1
|
Garroni G, Cruciani S, Serra D, Pala R, Coradduzza D, Cossu ML, Ginesu GC, Ventura C, Maioli M. Effects of the MCF-7 Exhausted Medium on hADSC Behaviour. Int J Mol Sci 2024; 25:7026. [PMID: 39000134 PMCID: PMC11241546 DOI: 10.3390/ijms25137026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Stem cells possess the ability to differentiate into different lineages and the ability to self-renew, thus representing an excellent tool for regenerative medicine. They can be isolated from different tissues, including the adipose tissue. Adipose tissue and human adipose-derived stem cells (hADSCs) are privileged candidates for regenerative medicine procedures or other plastic reconstructive surgeries. The cellular environment is able to influence the fate of stem cells residing in the tissue. In a previous study, we exposed hADSCs to an exhausted medium of a breast cancer cell line (MCF-7) recovered at different days (4, 7, and 10 days). In the same paper, we inferred that the medium was able to influence the behaviour of stem cells. Considering these results, in the present study, we evaluated the expression of the major genes related to adipogenic and osteogenic differentiation. To confirm the gene expression data, oil red and alizarin red colorimetric assays were performed. Lastly, we evaluated the expression of miRNAs influencing the differentiation process and the proliferation rate, maintaining a proliferative state. The data obtained confirmed that cells exposed to the medium maintained a stem and proliferative state that could lead to a risky proliferative phenotype.
Collapse
Affiliation(s)
- Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.G.); (S.C.); (D.S.); (R.P.); (D.C.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.G.); (S.C.); (D.S.); (R.P.); (D.C.)
| | - Diletta Serra
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.G.); (S.C.); (D.S.); (R.P.); (D.C.)
| | - Renzo Pala
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.G.); (S.C.); (D.S.); (R.P.); (D.C.)
| | - Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.G.); (S.C.); (D.S.); (R.P.); (D.C.)
| | - Maria Laura Cossu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (M.L.C.); (G.C.G.)
| | - Giorgio Carlo Ginesu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (M.L.C.); (G.C.G.)
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) c/o Eldor Lab, Via Corticella 183, 40129 Bologna, Italy;
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.G.); (S.C.); (D.S.); (R.P.); (D.C.)
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| |
Collapse
|
2
|
Osteogenic effect of electromagnetic fields on stem cells derived from rat bone marrow cultured in osteogenic medium versus conditioned medium in vitro. Cell Tissue Bank 2022; 24:317-328. [PMID: 36042070 DOI: 10.1007/s10561-022-10034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES This study assessed possible osteogenic differentiation caused by electromagnetic fields (EMF) on rat bone-marrow-derived stem cells (rBMSCs) cultured in osteogenic medium (OM) or in human adipose-stem cell-conditioned medium (hADSC-CM). MATERIALS AND METHODS The rBMSCs were divided into negative and positive control groups, cultured in α-MEM plus 10% FBS or OM respectively. CM and CM + EMF groups, cultured cells in hADSCs-CM or exposed to EMF (50 Hz, 1 mT) for 30 min/day plus hADSCs-CM, respectively. Cells from the OM + EMF were simultaneously cultured in OM and exposed to EMF. Osteogenesis was investigated through alkaline phosphatase activity, alizarin red staining and real-time PCR. RESULTS A meaningfully higher level of ALP activity was observed in the OM + EMF group compared to the other groups. There was a considerable increase in Runx2 expression in the CM + EMF group compared to the positive control and CM groups and a significant increase in Runx2 expression in the OM + EMF in comparison with all other groups after 21 days. Runx2 expression increased significantly in the CM, CM + EMF and positive control groups on day 21 compared to the same groups on day 14. From days 14-21, Ocn expression increased in the CM and CM + EMF groups, but both groups showed a significant decrease compared to the positive controls. CM and EMF had no effect on Ocn expression. On day 21, Ocn expression was significantly higher in the OM + EMF group than in the positive control group. CONCLUSION The synergistic effect of EMF and OM increased the expression of Runx2 and Ocn in rBMSCs.
Collapse
|
3
|
Ngezahayo A, Ruhe FA. Connexins in the development and physiology of stem cells. Tissue Barriers 2021; 9:1949242. [PMID: 34227910 DOI: 10.1080/21688370.2021.1949242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Connexins (Cxs) form gap junction (GJ) channels linking vertebrate cells. During embryogenesis, Cxs are expressed as early as the 4-8 cell stage. As cells differentiate into pluripotent stem cells (PSCs) and during gastrulation, the Cx expression pattern is adapted. Knockdown of Cx43 and Cx45 does not interfere with embryogenic development until the blastula stage, questioning the role of Cxs in PSC physiology and development. Studies in cultivated and induced PSCs (iPSCs) showed that Cx43 is essential for the maintenance of self-renewal and the expression of pluripotency markers. It was found that the role of Cxs in PSCs is more related to regulation of transcription or cell-cell adherence than to formation of GJ channels. Furthermore, a crucial role of Cxs for the self-renewal and differentiation was shown in cultivated adult mesenchymal stem cells. This review aims to highlight aspects that link Cxs to the function and physiology of stem cell development.
Collapse
Affiliation(s)
- Anaclet Ngezahayo
- Dept. Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany.,Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Frederike A Ruhe
- Dept. Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
4
|
Autologous Minimally Invasive Cell-Based Therapy for Meniscal and Anterior Cruciate Ligament Regeneration. Case Rep Orthop 2021; 2021:6614232. [PMID: 34258092 PMCID: PMC8253646 DOI: 10.1155/2021/6614232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 01/16/2023] Open
Abstract
The meniscus is a fibrocartilaginous tissue that acts as a “shock absorber,” along with performing functions such as stabilization and lubrication of the joint, proprioception, and load distribution. Sudden twisting movements during weight bearing or trauma can cause injury to the menisci, which leads to symptoms such as pain, swelling, and difficulty in performing movements, among others. Conventional pharmacological and surgical treatments are effective in treating the condition; however, do not result in regeneration of healthy tissues. In this report, we highlight the role of cell-based therapy in the management of medial and lateral meniscal and anterior cruciate ligament tears in a patient who was unwilling to undergo surgical treatment. We injected autologous mesenchymal stem cells obtained from the bone marrow and adipose tissue and platelet-rich plasma into the joint of the patient at the area of injury, as well as intravenously. The results of our study corroborate with those previously reported in the literature regarding the improvement in clinical parameters and regeneration of meniscal tissue and ligament. Thus, based on previous literature and improvements noticed in our patient, cell-based therapy can be considered a safe and effective therapeutic modality in the treatment of meniscal tears and cruciate ligament injury.
Collapse
|
5
|
Yanmin X, Xuyang Z, Wen Y, Suihuai Y, Sinan L. Study on the Design and Optimization of a Portable Monitoring and Auxiliary Treatment Device for Upper Extremity Lymphedema-Focus on the Rehabilitation Function of the Device. Front Bioeng Biotechnol 2021; 9:656716. [PMID: 33869161 PMCID: PMC8047204 DOI: 10.3389/fbioe.2021.656716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
Female patients suffer from the risk of upper limb lymphedema after breast cancer removal surgery. At present, the detection and the adjuvant treatment of this disease are not convenient enough, leading to delay of the disease and increase in the burden of patients. This paper presents a portable monitoring and treatment device for upper extremity lymphedema, enabling patients to monitor the symptoms of upper limb lymphedema and auxiliary rehabilitation. This design utilizes the arm circumference measurement and contrast method to realize symptom monitoring. The device realizes auxiliary rehabilitation using the regional pressure method to imitate traditional manual lymphatic drainage technology. According to the MRI images of volunteers’ upper limbs, the upper arm and forearm’s finite element models are reconstructed in ANSYS. The static simulation experiment is completed. The working mode and parameter design of each rehabilitation module of the device are obtained. The experimental results show that the integrated design principle of monitoring and treatment proposed in this paper has good feasibility, has auxiliary rehabilitation effect, and meets the principle of human comfort. The device can help patients find lymphedema in time and implement auxiliary treatment, which can effectively avoid the further deterioration of lymphedema.
Collapse
Affiliation(s)
- Xue Yanmin
- Department of Industrial Design, Xi'an University of Technology, Xi'an, China
| | - Zhang Xuyang
- Department of Industrial Design, Xi'an University of Technology, Xi'an, China
| | - Yan Wen
- Department of Industrial Design, Xi'an University of Technology, Xi'an, China
| | - Yu Suihuai
- Industrial Design Institute, Northwestern Polytechnical University, Xi'an, China
| | - Li Sinan
- School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Primorac D, Molnar V, Rod E, Jeleč Ž, Čukelj F, Matišić V, Vrdoljak T, Hudetz D, Hajsok H, Borić I. Knee Osteoarthritis: A Review of Pathogenesis and State-Of-The-Art Non-Operative Therapeutic Considerations. Genes (Basel) 2020; 11:E854. [PMID: 32722615 PMCID: PMC7464436 DOI: 10.3390/genes11080854] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Being the most common musculoskeletal progressive condition, osteoarthritis is an interesting target for research. It is estimated that the prevalence of knee osteoarthritis (OA) among adults 60 years of age or older is approximately 10% in men and 13% in women, making knee OA one of the leading causes of disability in elderly population. Today, we know that osteoarthritis is not a disease characterized by loss of cartilage due to mechanical loading only, but a condition that affects all of the tissues in the joint, causing detectable changes in tissue architecture, its metabolism and function. All of these changes are mediated by a complex and not yet fully researched interplay of proinflammatory and anti-inflammatory cytokines, chemokines, growth factors and adipokines, all of which can be measured in the serum, synovium and histological samples, potentially serving as biomarkers of disease stage and progression. Another key aspect of disease progression is the epigenome that regulates all the genetic expression through DNA methylation, histone modifications, and mRNA interference. A lot of work has been put into developing non-surgical treatment options to slow down the natural course of osteoarthritis to postpone, or maybe even replace extensive surgeries such as total knee arthroplasty. At the moment, biological treatments such as platelet-rich plasma, bone marrow mesenchymal stem cells and autologous microfragmented adipose tissue containing stromal vascular fraction are ordinarily used. Furthermore, the latter two mentioned cell-based treatment options seem to be the only methods so far that increase the quality of cartilage in osteoarthritis patients. Yet, in the future, gene therapy could potentially become an option for orthopedic patients. In the following review, we summarized all of the latest and most important research in basic sciences, pathogenesis, and non-operative treatment.
Collapse
Affiliation(s)
- Dragan Primorac
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Eberly College of Science, The Pennsylvania State University, University Park, State College, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Medical School, University of Split, 21000 Split, Croatia
- School of Medicine, Faculty of Dental Medicine and Health, University “Josip Juraj Strossmayer”, 31000 Osijek, Croatia
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96 450 Coburg, Germany
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Vilim Molnar
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Eduard Rod
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Željko Jeleč
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Nursing, University North, 48 000 Varaždin, Croatia
| | - Fabijan Čukelj
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Split, 21000 Split, Croatia
| | - Vid Matišić
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
| | - Trpimir Vrdoljak
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Department of Orthopedics, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Damir Hudetz
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Orthopedics, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Hana Hajsok
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Zagreb, 10000 Zagreb, Croatia
| | - Igor Borić
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Split, 21000 Split, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| |
Collapse
|
7
|
Andrzejowski P, Giannoudis PV. The 'diamond concept' for long bone non-union management. J Orthop Traumatol 2019; 20:21. [PMID: 30976944 PMCID: PMC6459453 DOI: 10.1186/s10195-019-0528-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/20/2019] [Indexed: 11/15/2022] Open
Abstract
Long bone non-union continues to be a significant worldwide problem. Since its inception over a decade ago, the ‘diamond concept’, a conceptual framework of what is essential for a successful bone healing response, has gained great acceptance for assessing and planning the management of fracture non-unions. Herein, we discuss the epidemiology of non-unions, the basic science of bone healing in the context of the diamond concept, the currently available results and areas for future research.
Collapse
Affiliation(s)
- Paul Andrzejowski
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Clarendon Wing, Floor D, Great George Street, Leeds General Infirmary, Leeds, LS1 3EX, UK
| | - Peter V Giannoudis
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Clarendon Wing, Floor D, Great George Street, Leeds General Infirmary, Leeds, LS1 3EX, UK.
| |
Collapse
|
8
|
Minimal Residual Disease in Head and Neck Cancer and Esophageal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1100:55-82. [DOI: 10.1007/978-3-319-97746-1_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Niki Boroujeni Z, Aleyasin A. Human umbilical cord-derived mesenchymal stem cells can secrete insulinin vitroandin vivo. Biotechnol Appl Biochem 2014; 61:82-92. [DOI: 10.1002/bab.1127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/17/2013] [Indexed: 01/01/2023]
Affiliation(s)
| | - Ahmad Aleyasin
- National Institute of Genetic Engineering and Biotechnology; Tehran Iran
| |
Collapse
|
10
|
Boroujeni ZN, Aleyasin A. Insulin producing cells established using non-integrated lentiviral vector harboring PDX1 gene. World J Stem Cells 2013; 5:217-228. [PMID: 24179609 PMCID: PMC3812525 DOI: 10.4252/wjsc.v5.i4.217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 08/27/2013] [Accepted: 09/18/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate reprogramming of human adipose tissue derived stem cells into insulin producing cells using non-integrated lentivirus harboring PDX1 gene.
METHODS: In this study, human adipose tissue derived stem cells (hADSCs) were obtained from abdominal adipose tissues by liposuction, selected by plastic adhesion, and characterized by flow cytometric analysis. Human ADSCs were differentiated into adipocytes and osteocytes using differentiating medium to confirm their multipotency. Non-integrated lentiviruses harboring PDX1 (Non-integrated LV-PDX1) were constructed using specific plasmids (pLV-HELP, pMD2G, LV-105-PDX1-1). Then, hADSCs were transduced with non-integrated LV-PDX1. After transduction, ADSCsPDX1+ were cultured in high glucose DMEM medium supplement by B27, nicotinamide and βFGF for 21 d. Expressions of PDX1 and insulin were detected at protein level by immunofluorescence analysis. Expressions of PDX1, neurogenin3 (Ngn3), glucagon, glucose transporter2 (Glut2) and somatostatin as specific marker genes were investigated at mRNA level by quantitative RT-PCR. Insulin secretion of hADSCsPDX1+ in the high-glucose medium was detected by electrochemiluminescence test. Human ADSCsPDX1+ were implanted into hyperglycemic rats.
RESULTS: Human ADSCs exhibited their fibroblast-like morphology and made colonies after 7-10 d of culture. Determination of hADSCs identified by FACS analysis showed that hADSCs were positive for mesenchymal cell markers and negative for hematopoietic cell markers that guaranteed the lack of hematopoietic contamination. In vitro differentiation of hADSCs into osteocytes and adipocytes were detected by Alizarin red and Oil red O staining and confirmed their multilineage differentiation ability. Transduced hADSCs+PDX1 became round and clusters in the differentiation medium. The appropriate expression of PDX1 and insulin proteins was confirmed using immunocytochemistry analysis. Significant expressions of PDX1, Ngn3, glucagon, Glut2 and somatostatin were detected by quantitative RT-PCR. hADSCsPDX1+ revealed the glucose sensing ability by expressing Glut2 when they were cultured in the medium containing high glucose concentration. The insulin secretion of hADSCsPDX1+ in the high glucose medium was 2.32 μU/mL. hADSCsPDX1+ implantation into hyperglycemic rats cured it two days after injection by reducing blood glucose levels from 485 mg/dL to the normal level.
CONCLUSION: Human ADSCs can differentiate into IPCs by non-integrated LV-PDX1 transduction and have the potential to be used as a resource in type 1 diabetes cell therapy.
Collapse
|
11
|
Talebi S, Aleyasin A, Soleimani M, Massumi M. Derivation of islet-like cells from mesenchymal stem cells using PDX1-transducing lentiviruses. Biotechnol Appl Biochem 2012; 59:205-12. [DOI: 10.1002/bab.1013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 02/17/2012] [Indexed: 12/18/2022]
|
12
|
Ab Kadir R, Zainal Ariffin SH, Megat Abdul Wahab R, Kermani S, Senafi S. Characterization of mononucleated human peripheral blood cells. ScientificWorldJournal 2012; 2012:843843. [PMID: 22666162 PMCID: PMC3354670 DOI: 10.1100/2012/843843] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/12/2012] [Indexed: 11/18/2022] Open
Abstract
Unspecialized cells that can renew themselves and give rise to multiple differentiated cell types are termed stem cells. The objective of this study was to characterize and investigate, through molecular and biochemical analyses, the stemness of cells derived from isolated mononucleated cells that originated from peripheral blood. The isolated mononucleated cells were separated according to their physical characteristics (adherent and suspension), after 4 to 7 days into a 14-day culturing period in complete medium. Our results revealed that adherent and suspension cells were positive for mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) markers, respectively. Differentiation of adherent cells into osteoblasts was associated with expression of the OPN gene and increasing ALP enzyme activity, while differentiation of suspension cells into osteoclasts was associated with expression of the TRAP gene and increasing TRAP enzyme activity. In conclusion, molecular and biochemical analyses showed that mononucleated cells consist of MSC (adherent) and HSC (suspension), and both cell types are able to differentiate into specialized cells from their respective lineage: osteoblast (MSC) and osteoclast (HSC).
Collapse
Affiliation(s)
- Ruzanna Ab Kadir
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
13
|
Rulina AV, Spirin PV, Prassolov VS. Activated leukemic oncogenes AML1-ETO and c-kit: role in development of acute myeloid leukemia and current approaches for their inhibition. BIOCHEMISTRY (MOSCOW) 2011; 75:1650-66. [PMID: 21417999 DOI: 10.1134/s0006297910130092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant blood disease caused by different mutations that enhance the proliferative activity and survival of blood cells and affect their differentiation and apoptosis. The most frequent disorders in AML are translocations between chromosomes 21 and 8 leading to production of a chimeric oncogene, AML1-ETO, and hyperexpression of the receptor tyrosine kinase KIT. Mutations in these genes often occur jointly. The presence in cells of two activated oncogenes is likely to trigger their malignization. The current approaches for treatment of oncologic diseases (bone marrow transplantation, radiotherapy, and chemotherapy) have significant shortcomings, and thus many laboratories are intensively developing new approaches against leukemias. Inhibiting expression of activated leukemic oncogenes based on the principle of RNA interference seems to be a promising approach in this field.
Collapse
Affiliation(s)
- A V Rulina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | | |
Collapse
|
14
|
Luo L, Zeng J, Liang B, Zhao Z, Sun L, Cao D, Yang J, Shen K. Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome. Exp Mol Pathol 2011; 91:596-602. [PMID: 21787767 DOI: 10.1016/j.yexmp.2011.06.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 06/24/2011] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) play an important role in the recurrence and drug resistance of cancer. Isolation and characterization of CSCs from ovarian cancer samples may help to provide novel diagnostic and therapeutic targets in the management of recurrent disease and drug resistance in ovarian cancer. Here, we developed a xenograft model in which cells from 14 samples of human ovarian serous adenocarcinoma tissue or ascites were implanted in immunodeficient mice to test the tumorigenic potential of different populations of ovarian cancer cells. We identified and isolated the tumorigenic cells as CD117(+)Lineage(-) from three different xenografts. As few as 10(3) cells with the CD117(+)Lineage(-) phenotype, which comprise <2% of the xenograft tumor cells, were able to regenerate tumors in a mouse model, a 100-fold increase in tumorigenic potential compared to CD117(-)Lineage(-) cells. The tumors that arose from purified CD117(+)Lineage(-) cells reproduced the original tumor heterogeneity and could be serially generated, demonstrating the ability to self-renew and to differentiate, two defining properties of stem cells. Furthermore, immunohistochemistry analysis of 25 patients with advanced ovarian serous adenocarcinoma revealed positive immunostaining for CD117 in 40% (10 of 25) of patients. CD117 expression was statistically correlated with resistance to conventional chemotherapy (P=0.027). In conclusion, our study demonstrates that human ovarian cancer cells with the CD117(+) phenotype possess the unique properties of CSCs, including self-renewal, differentiation, a high tumorigenic potential, and chemoresistance. Future studies designed to target CD117(+) cancer cells may identify more attractive and effective therapies for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lijing Luo
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Feitosa MLT, Fadel L, Beltrão-Braga PCB, Wenceslau CV, Kerkis I, Kerkis A, Birgel Júnior EH, Martins JFP, Martins DDS, Miglino MA, Ambrósio CE. Successful transplant of mesenchymal stem cells in induced osteonecrosis of the ovine femoral head: preliminary results. Acta Cir Bras 2011; 25:416-22. [PMID: 20877951 DOI: 10.1590/s0102-86502010000500006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 05/18/2010] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Evaluate the bone tissue recovery following transplantation of ovine mesenchymal stem cells (MSC) from bone marrow and human immature dental-pulp stem cells (hIDPSC) in ovine model of induced osteonecrosis of femoral head (ONFH). METHODS Eight sheep were divided in three experimental groups. First group was composed by four animals with ONFH induced by ethanol through central decompression (CD), for control group without any treatment. The second and third group were compose by two animals, six weeks after ONFH induction received transplantation of heterologous ovine MSC (CD + oMSC), and hIDPSC (CD + hIDPSC), respectively. In both experiments the cells were transplanted without application of any type of immunosupression protocol. RESULTS Our data indicate that both cell types used in experiments were able to proliferate within injured site providing bone tissue recovery. The histological results obtained from CD+hIDPSC suggested that the bone regeneration in such animals was better than that observed in CD animals. CONCLUSION Mesenchymal stem cell transplant in induced ovine osteonecrosis of femoral head by central decompression technique is safe, and apparently favors bone regeneration of damaged tissues.
Collapse
|
16
|
Wong JC, Fiscus RR. Essential roles of the nitric oxide (no)/cGMP/protein kinase G type-Iα (PKG-Iα) signaling pathway and the atrial natriuretic peptide (ANP)/cGMP/PKG-Iα autocrine loop in promoting proliferation and cell survival of OP9 bone marrow stromal cells. J Cell Biochem 2011; 112:829-39. [PMID: 21328456 DOI: 10.1002/jcb.22981] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inappropriate signaling conditions within bone marrow stromal cells (BMSCs) can lead to loss of BMSC survival, contributing to the loss of a proper micro-environmental niche for hematopoietic stem cells (HSCs), ultimately causing bone marrow failure. In the present study, we investigated the novel role of endogenous atrial natriuretic peptide (ANP) and the nitric oxide (NO)/cGMP/protein kinase G type-Iα (PKG-Iα) signaling pathway in regulating BMSC survival and proliferation, using the OP9 BMSC cell line commonly used for facilitating the differentiation of HSCs. Using an ANP-receptor blocker, endogenously produced ANP was found to promote cell proliferation and prevent apoptosis. NO donor SNAP (S-nitroso-N-acetylpenicillamine) at low concentrations (10 and 50 µM), which would moderately stimulate PKG activity, protected these BMSCs against spontaneous apoptosis. YC-1, a soluble guanylyl cyclase (sGC) activator, decreased the levels of apoptosis, similar to the cytoprotective effects of low-level NO. ODQ (1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one), which blocks endogenous NO-induced activation of sGC and thus lowers endogenous cGMP/PKG activity, significantly elevated apoptotic levels by 2.5- and three-fold. Pre-incubation with 8-Bromo-cGMP or ANP, which bypass the ODQ block, almost completely prevented the ODQ-induced apoptosis. A highly-specific PKG inhibitor, DT-3, at 20, and 30 µM, caused 1.5- and two-fold increases in apoptosis, respectively. ODQ and DT-3 also decreased BMSCs proliferation and colony formation. Small Interfering RNA gene knockdown of PKG-Iα increased apoptosis and decreased proliferation in BMSCs. The data suggest that basal NO/cGMP/PKG-Iα activity and autocrine ANP/cGMP/PKG-Iα are necessary for preserving OP9 cell survival and promoting cell proliferation and migration.
Collapse
Affiliation(s)
- Janica C Wong
- Cancer Molecular Biology Section, Nevada Cancer Institute, Las Vegas, Nevada 89135, USA
| | | |
Collapse
|
17
|
Exhaustive expansion: A novel technique for analyzing complex data generated by higher-order polychromatic flow cytometry experiments. J Transl Med 2010; 8:106. [PMID: 21034498 PMCID: PMC2988720 DOI: 10.1186/1479-5876-8-106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 10/30/2010] [Indexed: 01/14/2023] Open
Abstract
Background The complex data sets generated by higher-order polychromatic flow cytometry experiments are a challenge to analyze. Here we describe Exhaustive Expansion, a data analysis approach for deriving hundreds to thousands of cell phenotypes from raw data, and for interrogating these phenotypes to identify populations of biological interest given the experimental context. Methods We apply this approach to two studies, illustrating its broad applicability. The first examines the longitudinal changes in circulating human memory T cell populations within individual patients in response to a melanoma peptide (gp100209-2M) cancer vaccine, using 5 monoclonal antibodies (mAbs) to delineate subpopulations of viable, gp100-specific, CD8+ T cells. The second study measures the mobilization of stem cells in porcine bone marrow that may be associated with wound healing, and uses 5 different staining panels consisting of 8 mAbs each. Results In the first study, our analysis suggests that the cell surface markers CD45RA, CD27 and CD28, commonly used in historical lower order (2-4 color) flow cytometry analysis to distinguish memory from naïve and effector T cells, may not be obligate parameters in defining central memory T cells (TCM). In the second study, we identify novel phenotypes such as CD29+CD31+CD56+CXCR4+CD90+Sca1-CD44+, which may characterize progenitor cells that are significantly increased in wounded animals as compared to controls. Conclusions Taken together, these results demonstrate that Exhaustive Expansion supports thorough interrogation of complex higher-order flow cytometry data sets and aids in the identification of potentially clinically relevant findings.
Collapse
|
18
|
Brazzini A, Cantella R, De la Cruz A, Yupanqui J, León C, Jorquiera T, Brazzini M, Ortega M, Saenz LN. Intraarterial autologous implantation of adult stem cells for patients with Parkinson disease. J Vasc Interv Radiol 2010; 21:443-51. [PMID: 20346882 DOI: 10.1016/j.jvir.2010.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 11/18/2009] [Accepted: 01/19/2010] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To evaluate the feasibility, safety, and effectiveness of intraarterial autologous implantation of adult stem cells for Parkinson disease (PD). MATERIALS AND METHODS From June 2006 to August 2008, 36 men and 14 women (mean age, 62.5 years +/- 10.4; range, 38-81 y) with PD (mean duration, 9.3 years; range, 1-28 y) underwent autologous implantation of stem cells with superselective arterial catheterization. Patients were evaluated with clinical and neurologic examinations; internationally recognized scales for the evaluation of PD, disability, activities of daily living, depression, and quality of life (QOL); as well as videos, magnetic resonance (MR) imaging, and MR spectroscopy. Stem cells were implanted in the posterior region of the circle of Willis. Patients were evaluated according to clinical measures. Comparison was made versus data collected from all scales before treatment, as well as videos and spectroscopy in eight patients. RESULTS In a mean follow-up of 7.4 months +/- 4.5 (range, 1-18 months), patients showed a median improvement of 51.1% and quartile deviation (QD) of 24.8% on the Unified PD Rating Scale. They showed significant improvement in disability, activities of daily living, depression, and QOL (P < .5). No complications were observed. In eight patients, follow-up MR spectroscopy revealed mean improvements in n-acetylaspartate/creatine ratio from 1.805 to 2.07 (12.8%) and from 1.25 to 1.88 (43.56%) in right and left basal ganglia, respectively, versus preprocedural values (P < .05). CONCLUSIONS Treatment of PD with intraarterial autologous implantation of adult stem cells is feasible and safe and results in improved severity of disease and QOL.
Collapse
|
19
|
Abstract
Osteoporosis is prevalent among the elderly and is a major cause of bone fracture in this population. Bone integrity is maintained by the dynamic processes of bone resorption and bone formation (bone remodeling). Osteoporosis results when there is an imbalance of the two counteracting processes. Bone mineral density, measured by dual-energy x-ray absorptiometry has been the primary method to assess fracture risk for decades. Recent studies demonstrated that measurement of bone turnover markers allows for a dynamic assessment of bone remodeling, while imaging techniques, such as dual-energy x-ray absorptiometry, do not. The application of proteomics has permitted discoveries of new, sensitive, bone turnover markers, which provide unique information for clinical diagnosis and treatment of patients with bone diseases. This review summarizes the recent findings of proteomic studies on bone diseases, properties of mesenchymal stem cells with high expansion rates and osteoblast and osteoclast differentiation, with emphasis on the role of quantitative proteomics in the study of signaling dynamics, biomarkers and discovery of therapeutic targets.
Collapse
Affiliation(s)
- Hengwei Zhang
- Genomics & Functional Proteomics Laboratories, Osteoporosis Research Center; Creighton University Medical Center, 601 N 30th Street, Suite 6730, Omaha, NE 68131, USA.
| | | | | | | |
Collapse
|
20
|
Hassan HT. c-Kit expression in human normal and malignant stem cells prognostic and therapeutic implications. Leuk Res 2008; 33:5-10. [PMID: 18639336 DOI: 10.1016/j.leukres.2008.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 06/06/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
Abstract
The human stem cell factor/c-Kit signaling pathway is pivotal for the survival of embryonic, foetal and adult stem cells and for their fundamental role in generating healthy functioning cell and tissue types during embryonic, foetal and adult life. Common biological features between human stem cells and cancer cells include (A) self-renewal, (B) extensive capacity of proliferation, (C) migration to and homing at distant sites and (D) resistance to toxic agents. Given these shared attributes, cancer was proposed to originate from transforming mutation(s) in normal stem cells that dysregulate their physiological programs. This theory has been recently supported by the findings that among all malignant cells within a particular tumour, only cell fraction expressing stem cell markers such as c-Kit named 'cancer stem cells' has the exclusive potential to generate tumour cell population. The involvement of c-Kit and its mutation in various haematological malignancies and solid tumours are reviewed. The impacts of dysregulated c-Kit as oncogenic tyrosine kinase on autocrine stimulation and resistance to chemotherapy of cancer stem cells are evaluated. The significance and efficacy of molecular therapeutic targeting of c-Kit signaling pathway in the management of patients with c-Kit-positive malignancies are appraised.
Collapse
|
21
|
Sell S. Adult stem cell plasticity: introduction to the first issue of stem cell reviews. ACTA ACUST UNITED AC 2007; 1:1-7. [PMID: 17132868 DOI: 10.1385/scr:1:1:001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Lavazais E, Pogu S, Saï P, Martignat L. Cytokine mobilization of bone marrow cells and pancreatic lesion do not improve streptozotocin-induced diabetes in mice by transdifferentiation of bone marrow cells into insulin-producing cells. DIABETES & METABOLISM 2007; 33:68-78. [PMID: 17270481 DOI: 10.1016/j.diabet.2006.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 10/13/2006] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Transdifferentiation of bone marrow cells (BMC) into insulin-producing cells might provide a new cellular therapy for type I diabetes, but its existence is controversial. Our aim was to determine if those cells could transdifferentiate, even at low frequency, into insulin-producing cells, in testing optimized experimental conditions. METHODS We grafted mice with total BMC, genetically labeled either ubiquitarily, or with a marker conditionally expressed under the control of the insulin beta-cell specific promoter. We treated some of the recipients with an agent toxic to beta-cells (streptozotocin) and with cytokines stem cell factor (SCF) and granulocyte-colony stimulating factor (G-CSF). RESULTS The contribution of grafted cells could be detected neither for natural turnover (n=6), nor for beta-cell regeneration after pancreatic lesion (n=7), 90 days post-transplantation. Cytokine mobilization of BMC in the blood stream, reported to favor their transdifferentiation into cardiac and neural cells, had never been tested before for beta-cell generation. Here, we showed that injection of SCF and G-CSF did not lead to a detectable level of transdifferentiation (n=7). CONCLUSIONS We conclude that BMC cannot spontaneously transdifferentiate into insulin-producing cells in vivo, even after beta-cell lesion and mobilization induced by cytokines. Interestingly, however, treatment by cytokines may have beneficial indirect effects on STZ-induced hyperglycaemia.
Collapse
Affiliation(s)
- E Lavazais
- Cellular and Molecular Immuno-Endocrinology, Inra/ENVN/University, Atlanpole, La Chantrerie, BP 40706, 44307 Nantes cedex 03, France
| | | | | | | |
Collapse
|
23
|
Hall VJ, Stojkovic P, Stojkovic M. Using therapeutic cloning to fight human disease: a conundrum or reality? Stem Cells 2006; 24:1628-37. [PMID: 16556706 DOI: 10.1634/stemcells.2005-0592] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development and transplantation of autologous cells derived from nuclear transfer embryonic stem cell (NT-ESC) lines to treat patients suffering from disease has been termed therapeutic cloning. Human NT is still a developing field, with further research required to improve somatic cell NT and human embryonic stem cell differentiation to deliver safe and effective cell replacement therapies. Furthermore, the implications of transferring mitochondrial heteroplasmic cells, which may harbor aberrant epigenetic gene expression profiles, are of concern. The production of human NT-ESC lines also remains plagued by ethical dilemmas, societal concerns, and controversies. Recently, a number of alternate therapeutic strategies have been proposed to circumvent the moral implications surrounding human nuclear transfer. It will be critical to overcome these biological, legislative, and moral restraints to maximize the potential of this therapeutic strategy and to alleviate human disease.
Collapse
Affiliation(s)
- Vanessa J Hall
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Sweden.
| | | | | |
Collapse
|
24
|
Kochhar S. Adult bone-marrow stem cells. J R Soc Med 2004. [PMID: 15574869 DOI: 10.1258/jrsm.97.12.609-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|