis 2022; 75:172-175. [PMID: 36008926 PMCID: PMC9403295 DOI: 10.1093/cid/ciab853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Omar E Fernandez
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Smitha Gudipati
- Department of Infectious Disease, Henry Ford Hospital, Detroit, Michigan, USA
| | - Dayoung Ko
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Alison Boucher
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Indira Brar
- Department of Infectious Disease, Henry Ford Hospital, Detroit, Michigan, USA
| |
Collapse
|
4
|
Bromberg DJ, Mayer KH, Altice FL. Identifying and managing infectious disease syndemics in patients with HIV. Curr Opin HIV AIDS 2020; 15:232-242. [PMID: 32487816 PMCID: PMC7376494 DOI: 10.1097/coh.0000000000000631] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We will present recent articles focusing on HIV synergistic interactions with other sexually transmitted infections, tuberculosis, and hepatitis, as well as recent advances in the study of social and behavioral determinants that facilitate this clustering of infectious disease. For each synergistic interaction, we highlight evidence-based interventions that clinicians and policymakers should consider to tackle HIV and infectious disease syndemics. RECENT FINDINGS Significant advances in understanding the behavioral and structural determinants of HIV and other infectious disease synergisms have been made in the past years. Intervention strategies based on these new models have also been developed. It is now well understood that treating infectious disease syndemics will require a multidisciplinary and multipronged approach. SUMMARY HIV is synergistic with multiple other infectious diseases because the risk behaviors that lead to HIV acquisition may be similar to the other infections. The influence of HIV on the other infection may be due to immunosuppression associated with disease progression resulting in increased susceptibility (e.g., HIV and tuberculosis), especially when patients are not virologically suppressed using antiretroviral therapy. In reverse, another infectious disease may, when not treated, influence HIV disease progression. Social/structural determinants like homelessness, mass incarceration, and structural discrimination precipitate psychiatric comorbidity, substance use, and risky sex behavior which lead to the spread and co-occurrence of infectious disease.
Collapse
Affiliation(s)
- Daniel J Bromberg
- Department of Social and Behavioral Sciences, Yale University School of Public Health
- Yale Center for Interdisciplinary Research on AIDS, Yale University, New Haven, Connecticut
| | - Kenneth H Mayer
- The Fenway Institute, Fenway Health
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Frederick L Altice
- Yale Center for Interdisciplinary Research on AIDS, Yale University, New Haven, Connecticut
- Section of Infectious Diseases, Department of Medicine, Yale University School of Medicine
- Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Oeyen M, Noppen S, Vanhulle E, Claes S, Myrvold BO, Vermeire K, Schols D. A unique class of lignin derivatives displays broad anti-HIV activity by interacting with the viral envelope. Virus Res 2019; 274:197760. [PMID: 31618614 DOI: 10.1016/j.virusres.2019.197760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
In Gordts et al. (2015), we have shown that lignosulfonic acid, a commercially available lignin derivative, possesses broad antiviral activity against human immunodeficiency virus (HIV) and Herpes simplex virus (HSV) by preventing viral entry into susceptible target cells. Because of the interesting safety profile as potential microbicide, we now determined the antiviral activity of a series of lignosulfonates in order to understand better which molecular features can contribute to their antiviral activity. Here, 24 structurally different lignosulfonates were evaluated for their capacity to inhibit HIV and HSV transmission and replication in various cellular assays. These derivatives differ in origin (hardwood or softwood), counter-ion used during sulphite processing (Na+, Ca2+, or NH4+), sulphur content, carboxylic acid percentage, and molecular weight fraction, which allowed to determine structure-activity relationships. We demonstrate that the broad antiviral activity of lignosulfonates is mainly dependent on their molecular weight and that their mechanism of action is based on interactions with the viral envelope glycoproteins. This makes the lignosulfonates a potential low-cost microbicide that protects women from sexual HIV and HSV transmission and thus prevents life-long infection.
Collapse
Affiliation(s)
- Merel Oeyen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Sam Noppen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Emiel Vanhulle
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Sandra Claes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Bernt O Myrvold
- Borregaard LignoTech, P.O. Box 162, N-1709 Sarpsborg, Norway
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
6
|
A vaccine containing highly purified virus particles in adjuvant provides high level protection against genital infection and disease in guinea pigs challenged intravaginally with homologous and heterologous strains of herpes simplex virus type 2. Vaccine 2019; 38:79-89. [PMID: 31611098 DOI: 10.1016/j.vaccine.2019.09.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 01/15/2023]
Abstract
Infection with Herpes Simplex Viruses (HSVs) represents a significant health burden worldwide with HSV-1 and HSV-2 causing genital disease and HSV-2 contributing to human immunodeficiency virus acquisition. Despite great need, there is currently no licensed vaccine against HSV. In this report, we evaluated the protective efficacy of a vaccine containing highly purified, inactivated HSV-2 particles (with and without additional recombinant glycoprotein D) formulated with a monophosphoryl lipid A/Alhydrogel adjuvant in a guinea pig HSV genital model. The key results from 3 independent studies were: (1) vaccination consistently provided significant 3-3.5 Log10 reductions in vaginal HSV-2 titers on day 2 postchallenge; (2) following homologous or heterologous challenge with two U.S. isolates, all vaccine groups showed complete protection against lesion formation, significant 3 Log10 reductions in day 2 virus shedding, enhanced virus clearance, significant reductions in HSV-2 DNA within ganglia, and no detectable shedding (<2 PFU) or latent viral DNA in some immunized animals; (3) following challenge with a third heterologous strain, vaccination provided complete protection against primary and recurrent lesions, significant reductions in primary virus shedding, a 50% reduction in recurrent shedding days, and undetectable latent virus in the ganglia and spinal cords of most animals; and (4) adding glycoprotein D provided no enhanced protection relative to that elicited by the inactivated HSV-2 particles alone. Together, these data provide strong support for further development of this exceedingly protective and highly feasible vaccine candidate for human trials.
Collapse
|
7
|
Generation of a Dual-Target, Safe, Inexpensive Microbicide that Protects Against HIV-1 and HSV-2 Disease. Sci Rep 2018; 8:2786. [PMID: 29434285 PMCID: PMC5809452 DOI: 10.1038/s41598-018-21134-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/22/2018] [Indexed: 01/17/2023] Open
Abstract
HSV-2 infection is a significant health problem and a major co-morbidity factor for HIV-1 acquisition, increasing risk of infection 2-4 fold. Condom based prevention strategies for HSV-2 and HIV-1 have not been effective at stopping the HIV-1 pandemic, indicating that alternative prevention strategies need to be investigated. We have previously developed an inexpensive HIV-1 specific microbicide that utilizes the S-layer mediated display capabilities of Caulobacter crescentus, and have shown that recombinant C. crescentus displaying HIV entry blocking proteins are able to provide significant protection from HIV-1 infection in vitro. Here we demonstrate that recombinant C. crescentus are safe for topical application and describe 5 new recombinant C. crescentus that provide protection from HIV-1 infection in vitro. Further, we demonstrate protection from disease following intravaginal infection with HSV-2 in a murine model using C. crescentus expressing the anti-viral lectins Cyanovirin-N and Griffithsin, as well as α-1-antitrypsin and indolicidin. Interestingly, C. crescentus alone significantly reduced HSV-2 replication in vaginal lavage fluid. Protection from HSV-2 disease was strongly associated with early cytokine production in the vaginal tract. Our data support the potential for a dual-target microbicide that can protect against both HIV-1 and HSV-2, which could have an enormous impact on public health.
Collapse
|
8
|
Ragupathy V, Xue W, Tan J, Devadas K, Gao Y, Hewlett I. Progesterone augments cell susceptibility to HIV-1 and HIV-1/HSV-2 co-infections. J Mol Endocrinol 2016; 57:185-99. [PMID: 27538988 DOI: 10.1530/jme-16-0138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 01/09/2023]
Abstract
In human immunodeficiency virus type 1 (HIV-1)-infected women, oral or injectable progesterone containing contraceptive pills may enhance HIV-1 acquisition in vivo, and the mechanism by which this occurs is not fully understood. In developing countries, Herpes simplex virus type-2 (HSV-2) co-infection has been shown to be a risk for increase of HIV-1 acquisition and, if co-infected women use progesterone pills, infections may increase several fold. In this study, we used an in vitro cell culture system to study the effects of progesterone on HIV-1 replication and to explore the molecular mechanism of progesterone effects on infected cells. In our in vitro model, CEMss cells (lymphoblastoid cell line) were infected with either HIV-1 alone or co-infected with HSV-2. HIV-1 viral load was measured with and without sex hormone treatment. Progesterone-treated cells showed an increase in HIV-1 viral load (1411.2 pg/mL) compared with cells without progesterone treatment (993.1 pg/mL). Increased cell death was noted with HSV-2 co-infection and in progesterone-treated cells. Similar observations were noted in peripheral blood mononuclear cells (PBMC) cells derived from three female donors. Progesterone-treated cells also showed reduced antiviral efficacy. Inflammatory cytokines and associations with biomarkers of disease progression were explored. Progesterone upregulated inflammatory cytokines and chemokines conversely and downregulated anti-apoptotic Bcl-2 expression. Nuclear protein analysis by electrophoretic mobility shift assay showed the association of progesterone with progesterone response element (PRE), which may lead to downregulation of Bcl-2. These data indicate that progesterone treatment enhances HIV-1 replication in infected cells and co-infection with HSV-2 may further fuel this process.
Collapse
Affiliation(s)
- Viswanath Ragupathy
- Lab of Molecular VirologyDivision of Emerging Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Wang Xue
- Lab of Molecular VirologyDivision of Emerging Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ji Tan
- Lab of Molecular VirologyDivision of Emerging Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Krishnakumar Devadas
- Lab of Molecular VirologyDivision of Emerging Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yamei Gao
- Division of Viral ProductsCenter for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Indira Hewlett
- Lab of Molecular VirologyDivision of Emerging Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
9
|
Genital HSV Shedding among Kenyan Women Initiating Antiretroviral Therapy. PLoS One 2016; 11:e0163541. [PMID: 27683204 PMCID: PMC5040248 DOI: 10.1371/journal.pone.0163541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 09/09/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Genital ulcer disease (GUD) prevalence increases in the first month of antiretroviral treatment (ART), followed by a return to baseline prevalence by month 3. Since most GUD is caused by herpes simplex virus type 2 (HSV-2), we hypothesized that genital HSV detection would follow a similar pattern after treatment initiation. METHODS We conducted a prospective cohort study of 122 HSV-2 and HIV-1 co-infected women with advanced HIV disease who initiated ART and were followed closely with collection of genital swab specimens for the first three months of treatment. RESULTS At baseline, the HSV detection rate was 32%, without significant increase in genital HSV detection noted during the first month or the third month of ART. HIV-1 shedding declined during this period; no association was also noted between HSV and HIV-1 shedding during this period. CONCLUSION Because other studies have reported increased HSV detection in women initiating ART and we have previously reported an increase in GUD during early ART, it may be prudent to counsel HIV-1 infected women initiating ART that HSV shedding in the genital tract may continue after ART initiation.
Collapse
|
10
|
Donalisio M, Quaranta P, Chiuppesi F, Pistello M, Cagno V, Cavalli R, Volante M, Bugatti A, Rusnati M, Ranucci E, Ferruti P, Lembo D. The AGMA1 poly(amidoamine) inhibits the infectivity of herpes simplex virus in cell lines, in human cervicovaginal histocultures, and in vaginally infected mice. Biomaterials 2016; 85:40-53. [PMID: 26854390 DOI: 10.1016/j.biomaterials.2016.01.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/15/2016] [Accepted: 01/26/2016] [Indexed: 11/28/2022]
Abstract
The development of topical microbicides is a valid approach to protect the genital mucosa from sexually transmitted infections that cannot be contained with effective vaccination, like HSV and HIV infections. A suitable target of microbicides is the interaction between viral proteins and cell surface heparan sulfate proteoglycans (HSPGs). AGMA1 is a prevailingly cationic agmatine-containing polyamidoamine polymer previously shown to inhibit HSPGs dependent viruses, including HSV-1, HSV-2, and HPV-16. The aim of this study was to elucidate the mechanism of action of AGMA1 against HSV infection and assess its antiviral efficacy and biocompatibility in preclinical models. The results show AGMA1 to be a non-toxic inhibitor of HSV infectivity in cell cultures and human cervicovaginal histocultures. Moreover, it significantly reduced the burden of infection of HSV-2 genital infection in mice. The investigation of the mechanism of action revealed that AGMA1 reduces cells susceptibility to virus infection by binding to cell surface HSPGs thereby preventing HSV attachment. This study indicates that AGMA1 is a promising candidate for the development of a topical microbicide to prevent sexually transmitted HSV infections.
Collapse
Affiliation(s)
- Manuela Donalisio
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, 10043 Orbassano, Torino, Italy
| | - Paola Quaranta
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy; ARPA Foundation, 56126 Pisa, Italy
| | - Flavia Chiuppesi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy
| | - Mauro Pistello
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy
| | - Valeria Cagno
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, 10043 Orbassano, Torino, Italy
| | - Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Marco Volante
- Dipartimento di Oncologia, Università di Torino, 10043 Orbassano, Torino Italy
| | - Antonella Bugatti
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, 25123 Brescia, Italy
| | - Marco Rusnati
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, 25123 Brescia, Italy
| | - Elisabetta Ranucci
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, 20133 Milano, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, 20133 Milano, Italy
| | - David Lembo
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
11
|
Gordts SC, Férir G, D’huys T, Petrova MI, Lebeer S, Snoeck R, Andrei G, Schols D. The Low-Cost Compound Lignosulfonic Acid (LA) Exhibits Broad-Spectrum Anti-HIV and Anti-HSV Activity and Has Potential for Microbicidal Applications. PLoS One 2015; 10:e0131219. [PMID: 26132818 PMCID: PMC4488490 DOI: 10.1371/journal.pone.0131219] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/30/2015] [Indexed: 12/24/2022] Open
Abstract
Objectives Lignosulfonic acid (LA), a low-cost lignin-derived polyanionic macromolecule, was extensively studied for its anti-HIV and anti-HSV activity in various cellular assays, its mechanism of viral inhibition and safety profile as potential microbicide. Results LA demonstrated potent inhibitory activity of HIV replication against a wide range of R5 and X4 HIV strains and prevented the uptake of HIV by bystander CD4+ T cells from persistently infected T cells in vitro (IC50: 0.07 – 0.34 μM). LA also inhibited HSV-2 replication in vitro in different cell types (IC50: 0.42 – 1.1 μM) and in rodents in vivo. Furthermore, LA neutralized the HIV-1 and HSV-2 DC-SIGN-mediated viral transfer to CD4+ T cells (IC50: ∼1 μM). In addition, dual HIV-1/HSV-2 infection in T cells was potently blocked by LA (IC50: 0.71 μM). No antiviral activity was observed against the non-enveloped viruses Coxsackie type B4 and Reovirus type 1. LA is defined as a HIV entry inhibitor since it interfered with gp120 binding to the cell surface of T cells. Pretreatment of PBMCs with LA neither increased expression levels of cellular activation markers (CD69, CD25 and HLA-DR), nor enhanced HIV-1 replication. Furthermore, we found that LA had non-antagonistic effects with acyclovir, PRO2000 or LabyA1 (combination index (CI): 0.46 – 1.03) in its anti-HSV-2 activity and synergized with tenofovir (CI: 0.59) in its anti-HIV-1 activity. To identify mechanisms of LA resistance, we generated in vitro a mutant HIV-1 NL4.3LAresistant virus, which acquired seven mutations in the HIV-1 envelope glycoproteins: S160N, V170N, Q280H and R389T in gp120 and K77Q, N113D and H132Y in gp41. Additionally, HIV-1 NL4.3LAresistant virus showed cross-resistance with feglymycin, enfuvirtide, PRO2000 and mAb b12, four well-described HIV binding/fusion inhibitors. Importantly, LA did not affect the growth of vaginal Lactobacilli strains. Conclusion Overall, these data highlight LA as a potential and unique low-cost microbicide displaying broad anti-HIV and anti-HSV activity.
Collapse
Affiliation(s)
| | - Geoffrey Férir
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
- * E-mail:
| | - Thomas D’huys
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mariya I. Petrova
- Centre of Microbial and Plant Genetics, University of Leuven, Leuven, Belgium
- Department of Bioscience Engineering, Antwerp University, Antwerp, Belgium
| | - Sarah Lebeer
- Centre of Microbial and Plant Genetics, University of Leuven, Leuven, Belgium
- Department of Bioscience Engineering, Antwerp University, Antwerp, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Dominique Schols
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Malcolm RK, Boyd P, McCoy CF, Murphy DJ. Beyond HIV microbicides: multipurpose prevention technology products. BJOG 2014; 121 Suppl 5:62-9. [PMID: 25335842 DOI: 10.1111/1471-0528.12852] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 11/26/2022]
Abstract
Multipurpose prevention technologies (MPTs) that aim to simultaneously prevent unintended pregnancy, HIV-1 infection and other sexually transmitted infections are among the most innovative and complex products currently in development within women's sexual and reproductive health care. In this review article, MPTs are placed within the wider context of combination products, combination drug products and multi-indication products. The current MPT product landscape is mapped and assessed with reference to existing products for the corresponding single indications, before identifying the gaps in the current MPT product pipeline and highlighting priority products and challenges moving forward.
Collapse
Affiliation(s)
- R K Malcolm
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | | | |
Collapse
|
13
|
Sánchez-Rodríguez J, Vacas-Córdoba E, Gómez R, De La Mata FJ, Muñoz-Fernández MÁ. Nanotech-derived topical microbicides for HIV prevention: the road to clinical development. Antiviral Res 2014; 113:33-48. [PMID: 25446339 DOI: 10.1016/j.antiviral.2014.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/29/2014] [Indexed: 11/15/2022]
Abstract
More than three decades since its discovery, HIV infection remains one of the most aggressive epidemics worldwide, with more than 35 million people infected. In sub-Saharan Africa, heterosexual transmissions represent nearly 80% of new infections, with 50% of these occurring in women. In an effort to stop the dramatic spread of the HIV epidemic, new preventive treatments, such as microbicides, have been developed. Nanotechnology has revolutionized this field by designing and engineering novel highly effective nano-sized materials as microbicide candidates. This review illustrates the most recent advances in nanotech-derived HIV prevention strategies, as well as the main steps required to translate promising in vitro results into clinical trials.
Collapse
Affiliation(s)
- Javier Sánchez-Rodríguez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Gómez
- Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - F Javier De La Mata
- Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
14
|
Rollenhagen C, Lathrop MJ, Macura SL, Doncel GF, Asin SN. Herpes simplex virus type-2 stimulates HIV-1 replication in cervical tissues: implications for HIV-1 transmission and efficacy of anti-HIV-1 microbicides. Mucosal Immunol 2014; 7:1165-74. [PMID: 24496317 PMCID: PMC4137741 DOI: 10.1038/mi.2014.3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/18/2013] [Accepted: 01/03/2014] [Indexed: 02/04/2023]
Abstract
Herpes Simplex virus Type-2 (HSV-2) increases the risk of HIV-1 acquisition, yet the mechanism for this viral pathogen to regulate the susceptibility of the cervicovaginal mucosa to HIV-1 is virtually unknown. Using ex vivo human ectocervical tissue models, we report greater levels of HIV-1 reverse transcription, DNA integration, RNA expression, and virions release in HIV-1/HSV-2 co-infected tissues compared with HIV-1 only infected tissues (P<0.05). Enhanced HIV-1 replication was associated with increased CD4, CCR5, and CD38 transcription (P<0.05) and increased number of CD4(+)/CCR5(+)/CD38(+) T cells in HIV-1/HSV-2 co-infected tissues compared with tissues infected with HIV-1 alone. Tenofovir (TFV) 1% gel, the leading microbicide candidate, demonstrated only partial protection against HIV-1, when applied vaginally before and after sexual intercourse. It is possible that mucosal inflammation, in particular that induced by HSV-2 infection, may have decreased TFV efficacy. HSV-2 upregulated the number of HIV-1-infected cells and elevated the concentration of TFV needed to decrease HIV-1 infection. Similarly, only high concentrations of TFV inhibited HSV-2 replication in HIV-1/HSV-2-infected tissues. Thus, HSV-2 co-infection and mucosal immune cell activation should be taken into consideration when designing preventative strategies for sexual transmission of HIV-1.
Collapse
Affiliation(s)
- C Rollenhagen
- V.A. Medical Center, White River Junction, Vermont, USA,Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - M J Lathrop
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - S L Macura
- V.A. Medical Center, White River Junction, Vermont, USA
| | - G F Doncel
- CONRAD, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - S N Asin
- V.A. Medical Center, White River Junction, Vermont, USA,Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA,
| |
Collapse
|
15
|
The evolving design and methods for trials evaluating the safety of candidate vaginal microbicides: a systematic review. Sex Transm Dis 2014; 40:729-36. [PMID: 23945427 DOI: 10.1097/01.olq.0000431070.38601.03] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vaginal preexposure prophylaxis is a promising biomedical tool for HIV prevention. Although guidelines for the clinical assessment of microbicides are available, validated markers for product safety are lacking. To inform future microbicide and multipurpose vaginal product research, we reviewed the current and past safety methods used. We searched the Cochrane, EMBASE, and Ovid MEDLINE databases for clinical studies of vaginal products for the prevention of HIV that included safety evaluations. Ninety-seven clinical studies involving 21 products were identified: 63 lasted 14 days or less, 19 were longer in duration, and 15 were effectivess studies that included also safety as an outcome. Median sample size in the safety studies was 48 participants (range, 10-799). All studies reported on urogenital endpoint, 71% included colposcopy, and 67% assessed the vaginal microflora. Markers of vaginal epithelial inflammation, systemic absorption, and systemic toxicology assessments were evaluated in 29%, 26%, and 43% of studies, respectively. Excluding the effectiveness studies, these same assessments were done before 1998 in 33%, 7%, and 27% and after 2001 in 38%, 44%, and 60% of studies, respectively. Soluble inflammatory markers were introduced after 2001. Adverse event collection was reported in 73% of studies before 1998 and in 98% after 2001. In a previous review, we recommended that larger and longer safety studies were necessary to detect clinically important toxicities and to provide assurance that agents are ready for large-scale effectiveness trials. Here, we propose a stepwise clinical assessment that can be used for future guidance.
Collapse
|
16
|
Quintana VM, Torres NI, Wachsman MB, Sinko PJ, Castilla V, Chikindas M. Antiherpes simplex virus type 2 activity of the antimicrobial peptide subtilosin. J Appl Microbiol 2014; 117:1253-9. [PMID: 25087911 DOI: 10.1111/jam.12618] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/30/2014] [Accepted: 07/30/2014] [Indexed: 01/02/2023]
Abstract
AIMS In this study, we evaluated the antiviral activity of subtilosin, a cyclical peptide isolated from Bacillus amyloliquefaciens, against herpes simplex virus type 2 (HSV-2) in cell cultures and we investigated subtilosin mode of action. METHODS AND RESULTS We determined, using a virus yield inhibition assay, that noncytotoxic concentrations of subtilosin inhibit HSV-2 replication in Vero cell cultures. Subtilosin strongly inhibited extracellular and total virus production even when it was added at 8 h postinfection indicating that not only virus release but also viral particle formation is impeded by the antiviral peptide. Although viral glycoprotein gD level of expression is not affected by the bacteriocin, an altered pattern of gD intracellular localization was detected by immunofluorescence assay in subtilosin-treated culture. On the other hand, at high concentrations, subtilosin displays virucidal action. CONCLUSIONS Subtilosin displays antiviral and virucidal actions against HSV-2. The target of subtilosin inhibitory effect would be late stages of the viral replicative cycle such as viral glycoprotein intracellular transport. SIGNIFICANCE AND IMPACT OF THE STUDY Given its antimicrobial activity and its safety for human tissues, subtilosin could represent a valuable alternative to be considered in the development of new microbicide formulations.
Collapse
Affiliation(s)
- V M Quintana
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
17
|
Des Jarlais DC, McKnight C, Arasteh K, Feelemyer J, Perlman DC, Hagan H, Dauria EF, Cooper HLF. A perfect storm: crack cocaine, HSV-2, and HIV among non-injecting drug users in New York City. Subst Use Misuse 2014; 49:783-92. [PMID: 24502371 PMCID: PMC4451113 DOI: 10.3109/10826084.2014.880176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Prevalence of human immunodeficiency virus (HIV) infection has reached 16% among non-injecting drug users (NIDU) in New York City, an unusually high prevalence for a predominantly heterosexual population that does not inject drugs. Using a long-term study (1983-2011, >7,000 subjects) among persons entering the Beth Israel drug-treatment programs in New York City, we identified factors that contributed to this high prevalence: a preexisting HIV epidemic among injectors, a crack cocaine epidemic, mixing between injectors and crack users, policy responses not centered on public health, and herpes-simplex virus 2 facilitating HIV transmission. Implications for avoiding high prevalence among NIDU in other areas are discussed.
Collapse
Affiliation(s)
- Don C Des Jarlais
- 1Beth Israel Medical Center, Baron Edmond de Rothschild Chemical Dependency Institute, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Venkatesh KK, Cu-Uvin S. Anatomic and Hormonal Changes in the Female Reproductive Tract Immune Environment during the Life Cycle: Implications for HIV/STI Prevention Research. Am J Reprod Immunol 2014; 71:495-504. [DOI: 10.1111/aji.12247] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/06/2014] [Indexed: 12/30/2022] Open
Affiliation(s)
- Kartik K. Venkatesh
- Department of Obstetrics and Gynecology; Brigham and Women's Hospital and Massachusetts General Hospital; Harvard Medical School; Boston MA USA
| | - Susan Cu-Uvin
- Department of Obstetrics and Gynecology; Alpert Medical School; Brown University; Providence RI USA
- Division of Infectious Diseases; Department of Medicine; Alpert Medical School; Brown University; Providence RI USA
| |
Collapse
|
19
|
Zhu XP, Muhammad ZS, Wang JG, Lin W, Guo SK, Zhang W. HSV-2 vaccine: current status and insight into factors for developing an efficient vaccine. Viruses 2014; 6:371-90. [PMID: 24469503 PMCID: PMC3939461 DOI: 10.3390/v6020371] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 01/08/2023] Open
Abstract
Herpes simplex virus type 2 (HSV-2), a globally sexually transmitted virus, and also one of the main causes of genital ulcer diseases, increases susceptibility to HIV-1. Effective vaccines to prevent HSV-2 infection are not yet available, but are currently being developed. To facilitate this process, the latest progress in development of these vaccines is reviewed in this paper. A summary of the most promising HSV-2 vaccines tested in animals in the last five years is presented, including the main factors, and new ideas for developing an effective vaccine from animal experiments and human clinical trials. Experimental results indicate that future HSV-2 vaccines may depend on a strategy that targets mucosal immunity. Furthermore, estradiol, which increases the effectiveness of vaccines, may be considered as an adjuvant. Therefore, this review is expected to provide possible strategies for development of future HSV-2 vaccines.
Collapse
Affiliation(s)
- Xiao-Peng Zhu
- The 2nd Clinical Medical College, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Zaka S Muhammad
- School of International Studies, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Jian-Guang Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Wu Lin
- The 2nd Clinical Medical College, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Shi-Kun Guo
- The 2nd Clinical Medical College, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Wei Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| |
Collapse
|
20
|
Thurman AR, Clark MR, Hurlburt JA, Doncel GF. Intravaginal rings as delivery systems for microbicides and multipurpose prevention technologies. Int J Womens Health 2013; 5:695-708. [PMID: 24174884 PMCID: PMC3808127 DOI: 10.2147/ijwh.s34030] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is a renewed interest in delivering pharmaceutical products via intravaginal rings (IVRs). IVRs are flexible torus-shaped drug delivery systems that can be easily inserted and removed by the woman and that provide both sustained and controlled drug release, lasting for several weeks to several months. In terms of women's health care products, it has been established that IVRs effectively deliver contraceptive steroids and steroids for the treatment of postmenopausal vaginal atrophy. A novel application for IVRs is the delivery of antiretroviral drugs for the prevention of human immunodeficiency virus (HIV) genital infection. Microbicides are antiviral drugs delivered topically for HIV prevention. Recent reviews of microbicide IVRs have focused on technologies in development and optimizing ring design. IVRs have several advantages, including the ability to deliver sustained drug doses for long periods of time while bypassing first pass metabolism in the gut. IVRs are discreet, woman-controlled, and do not require a trained provider for placement or fitting. Previous data support that women and their male sexual partners find IVRs highly acceptable. Multipurpose prevention technology (MPT) products provide protection against unintended/mistimed pregnancy and reproductive tract infections, including HIV. Several MPT IVRs are currently in development. Early clinical testing of new microbicide and MPT IVRs will require a focus on safety, pharmacokinetics and pharmacodynamics. Specifically, IVRs will have to deliver tissue concentrations of drugs that are pharmacodynamically active, do not cause mucosal alterations or inflammation, and do not change the resident microbiota. The emergence of resistance to antiretrovirals will need to be investigated. IVRs should not disrupt intercourse or have high rates of expulsion. Herein, we reviewed the microbicide and MPT IVRs currently in development, with a focus on the clinical aspects of IVR assessment and the challenges facing microbicide and MPT IVR product development, clinical testing, and implementation. The information in this review was drawn from PubMed searches and a recent microbicide/MPT product development workshop organized by CONRAD.
Collapse
Affiliation(s)
- Andrea Ries Thurman
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Meredith R Clark
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jennifer A Hurlburt
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Gustavo F Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
21
|
Balzarini J, Andrei G, Balestra E, Huskens D, Vanpouille C, Introini A, Zicari S, Liekens S, Snoeck R, Holý A, Perno CF, Margolis L, Schols D. A multi-targeted drug candidate with dual anti-HIV and anti-HSV activity. PLoS Pathog 2013; 9:e1003456. [PMID: 23935482 PMCID: PMC3723632 DOI: 10.1371/journal.ppat.1003456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/08/2013] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is often accompanied by infection with other pathogens, in particular herpes simplex virus type 2 (HSV-2). The resulting coinfection is involved in a vicious circle of mutual facilitations. Therefore, an important task is to develop a compound that is highly potent against both viruses to suppress their transmission and replication. Here, we report on the discovery of such a compound, designated PMEO-DAPym. We compared its properties with those of the structurally related and clinically used acyclic nucleoside phosphonates (ANPs) tenofovir and adefovir. We demonstrated the potent anti-HIV and -HSV activity of this drug in a diverse set of clinically relevant in vitro, ex vivo, and in vivo systems including (i) CD4+ T-lymphocyte (CEM) cell cultures, (ii) embryonic lung (HEL) cell cultures, (iii) organotypic epithelial raft cultures of primary human keratinocytes (PHKs), (iv) primary human monocyte/macrophage (M/M) cell cultures, (v) human ex vivo lymphoid tissue, and (vi) athymic nude mice. Upon conversion to its diphosphate metabolite, PMEO-DAPym markedly inhibits both HIV-1 reverse transcriptase (RT) and HSV DNA polymerase. However, in striking contrast to tenofovir and adefovir, it also acts as an efficient immunomodulator, inducing β-chemokines in PBMC cultures, in particular the CCR5 agonists MIP-1β, MIP-1α and RANTES but not the CXCR4 agonist SDF-1, without the need to be intracellularly metabolized. Such specific β-chemokine upregulation required new mRNA synthesis. The upregulation of β-chemokines was shown to be associated with a pronounced downmodulation of the HIV-1 coreceptor CCR5 which may result in prevention of HIV entry. PMEO-DAPym belongs conceptually to a new class of efficient multitargeted antivirals for concomitant dual-viral (HSV/HIV) infection therapy through inhibition of virus-specific pathways (i.e. the viral polymerases) and HIV transmission prevention through interference with host pathways (i.e. CCR5 receptor down regulation). To contain the HIV-1 epidemic, it is necessary to develop antivirals that prevent HIV-1 transmission. It is well known that HIV infection might be accompanied by other pathogens, which often are engaged with HIV-1 in a vicious circle of mutual facilitation. One of the most common of these pathogens is herpes simplex virus (HSV) type 2. Since there is an urgent need for a next generation antivirals that are multi-targeted, we can now report on the development of the first antiviral of this new generation that efficiently suppresses both HIV-1 and HSV-2. We found that the dual-targeted antiviral drug affects several targets for viral replication. It uniquely combines in one molecule three important abilities: (i) to efficiently suppress HSV-encoded DNA polymerase, (ii) to efficiently suppress HIV-1-encoded reverse transcriptase, and (iii) to stimulate secretion of CC-chemokines that downregulate the HIV-1 coreceptor CCR5. The compound suppresses both viruses in a wide-range of in vitro, ex vivo, and in vivo experimental models. The ability of one molecule to suppress HIV-1 and HSV-2 by combining direct activity against their two key enzymes and indirect immunomodulatory effects is unique in the antiviral field.
Collapse
MESH Headings
- Animals
- Anti-HIV Agents/pharmacology
- Anti-HIV Agents/therapeutic use
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/virology
- Cells, Cultured
- Female
- HIV/drug effects
- HIV/enzymology
- HIV/immunology
- Herpes Simplex/drug therapy
- Herpes Simplex/immunology
- Herpes Simplex/metabolism
- Herpes Simplex/virology
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/enzymology
- Herpesvirus 1, Human/immunology
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/enzymology
- Herpesvirus 2, Human/immunology
- Humans
- Immunologic Factors/pharmacology
- Immunologic Factors/therapeutic use
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Lymphoid Tissue/drug effects
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Lymphoid Tissue/virology
- Mice
- Mice, Hairless
- Mice, Nude
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Nucleic Acid Synthesis Inhibitors/therapeutic use
- Organophosphonates/pharmacology
- Organophosphonates/therapeutic use
- Prodrugs/pharmacology
- Prodrugs/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Reverse Transcriptase Inhibitors/pharmacology
- Reverse Transcriptase Inhibitors/therapeutic use
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Férir G, Petrova MI, Andrei G, Huskens D, Hoorelbeke B, Snoeck R, Vanderleyden J, Balzarini J, Bartoschek S, Brönstrup M, Süssmuth RD, Schols D. The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications. PLoS One 2013; 8:e64010. [PMID: 23724015 PMCID: PMC3665789 DOI: 10.1371/journal.pone.0064010] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/08/2013] [Indexed: 01/24/2023] Open
Abstract
Lantibiotics are peptides, produced by bacteria, that contain the noncanonical amino acid lanthionine and many of them exhibit antibacterial activities. The labyrinthopeptin A1 (LabyA1) is a prototype peptide of a novel class of carbacyclic lantibiotics. Here, we extensively evaluated its broad-spectrum activity against HIV and HSV in vitro, studied its mechanism of action and evaluated potential microbicidal applications. LabyA1 exhibited a consistent and broad anti-HIV activity (EC50s: 0.70–3.3 µM) and anti-HSV activity (EC50s: 0.29–2.8 µM) in cell cultures. LabyA1 also inhibited viral cell-cell transmission between persistently HIV-infected T cells and uninfected CD4+ T cells (EC50∶2.5 µM) and inhibited the transmission of HIV captured by DC-SIGN+-cells to uninfected CD4+ T cells (EC50∶4.1 µM). Time-of-drug addition studies revealed that LabyA1 acts as an entry inhibitor against HIV and HSV. Cellular and virus binding studies combined with SPR/FLIPR technology showed that LabyA1 interacted with the HIV envelope protein gp120, but not with the HIV cellular receptors. LabyA1 also demonstrated additive to synergistic effects in its anti-HIV-1 and anti-HSV-2 activity with anti(retro)viral drugs in dual combinations such as tenofovir, acyclovir, saquinavir, raltegravir and enfuvirtide. LabyA1 can be considered as a novel lead peptide as it had profound antiviral activity against HIV and HSV. Pre-treatment of PBMCs with LabyA1 neither increased the expression of the activation markers CD69 and CD25, nor enhanced HIV replication, nor significantly induced various inflammatory cytokines/chemokines. LabyA1 also did not affect the growth of vaginal Lactobacilli populations. Based on the lack of toxicity on the vaginal Lactobacillus strains and its synergistic/additive profile in combination with clinically approved anti(retro)virals, it deserves further attention as a potential microbicide candidate in the prevention of sexual transmitted diseases.
Collapse
Affiliation(s)
- Geoffrey Férir
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mariya I. Petrova
- Centre of Microbial and Plant Genetics, University of Leuven, Leuven, Belgium
- Department of Bioscience Engineering, Antwerp University, Antwerp, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Dana Huskens
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Bart Hoorelbeke
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jos Vanderleyden
- Centre of Microbial and Plant Genetics, University of Leuven, Leuven, Belgium
| | - Jan Balzarini
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | | | | - Roderich D. Süssmuth
- Technische Universität Berlin, Fakultät II – Institut für Chemie; Berlin, Germany
| | - Dominique Schols
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|