1
|
Avila C, Sarter M. Cortico-striatal action control inherent of opponent cognitive-motivational styles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584623. [PMID: 38559086 PMCID: PMC10979997 DOI: 10.1101/2024.03.12.584623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Turning on cue or stopping at a red light requires attending to such cues to select action sequences, or suppress action, in accordance with learned cue-associated action rules. Cortico-striatal projections are an essential part of the brain's attention-motor interface. Glutamate-sensing microelectrode arrays were used to measure glutamate transients in the dorsomedial striatum (DMS) of male and female rats walking a treadmill and executing cued turns and stops. Prelimbic-DMS projections were chemogenetically inhibited to determine their behavioral necessity and the cortico-striatal origin of cue-evoked glutamate transients. Furthermore, we investigated rats exhibiting preferably goal-directed (goal trackers, GTs) versus cue-driven attention (sign trackers, STs), to determine the impact of such cognitive-motivational biases on cortico-striatal control. GTs executed more cued turns and initiated such turns more slowly than STs. During turns, but not missed turns or cued stops, cue-evoked glutamate concentrations were higher in GTs than in STs. In STs, turn cue-locked glutamate concentrations frequently peaked twice or three times, contrasting with predominately single peaks in GTs. In GTs, but not STs, inhibition of prelimbic-DMS projections attenuated turn rates and turn cue-evoked glutamate concentrations and increased the number of turn cue-locked glutamate peaks. These findings indicate that turn cue-evoked glutamate release in GTs is tightly controlled by cortico-striatal neuronal activity. In contrast, in STs, glutamate release from DMS glutamatergic terminals may be regulated by other striatal circuitry, preferably mediating cued suppression of action and reward tracking. As cortico-striatal dysfunction has been hypothesized to contribute to a wide range of disorders, including complex movement control deficits in Parkinson's disease and compulsive drug taking, the demonstration of phenotypic contrasts in cortico-striatal control implies the presence of individual vulnerabilities for such disorders. Significance Statement Adaptive behavior involves the selection of behaviorally significant cues and the capacity of selected cues to control behavioral action. Neuronal projections from cortex to striatum are essential for such an integration of attentional with motor functions. Here we demonstrated that glutamate release from cortico-striatal projections primarily influences cued turns but not cued suppression of actions (cued stops). Cortico-striatal control of cued turning was especially powerful in rats which, as a psychological trait, preferably deploy goal-directed attention. Together, our findings demonstrate the role of cortico-striatal input in cued action selection, and they emphasize the experimental and biopsychological significance of investigating the brain's attentional-motor interface in the context of broader individual differences in cognitive-motivational styles.
Collapse
Affiliation(s)
- Cassandra Avila
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Fox A, Neville V. Burrowing for answers: Investigating Syrian hamster welfare through owner surveys. Vet Rec 2024; 195:e4534. [PMID: 39113341 DOI: 10.1002/vetr.4534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Syrian hamsters are a relatively common pet species in the UK. However, we know very little about how they are kept. The aim of this study was to identify areas of good and poor practices among Syrian hamster owners using owner surveys. METHOD A survey of pet hamster owners was conducted with questions on husbandry, behaviour and health. RESULTS There were 548 survey responses. Over 95% of the owners provided a wheel, hideaway or chew toy, and over 90% housed their hamster alone. However, 18.4% of the owners used hamster balls, hamsters may have been fed a diet that was not entirely appropriate, and over 45% of respondents reported that their hamsters were housed in close proximity to predator species. Most (65.9%) hamsters had never been taken to a veterinarian. Hamster ball use, shallower substrate depth and more frequent handling were significantly associated with greater owner observations of bar biting. LIMITATIONS A key limitation is that the respondents may not be representative of the average pet hamster owner, so this research does not provide a complete picture of the current state of hamster welfare. CONCLUSION There are some welfare concerns regarding the way Syrian hamsters are currently kept in the UK. Therefore, attempts to better distribute information about hamster care to owners should be made.
Collapse
Affiliation(s)
- Alice Fox
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Vikki Neville
- Bristol Veterinary School, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Perše M. Animal Models of Human Pathology: Revision, Relevance and Refinements. Biomedicines 2024; 12:2418. [PMID: 39594985 PMCID: PMC11592039 DOI: 10.3390/biomedicines12112418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Animal Models of Human Pathology [...].
Collapse
Affiliation(s)
- Martina Perše
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Klein SG, Soares de Assis T, Pereira GS, Coutinho LB, Guerra RF, Neves MM, Ferreira FB, Lemos de Lima I, Polveiro RC, Ferro EAV, Vieira da Silva M. A simple and low-cost environmental enrichment program improves the welfare of Calomys callosus, a species that adapts to animal facilities. Front Vet Sci 2024; 11:1436907. [PMID: 39346954 PMCID: PMC11428199 DOI: 10.3389/fvets.2024.1436907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
An environmental enrichment protocol is essential for testing experimental models because it upholds animal welfare, aligns with ethical principles in animal experimentation, and reduces the number of animals needed. Calomys callosus, a South American rodent from the Cricetidae family, is bred in rodent animal facilities for its ease of handling, longevity, prolificacy, and effectively mimicking diseases like Toxoplasmosis, Leishmaniasis, Chagas, and Schistosomiasis. There are no reports on environmental enrichments for this species or their impact on reproductive parameters. This study aimed to analyze the influence of the Environmental Enrichment Program (EEP) on the reproductive and zootechnical performance of C. callosus kept in the Rodents Animal Facilities Complex of Universidade Federal de Uberlândia (UFU). Two experimental groups were established: with environmental enrichment EE+ and without environmental enrichment EE-. The materials used in the experimental design were changed weekly and alternated between dietary, occupational, physical/cognitive, and non-enrichment items. After the inclusion of the EEP, an improvement in the reproductive indices of C. callosus was identified in the EE+ group. These improvements included increased female precocity, a decreased interbirth interval, and a higher number of pairs producing more offspring. The postpartum zootechnical indices were also better, such as the number of animals born alive, improved weaning rates, and a reduced average number of deaths from birth to weaning. After the inclusion of the EEP, the general health status of C. callosus improved, reducing cases of non-infectious lumbar alopecia. Therefore, EEP allows C. callosus to express natural reproductive behaviors and improves parental care.
Collapse
Affiliation(s)
- Sandra Gabriela Klein
- Biotechnology in Experimental Models Laboratory - LABME, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Tamires Soares de Assis
- Biotechnology in Experimental Models Laboratory - LABME, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Gabriel Silva Pereira
- Rodents Animal Facilities Complex, Universidade Federal de Uberlândia, Uberlandia, Brazil
| | | | - Renan Faria Guerra
- Rodents Animal Facilities Complex, Universidade Federal de Uberlândia, Uberlandia, Brazil
| | - Matheus Morais Neves
- Biotechnology in Experimental Models Laboratory - LABME, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Flávia Batista Ferreira
- Biotechnology in Experimental Models Laboratory - LABME, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Isabela Lemos de Lima
- Biotechnology in Experimental Models Laboratory - LABME, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Richard Costa Polveiro
- Biotechnology in Experimental Models Laboratory - LABME, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | - Murilo Vieira da Silva
- Biotechnology in Experimental Models Laboratory - LABME, Universidade Federal de Uberlândia, Uberlândia, Brazil
- Rodents Animal Facilities Complex, Universidade Federal de Uberlândia, Uberlandia, Brazil
| |
Collapse
|
5
|
Monsour M, Borlongan CV. Traumatic brain injury treatment using a rodent model of homelessness. Neural Regen Res 2024; 19:1873-1874. [PMID: 38227504 DOI: 10.4103/1673-5374.391186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/11/2023] [Indexed: 01/17/2024] Open
Affiliation(s)
- Molly Monsour
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
6
|
McCoy ES, Park SK, Patel RP, Ryan DF, Mullen ZJ, Nesbitt JJ, Lopez JE, Taylor-Blake B, Vanden KA, Krantz JL, Hu W, Garris RL, Snyder MG, Lima LV, Sotocinal SG, Austin JS, Kashlan AD, Shah S, Trocinski AK, Pudipeddi SS, Major RM, Bazick HO, Klein MR, Mogil JS, Wu G, Zylka MJ. Development of PainFace software to simplify, standardize, and scale up mouse grimace analyses. Pain 2024; 165:1793-1805. [PMID: 39024163 PMCID: PMC11287051 DOI: 10.1097/j.pain.0000000000003187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 12/13/2023] [Indexed: 07/20/2024]
Abstract
ABSTRACT Facial grimacing is used to quantify spontaneous pain in mice and other mammals, but scoring relies on humans with different levels of proficiency. Here, we developed a cloud-based software platform called PainFace ( http://painface.net ) that uses machine learning to detect 4 facial action units of the mouse grimace scale (orbitals, nose, ears, whiskers) and score facial grimaces of black-coated C57BL/6 male and female mice on a 0 to 8 scale. Platform accuracy was validated in 2 different laboratories, with 3 conditions that evoke grimacing-laparotomy surgery, bilateral hindpaw injection of carrageenan, and intraplantar injection of formalin. PainFace can generate up to 1 grimace score per second from a standard 30 frames/s video, making it possible to quantify facial grimacing over time, and operates at a speed that scales with computing power. By analyzing the frequency distribution of grimace scores, we found that mice spent 7x more time in a "high grimace" state following laparotomy surgery relative to sham surgery controls. Our study shows that PainFace reproducibly quantifies facial grimaces indicative of nonevoked spontaneous pain and enables laboratories to standardize and scale-up facial grimace analyses.
Collapse
Affiliation(s)
- Eric S. McCoy
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sang Kyoon Park
- Department of Psychiatry, The University of North Carolina at Chapel Hill
| | - Rahul P. Patel
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan F. Ryan
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | - Josh E. Lopez
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bonnie Taylor-Blake
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kelly A. Vanden
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James L. Krantz
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenxin Hu
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rosanna L. Garris
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Magdalyn G. Snyder
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lucas V. Lima
- Departments of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Susana G. Sotocinal
- Departments of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Jean-Sebastien Austin
- Departments of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Adam D. Kashlan
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sanya Shah
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Abigail K. Trocinski
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samhitha S. Pudipeddi
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rami M. Major
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hannah O. Bazick
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Morgan R. Klein
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey S. Mogil
- Departments of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Guorong Wu
- Department of Psychiatry, The University of North Carolina at Chapel Hill
- Department of Computer Science, The University of North Carolina at Chapel Hill
| | - Mark J. Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Baruffaldi L, Andrade MCB. Does female control and male mating system predict courtship investment and mating outcomes? A comparative study in five widow spider species (genus Latrodectus) tested under similar laboratory conditions. BMC Ecol Evol 2024; 24:86. [PMID: 38937685 PMCID: PMC11212240 DOI: 10.1186/s12862-024-02272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Male courtship investment may evolve in response to the male's expectation of future mating opportunities or the degree of female control during mating interactions. We used a comparative approach to test this hypotheses by assessing the courtship and mating behaviors of five widow spider species (genus Latrodectus) under common laboratory conditions. We predicted male investment in courtship would be higher in species where males mate only once because of high cannibalism rates (monogyny, L. geometricus, L. hasselti, L. mirabilis), compared to species with rare cannibalism (L. mactans, L. hesperus) in which males should reserve energy for future mating opportunities. Increased male investment, measured as courtship duration, might also evolve with increased female control over mating outcomes if females prefer longer courtships. We tested this by assessing the frequency of copulations, timing of sexual cannibalism, and the degree of female-biased size dimorphism, which is expected to be negatively correlated with the energetic cost of rebuffing male mating attempts. RESULTS Copulation frequency was consistently lower in species with extreme female-skewed size dimorphism, and where sexual cannibalism was more prevalent, suggesting the importance of female control for mating outcomes. We confirmed significant interspecific variation in average courtship duration, but contrary to predictions, it was not predicted by male mating system, and there was no consistent link between courtship duration and sexual size dimorphism. CONCLUSION We show that the degree of sexual dimorphism is not only correlated with sexual cannibalism, but also with mating success since restriction of male copulation frequency by female Latrodectus affects paternity. However, predictions about male mating system or female control affecting courtship duration were not supported. We propose that the form of female control over mating and cannibalism, and male responses, might be more informative for understanding the evolution of courtship duration. For example, male tactics to avoid female aggression may drive lower courtship duration in species like L. mirabilis. Nonetheless, our results differ from inferences based on published studies of each species in isolation, illuminating the need for standardized data collection for behavioural comparative studies.
Collapse
Affiliation(s)
- Luciana Baruffaldi
- Departments of Biological Sciences and Ecology & Evolutionary Biology, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada.
- Departamento de Ecología y Biología Evolutiva, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Maydianne C B Andrade
- Departments of Biological Sciences and Ecology & Evolutionary Biology, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| |
Collapse
|
8
|
Ueno H, Takahashi Y, Murakami S, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Effects of home-cage elevation on behavioral tests in mice. Brain Behav 2023; 14:e3269. [PMID: 38064177 PMCID: PMC10897499 DOI: 10.1002/brb3.3269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/06/2023] [Accepted: 09/24/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Research reproducibility is a common problem in preclinical behavioral science. Mice are an important animal model for studying human behavioral disorders. Experimenters, processing methods, and rearing environments are the main causes of data variability in behavioral neuroscience. It is likely that mice adapt their behavior according to the environment outside the breeding cage. We speculated that mice housed on elevated shelves and mice housed on low shelves might have differently altered anxiety-like behavior toward heights. PURPOSE The purpose of this study was to investigate potential behavioral changes in mice raised at different heights for 3 weeks. Changes in behavior were examined using various experimental tests. RESULTS Mice housed on elevated shelves showed reduced anxiety-like behavior in a light/dark traffic test compared with mice housed on low shelves. There were no significant differences between the two groups in terms of activity, exploratory behavior, muscle strength, or depression-like behavior. CONCLUSIONS Our results indicate that different cage heights and corresponding light exposure may alter the anxiety-like behavior of mice in response to brightness. Researchers need to carefully control the cage height and light intensity experienced by the mice to produce reproducible test results.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical TechnologyKawasaki University of Medical WelfareOkayamaJapan
| | - Yu Takahashi
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Shinji Murakami
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Kenta Wani
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health SciencesOkayama UniversityOkayamaJapan
| | | |
Collapse
|
9
|
Wooden JI, Peacoe LE, Anasooya Shaji C, Melbourne JK, Chandler CM, Bardo MT, Nixon K. Adolescent Intermittent Ethanol Drives Modest Neuroinflammation but Does Not Escalate Drinking in Male Rats. Cells 2023; 12:2572. [PMID: 37947650 PMCID: PMC10649200 DOI: 10.3390/cells12212572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
During adolescence, the brain is highly susceptible to alcohol-induced damage and subsequent neuroimmune responses, effects which may enhance development of an alcohol use disorder (AUD). Neuroimmune reactions are implicated in adolescent alcohol exposure escalating adulthood drinking. Therefore, we investigated whether intermittent alcohol exposure in male, adolescent rats (AIE) escalated adult drinking via two-bottle choice (2BC). We also examined the influence of housing environment across three groups: standard (group-housed with enrichment during 2BC), impoverished (group-housed without enrichment during 2BC), or isolation (single-housed without bedding or enrichment throughout). In the standard group immediately after AIE/saline and after 2BC, we also examined the expression of microglial marker, Iba1, reactive astrocyte marker, vimentin, and neuronal cell death dye, FluoroJade B (FJB). We did not observe an escalation of adulthood drinking following AIE, regardless of housing condition. Further, only a modest neuroimmune response occurred after AIE in the standard group: no significant microglial reactivity or neuronal cell death was apparent using this model, although some astrocyte reactivity was detected in adolescence following AIE that resolved by adulthood. These data suggest that the lack of neuroimmune response in adolescence in this model may underlie the lack of escalation of alcohol drinking, which could not be modified through isolation stress.
Collapse
Affiliation(s)
- Jessica I. Wooden
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lauren E. Peacoe
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chinchusha Anasooya Shaji
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer K. Melbourne
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Cassie M. Chandler
- Department of Psychology, University of Kentucky, Lexington, KY 40506, USA (M.T.B.)
| | - Michael T. Bardo
- Department of Psychology, University of Kentucky, Lexington, KY 40506, USA (M.T.B.)
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
10
|
Radahmadi M, Salehifard K, Reisi P. In vivo synaptic potency, short-term and long-term plasticity at the hippocampal Schaffer collateral-CA1 synapses: Role of different light-dark cycles in male rats. Brain Res 2023; 1817:148514. [PMID: 37499734 DOI: 10.1016/j.brainres.2023.148514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The changes in the light-dark(L/D) cycle could modify cellular mechanisms in some brain regions. The present study compared the effects of various L/D cycles on invivo synaptic potency, short-term and long-term plasticity in the hippocampal CA1 area, adrenal glands weight(AGWs), corticosterone (CORT) levels, and body weight differences(BWD) in male rats. Male rats were assigned into different L/D cycle groups: L4/D20, L8/D16, L12/D12(control), L16/D8, and L20/D4. The slope, amplitude, and the area under curve(AUC) related to the field excitatory postsynaptic potentials(fEPSPs) were assessed, using the input-output(I/O) functions, paired-pulse(PP) responses at different interpulse intervals, and after the induction of long-term potentiation(LTP) in the hippocampal CA1 area. Also, the CORT levels, AGWs, and BWDs were measured in all groups. The slope, amplitude, and AUC of fEPSP in the I/O functions, all three phases of PP, before and after the LTP induction, were significantly decreased in all experimental groups, especially in the L20/D4 and L4/D20 groups. As such, the CORT levels and AGWs were significantly increased in all experimental groups, especially in the L20/D4 group. Overall, the uncommon L/D cycles (minimum and particularly maximum durations of light) significantly reduced the cellular mechanism of learning and memory. Also, downtrends were observed in synaptic potency, as well as short-term and long-term plasticity. The changes in PP with high interpulse intervals, or activity of GABAB receptors, were more significant than the changes in other PP phases with different L/D durations. Additionally, the CORT levels, adrenal glands, and body weight gain occurred time-independently concerning different L/D lengths.
Collapse
Affiliation(s)
- Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Kowsar Salehifard
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Putyora E, Brocklehurst S, Sandilands V. The Effects of Commercially-Relevant Disturbances on Sleep Behaviour in Laying Hens. Animals (Basel) 2023; 13:3105. [PMID: 37835711 PMCID: PMC10571886 DOI: 10.3390/ani13193105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Ensuring the welfare of commercially kept animals is a legal and ethical responsibility. Sleep behaviour can be sensitive to environmental perturbations and may be useful in assessing welfare state. The objective of this study was to use behavioural and electrophysiological (EEG) measures to observe the effects of 24 h stressors followed by periods of no stressors on laying hen sleep behaviour, and to investigate the use of sleep behaviour as a means of welfare assessment in commercial poultry. Ten laying hens surgically implanted with EEG devices to record their brain activity over four batches were used. Hens were subjected to undisturbed, disturbed and recovery periods for 24 h. Disturbed periods consisted of either feed deprivation, increased ambient temperature (28 °C) or simulated footpad pain via injection of Freund's adjuvant into the footpad. Sleep state was scored using behaviour data from infrared cameras and EEG data. Over all periods, hens engaged in both SWS (average 60%) and REM sleep (average 12%) during the lights-off period. Feed deprivation and footpad pain had little to no effect on sleep states, while increased ambient temperature significantly reduced REM sleep (to near elimination, p < 0.001) and SWS (p = 0.017). During the lights-on period, footpad pain increased the proportion of time spent resting (p = 0.008) and in SWS (p < 0.001), with feed deprivation or increased ambient temperature (p > 0.05) having no effect. Increasing ambient temperatures are likely to affect sleep and welfare in commercially-kept laying hens in the face of global climate change.
Collapse
Affiliation(s)
- Endre Putyora
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- Department of Agriculture, Horticulture and Engineering Sciences, Scotland’s Rural College (SRUC), Edinburgh EH25 9RG, UK;
| | | | - Victoria Sandilands
- Department of Agriculture, Horticulture and Engineering Sciences, Scotland’s Rural College (SRUC), Edinburgh EH25 9RG, UK;
| |
Collapse
|
12
|
Szalanczy AM, Giorgio G, Goff E, Seshie O, Grzybowski M, Klotz J, Geurts AM, Redei EE, Solberg Woods LC. Changes in environmental stress over COVID-19 pandemic likely contributed to failure to replicate adiposity phenotype associated with Krtcap3. Physiol Genomics 2023; 55:452-467. [PMID: 37458463 PMCID: PMC10642928 DOI: 10.1152/physiolgenomics.00019.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/25/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023] Open
Abstract
We previously identified keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole body Krtcap3 knockout (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lockdown orders and was completed during the pandemic in a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study-by-genotype interaction where WT had significantly higher CORT relative to KO in study 1, with no differences in study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.NEW & NOTEWORTHY Obesity is linked to both genetics and environmental factors such as stress. Krtcap3 has previously been identified as a gene associated with adiposity, and our work here demonstrates that environmental stress may influence the role of Krtcap3 on both food intake and adiposity. Obesity is strongly influenced by stress in humans, so the identification of novel genes that link stress and obesity will greatly advance our understanding of the disease.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Gina Giorgio
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Emily Goff
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Osborne Seshie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Leah C Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| |
Collapse
|
13
|
vanVuuren M, vanVuuren R, Silverberg LM, Manning J, Pacifici K, Dorgeloh W, Campbell J. Ungulate responses and habituation to unmanned aerial vehicles in Africa's savanna. PLoS One 2023; 18:e0288975. [PMID: 37490471 PMCID: PMC10368239 DOI: 10.1371/journal.pone.0288975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
This article tests the hypothesis that "the likelihood that the species will react and level at which they do to the unmanned aerial vehicle (UAV) is related to the altitude, number of passes, sound intensity, type of UAV, takeoff distance, and species." This paper examined the behavioral responses of a group of free ranging ungulate species (Oryx, Kudu, Springbok, Giraffe, Eland, Hartebeest, and Impala) found in an animal reserve in Namibia to the presence of different in-flight UAV models. The study included 397 passes (trials) over 99 flights at altitudes ranging from 15 to 55 meters in three categories of response level: No response, Alert, and Movement. The ungulates were unhabituated to the UAVs and the study was conducted in the presence of stress-inducing events that occur naturally in the environment. Certain species were found to be more reactive than others, in addition to several displaying different response levels in single or mixed herd environments. Zebras were found to be less responsive in mixed herd environments while Oryx were present, as compared to when the Oryx were not; suggesting that some species may respond based on other species perception of threat or their relative fitness levels. The UAVs also produced inconsistent response rates between movement and alert behavior. The reference vehicle, Phantom 3 was much more likely than the Mavic to induce an alert response, while both having similar probabilities of inducing a movement response. Furthermore, the Custom X8 showed significantly more alert and movement responses than the other UAVs. This shows there may be several aspects to the UAVs that affect the responses of the ungulates. For instance, the sound intensity may alert the species more often, but close proximity may induce a movement response. More generally, the data shows that when the UAV is flying above 50 meters and has a measured sound intensity below 50 dB, the likelihood of inducing a movement response on an ungulate species is below 6% regardless of the vehicle on the first pass over the animals. Additionally, with each subsequent pass the likelihood of response dropped by approximately 20 percent. The results suggest a stronger correlation between flight altitude and response across the different ungulates, and the evidence suggests rapid habituation to the UAVs.
Collapse
Affiliation(s)
| | | | - Larry M Silverberg
- Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, North Carolina
| | - Joe Manning
- Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, North Carolina
| | - Krishna Pacifici
- Center of Geospatial Analytics, Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina
| | - Werner Dorgeloh
- Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina
| | | |
Collapse
|
14
|
Olczak K, Penar W, Nowicki J, Magiera A, Klocek C. The Role of Sound in Livestock Farming-Selected Aspects. Animals (Basel) 2023; 13:2307. [PMID: 37508083 PMCID: PMC10376870 DOI: 10.3390/ani13142307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
To ensure the optimal living conditions of farm animals, it is essential to understand how their senses work and the way in which they perceive their environment. Most animals have a different hearing range compared to humans; thus, some aversive sounds may go unnoticed by caretakers. The auditory pathways may act through the nervous system on the cardiovascular, gastrointestinal, endocrine, and immune systems. Therefore, noise may lead to behavioral activation (arousal), pain, and sleep disorders. Sounds on farms may be produced by machines, humans, or animals themselves. It is worth noting that vocalization may be very informative to the breeder as it is an expression of an emotional state. This information can be highly beneficial in maintaining a high level of livestock welfare. Moreover, understanding learning theory, conditioning, and the potential benefits of certain sounds can guide the deliberate use of techniques in farm management to reduce the aversiveness of certain events.
Collapse
Affiliation(s)
- Katarzyna Olczak
- Department of Horse Breeding, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland
| | - Weronika Penar
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Kraków, 24/28 Mickiewicza Ave., 30-059 Cracow, Poland
| | - Jacek Nowicki
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Kraków, 24/28 Mickiewicza Ave., 30-059 Cracow, Poland
| | - Angelika Magiera
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Kraków, 24/28 Mickiewicza Ave., 30-059 Cracow, Poland
| | - Czesław Klocek
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Kraków, 24/28 Mickiewicza Ave., 30-059 Cracow, Poland
| |
Collapse
|
15
|
Szalanczy AM, Giorgio G, Goff E, Seshie O, Grzybowski M, Klotz J, Geurts AM, Redei EE, Solberg Woods LC. Changes in Environmental Stress over COVID-19 Pandemic Likely Contributed to Failure to Replicate Adiposity Phenotype Associated with Krtcap3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532439. [PMID: 36993361 PMCID: PMC10055176 DOI: 10.1101/2023.03.15.532439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We previously identified Keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole-body Krtcap3 knock-out (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lock-down orders and was completed during the pandemic with a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study by genotype interaction where WT had significantly higher CORT relative to KO in Study 1, with no differences in Study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Gina Giorgio
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Emily Goff
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Osborne Seshie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| |
Collapse
|
16
|
Domarecka E, Szczepek AJ. Universal Recommendations on Planning and Performing the Auditory Brainstem Responses (ABR) with a Focus on Mice and Rats. Audiol Res 2023; 13:441-458. [PMID: 37366685 DOI: 10.3390/audiolres13030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Translational audiology research aims to transfer basic research findings into practical clinical applications. While animal studies provide essential knowledge for translational research, there is an urgent need to improve the reproducibility of data derived from these studies. Sources of variability in animal research can be grouped into three areas: animal, equipment, and experimental. To increase standardization in animal research, we developed universal recommendations for designing and conducting studies using a standard audiological method: auditory brainstem response (ABR). The recommendations are domain-specific and are intended to guide the reader through the issues that are important when applying for ABR approval, preparing for, and conducting ABR experiments. Better experimental standardization, which is the goal of these guidelines, is expected to improve the understanding and interpretation of results, reduce the number of animals used in preclinical studies, and improve the translation of knowledge to the clinic.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
17
|
Shishis S, Tsang B, Ren GJ, Gerlai R. Effects of different handling methods on the behavior of adult zebrafish. Physiol Behav 2023; 262:114106. [PMID: 36758848 DOI: 10.1016/j.physbeh.2023.114106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
The zebrafish is an important biomedical research organism. In most research, zebrafish are removed from their home tank and subsequently their phenotype is measured. The method of handling the fish, however, may significantly affect a variety of phenotypes. This is particularly problematic for studies of brain function that measure behavioral or neuronal responses. Nevertheless, the potential effects of handling have not been analyzed, and in fact are usually ignored. Here, we explore the effects of two usual and two rarely or never-before employed handling methods on the behavior of adult zebrafish. We exposed each fish to one of four handling methods, a between subject experimental design: (1) net chasing followed by air-suspension, (2) gentle net catching (without chasing) followed by air-suspension, (3) gentle net catching followed by being placed in a beaker (no chasing and very short air-suspension), (4) transportation in home tank and pouring the fish directly into the test tank (no chasing, netting or air-suspension). With these handling methods, the fish were placed in a test tank and their swim path was videorecorded and analyzed. Handling significantly affected swim path parameters, duration and frequency of immobility, absolute turn angle and its temporal variance and velocity, but not the distance to bottom. The behavioral effects confirmed that chasing and netting induce robust behavioral changes, and that pouring the fish from its home to its test tank is least aversive for zebrafish. We recommend using this latter method to reduce experimental error variation and increase reproducibility of results.
Collapse
Affiliation(s)
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Canada; Department of Critical Care Medicine, Hospital for Sick Children, Canada
| | - Gary J Ren
- Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
18
|
De Ruyver C, Baert K, Cartuyvels E, Beernaert LAL, Tuyttens FAM, Leirs H, Moons CPH. Assessing animal welfare impact of fourteen control and dispatch methods for house mouse (Mus musculus ), Norway rat (Rattus norvegicus ) and black rat (Rattus rattus ). Anim Welf 2023; 32:e2. [PMID: 38487454 PMCID: PMC10937213 DOI: 10.1017/awf.2022.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/10/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023]
Abstract
Population control of the house mouse (Mus musculus), Norway rat (Rattus norvegicus) and black rat (Rattus rattus) is common practice worldwide. Our objective was to assess the impact on animal welfare of lethal and non-lethal control methods, including three dispatch methods. We used the Sharp and Saunders welfare assessment model with eight experts scoring eleven control methods and three dispatch methods used on the three species. We presumed the methods were performed as prescribed, only taking into account the effect on the target animal (and not, for example, on non-target catches). We did not assess population control efficacy of the methods. Methods considered to induce the least suffering to the target animal were captive-bolt traps, electrocution traps and cervical dislocation, while those with the greatest impact were anticoagulants, cholecalciferol and deprivation. Experts indicated considerable uncertainty regarding their evaluation of certain methods, which emphasises the need for further scientific research. In particular, the impact of hydrogen cyanide, chloralose and aluminium phosphide on animal welfare ought to be investigated. The experts also stressed the need to improve Standard Operating Procedures and to incorporate animal welfare assessments in Integrated Pest Management (IPM). The results of our study can help laypeople, professionals, regulatory agencies and legislators making well-informed decisions as to which methods to use when controlling commensal rodents.
Collapse
Affiliation(s)
- Ciska De Ruyver
- Department of Veterinary and Biosciences, Ethology and Animal Welfare Research Group, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820Merelbeke, Belgium
| | - Kristof Baert
- Wildlife Management and Invasive species, Research Institute for Nature and Forest (INBO), Havenlaan 88 bus 73, Brussels, Belgium
| | - Emma Cartuyvels
- Wildlife Management and Invasive species, Research Institute for Nature and Forest (INBO), Havenlaan 88 bus 73, Brussels, Belgium
| | - Lies AL Beernaert
- Department of Biotechnology, Vives University College, Wilgenstraat 32, 8800Roeselare, Belgium
| | - Frank AM Tuyttens
- Department of Veterinary and Biosciences, Ethology and Animal Welfare Research Group, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820Merelbeke, Belgium
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg 68, 9090Melle, Belgium
| | - Herwig Leirs
- Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, 2610Wilrijk, Belgium
| | - Christel PH Moons
- Department of Veterinary and Biosciences, Ethology and Animal Welfare Research Group, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820Merelbeke, Belgium
| |
Collapse
|
19
|
Warwick C, Pilny A, Steedman C, Howell T, Martínez-Silvestre A, Cadenas V, Grant R. Mobile Zoos and Other Itinerant Animal Handling Events: Current Status and Recommendations for Future Policies. Animals (Basel) 2023; 13:214. [PMID: 36670754 PMCID: PMC9854913 DOI: 10.3390/ani13020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/25/2022] [Indexed: 01/11/2023] Open
Abstract
Mobile zoos are events in which non-domesticated (exotic) and domesticated species are transported to venues such as schools, hospitals, parties, and community centres, for the purposes of education, entertainment, or social and therapeutic assistance. We conducted literature searches and surveyed related government agencies regarding existing provisions within laws and policies, number of mobile zoos, and formal guidance issued concerning operation of such events in 74 countries or regions. We also examined governmental and non-governmental guidance standards for mobile zoos, as well as websites for mobile zoo operations, assessed promotional or educational materials for scientific accuracy, and recorded the diversity of species in use. We used the EMODE (Easy, Moderate, Difficult, or Extreme) algorithm, to evaluate identified species associated with mobile zoos for their suitability for keeping. We recorded 14 areas of concern regarding animal biology and public health and safety, and 8 areas of false and misleading content in promotional or educational materials. We identified at least 341 species used for mobile zoos. Mobile zoos are largely unregulated, unmonitored, and uncontrolled, and appear to be increasing. Issues regarding poor animal welfare, public health and safety, and education raise several serious concerns. Using the precautionary principle when empirical evidence was not available, we advise that exotic species should not be used for mobile zoos and similar itinerant events.
Collapse
Affiliation(s)
- Clifford Warwick
- Emergent Disease Foundation, 71-75 Shelton Street, Covent Garden, London WC2H 9JQ, UK
| | - Anthony Pilny
- Arizona Exotic Animal Hospital, 2340 E Beardsley Road Ste 100, Phoenix, AZ 85024, USA
| | - Catrina Steedman
- Emergent Disease Foundation, 71-75 Shelton Street, Covent Garden, London WC2H 9JQ, UK
| | - Tiffani Howell
- School of Psychology and Public Health, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | | | - Vanessa Cadenas
- Animal Protection Biodiversity & Environment Section, Government of Catalonia, 43004 Tarragona, Spain
| | - Rachel Grant
- School of Applied Sciences, London South Bank University, 103 Borough Rd, London SE1 0AA, UK
| |
Collapse
|
20
|
Markov DD, Novosadova EV. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. BIOLOGY 2022; 11:1621. [PMID: 36358321 PMCID: PMC9687170 DOI: 10.3390/biology11111621] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Major depressive disorder (MDD) is one of the most common mood disorders worldwide. A lack of understanding of the exact neurobiological mechanisms of depression complicates the search for new effective drugs. Animal models are an important tool in the search for new approaches to the treatment of this disorder. All animal models of depression have certain advantages and disadvantages. We often hear that the main drawback of the chronic unpredictable mild stress (CUMS) model of depression is its poor reproducibility, but rarely does anyone try to find the real causes and sources of such poor reproducibility. Analyzing the articles available in the PubMed database, we tried to identify the factors that may be the sources of the poor reproducibility of CUMS. Among such factors, there may be chronic sleep deprivation, painful stressors, social stress, the difference in sex and age of animals, different stress susceptibility of different animal strains, handling quality, habituation to stressful factors, various combinations of physical and psychological stressors in the CUMS protocol, the influence of olfactory and auditory stimuli on animals, as well as the possible influence of various other factors that are rarely taken into account by researchers. We assume that careful inspection of these factors will increase the reproducibility of the CUMS model between laboratories and allow to make the interpretation of the obtained results and their comparison between laboratories to be more adequate.
Collapse
|
21
|
Foakes C, Lawrence-Sidebottom D, Dralega AT, Harvey DO, Schmidt MA, Davis CJ. The rat Lux Actuating Search Task (LAST) and effects of sleep deprivation on task reversal performance. Neurobiol Sleep Circadian Rhythms 2022; 13:100081. [PMID: 35989719 PMCID: PMC9388875 DOI: 10.1016/j.nbscr.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Sleep deprivation (SD) causes significant deficits in multiple aspects of cognition, including sustained attention and working memory. Investigating the neural processes underpinning these cognitive losses has proven challenging due to the confounds of current animal tasks; many employ appetitive or aversive stimuli to motivate behavior, while others lack task complexity that translates to human studies of executive function. We established the Lux Actuating Search Task (LAST) to circumvent these issues. The LAST is performed in a circular, open-field arena that requires rats to find an unmarked, quasi-randomly positioned target. Constant low-level floor vibrations motivate ambulation, while light intensity (determined by the rodent's proximity to the target destination) provides continuous visual feedback. The task has two paradigms that differ based on the relationship between the light intensity and target proximity: the Low Lux Target (LLT) paradigm and the High Lux Target paradigm (HLT). In this study, on days 1–6, the rats completed nine trials per day on one of the two paradigms. On day 7, the rats were either sleep deprived by gentle handling or were left undisturbed before undertaking the opposite (reversal) paradigm on days 7–9. Our results showed that SD significantly impeded the ability of Long Evans rats to learn the reversal paradigm, as indicated by increased times to target and increased failure percentages compared to rats whose sleep was undisturbed. Rats also showed reduced learning with the HLT paradigm, as the initial task or as the reversal task, likely due to the rodents' photophobia limiting their motivation to navigate toward a bright light, which is required to succeed. A continuous feedback paradigm examining the effects of sleep loss on cognitive flexibility in rats is introduced. Floor vibrations motivate and variable light intensity directs navigation to an unmarked location in an open field arena. The reversal of light intensity cues from light to dark and vice versa is disrupted by sleep deprivation.
Collapse
Affiliation(s)
- Callum Foakes
- Elson S. Floyd College of Medicine and Sleep and Performance Research Center, Washington State University, Spokane, WA, USA
| | - Darian Lawrence-Sidebottom
- Elson S. Floyd College of Medicine and Sleep and Performance Research Center, Washington State University, Spokane, WA, USA
| | - Aseru T Dralega
- Elson S. Floyd College of Medicine and Sleep and Performance Research Center, Washington State University, Spokane, WA, USA
| | - Daniel O Harvey
- Elson S. Floyd College of Medicine and Sleep and Performance Research Center, Washington State University, Spokane, WA, USA
| | - Michelle A Schmidt
- Elson S. Floyd College of Medicine and Sleep and Performance Research Center, Washington State University, Spokane, WA, USA
| | - Christopher J Davis
- Elson S. Floyd College of Medicine and Sleep and Performance Research Center, Washington State University, Spokane, WA, USA
| |
Collapse
|
22
|
Allard C, Zizzari P, Quarta C, Cota D. Food intake and body weight in rodent studies: the devil is in the details. Nat Metab 2022; 4:1424-1426. [PMID: 36253619 DOI: 10.1038/s42255-022-00658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Philippe Zizzari
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
23
|
Resasco A, Diaz SL. Mouse breeding facilities in Argentina: Current state, challenges, and strengths in relation to animal welfare. Front Vet Sci 2022; 9:1031976. [PMID: 36337207 PMCID: PMC9630945 DOI: 10.3389/fvets.2022.1031976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 11/20/2022] Open
Abstract
The science and technology of laboratory animals has come a long way worldwide, but for reasons related to the development of the countries, this journey started later in some Latin American countries, as is the case of Argentina. Without a specific legal framework to conduct animal experimentation, local strengths to promote animal welfare are based on professionals specifically trained in the care of laboratory animals as well as an extended network of ethics committees that ensures compliance with the ethical principles applied to animal experimentation. Nevertheless, there are no updated reports showing welfare indicators in rodent facilities. Therefore, we conducted a survey on mice breeding facilities enrolled in a national record elaborated by the National Ministry of Science. Questions related to four of the Five Domains Model of Mellor, concerning (1) nutrition, (2) physical environment, (3) health, and (4) behavioral interactions with the environment, other animals, and humans, were included as well as information concerning general aspects of the establishments. Data obtained from 25 mice breeder facilities localized all over the country were summarized, providing for the first time a clear picture of the national situation about the welfare of laboratory mice in these establishments. This data will be essential to design future policy as well as for deciding priorities aiming to improve the welfare of mice bred in Argentinian facilities.
Collapse
Affiliation(s)
- Agustina Resasco
- Instituto de Biología Celular y Neurociencia (UBA - CONICET), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Animales de Experimentación (LAE), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Silvina Laura Diaz
- Instituto de Biología Celular y Neurociencia (UBA - CONICET), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Cátedra de Técnica para Bioterio, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
24
|
Kolbe T, Lassnig C, Poelzl A, Palme R, Auer KE, Rülicke T. Effect of Different Ambient Temperatures on Reproductive Outcome and Stress Level of Lactating Females in Two Mouse Strains. Animals (Basel) 2022; 12:ani12162141. [PMID: 36009730 PMCID: PMC9405067 DOI: 10.3390/ani12162141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The optimal temperature for laboratory mice has been under discussion for some time. Current standard temperature is 20 °C–24 °C but it has been suggested to elevate the standard to 30 °C, which is the thermoneutral zone for mice. In this study, the effect of different cage temperatures (20 °C, 25 °C, 30 °C) on reproduction and stress hormone metabolite excretion was evaluated in lactating females of two commonly used mouse strains. Pup loss was higher, and weights of mothers and pups were reduced at 30 °C compared to the lower temperatures. In addition, pups showed increased tail length at weaning under the high temperature (30 °C). There was no difference in stress hormone metabolite excretion in mice between temperature groups. We could not show any detrimental effects of the lower or higher cage temperature on stress hormone metabolite excretion, but found decreased reproductive outcome under the higher temperature. Abstract Ambient temperature is an important non-biotic environmental factor influencing immunological and oncological parameters in laboratory mice. It is under discussion which temperature is more appropriate and whether the commonly used room temperature in rodent facilities of about 21 °C represents a chronic cold stress or the 30 °C of the thermoneutral zone constitutes heat stress for the animals. In this study, we selected the physiological challenging period of lactation to investigate the influence of a cage temperature of 20 °C, 25 °C, and 30 °C, respectively, on reproductive performance and stress hormone levels in two frequently used mouse strains. We found that B6D2F1 hybrid mothers weaned more pups compared to C57BL/6N mothers, and that the number of weaned pups was reduced when mothers of both strains were kept at 30 °C. Furthermore, at 30 °C, mothers and pups showed reduced body weight at weaning and offspring had longer tails. Despite pronounced temperature effects on reproductive parameters, we did not find any temperature effects on adrenocortical activity in breeding and control mice. Independent of the ambient temperature, however, we found that females raising pups showed elevated levels of faecal corticosterone metabolites (FCMs) compared to controls. Peak levels of stress hormone metabolites were measured around birth and during the third week of lactation. Our results provide no evidence of an advantage for keeping lactating mice in ambient temperatures near the thermoneutral zone. In contrast, we found that a 30 °C cage temperature during lactation reduced body mass in females and their offspring and declined female reproductive performance.
Collapse
Affiliation(s)
- Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department IFA-Tulln, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
- Correspondence:
| | - Caroline Lassnig
- Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Andrea Poelzl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Kerstin E. Auer
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
25
|
McLeod AR, Burton JA, Mackey CA, Ramachandran R. An assessment of ambient noise and other environmental variables in a nonhuman primate housing facility. Lab Anim (NY) 2022; 51:219-226. [PMID: 35896636 PMCID: PMC9511702 DOI: 10.1038/s41684-022-01017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Acoustic noise and other environmental variables represent potential confounds for animal research. Of relevance to auditory research, sustained high levels of ambient noise may modify hearing sensitivity and decrease well-being among laboratory animals. The present study was conducted to assess environmental conditions in an animal facility that houses nonhuman primates used for auditory research at the Vanderbilt University Medical Center. Sound levels, vibration, temperature, humidity and luminance were recorded using an environmental monitoring device placed inside of an empty cage in a macaque housing room. Recordings lasted 1 week each, at three different locations within the room. Vibration, temperature, humidity and luminance all varied within recommended levels for nonhuman primates, with one exception of low luminance levels in the bottom cage location. Sound levels at each cage location were characterized by a low baseline of 58-62 dB sound pressure level, with transient peaks up to 109 dB sound pressure level. Sound levels differed significantly across locations, but only by about 1.5 dB. The transient peaks beyond recommended sound levels reflected a very low noise dose, but exceeded startle-inducing levels, which could elicit stress responses. Based on these findings, ambient noise levels in the housing rooms in this primate facility are within acceptable levels and unlikely to contribute to hearing deficits in the nonhuman primates. Our results establish normative values for environmental conditions in a primate facility, can be used to inform best practices for nonhuman primate research and care, and form a baseline for future studies of aging and chronic noise exposure.
Collapse
Affiliation(s)
- Alexander R. McLeod
- Undergraduate Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Jane A. Burton
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA,Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chase A. Mackey
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA,Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ramnarayan Ramachandran
- Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
26
|
Lin CL, Zheng TL, Tsou SH, Chang HM, Tseng LH, Yu CH, Hung CS, Ho YJ. Amitriptyline Improves Cognitive and Neuronal Function in a Rat Model that Mimics Dementia with Lewy Bodies. Behav Brain Res 2022; 435:114035. [PMID: 35926562 DOI: 10.1016/j.bbr.2022.114035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/09/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022]
Abstract
Dementia with Lewy bodies (DLB), a highly prevalent neurodegenerative disorder, causes motor and cognitive deficits. The main pathophysiologies of DLB are glutamate excitotoxicity and accumulation of Lewy bodies comprising α-synuclein (α-syn) and β-amyloid (Aβ). Amitriptyline (AMI) promotes expression of glutamate transporter-1 and glutamate reuptake. In this study, we measured the effects of AMI on behavioral and neuronal function in a DLB rat model. We used rivastigmine (RIVA) as a positive control. To establish the DLB rat model, male Wistar rats were stereotaxically injected with recombinant adenoassociated viral vector with the SNCA gene (10μg/10μL) and Aβ (5μg/2.5μL) into the left ventricle and prefrontal cortex, respectively. AMI (10mg/kg/day, i.p.), RIVA (2mg/kg/day, i.p.), or saline was injected intraperitoneally after surgery. From the 29th day, behavioral tests were performed to evaluate the motor and cognitive functions of the rats. Immunohistochemical staining was used to assess neuronal changes. We measured the α-syn level, number of newborn cells, and neuronal density in the hippocampus and in the nigrostriatal dopaminergic system. The DLB group exhibited deficit in object recognition. Both the AMI and RIVA treatments reversed these deficits. Histologically, the DLB rats exhibited cell loss in the substantia nigra pars compacta and in the hippocampal CA1 area. AMI reduced this cell loss, but RIVA did not. In addition, the DLB rats exhibited a lower number of newborn cells and higher α-syn levels in the dentate gyrus (DG). AMI did not affect α-syn accumulation but recovered neurogenesis in the DG of the rats, whereas RIVA reversed the α-syn accumulation but did not affect neurogenesis in the rats. We suggest that AMI may have potential for use in the treatment of DLB.
Collapse
Affiliation(s)
- Chih-Li Lin
- Institute of Medicine, Department of Medical Research, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Ting-Lin Zheng
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Sing-Hua Tsou
- Institute of Medicine, Department of Medical Research, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Hung-Ming Chang
- Department of Anantomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Li-Ho Tseng
- Graduate School of Environmental Management, Tajen University, Pingtung 907, Taiwan, ROC
| | - Ching-Han Yu
- Department of Pysiology, School of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC.
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10581, Taiwan, ROC.
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC.
| |
Collapse
|
27
|
Strain and Age Dependent Entrainable Range of Circadian Behavior in C57BL/6 and BALB/c Mice. Physiol Behav 2022; 255:113917. [PMID: 35853482 DOI: 10.1016/j.physbeh.2022.113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
The mammalian circadian system has a plasticity in a certain range, rather than a strict 24-hour cycle, with considerable variations among species, strains, and ages. As the most widely used mouse strains in circadian research, C57BL/6 and BALB/c mice were well known to have different internal periods and responses to various non-24-hour light-dark cycles. However, their entrainable range of circadian behavior was not specifically studied, neither was the effect of aging. Besides, it is not well known if mice with appeared behavioral adaptation are really healthy. In the current study, we exposed C57BL/6 and BALB/c mice at 3 months and 18 months old to a series of short (T cycles < 24 h) and long (T cycles > 24 h) light-dark cycles. Wheel running activities were monitored continuously for calculation of the entrainable range and glucose homeostasis was investigated to reflect their health status. Our results showed that the range in both young and old C57BL/6 mice is between T23 and T26. By contrast, due to the strong adaptability to extreme LD cycles, the entrainable range on a circadian scale in both young and old BALB/c mice cannot be well determined. Despite the adaptation appeared at the behavioral level, glucose homeostasis revealed by glucose tolerance test and insulin tolerance test was impaired in mice upon T cycle treatment. In summary, our study explored the entrainment range in two popular mouse strains and suggested that behavioral adaptation may not well reflect their health status.
Collapse
|
28
|
Riva MG, Dai F, Huhtinen M, Minero M, Barbieri S, Dalla Costa E. The Impact of Noise Anxiety on Behavior and Welfare of Horses from UK and US Owner’s Perspective. Animals (Basel) 2022; 12:ani12101319. [PMID: 35625165 PMCID: PMC9138043 DOI: 10.3390/ani12101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Noise anxiety is an over-reaction to loud noises commonly detected among pets and can greatly impact on their welfare and on their management. When exposed to noisy events, horses can show intense escape attempts, which may cause severe accidents for the horse and the rider/handler. The aim of the present study was to investigate, through a web survey, UK and US owners’ perception of noise anxiety severity in their horses, their management strategies and perceived efficacy. The questionnaire was shared via social networking and advertised as “What is your horse afraid of?”. Over a total of 1836 questionnaires filled out; 409 owners reported that their horse has shown unusual behavior during a noise event. A two-step cluster analysis identified two groups: very anxious (VA) and slightly anxious (SA). VA horses were reported to have higher frequency of anxiety behaviors; higher frequency of signs of noise reactivity; and their anxiety did not improve with time. The most used management strategies consisted in providing hay throughout the night, turning in/out their horse or moving it to a paddock. A binomial logistic regression identified that horses that have reported injuries during noise events were more likely to be clustered as VA (OR = 0.24, 95% CI: 0.08–0.76); while providing hay throughout the night was more likely to be very effective management strategy in SA horses (OR = 0.41, 95% CI: 0.16–1.01). Our results confirmed that noise anxiety is a growing behavioral problem that can lead to important welfare concerns for horses. New management strategies, including the use of medicinal products, should be considered to reduce behavioral and physiological signs and help horses to cope with noisy events.
Collapse
Affiliation(s)
- Maria Giorgia Riva
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy; (M.G.R.); (M.M.); (S.B.)
| | - Francesca Dai
- Il Rifugio degli Asinelli ONLUS, 13884 Sala Biellese, Italy;
| | - Mirja Huhtinen
- Orion Corporation, Orion Pharma, R&D, 02200 Espoo, Finland;
| | - Michela Minero
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy; (M.G.R.); (M.M.); (S.B.)
| | - Sara Barbieri
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy; (M.G.R.); (M.M.); (S.B.)
| | - Emanuela Dalla Costa
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy; (M.G.R.); (M.M.); (S.B.)
- Correspondence:
| |
Collapse
|
29
|
Corredor K, Marín DP, García CC, Restrepo DA, Martínez GS, Cardenas FP. Providing Environmental Enrichment without Altering Behavior in Male and Female Wistar Rats ( Rattus norvegicus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:234-240. [PMID: 35379381 PMCID: PMC9137287 DOI: 10.30802/aalas-jaalas-21-000075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/09/2021] [Accepted: 12/21/2021] [Indexed: 06/07/2023]
Abstract
In research using animal models, subjects are commonly maintained under standard housing conditions, mainly because of the idea that enhancing welfare conditions could alter experimental data. Another common practice in many laboratories relates to the preponderant use of males. Several reasons justifying this practice include the rapid hormonal and endocrine change in females, which may require a higher number of female animals to achieve more homogenous groups, thereby creating a dilemma with the reduction principle in animal research. In past decades, a relationship between enriched environments and enhanced cognitive functions has been reported in rats, but many of those enriched environmental protocols were not systematically or rigorously studied, leading to unexpected effects on behavior. Here we report the effects of 4 types of housing conditions (standard, structural changes, exercise, and foraging) in Wistar rats on anxiety (elevated plus maze), exploratory (open field), and stress vulnerability (forced swim test) responses. Sex was used as a blocking factor. Data show no effect of housing conditions on anxiety and exploratory behaviors, but do show an effect on stress responses. These results suggest the possibility of using a protocol for environmental enrichment without concern about altering experimental data. From this stand, new ways to enhance animal welfare in research laboratories could be designed and implemented.
Collapse
Key Words
- ee, environmental enrichment
- of, open field
- epm, elevated plus maze
- fst, forced swim test
- sd, standard condition
- st, structural modification
- ex, exercise, playing, and exploration
- fg, foraging
Collapse
Affiliation(s)
- Karen Corredor
- Universidad de los Andes, Laboratorio de Neurociencia y Comportamiento, Bogotá, Colombia; Centro de Investigaciones en Biomodelos, Bogotá, Colombia;,
| | - Daniela P Marín
- Universidad de los Andes, Laboratorio de Neurociencia y Comportamiento, Bogotá, Colombia
| | - Christian C García
- Universidad de los Andes, Laboratorio de Neurociencia y Comportamiento, Bogotá, Colombia
| | - Daniela A Restrepo
- Universidad de los Andes, Laboratorio de Neurociencia y Comportamiento, Bogotá, Colombia
| | | | - Fernando P Cardenas
- Universidad de los Andes, Laboratorio de Neurociencia y Comportamiento, Bogotá, Colombia
| |
Collapse
|
30
|
Faria VS, Manchado-Gobatto FB, Scariot PPM, Zagatto AM, Beck WR. Melatonin Potentiates Exercise-Induced Increases in Skeletal Muscle PGC-1 α and Optimizes Glycogen Replenishment. Front Physiol 2022; 13:803126. [PMID: 35557975 PMCID: PMC9087193 DOI: 10.3389/fphys.2022.803126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Compelling evidence has demonstrated the effect of melatonin on exhaustive exercise tolerance and its modulatory role in muscle energy substrates at the end of exercise. In line with this, PGC-1α and NRF-1 also seem to act on physical exercise tolerance and metabolic recovery after exercise. However, the literature still lacks reports on these proteins after exercise until exhaustion for animals treated with melatonin. Thus, the aim of the current study was to determine the effects of acute melatonin administration on muscle PGC-1α and NRF-1, and its modulatory role in glycogen and triglyceride contents in rats subjected to exhaustive swimming exercise at an intensity corresponding to the anaerobic lactacidemic threshold (iLAn). In a randomized controlled trial design, thirty-nine Wistar rats were allocated into four groups: control (CG = 10), rats treated with melatonin (MG = 9), rats submitted to exercise (EXG = 10), and rats treated with melatonin and submitted to exercise (MEXG = 10). Forty-eight hours after the graded exercise test, the animals received melatonin (10 mg/kg) or vehicles 30 min prior to time to exhaustion test in the iLAn (tlim). Three hours after tlim the animals were euthanized, followed by muscle collection for specific analyses: soleus muscles for immunofluorescence, gluteus maximus, red and white gastrocnemius for the assessment of glycogen and triglyceride contents, and liver for the measurement of glycogen content. Student t-test for independent samples, two-way ANOVA, and Newman keuls post hoc test were used. MEXG swam 120.3% more than animals treated with vehicle (EXG; p < 0.01). PGC-1α and NRF-1 were higher in MEXG with respect to the CG (p < 0.05); however, only PGC-1α was higher for MEXG when compared to EXG. Melatonin reduced the triglyceride content in gluteus maximus, red and white gastrocnemius (F = 6.66, F = 4.51, and F = 6.02, p < 0.05). The glycogen content in red gastrocnemius was higher in MEXG than in CG (p = 0.01), but not in EXG (p > 0.05). In conclusion, melatonin was found to enhance exercise tolerance, potentiate exercise-mediated increases in PGC-1α, decrease muscle triglyceride content and increase muscle glycogen 3 h after exhaustive exercise, rapidly providing a better cellular metabolic environment for future efforts.
Collapse
Affiliation(s)
- Vinícius Silva Faria
- Laboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos—UFSCar, São Carlos, Brazil
| | | | - Pedro Paulo Menezes Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Alessandro Moura Zagatto
- Laboratory of Physiology and Sports Performance, Department of Physical Education, School of Science—Bauru Campus, São Paulo State University—UNESP, Bauru, Brazil
| | - Wladimir Rafael Beck
- Laboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos—UFSCar, São Carlos, Brazil
| |
Collapse
|
31
|
Snedec T, Bittner-Schwerda L, Rachidi F, Theinert K, Pietsch F, Spilke J, Baumgartner W, Möbius G, Starke A, Schären-Bannert M. Effects of an intensive experimental protocol on health, fertility, and production in transition dairy cows. J Dairy Sci 2022; 105:5310-5326. [DOI: 10.3168/jds.2021-20673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/04/2022] [Indexed: 11/19/2022]
|
32
|
Harry GJ, McBride S, Witchey SK, Mhaouty-Kodja S, Trembleau A, Bridge M, Bencsik A. Roadbumps at the Crossroads of Integrating Behavioral and In Vitro Approaches for Neurotoxicity Assessment. FRONTIERS IN TOXICOLOGY 2022; 4:812863. [PMID: 35295216 PMCID: PMC8915899 DOI: 10.3389/ftox.2022.812863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
With the appreciation that behavior represents the integration and complexity of the nervous system, neurobehavioral phenotyping and assessment has seen a renaissance over the last couple of decades, resulting in a robust database on rodent performance within various testing paradigms, possible associations with human disorders, and therapeutic interventions. The interchange of data across behavior and other test modalities and multiple model systems has advanced our understanding of fundamental biology and mechanisms associated with normal functions and alterations in the nervous system. While there is a demonstrated value and power of neurobehavioral assessments for examining alterations due to genetic manipulations, maternal factors, early development environment, the applied use of behavior to assess environmental neurotoxicity continues to come under question as to whether behavior represents a sensitive endpoint for assessment. Why is rodent behavior a sensitive tool to the neuroscientist and yet, not when used in pre-clinical or chemical neurotoxicity studies? Applying new paradigms and evidence on the biological basis of behavior to neurobehavioral testing requires expertise and refinement of how such experiments are conducted to minimize variability and maximize information. This review presents relevant issues of methods used to conduct such test, sources of variability, experimental design, data analysis, interpretation, and reporting. It presents beneficial and critical limitations as they translate to the in vivo environment and considers the need to integrate across disciplines for the best value. It proposes that a refinement of behavioral assessments and understanding of subtle pronounced differences will facilitate the integration of data obtained across multiple approaches and to address issues of translation.
Collapse
Affiliation(s)
- G. Jean Harry
- Neurotoxicology Group, Molecular Toxicology Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sandra McBride
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Shannah K. Witchey
- Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Paris, France
| | - Alain Trembleau
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Matthew Bridge
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Anna Bencsik
- Anses Laboratoire de Lyon, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université de Lyon 1, Lyon, France
| |
Collapse
|
33
|
Blenkuš U, Gerós AF, Carpinteiro C, Aguiar PDC, Olsson IAS, Franco NH. Non-Invasive Assessment of Mild Stress-Induced Hyperthermia by Infrared Thermography in Laboratory Mice. Animals (Basel) 2022; 12:177. [PMID: 35049799 PMCID: PMC8773026 DOI: 10.3390/ani12020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 11/16/2022] Open
Abstract
Stress-induced hyperthermia (SIH) is a physiological response to acute stressors in mammals, shown as an increase in core body temperature, with redirection of blood flow from the periphery to vital organs. Typical temperature assessment methods for rodents are invasive and can themselves elicit SIH, affecting the readout. Infrared thermography (IRT) is a promising non-invasive alternative, if shown to accurately identify and quantify SIH. We used in-house developed software ThermoLabAnimal 2.0 to automatically detect and segment different body regions, to assess mean body (Tbody) and mean tail (Ttail) surface temperatures by IRT, along with temperature (Tsc) assessed by reading of subcutaneously implanted PIT-tags, during handling-induced stress of pair-housed C57BL/6J and BALB/cByJ mice of both sexes (N = 68). SIH was assessed during 10 days of daily handling (DH) performed twice per day, weekly voluntary interaction tests (VIT) and an elevated plus maze (EPM) at the end. To assess the discrimination value of IRT, we compared SIH between tail-picked and tunnel-handled animals, and between mice receiving an anxiolytic drug or vehicle prior to the EPM. During a 30 to 60 second stress exposure, Tsc and Tbody increased significantly (p < 0.001), while Ttail (p < 0.01) decreased. We did not find handling-related differences. Within each cage, mice tested last consistently showed significantly higher (p < 0.001) Tsc and Tbody and lower (p < 0.001) Ttail than mice tested first, possibly due to higher anticipatory stress in the latter. Diazepam-treated mice showed lower Tbody and Tsc, consistent with reduced anxiety. In conclusion, our results suggest that IRT can identify and quantify stress in mice, either as a stand-alone parameter or complementary to other methods.
Collapse
Affiliation(s)
- Urša Blenkuš
- Royal (Dick) School of Veterinary Studies, Easter Bush Campus, The University of Edinburgh, Edinburgh EH25 9RG, UK;
- Laboratory Animal Science, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
| | - Ana Filipa Gerós
- Neuroengineering and Computational Neuroscience Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.F.G.); (C.C.); (P.d.C.A.)
- FEUP—Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
| | - Cristiana Carpinteiro
- Neuroengineering and Computational Neuroscience Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.F.G.); (C.C.); (P.d.C.A.)
| | - Paulo de Castro Aguiar
- Neuroengineering and Computational Neuroscience Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.F.G.); (C.C.); (P.d.C.A.)
| | - I. Anna S. Olsson
- Laboratory Animal Science, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
| | - Nuno Henrique Franco
- Laboratory Animal Science, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
| |
Collapse
|
34
|
Leite-Almeida H, Castelhano-Carlos MJ, Sousa N. New Horizons for Phenotyping Behavior in Rodents: The Example of Depressive-Like Behavior. Front Behav Neurosci 2022; 15:811987. [PMID: 35069144 PMCID: PMC8766962 DOI: 10.3389/fnbeh.2021.811987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023] Open
Abstract
The evolution of the field of behavioral neuroscience is significantly dependent on innovative disruption triggered by our ability to model and phenotype animal models of neuropsychiatric disorders. The ability to adequately elicit and measure behavioral parameters are the fundaments on which the behavioral neuroscience community establishes the pathophysiological mechanisms of neuropsychiatric disorders as well as contributes to the development of treatment strategies for those conditions. Herein, we review how mood disorders, in particular depression, are currently modeled in rodents, focusing on the limitations of these models and particularly on the analyses of the data obtained with different behavioral tests. Finally, we propose the use of new paradigms to study behavior using multidimensional strategies that better encompasses the complexity of psychiatric conditions, namely depression; these paradigms provide holistic phenotyping that is applicable to other conditions, thus promoting the emergence of novel findings that will leverage this field.
Collapse
Affiliation(s)
- Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center—Braga, Braga, Portugal
| | - Magda J. Castelhano-Carlos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center—Braga, Braga, Portugal
- *Correspondence: Nuno Sousa,
| |
Collapse
|
35
|
Domarecka E, Kalcioglu MT, Mutlu A, Özgür A, Smit J, Olze H, Szczepek AJ. Reporting Data on Auditory Brainstem Responses (ABR) in Rats: Recommendations Based on Review of Experimental Protocols and Literature. Brain Sci 2021; 11:brainsci11121596. [PMID: 34942898 PMCID: PMC8699229 DOI: 10.3390/brainsci11121596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022] Open
Abstract
Research in hearing science is accelerating, and a wealth of data concerning auditory brainstem responses (ABR) in various animal models is published in peer-reviewed journals every year. Recently, we reviewed studies using ABR measurements in tinnitus rat models. We found significant discrepancies in the outcomes of these studies, some due to different research approaches and others due to different methodologies. Thus, the present work aimed to collect comprehensive information on all factors influencing ABR recordings in rats and compile recommendations on ABR data reporting. A questionnaire with queries about animal husbandry, transfer, handling, and the exact test conditions before, during, and after ABR recordings was sent to 125 researchers who published the relevant studies between 2015 and 2021. Eighteen researchers provided detailed answers on factors related to ABR measurements. Based on the analysis of the returned questionnaires, we identified three domains reflecting animal-, equipment-, and experiment-dependent factors that might influence the ABR outcome, thus requiring reporting in published research. The analysis of survey results led to the compilation of recommendations for reporting ABR outcomes supported by a literature review. Following these recommendations should facilitate comparative and meta-analyses of ABR results provided by various research groups.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany;
- Correspondence: (E.D.); (A.J.S.)
| | - Mahmut Tayyar Kalcioglu
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Istanbul Medeniyet University, 34720 Istanbul, Turkey; (M.T.K.); (A.M.)
- Otorhinolaryngology Clinic, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey
| | - Ahmet Mutlu
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Istanbul Medeniyet University, 34720 Istanbul, Turkey; (M.T.K.); (A.M.)
- Otorhinolaryngology Clinic, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey
| | - Abdulkadir Özgür
- Department of Otorhinolaryngology, İstanbul Yeni Yuzyil University Gaziosmanpaşa Hospital, 34245 Istanbul, Turkey;
| | - Jasper Smit
- Zuyderland Medical Center, Department of Otorhinolaryngology, Head and Neck Surgery, 6419 PC Heerlen, The Netherlands;
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany;
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany;
- Faculty of Medicine and Health Sciences, University of Zielona Góra, 65-046 Zielona Góra, Poland
- Correspondence: (E.D.); (A.J.S.)
| |
Collapse
|
36
|
Direct and indirect contributions of molecular genetics to farm animal welfare: a review. Anim Health Res Rev 2021; 22:177-186. [PMID: 34842522 DOI: 10.1017/s1466252321000104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Since domestication, farm animals have played a key role to increase the prosperity of humankind, while animal welfare (AW) is debated even today. This paper aims to comprehensively review the contributions of developing molecular genetics to farm animal welfare (FAW) and to raise awareness among both scientists and farmers about AW. Welfare is a complex trait affected by genetic structure and environmental factors. Therefore, the best welfare status can be achieved not only to enhance environmental factors such as management and feeding practices, but also the genetic structure of animals must be improved. In this regard, advances in molecular genetics have made great contributions to improve the genetic structure of farm animals, which has increased AW. Today, by sequencing and/or molecular markers, genetic diseases may be detected and eliminated in local herds. Additionally, genes related to diseases or adaptations are investigated by molecular techniques, and the frequencies of desired genotypes are increased in farm animals to keep welfare at an optimized level. Furthermore, stress on animals can be reduced with DNA extraction from stool and feather samples which reduces physical contact between animals and veterinarians. Together with molecular genetics, advances in genome editing tools and biotechnology are promising to improve FAW in the future.
Collapse
|
37
|
McLoda S, Anderson NC, Earing J, Lugar D. Effect of Light Regiment on Farrowing Performance and Behavior in Sows. Animals (Basel) 2021; 11:ani11102858. [PMID: 34679879 PMCID: PMC8532603 DOI: 10.3390/ani11102858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary When sows approach birthing in most commercial farms, they are often exposed to continuous light to help farm workers monitor pig health and progress. Being in constant lighting may have a negative effect on sows as mammals often prefer a quiet environment with low stimulation during birthing. In our study, we placed 15 sows in a 12 h light/12 h dark environment, and 15 sows in 24 h light. Sows were watched for ease of farrowing (measured in total time farrowing, birthing interval, and behavior during farrowing). We also measured total piglets born alive and stillborn piglets. Overall, we observed that sows who received darkness gave birth earlier in gestation. Light availability had no effect on total piglets born alive, farrowing behavior, or total length of time giving birth. It was observed that there were more stillborn animals for the sows who received darkness. Overall, it is possible that light availability could have an impact on farrowing behavior and health; however, more factors should be considered in the environment. Abstract The purpose of this study was to investigate the effects of light exposure on farrowing performance in sows. Thirty sows were moved to the farrowing unit at d 110 of gestation and assigned a treatment: 12 h light/12 h dark cycle (Dark) or 24 h light (Light). Treatments began upon entry into the farrowing unit. Video was recorded continuously from initiation of the treatments until completion of farrowing. Data collected included duration of farrowing, birthing interval, and behavior during farrowing. Additionally, the number of total born, liveborn, and stillborn piglets was recorded. Gestation length was different between treatments, with a shorter gestation in Dark treatment sows than Light treatment sows (116.4 vs. 117.1 ± 0.2 d, respectively; p = 0.027). The total duration of parturition and number of liveborn did not differ (p = 0.393). Number of stillborn piglets between treatments did differ (p = 0.018). Dark had more stillborns compared to Light treatment sows (1.5 vs. 0.7 ± 0.2 piglets, respectively). Neither the interval between piglets nor farrowing behavior differed between treatments (p > 0.100). The results from this experiment indicate that a sudden change in photoperiod has the potential to impact the gestation length of sows and number of stillborn pigs.
Collapse
Affiliation(s)
- Shelby McLoda
- Department of Agriculture, Illinois State University, Normal, IL 61761, USA; (S.M.); (J.E.)
| | - Nichole C. Anderson
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Drive, Amarillo, TX 79106, USA;
| | - Jennifer Earing
- Department of Agriculture, Illinois State University, Normal, IL 61761, USA; (S.M.); (J.E.)
| | - Drew Lugar
- Department of Agriculture, Illinois State University, Normal, IL 61761, USA; (S.M.); (J.E.)
- Correspondence:
| |
Collapse
|
38
|
Škop V, Xiao C, Liu N, Gavrilova O, Reitman ML. The effects of housing density on mouse thermal physiology depend on sex and ambient temperature. Mol Metab 2021; 53:101332. [PMID: 34478905 PMCID: PMC8463779 DOI: 10.1016/j.molmet.2021.101332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
Objective To improve understanding of mouse energy homeostasis and its applicability to humans, we quantitated the effects of housing density on mouse thermal physiology in both sexes. Methods Littermate wild type and Brs3-null mice were single- or group- (three per cage) housed and studied by indirect calorimetry with continuous measurement of core body temperature, energy expenditure, physical activity, and food intake. Results At 23 °C, below thermoneutrality, single-housed males had a lower body temperature and unchanged metabolic rate compared to group-housed controls. In contrast, single-housed females maintained a similar body temperature to group-housed controls by increasing their metabolic rate. With decreasing ambient temperature below 27 °C, only group-housed mice decreased their heat conductance, likely due to huddling, thus interfering with the energy expenditure vs ambient temperature relationship described by Scholander. In a hot environment (35 °C), the single-housed mice were less heat stressed. Upon fasting, single-housed mice had larger reductions in body temperature, with male mice having more torpor episodes of similar duration and female mice having a similar number of torpor episodes that lasted longer. Qualitatively, the effects of housing density on thermal physiology of Brs3-null mice generally mimicked the effects in controls. Conclusions Single housing is more sensitive than group housing for detecting thermal physiology phenotypes. Single housing increases heat loss and amplifies the effects of fasting or a cold environment. Male and female mice utilize different thermoregulatory strategies to respond to single housing. • Changing housing density changes thermal physiology and metabolic rate. • Singly housed mice are more affected by fasting and by cold temperatures. • Single housing is more sensitive than group housing for detecting thermal phenotypes. • Certain principles of thermal physiology are masked by group housing. • Male and female mice respond differently to single housing.
Collapse
Affiliation(s)
- Vojtěch Škop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Almeida J, Severo F, Nunes D. Impact of the Sound of Magnetic Resonance Imaging Pulse Sequences in Awake Mice. J APPL ANIM WELF SCI 2021; 25:75-88. [PMID: 34286640 DOI: 10.1080/10888705.2021.1941023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Magnetic resonance imaging (MRI) is a research field of high interest as the implementation of new imaging modalities can significantly improve clinical diagnosis of several human pathologies. Awake nonhuman animals in the laboratory are being used in MRI pre-clinical systems for the validation of new imaging techniques, but animal welfare concerns emerge as MRI pulse sequences produce extremely loud sounds, up to 120 dB. Consequently, it is unclear how stressful these sounds are to the animals. Here, the impact of these sounds in the rodent behavior and physiology was evaluated. To achieve this, C57BL6/J mice were divided into two groups: a group exposed to sounds of typical pulse sequences used in imaging and a control group that was not exposed to those sounds. Mice have been tested in the open field and elevated plus maze to monitor baseline behavior and a hormonal stress biomarker was assayed to assess acute stress. The results indicate that the pulse sequences used in MRI are transient stressors that overall do not impact the behavioral status of the animals.
Collapse
Affiliation(s)
- Joana Almeida
- Animal Vivarium, Champalimaud Foundation, Lisbon, Portugal
| | - Frederico Severo
- Neuroplasticity and Neural Activity Lab, Champalimaud Foundation, Lisbon, Portugal
| | - Daniel Nunes
- Neuroplasticity and Neural Activity Lab, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
40
|
Lopez-Cruz L, Bussey TJ, Saksida LM, Heath CJ. Using touchscreen-delivered cognitive assessments to address the principles of the 3Rs in behavioral sciences. Lab Anim (NY) 2021; 50:174-184. [PMID: 34140683 DOI: 10.1038/s41684-021-00791-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Despite considerable advances in both in silico and in vitro approaches, in vivo studies that involve animal model systems remain necessary in many research disciplines. Neuroscience is one such area, with studies often requiring access to a complete nervous system capable of dynamically selecting between and then executing a full range of cognitive and behavioral outputs in response to a given stimulus or other manipulation. The involvement of animals in research studies is an issue of active public debate and concern and is therefore carefully regulated. Such regulations are based on the principles of the 3Rs of Replacement, Reduction and Refinement. In the sub-specialty of behavioral neuroscience, Full/Absolute Replacement remains a major challenge, as the complete ex vivo recapitulation of a system as complex and dynamic as the nervous system has yet to be achieved. However, a number of very positive developments have occurred in this area with respect to Relative Replacement and to both Refinement and Reduction. In this review, we discuss the Refinement- and Reduction-related benefits yielded by the introduction of touchscreen-based behavioral assessment apparatus. We also discuss how data generated by a specific panel of behavioral tasks developed for this platform might substantially enhance monitoring of laboratory animal welfare and provide robust, quantitative comparisons of husbandry techniques to define and ensure maintenance of best practice.
Collapse
Affiliation(s)
- Laura Lopez-Cruz
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK. .,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| | - Timothy J Bussey
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,The Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Lisa M Saksida
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,The Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| |
Collapse
|
41
|
Mah KM, Torres-Espín A, Hallworth BW, Bixby JL, Lemmon VP, Fouad K, Fenrich KK. Automation of training and testing motor and related tasks in pre-clinical behavioural and rehabilitative neuroscience. Exp Neurol 2021; 340:113647. [PMID: 33600814 PMCID: PMC10443427 DOI: 10.1016/j.expneurol.2021.113647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Testing and training animals in motor and related tasks is a cornerstone of pre-clinical behavioural and rehabilitative neuroscience. Yet manually testing and training animals in these tasks is time consuming and analyses are often subjective. Consequently, there have been many recent advances in automating both the administration and analyses of animal behavioural training and testing. This review is an in-depth appraisal of the history of, and recent developments in, the automation of animal behavioural assays used in neuroscience. We describe the use of common locomotor and non-locomotor tasks used for motor training and testing before and after nervous system injury. This includes a discussion of how these tasks help us to understand the underlying mechanisms of neurological repair and the utility of some tasks for the delivery of rehabilitative training to enhance recovery. We propose two general approaches to automation: automating the physical administration of behavioural tasks (i.e., devices used to facilitate task training, rehabilitative training, and motor testing) and leveraging the use of machine learning in behaviour analysis to generate large volumes of unbiased and comprehensive data. The advantages and disadvantages of automating various motor tasks as well as the limitations of machine learning analyses are examined. In closing, we provide a critical appraisal of the current state of automation in animal behavioural neuroscience and a prospective on some of the advances in machine learning we believe will dramatically enhance the usefulness of these approaches for behavioural neuroscientists.
Collapse
Affiliation(s)
- Kar Men Mah
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Abel Torres-Espín
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ben W Hallworth
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - John L Bixby
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA; Department of Molecular & Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Vance P Lemmon
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
42
|
Ferland-Beckham C, Chaby LE, Daskalakis NP, Knox D, Liberzon I, Lim MM, McIntyre C, Perrine SA, Risbrough VB, Sabban EL, Jeromin A, Haas M. Systematic Review and Methodological Considerations for the Use of Single Prolonged Stress and Fear Extinction Retention in Rodents. Front Behav Neurosci 2021; 15:652636. [PMID: 34054443 PMCID: PMC8162789 DOI: 10.3389/fnbeh.2021.652636] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a mental health condition triggered by experiencing or witnessing a terrifying event that can lead to lifelong burden that increases mortality and adverse health outcomes. Yet, no new treatments have reached the market in two decades. Thus, screening potential interventions for PTSD is of high priority. Animal models often serve as a critical translational tool to bring new therapeutics from bench to bedside. However, the lack of concordance of some human clinical trial outcomes with preclinical animal efficacy findings has led to a questioning of the methods of how animal studies are conducted and translational validity established. Thus, we conducted a systematic review to determine methodological variability in studies that applied a prominent animal model of trauma-like stress, single prolonged stress (SPS). The SPS model has been utilized to evaluate a myriad of PTSD-relevant outcomes including extinction retention. Rodents exposed to SPS express an extinction retention deficit, a phenotype identified in humans with PTSD, in which fear memory is aberrantly retained after fear memory extinction. The current systematic review examines methodological variation across all phases of the SPS paradigm, as well as strategies for behavioral coding, data processing, statistical approach, and the depiction of data. Solutions for key challenges and sources of variation within these domains are discussed. In response to methodological variation in SPS studies, an expert panel was convened to generate methodological considerations to guide researchers in the application of SPS and the evaluation of extinction retention as a test for a PTSD-like phenotype. Many of these guidelines are applicable to all rodent paradigms developed to model trauma effects or learned fear processes relevant to PTSD, and not limited to SPS. Efforts toward optimizing preclinical model application are essential for enhancing the reproducibility and translational validity of preclinical findings, and should be conducted for all preclinical psychiatric research models.
Collapse
Affiliation(s)
| | - Lauren E Chaby
- Cohen Veterans Bioscience, New York City, NY, United States
| | - Nikolaos P Daskalakis
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,McLean Hospital, Belmont, MA, United States
| | - Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M University, Bryan, TX, United States
| | - Miranda M Lim
- Departments of Neurology, Behavioral Neuroscience, Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States.,Sleep Disorders Clinic, VA Portland Health Care System, Portland, OR, United States
| | - Christa McIntyre
- Department of Neuroscience, The University of Texas at Dallas, Richardson, TX, United States
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.,Research Service, John. D. Dingell VA Medical Center, Detroit, MI, United States
| | - Victoria B Risbrough
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,Center for Excellence in Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | | | - Magali Haas
- Cohen Veterans Bioscience, New York City, NY, United States
| |
Collapse
|
43
|
Schmidt KT, Sharp JL, Ethridge SB, Pearson T, Ballard S, Potter KM, Smith MA. The effects of strain and estrous cycle on heroin- and sugar-maintained responding in female rats. Behav Brain Res 2021; 409:113329. [PMID: 33933523 DOI: 10.1016/j.bbr.2021.113329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Heroin intake decreases during the proestrus phase of the estrous cycle in female, Long-Evans rats. The purpose of this study was to (1) determine if proestrus-associated decreases in heroin intake extend across rat strains and (2) determine if proestrus-associated decreases in responding extend to a nondrug reinforcer. Female rats were implanted with intravenous catheters and trained to self-administer heroin. Estrous cycle was tracked daily for the duration of the study. During testing, Lewis, Sprague Dawley, and Long-Evans rats self-administered low (0.0025 mg/kg) and high (0.0075 mg /kg) doses of heroin and then self-administered sugar on fixed ratio (FR1) schedules of reinforcement. Heroin intake decreased significantly during proestrus in all three rat strains under at least one dose condition; however, sugar intake did not decrease during proestrus in any strain. These data suggest that responding maintained by heroin, but not a nondrug reinforcer, significantly decreases during proestrus in female rats and that these effects are consistent across rat strain.
Collapse
Affiliation(s)
- Karl T Schmidt
- Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Jessica L Sharp
- Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Sarah B Ethridge
- Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Tallia Pearson
- Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Shannon Ballard
- Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Kenzie M Potter
- Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Mark A Smith
- Department of Psychology, Davidson College, Davidson, NC 28035, USA.
| |
Collapse
|
44
|
Impact of Light–Dark Phase on Delay Discounting Behavior in Rats. PSYCHOLOGICAL RECORD 2021. [DOI: 10.1007/s40732-021-00462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Corbani TL, Martin JE, Healy SD. The Impact of Acute Loud Noise on the Behavior of Laboratory Birds. Front Vet Sci 2021; 7:607632. [PMID: 33490135 PMCID: PMC7815526 DOI: 10.3389/fvets.2020.607632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 01/23/2023] Open
Abstract
Husbandry procedures and facility settings, such as low-frequency fire alarms, can produce noises in a laboratory environment that cause stress to animals used in research. However, most of the data demonstrating harmful effects that have, consequently, led to adaptations to management, have largely come from laboratory rodents with little known of the impacts on avian behavior and physiology. Here we examined whether exposure to a routine laboratory noise, a low-frequency fire alarm test, induced behavioral changes in laboratory zebra finches (Taeniopygia guttata). Twenty-four breeding pairs of zebra finches were randomly selected and exposed to the low-frequency fire alarm (sounding for 10-20 s) or no noise (control) on separate test days. All birds were filmed before and after the alarm sounded and on a control day (without the alarm). The zebra finches decreased their general activity and increased stationary and social behaviors after exposure to the alarm. Brief exposure to a low-frequency alarm disrupted the birds' behavior for at least 15 min. The induction of this behavioral stress response suggests that low-frequency sound alarms in laboratory facilities have the potential to compromise the welfare of laboratory birds.
Collapse
Affiliation(s)
- Tayanne L. Corbani
- The Royal (Dick) School of Veterinary Studies, The College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jessica E. Martin
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, The College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Susan D. Healy
- School of Biology, Harold Mitchell Building, University of St. Andrews, St. Andrews, United Kingdom
| |
Collapse
|
46
|
Kanbur S, Sağir D. Effect of high sound wave on ovarian tissue: an experimental study. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1912640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Savaş Kanbur
- Department of Medical Services and Techniques, Health Services Vocational School, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Dilek Sağir
- Department of Nursing, Faculty of Health Science, Sinop University, Sinop, Turkey
| |
Collapse
|
47
|
Garrigos D, Martínez-Morga M, Toval A, Kutsenko Y, Barreda A, Do Couto BR, Navarro-Mateu F, Ferran JL. A Handful of Details to Ensure the Experimental Reproducibility on the FORCED Running Wheel in Rodents: A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:638261. [PMID: 34040580 PMCID: PMC8141847 DOI: 10.3389/fendo.2021.638261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
A well-documented method and experimental design are essential to ensure the reproducibility and reliability in animal research. Experimental studies using exercise programs in animal models have experienced an exponential increase in the last decades. Complete reporting of forced wheel and treadmill exercise protocols would help to ensure the reproducibility of training programs. However, forced exercise programs are characterized by a poorly detailed methodology. Also, current guidelines do not cover the minimum data that must be included in published works to reproduce training programs. For this reason, we have carried out a systematic review to determine the reproducibility of training programs and experimental designs of published research in rodents using a forced wheel system. Having determined that most of the studies were not detailed enough to be reproducible, we have suggested guidelines for animal research using FORCED exercise wheels, which could also be applicable to any form of forced exercise.
Collapse
Affiliation(s)
- Daniel Garrigos
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Marta Martínez-Morga
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Angel Toval
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Alberto Barreda
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Bruno Ribeiro Do Couto
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Fernando Navarro-Mateu
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Unidad de Docencia, Investigación y Formación en Salud Mental (UDIF-SM), Servicio Murciano de Salud, Murcia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Departamento de Psicología Básica y Metodología, Universidad de Murcia, Murcia, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- *Correspondence: José Luis Ferran,
| |
Collapse
|
48
|
von Kortzfleisch VT, Karp NA, Palme R, Kaiser S, Sachser N, Richter SH. Improving reproducibility in animal research by splitting the study population into several 'mini-experiments'. Sci Rep 2020; 10:16579. [PMID: 33024165 PMCID: PMC7538440 DOI: 10.1038/s41598-020-73503-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/11/2020] [Indexed: 01/16/2023] Open
Abstract
In light of the hotly discussed 'reproducibility crisis', a rethinking of current methodologies appears essential. Implementing multi-laboratory designs has been shown to enhance the external validity and hence the reproducibility of findings from animal research. We here aimed at proposing a new experimental strategy that transfers this logic into a single-laboratory setting. We systematically introduced heterogeneity into our study population by splitting an experiment into several 'mini-experiments' spread over different time points a few weeks apart. We hypothesised to observe improved reproducibility in such a 'mini-experiment' design in comparison to a conventionally standardised design, according to which all animals are tested at one specific point in time. By comparing both designs across independent replicates, we could indeed show that the use of such a 'mini-experiment' design improved the reproducibility and accurate detection of exemplary treatment effects (behavioural and physiological differences between four mouse strains) in about half of all investigated strain comparisons. Thus, we successfully implemented and empirically validated an easy-to-handle strategy to tackle poor reproducibility in single-laboratory studies. Since other experiments within different life science disciplines share the main characteristics with the investigation reported here, these studies are likely to also benefit from this approach.
Collapse
Affiliation(s)
- Vanessa Tabea von Kortzfleisch
- Department of Behavioural Biology, University of Münster, Badestraße 13, Münster, Germany.
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| | - Natasha A Karp
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestraße 13, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Badestraße 13, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestraße 13, Münster, Germany.
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| |
Collapse
|
49
|
Morello GM, Hultgren J, Capas-Peneda S, Wiltshire M, Thomas A, Wardle-Jones H, Brajon S, Gilbert C, Olsson IAS. High laboratory mouse pre-weaning mortality associated with litter overlap, advanced dam age, small and large litters. PLoS One 2020; 15:e0236290. [PMID: 32785214 PMCID: PMC7423063 DOI: 10.1371/journal.pone.0236290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/01/2020] [Indexed: 11/19/2022] Open
Abstract
High and variable pre-weaning mortality is a persistent problem in laboratory mouse breeding. Assuming a modest 15% mortality rate across mouse strains, means that approximately 1 million more pups are produced yearly in the EU to compensate for those which die. This paper presents the first large study under practical husbandry conditions to determine the risk factors associated with mouse pre-weaning mortality. We analysed historical records from 219,975 pups from two breeding facilities, collected as part of their management routine and including information on number of pups born and weaned per litter, parents’ age and identification, and dates of birth and death of all animals. Pups were counted once in their first week of life and at weaning, and once every one or two weeks, depending on the need for cage cleaning. Dead pups were recorded as soon as these were found during the daily cage screening (without opening the cage). It was hypothesized that litter overlap (i.e. the presence of older siblings in the cage when new pups are born), a recurrent social configuration in trio-housed mice, is associated with increased newborn mortality, along with advanced dam age, large litter size, and a high number and age of older siblings in the cage. The estimated probability of pup death was two to seven percentage points higher in cages with litter overlap compared to those without. Litter overlap was associated with an increase in death of the entire litter of five and six percentage points, which represent an increase of 19% and 103% compared to non-overlapped litters in the two breeding facilities, respectively. Increased number and age of older siblings, advanced dam age, small litter size (less than four pups born) and large litter size (over 11 pups born) were associated with increased probability of pup death.
Collapse
Affiliation(s)
- Gabriela M. Morello
- Laboratory Animal Science, IBMC-Institute of Molecular and Cellular Biology, University of Porto, Porto, Portugal
- i3S –Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
- * E-mail:
| | - Jan Hultgren
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Sara Capas-Peneda
- Laboratory Animal Science, IBMC-Institute of Molecular and Cellular Biology, University of Porto, Porto, Portugal
- i3S –Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| | | | - Aurelie Thomas
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | | | - Sophie Brajon
- Laboratory Animal Science, IBMC-Institute of Molecular and Cellular Biology, University of Porto, Porto, Portugal
- i3S –Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| | - Colin Gilbert
- Babraham Institute, Babraham, Cambridge, United Kingdom
| | - I. Anna S. Olsson
- Laboratory Animal Science, IBMC-Institute of Molecular and Cellular Biology, University of Porto, Porto, Portugal
- i3S –Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
50
|
Complex Movement Control in a Rat Model of Parkinsonian Falls: Bidirectional Control by Striatal Cholinergic Interneurons. J Neurosci 2020; 40:6049-6067. [PMID: 32554512 DOI: 10.1523/jneurosci.0220-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 01/18/2023] Open
Abstract
Older persons and, more severely, persons with Parkinson's disease (PD) exhibit gait dysfunction, postural instability and a propensity for falls. These dopamine (DA) replacement-resistant symptoms are associated with losses of basal forebrain and striatal cholinergic neurons, suggesting that falls reflect disruption of the corticostriatal transfer of movement-related cues and their striatal integration with movement sequencing. To advance a rodent model of the complex movement deficits of Parkinsonian fallers, here we first demonstrated that male and female rats with dual cortical cholinergic and striatal DA losses (DL rats) exhibit cued turning deficits, modeling the turning deficits seen in these patients. As striatal cholinergic interneurons (ChIs) are positioned to integrate movement cues with gait, and as ChI loss has been associated with falls in PD, we next used this task, as well as a previously established task used to reveal heightened fall rates in DL rats, to broadly test the role of ChIs. Chemogenetic inhibition of ChIs in otherwise intact male and female rats caused cued turning deficits and elevated fall rates. Spontaneous turning was unaffected. Furthermore, chemogenetic stimulation of ChIs in DL rats reduced fall rates and restored cued turning performance. Stimulation of ChIs was relatively more effective in rats with viral transfection spaces situated lateral to the DA depletion areas in the dorsomedial striatum. These results indicate that striatal ChIs are essential for the control of complex movements, and they suggest a therapeutic potential of stimulation of ChIs to restore gait and balance, and to prevent falls in PD.SIGNIFICANCE STATEMENT In persons with Parkinson's disease, gait dysfunction and the associated risk for falls do not benefit from dopamine replacement therapy and often result in long-term hospitalization and nursing home placement. Here, we first validated a new task to demonstrate impairments in cued turning behavior in rodents modeling the cholinergic-dopaminergic losses observed in Parkinsonian fallers. We then demonstrated the essential role of striatal cholinergic interneurons for turning behavior as well as for traversing dynamic surfaces and avoiding falls. Stimulation of these interneurons in the rat model rescued turning performance and reduced fall rates. Our findings indicate the feasibility of investigating the neuronal circuitry underling complex movement control in rodents, and that striatal cholinergic interneurons are an essential node of such circuitry.
Collapse
|