1
|
Dendo Y, Abe K, Onodera S, Kayano S, Ota H, Takase K. Introduction and evaluation of size-specific DLP for radiation dose estimation in CT examinations. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2024; 44:041508. [PMID: 39383881 DOI: 10.1088/1361-6498/ad8500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
The increased utilization of computed tomography (CT) has raised concerns about patient radiation exposure. Effective dose (ED), which requires precise estimation, is crucial for assessing and managing these risks. Traditional ED estimation methods, which are based on the dose-length product (DLP), often lack accuracy due to variations in patient size and anatomy. This study aims to evaluate the efficacy of size-specific DLP (SS-DLP), a novel metric that combines the size-specific dose estimate (SSDE) with scan length, to provide a more accurate estimation of radiation exposure from CT examinations. Focusing on adult chest-abdomen-pelvis scans, we calculated SSDE and SS-DLP and utilized two simulation tools, Radimetrics and WAZA-ARI, for a detailed analysis. Our findings indicate that SS-DLP is highly correlated with EDs from Monte Carlo simulations, suggesting its reliability. Additionally, SS-DLP showed a moderate reduction in errors based on patient sex and body mass index compared to traditional DLP-based methods. Thus, SS-DLP offers a more accurate and personalized radiation exposure estimate, potentially enhancing patient safety.
Collapse
Affiliation(s)
- Yutaka Dendo
- Department of Radiological Technology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Keisuke Abe
- Department of Radiological Technology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shu Onodera
- Department of Radiological Technology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shingo Kayano
- Department of Radiological Technology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hideki Ota
- Department of Diagnostic Radiology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
2
|
Frush DP, Vassileva J, Brambilla M, Mahesh M, Rehani M, Samei E, Applegate K, Bourland J, Ciraj-Bjenlac O, Dahlstrom D, Gershan V, Gilligan P, Godthelp B, Hjemly H, Kainberger F, Mikhail-Lette M, Holmberg O, Paez D, Schrandt S, Valentin A, Van Deventer T, Wakeford R. Recurrent medical imaging exposures for the care of patients: one way forward. Eur Radiol 2024; 34:6475-6487. [PMID: 38592419 DOI: 10.1007/s00330-024-10659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/17/2023] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
Medical imaging is both valuable and essential in the care of patients. Much of this imaging depends on ionizing radiation with attendant responsibilities for judicious use when performing an examination. This responsibility applies in settings of both individual as well as multiple (recurrent) imaging with associated repeated radiation exposures. In addressing the roles and responsibilities of the medical communities in the paradigm of recurrent imaging, both the International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) have issued position statements, each affirmed by other organizations. The apparent difference in focus and approach has resulted in a lack of clarity and continued debate. Aiming towards a coherent approach in dealing with radiation exposure in recurrent imaging, the IAEA convened a panel of experts, the purpose of which was to identify common ground and reconcile divergent perspectives. The effort has led to clarifying recommendations for radiation exposure aspects of recurrent imaging, including the relevance of patient agency and the provider-patient covenant in clinical decision-making. CLINICAL RELEVANCE STATEMENT: An increasing awareness, generating some lack of clarity and divergence in perspectives, with patients receiving relatively high radiation doses (e.g., ≥ 100 mSv) from recurrent imaging warrants a multi-stakeholder accord for the benefit of patients, providers, and the imaging community. KEY POINTS: • Recurrent medical imaging can result in an accumulation of exposures which exceeds 100 milli Sieverts. • Professional organizations have different perspectives on roles and responsibilities for recurrent imaging. • An expert panel reconciles differing perspectives for addressing radiation exposure from recurrent medical imaging.
Collapse
Affiliation(s)
- Donald Paul Frush
- Department of Radiology, Duke University Medical Center, Durham, NC, 27705, USA.
| | - Jenia Vassileva
- Radiation Protection of Patients Unit, International Atomic Energy Agency, Vienna, Austria
| | - Marco Brambilla
- Department of Medical Physics, University Hospital of Novara, Novara, Italy
| | - Mahadevappa Mahesh
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Madan Rehani
- Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Ehsan Samei
- Department of Radiology, Duke University Medical Center, Durham, NC, 27705, USA
| | | | - John Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | - Vesna Gershan
- Radiation Protection of Patients Unit, International Atomic Energy Agency, Vienna, Austria
| | - Paddy Gilligan
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Barbara Godthelp
- Authority for Nuclear Safety and Radiation Protection, The Hague, The Netherlands
| | - Hakon Hjemly
- International Society of Radiographers and Radiological Technologists, London, UK
| | - Franz Kainberger
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Ola Holmberg
- Radiation Protection of Patients Unit, International Atomic Energy Agency, Vienna, Austria
| | - Diana Paez
- Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Suz Schrandt
- ExPPect, Founder & CEO, and Patients for Patient Safety US, Champion (Affiliate, WHO PFPS Network), Arlington, VA, USA
| | - Andreas Valentin
- Department of Internal Medicine With Cardiology & Intensive Care Medicine Clinic Donaustadt Vienna Health Care Group, Vienna, Austria
| | | | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Frush DP, Frija G, Allen B, Brkljacic B, Damilakis J, Mahesh M. CT radiation exposure and cancer risk: from knowing to acting. Pediatr Radiol 2024; 54:1407-1409. [PMID: 38750325 DOI: 10.1007/s00247-024-05949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Donald P Frush
- Department of Radiology, Duke University Medical Center, 2301 Erwin Road, Durham, 27705, NC, USA.
| | - Guy Frija
- Paris Cité University, Paris, France
| | - Bibb Allen
- Grandview Medical Center, Birmingham, AL, USA
| | - Boris Brkljacic
- Department of Radiology, University of Zagreb School of Medicine, University Hospital Dubrava, Zagreb, Croatia
| | - John Damilakis
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Mahadevappa Mahesh
- Department Of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Valente D, Gentileschi MP, Valenti A, Burgio M, Soddu S, Bruzzaniti V, Guerrisi A, Verdina A. Cumulative Dose from Recurrent CT Scans: Exploring the DNA Damage Response in Human Non-Transformed Cells. Int J Mol Sci 2024; 25:7064. [PMID: 39000171 PMCID: PMC11241671 DOI: 10.3390/ijms25137064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Recurrent computed tomography (CT) examination has become a common diagnostic procedure for several diseases and injuries. Though each singular CT scan exposes individuals at low doses of low linear energy transfer (LET) radiation, the cumulative dose received from recurrent CT scans poses an increasing concern for potential health risks. Here, we evaluated the biological effects of recurrent CT scans on the DNA damage response (DDR) in human fibroblasts and retinal pigment epithelial cells maintained in culture for five months and subjected to four CT scans, one every four weeks. DDR kinetics and eventual accumulation of persistent-radiation-induced foci (P-RIF) were assessed by combined immunofluorescence for γH2AX and 53BP1, i.e., γH2AX/53BP1 foci. We found that CT scan repetitions significantly increased both the number and size of γH2AX/53BP1 foci. In particular, after the third CT scan, we observed the appearance of giant foci that might result from the overlapping of individual small foci and that do not associate with irreversible growth arrest, as shown by DNA replication in the foci-carrying cells. Whether these giant foci represent coalescence of unrepaired DNA damage as reported following single exposition to high doses of high LET radiation is still unclear. However, morphologically, these giant foci resemble the recently described compartmentalization of damaged DNA that should facilitate the repair of DNA double-strand breaks but also increase the risk of chromosomal translocations. Overall, these results indicate that for a correct evaluation of the damage following recurrent CT examinations, it is necessary to consider the size and composition of the foci in addition to their number.
Collapse
Affiliation(s)
- Davide Valente
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (M.P.G.); (S.S.)
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, 00185 Rome, Italy
| | - Maria Pia Gentileschi
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (M.P.G.); (S.S.)
| | - Alessandro Valenti
- Unit of Radiology and Diagnostic Imaging, Department of Clinical and Dermatological Research, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy; (A.V.); (M.B.)
| | - Massimo Burgio
- Unit of Radiology and Diagnostic Imaging, Department of Clinical and Dermatological Research, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy; (A.V.); (M.B.)
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (M.P.G.); (S.S.)
| | - Vicente Bruzzaniti
- Unit of Medical Physics and Expert Systems, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Antonino Guerrisi
- Unit of Radiology and Diagnostic Imaging, Department of Clinical and Dermatological Research, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy; (A.V.); (M.B.)
| | - Alessandra Verdina
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (M.P.G.); (S.S.)
| |
Collapse
|
5
|
Wellbrock M, Voigt M, Ronckers C, Grabow D, Spix C, Erdmann F. Registration, incidence patterns, and survival trends of central nervous system tumors among children in Germany 1980-2019: An analysis of 40 years based on data from the German Childhood Cancer Registry. Pediatr Blood Cancer 2024; 71:e30954. [PMID: 38532243 DOI: 10.1002/pbc.30954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Tumors of the central nervous system (CNS) are the second most common type of pediatric cancer in Germany. We aimed to describe registration practice, incidence, and survival patterns for childhood CNS tumors in Germany for the past 40 years. PROCEDURE Including all CNS tumor cases in children diagnosed at ages 0-14 years registered at the German Childhood Cancer Registry (GCCR) in 1980-2019 (for survival analysis 1980-2016), we calculated age-specific and age-standardized incidence rates (ASIR) over time, average annual percentage changes (AAPC), and 1- and 5-year overall survival. RESULTS While we observed a pronounced increase in ASIR after the establishment of the GCCR during the 1980s, ASIR for all pediatric CNS tumors combined continued to increase markedly from 28.6 per million in 1990-1999 to 43.3 in 2010-2019 (AAPC = 2.7% in 1991-2010, AAPC = 0.3% in 2010-2019). The 5-year overall survival from CNS tumors improved from 63% in the 1980s, 70% in the 1990s to 79% in 2010-2016. These improvements have occurred across all age groups. Children diagnosed with ependymomas and choroid plexus tumors experienced the strongest increase (from 54% to 81%). CONCLUSIONS Observed increases in incidence rates for pediatric CNS tumors are likely only partially caused by actual increasing case numbers. The majority is a function of improved registration and, to a minor extent, improvements in diagnostics. Survival from pediatric CNS tumors has, by and large, improved consistently, leading to a growing population of childhood cancer survivors with diverse health biographies and risk of lifelong adverse impact on health and wellbeing.
Collapse
Affiliation(s)
- Maike Wellbrock
- Research Group Aetiology and Inequalities in Childhood Cancer, Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Prevention and Evaluation, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Mathias Voigt
- German Childhood Cancer Registry/Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Cecile Ronckers
- German Childhood Cancer Registry/Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Desiree Grabow
- German Childhood Cancer Registry/Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudia Spix
- German Childhood Cancer Registry/Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Friederike Erdmann
- Research Group Aetiology and Inequalities in Childhood Cancer, Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Prevention and Evaluation, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| |
Collapse
|
6
|
Salminen S, Jäämaa S, Nevala R, Sormaala MJ, Koivikko M, Tukiainen E, Repo J, Blomqvist C, Sampo M. Ultra-low-dose computed tomography and chest X-ray in follow-up of high-grade soft tissue sarcoma-a prospective comparative study. Sci Rep 2024; 14:7181. [PMID: 38531939 DOI: 10.1038/s41598-024-57770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Ultra-low-dose computed tomography (ULD-CT) may combine the high sensitivity of conventional computed tomography (CT) in detecting sarcoma pulmonary metastasis, with a radiation dose in the same magnitude as chest X-ray (CXR). Fifty patients with non-metastatic high-grade soft tissue sarcoma treated with curative intention were recruited. Their follow-up involved both CXR and ULD-CT to evaluate their different sensitivity. Suspected findings were confirmed by conventional CT if necessary. Patients with isolated pulmonary metastases were treated with surgery or stereotactic body radiation therapy (SBRT) with curative intent if possible. The median effective dose from a single ULD-CT study was 0.27 mSv (range 0.12 to 0.89 mSv). Nine patients were diagnosed with asymptomatic lung metastases during the follow-up. Only three of them were visible in CXR and all nine in ULD-CT. CXR had therefore only a 33% sensitivity compared to ULD-CT. Four patients were operated, and one had SBRT to all pulmonary lesions. Eight of them, however, died of the disease. Two patients developed symptomatic metastatic recurrence involving extrapulmonary sites+/-the lungs between two imaging rounds. ULD-CT has higher sensitivity for the detection of sarcoma pulmonary metastasis than CXR, with a radiation dose considerably lower than conventional CT.Clinical trial registration: NCT05813808. 04-14-2023.
Collapse
Affiliation(s)
- Samuli Salminen
- Comprehensive Cancer Center, Helsinki University Hospital (HUH), Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Sari Jäämaa
- Comprehensive Cancer Center, Helsinki University Hospital (HUH), Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Riikka Nevala
- Comprehensive Cancer Center, Helsinki University Hospital (HUH), Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Markus J Sormaala
- Department of Radiology, Helsinki University Hospital, Meilahti Campus Topeliuksenkatu 32, N0029, Helsinki, Finland
| | - Mika Koivikko
- Department of Radiology, Helsinki University Hospital, Meilahti Campus Topeliuksenkatu 32, N0029, Helsinki, Finland
| | - Erkki Tukiainen
- Department of Plastic Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jussi Repo
- Department of Orthopedics and Traumatology, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Carl Blomqvist
- Comprehensive Cancer Center, Helsinki University Hospital (HUH), Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Mika Sampo
- HUSLAB Pathology and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Xu H, Sun QF, Yue BR, Cheng JS, Niu YT. Results and analysis of examination doses for paediatric CT procedures based on a nationwide survey in China. Eur Radiol 2024; 34:1659-1666. [PMID: 37672054 DOI: 10.1007/s00330-023-10005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVE To report the results of a dose survey conducted across 31 provinces in mainland China from 2017 to 2018 and to analyse the dose level to determine the national diagnostic reference levels (DRLs) for paediatric CT procedures. METHODS At least ten patients for each age group (0- < 1, 1- < 5, 5- < 10, 10- < 15 years) and each procedure (head, chest and abdomen) for each CT scanner were selected from four to eight hospitals in each province. The dose information (CTDIvol and DLP) was collected from the HIS or RIS-PACS systems. The median values in each CT scanner were considered the representative dose values for the paediatric patients in CT scanning. The national DRLs were estimated based on the 75th percentile distribution of the median values. RESULTS A total of 24,395 patients and 319 CT scanners were investigated across 262 hospitals. For paediatric CT scanning in 4 different age groups, the median (P50) and the 75th percentile (P75) of CTDIvol and DLP for each scanning procedure were calculated and reported. National DRLs were then proposed for each procedure and age group. CONCLUSION The dose level of CT scanning for children in mainland China was reported for the first time. The DRLs for paediatric CT in the present study are similar to those in some Asian countries but higher than those in European countries. CLINICAL RELEVANCE STATEMENT The paediatric CT is an extensively used tool in diagnosing paediatric disease; however, children are more sensitive to radiation. Establishing the diagnostic reference level of paediatric CT examination is necessary to reduce the dose of CT in children and promote the optimisation of medical exposure. KEY POINTS • The DRLs for 3 paediatric CT procedures (head, chest and abdomen) and 4 age groups (0- < 1, 1- < 5, 5- < 10, 10- < 15 years) were proposed in mainland China first time. • The examination parameter and dose for children need to be further optimised in China, especially to lower the tube voltage in paediatric CT.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Radiological Protection and Nuclear Emergency Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China
| | - Quan-Fu Sun
- Key Laboratory of Radiological Protection and Nuclear Emergency Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China.
| | - Bao-Rong Yue
- Key Laboratory of Radiological Protection and Nuclear Emergency Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China
| | - Jin-Sheng Cheng
- Key Laboratory of Radiological Protection and Nuclear Emergency Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China
| | - Yan-Tao Niu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
8
|
Lohnherr V, Baumann I. Orbital complications of sinusitis in children - Retrospective analysis of an 8.5 year experience. Int J Pediatr Otorhinolaryngol 2024; 177:111865. [PMID: 38262225 DOI: 10.1016/j.ijporl.2024.111865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
OBJECTIVE Orbital complications account for approximately 74-85 % of all complications of acute sinusitis, affect the pediatric population more frequently, and can have devastating consequences. In the years following the COVID-19 pandemic (2022, 2023), a high number of children presented to our clinic with orbital complications. 1)Has there been an increase in orbital complications in the post-covid era? 2)To what extent has the use of MRI reduced radiation in pediatric patients? DESIGN In our retrospective data analysis, all pediatric patients (age 0-16 years) treated at a university ENT clinic during the period 01/2014-06/2023 who presented with an orbital complication of rhinosinusitis were included. The analysis was descriptive. RESULTS Forty-four children with orbital complications of rhinosinusitis were treated during the study period, 14 females and 30 males. Most patients (n = 23, 52 %) presented during the years of the waning Covid-19 pandemic (01/2022 to 06/2023). MRI was the initial imaging modality (n = 22,50 %); CT was performed in 17 of 44 cases (39 %) when surgery was indicated. The most common germ detected was of the Streptococcus species, and the predominant antibiotic administered was amipicillin/sulbactam. CONCLUSION The standard operating procedure (SOP) established at our hospital in 2014 was followed in 42/44 cases. Except for 2 cases, CT was performed exclusively when surgery was indicated. Imaging-related radiation could be avoided in 27 patients (61 %). There was a 30 % increase in orbital complications related to sinus infections postpandemically.
Collapse
|
9
|
Zeilinger MG, Giese D, Schmidt M, May MS, Janka R, Heiss R, Ammon F, Achenbach S, Uder M, Treutlein C. Highly accelerated, Dixon-based non-contrast MR angiography versus high-pitch CT angiography. LA RADIOLOGIA MEDICA 2024; 129:268-279. [PMID: 38017228 PMCID: PMC10879221 DOI: 10.1007/s11547-023-01752-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVES To compare a novel, non-contrast, flow-independent, 3D isotropic magnetic resonance angiography (MRA) sequence that combines respiration compensation, electrocardiogram (ECG)-triggering, undersampling, and Dixon water-fat separation with an ECG-triggered aortic high-pitch computed tomography angiography (CTA) of the aorta. MATERIALS AND METHODS Twenty-five patients with recent CTA were scheduled for non-contrast MRA on a 3 T MRI. Aortic diameters and cross-sectional areas were measured on MRA and CTA using semiautomatic measurement tools at 11 aortic levels. Image quality was assessed independently by two radiologists on predefined aortic levels, including myocardium, proximal aortic branches, pulmonary veins and arteries, and the inferior (IVC) and superior vena cava (SVC). Image quality was assessed on a 5-point Likert scale. RESULTS All datasets showed diagnostic image quality. Visual grading was similar for MRA and CTA regarding overall image quality (0.71), systemic arterial image quality (p = 0.07-0.91) and pulmonary artery image quality (p = 0.05). Both readers favored MRA for SVC and IVC, while CTA was preferred for pulmonary veins (all p < 0.05). No significant difference was observed in aortic diameters or cross-sectional areas between native MRA and contrast-enhanced CTA (p = 0.08-0.94). CONCLUSION The proposed non-contrast MRA enables robust imaging of the aorta, its proximal branches and the pulmonary arteries and great veins with image quality and aortic diameters and cross-sectional areas comparable to that of CTA. Moreover, this technique represents a suitable free-breathing alternative, without the use of contrast agents or ionizing radiation. Therefore, it is especially suitable for patients requiring repetitive imaging.
Collapse
Affiliation(s)
- Martin Georg Zeilinger
- Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Daniel Giese
- Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Magnetic Resonance, Siemens Healthcare, Erlangen, Germany
| | | | - Matthias Stefan May
- Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rolf Janka
- Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rafael Heiss
- Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian Ammon
- Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Institute of Cardiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan Achenbach
- Institute of Cardiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Treutlein
- Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Saenko V, Mitsutake N. Radiation-Related Thyroid Cancer. Endocr Rev 2024; 45:1-29. [PMID: 37450579 PMCID: PMC10765163 DOI: 10.1210/endrev/bnad022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/18/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Radiation is an environmental factor that elevates the risk of developing thyroid cancer. Actual and possible scenarios of exposures to external and internal radiation are multiple and diverse. This article reviews radiation doses to the thyroid and corresponding cancer risks due to planned, existing, and emergency exposure situations, and medical, public, and occupational categories of exposures. Any exposure scenario may deliver a range of doses to the thyroid, and the risk for cancer is addressed along with modifying factors. The consequences of the Chornobyl and Fukushima nuclear power plant accidents are described, summarizing the information on thyroid cancer epidemiology, treatment, and prognosis, clinicopathological characteristics, and genetic alterations. The Chornobyl thyroid cancers have evolved in time: becoming less aggressive and driver shifting from fusions to point mutations. A comparison of thyroid cancers from the 2 areas reveals numerous differences that cumulatively suggest the low probability of the radiogenic nature of thyroid cancers in Fukushima. In view of continuing usage of different sources of radiation in various settings, the possible ways of reducing thyroid cancer risk from exposures are considered. For external exposures, reasonable measures are generally in line with the As Low As Reasonably Achievable principle, while for internal irradiation from radioactive iodine, thyroid blocking with stable iodine may be recommended in addition to other measures in case of anticipated exposures from a nuclear reactor accident. Finally, the perspectives of studies of radiation effects on the thyroid are discussed from the epidemiological, basic science, and clinical points of view.
Collapse
Affiliation(s)
- Vladimir Saenko
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Norisato Mitsutake
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
11
|
Bosch de Basea Gomez M, Thierry-Chef I, Harbron R, Hauptmann M, Byrnes G, Bernier MO, Le Cornet L, Dabin J, Ferro G, Istad TS, Jahnen A, Lee C, Maccia C, Malchair F, Olerud H, Simon SL, Figuerola J, Peiro A, Engels H, Johansen C, Blettner M, Kaijser M, Kjaerheim K, Berrington de Gonzalez A, Journy N, Meulepas JM, Moissonnier M, Nordenskjold A, Pokora R, Ronckers C, Schüz J, Kesminiene A, Cardis E. Risk of hematological malignancies from CT radiation exposure in children, adolescents and young adults. Nat Med 2023; 29:3111-3119. [PMID: 37946058 PMCID: PMC10719096 DOI: 10.1038/s41591-023-02620-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
Over one million European children undergo computed tomography (CT) scans annually. Although moderate- to high-dose ionizing radiation exposure is an established risk factor for hematological malignancies, risks at CT examination dose levels remain uncertain. Here we followed up a multinational cohort (EPI-CT) of 948,174 individuals who underwent CT examinations before age 22 years in nine European countries. Radiation doses to the active bone marrow were estimated on the basis of body part scanned, patient characteristics, time period and inferred CT technical parameters. We found an association between cumulative dose and risk of all hematological malignancies, with an excess relative risk of 1.96 (95% confidence interval 1.10 to 3.12) per 100 mGy (790 cases). Similar estimates were obtained for lymphoid and myeloid malignancies. Results suggest that for every 10,000 children examined today (mean dose 8 mGy), 1-2 persons are expected to develop a hematological malignancy attributable to radiation exposure in the subsequent 12 years. Our results strengthen the body of evidence of increased cancer risk at low radiation doses and highlight the need for continued justification of pediatric CT examinations and optimization of doses.
Collapse
Affiliation(s)
- Magda Bosch de Basea Gomez
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabelle Thierry-Chef
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Richard Harbron
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Population Health Sciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School, Neuruppin, Germany
| | - Graham Byrnes
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Maria-Odile Bernier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay aux Roses, France
| | - Lucian Le Cornet
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Jérémie Dabin
- Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Gilles Ferro
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Tore S Istad
- Norwegian Radiation and Nuclear Safety Authority, Oslo, Norway
| | - Andreas Jahnen
- Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Choonsik Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Carlo Maccia
- Centre d'Assurance de qualité des Applications Technologiques dans le domaine de la Santé (CAATS), Sèvres, France
| | - Françoise Malchair
- Centre d'Assurance de qualité des Applications Technologiques dans le domaine de la Santé (CAATS), Sèvres, France
| | - Hilde Olerud
- Norwegian Radiation and Nuclear Safety Authority, Oslo, Norway
- Norwegian Radiation Protection Authority, Østerås, Norway
- University of South-Eastern Norway, Kongsberg, Norway
| | - Steven L Simon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jordi Figuerola
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Peiro
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Hilde Engels
- Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Christoffer Johansen
- Cancer Late Effect Research Oncology Clinic (CASTLE), Center for Surgery and Cancer, Rigshospitalet, Copenhagen, Denmark
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Magnus Kaijser
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Amy Berrington de Gonzalez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Institute of Cancer Research, London, UK
| | - Neige Journy
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay aux Roses, France
- French National Institute of Health and Medical Research (INSERM) Unit 1018, Centre for Research in Epidemiology and Population Health, Paris Saclay University, Gustave Roussy, Villejuif, France
| | | | - Monika Moissonnier
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Arvid Nordenskjold
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Roman Pokora
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Cecile Ronckers
- Institute of Biostatistics and Registry Research, Brandenburg Medical School, Neuruppin, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Joachim Schüz
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Ausrele Kesminiene
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Elisabeth Cardis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.
- Pompeu Fabra University, Barcelona, Spain.
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Pederiva F, Rothenberg SS, Hall N, Ijsselstijn H, Wong KKY, von der Thüsen J, Ciet P, Achiron R, Pio d'Adamo A, Schnater JM. Congenital lung malformations. Nat Rev Dis Primers 2023; 9:60. [PMID: 37919294 DOI: 10.1038/s41572-023-00470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Congenital lung malformations (CLMs) are rare developmental anomalies of the lung, including congenital pulmonary airway malformations (CPAM), bronchopulmonary sequestration, congenital lobar overinflation, bronchogenic cyst and isolated congenital bronchial atresia. CLMs occur in 4 out of 10,000 live births. Postnatal presentation ranges from an asymptomatic infant to respiratory failure. CLMs are typically diagnosed with antenatal ultrasonography and confirmed by chest CT angiography in the first few months of life. Although surgical treatment is the gold standard for symptomatic CLMs, a consensus on asymptomatic cases has not been reached. Resection, either thoracoscopically or through thoracotomy, minimizes the risk of local morbidity, including recurrent infections and pneumothorax, and avoids the risk of malignancies that have been associated with CPAM, bronchopulmonary sequestration and bronchogenic cyst. However, some surgeons suggest expectant management as the incidence of adverse outcomes, including malignancy, remains unknown. In either case, a planned follow-up and a proper transition to adult care are needed. The biological mechanisms through which some CLMs may trigger malignant transformation are under investigation. KRAS has already been confirmed to be somatically mutated in CPAM and other genetic susceptibilities linked to tumour development have been explored. By summarizing current progress in CLM diagnosis, management and molecular understanding we hope to highlight open questions that require urgent attention.
Collapse
Affiliation(s)
- Federica Pederiva
- Paediatric Surgery, "F. Del Ponte" Hospital, ASST Settelaghi, Varese, Italy.
| | - Steven S Rothenberg
- Department of Paediatric Surgery, Rocky Mountain Hospital for Children, Denver, CO, USA
| | - Nigel Hall
- University Surgery Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hanneke Ijsselstijn
- Department of Paediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Kenneth K Y Wong
- Department of Surgery, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Jan von der Thüsen
- Department of Pathology and Clinical Bioinformatics, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Pierluigi Ciet
- Departments of Radiology and Nuclear Medicine and Respiratory Medicine and Allergology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Reuven Achiron
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, The Chaim Sheba Medical Center Tel-Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adamo Pio d'Adamo
- Laboratory of Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - J Marco Schnater
- Department of Paediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Abalo KD, Malekzadeh-Milani S, Hascoët S, Dreuil S, Feuillet T, Damon C, Bouvaist H, Bouzguenda I, Cohen S, Dauphin C, Di Filippo S, Douchin S, Godart F, Guérin P, Helms P, Karsenty C, Lefort B, Mauran P, Ovaert C, Piéchaud JF, Thambo JB, Lee C, Little MP, Bonnet D, Bernier MO, Rage E. Lympho-hematopoietic malignancies risk after exposure to low dose ionizing radiation during cardiac catheterization in childhood. Eur J Epidemiol 2023; 38:821-834. [PMID: 37191831 PMCID: PMC11281830 DOI: 10.1007/s10654-023-01010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/16/2023] [Indexed: 05/17/2023]
Abstract
Pediatric patients with congenital heart disease (CHD) often undergo low dose ionizing radiation (LDIR) from cardiac catheterization (CC) for the diagnosis and/or treatment of their disease. Although radiation doses from a single CC are usually low, less is known about the long-term radiation associated cancer risks. We aimed to assess the risk of lympho-hematopoietic malignancies in pediatric CHD patients diagnosed or treated with CC. A French cohort of 17,104 children free of cancer who had undergone a first CC from 01/01/2000 to 31/12/2013, before the age of 16 was set up. The follow-up started at the date of the first recorded CC until the exit date, i.e., the date of death, the date of first cancer diagnosis, the date of the 18th birthday, or the 31/12/2015, whichever occurred first. Poisson regression was used to estimate the LDIR associated cancer risk. The median follow-up was 5.9 years, with 110,335 person-years. There were 22,227 CC procedures, yielding an individual active bone marrow (ABM) mean cumulative dose of 3.0 milligray (mGy). Thirty-eight incident lympho-hematopoietic malignancies were observed. When adjusting for attained age, gender and predisposing factors to cancer status, no increased risk was observed for lympho-hematopoietic malignancies RR/mGy = 1.00 (95% CI: 0.88; 1.10). In summary, the risk of lympho-hematopoietic malignancies and lymphoma was not associated to LDIR in pediatric patients with CHD who undergo CC. Further epidemiological studies with greater statistical power are needed to improve the assessment of the dose-risk relationship.
Collapse
Affiliation(s)
- Kossi D Abalo
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE/SESANE/Laboratory of Epidemiology, BP 17, Fontenay-aux-Roses, 92262, France
| | - Sophie Malekzadeh-Milani
- M3C-Necker, Hôpital universitaire Necker-Enfants malades, Université de Paris Cité, Paris, France
| | - Sébastien Hascoët
- Cardiology department, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Serge Dreuil
- Institute for Radiological Protection and Nuclear Safety, (IRSN), PSE-SANTE/SER/UEM, BP 17, Fontenay-aux-Roses, 92262, France
| | | | - Cecilia Damon
- Institute for Radiological Protection and Nuclear Safety, (IRSN), DTR/D3NSI/SVDDA/CVD, BP 17, Fontenay-aux-Roses, 92262, France
| | - Hélène Bouvaist
- Cardiopédiatrie, hôpital couple enfant, CHU Grenoble Alpes, Grenoble cedex 9, 38043, France
| | - Ivan Bouzguenda
- Pediatric and congenital cardiology, Interventional cardiology, INTERCARD Clinique La Louvière, Lille, France
| | - Sarah Cohen
- Cardiology department, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Claire Dauphin
- Cardiology Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Sylvie Di Filippo
- Paediatric and Congential Cardiology Department, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphanie Douchin
- Cardiopédiatrie, hôpital couple enfant, CHU Grenoble Alpes, Grenoble cedex 9, 38043, France
| | - François Godart
- Service de Cardiologie Infantile et Congénitale, Institut Coeur Poumon, Lille Cedex, 59037, France
| | - Patrice Guérin
- CHU Nantes, INSERM, Nantes Université, Clinique Cardiologique et des Maladies Vasculaires, Institut du Thorax, Nantes, 1413, CIC, France
| | - Pauline Helms
- Unit of Cardiopediatrics, University Hospital of Strasbourg, Strasbourg, France
| | - Clément Karsenty
- Pediatric and Congenital Cardiology, Institut des Maladies Métaboliques et Cardiovasculaires, Children's Hospital, INSERM U1048, Université de Toulouse, Toulouse, I2MC, France
| | - Bruno Lefort
- Institut des Cardiopathies Congénitales, CHRU Tours, 49 boulevard Béranger, Tours, 37000, France
| | - Pierre Mauran
- Unité de cardiologie pédiatrique et congénitale, American Memorial Hospital, CHU de Reims, 47 rue Cognacq-Jay, Reims Cedex, 51092, France
| | - Caroline Ovaert
- Cardiologie pédiatrique et congénitale, AP-HM et INSERM 1251, Aix-Marseille Université, Timone enfants, Marseille, France
| | | | - Jean-Benoît Thambo
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, 33600, France
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Damien Bonnet
- M3C-Necker, Hôpital universitaire Necker-Enfants malades, Université de Paris Cité, Paris, France
| | - Marie-Odile Bernier
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE/SESANE/Laboratory of Epidemiology, BP 17, Fontenay-aux-Roses, 92262, France
| | - Estelle Rage
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE/SESANE/Laboratory of Epidemiology, BP 17, Fontenay-aux-Roses, 92262, France.
| |
Collapse
|
14
|
Frush DP, Callahan MJ, Coley BD, Nadel HR, Guillerman RP. Comparison of the different imaging modalities used to image pediatric oncology patients: A COG diagnostic imaging committee/SPR oncology committee white paper. Pediatr Blood Cancer 2023; 70 Suppl 4:e30298. [PMID: 37025033 PMCID: PMC10652359 DOI: 10.1002/pbc.30298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 04/08/2023]
Abstract
Diagnostic imaging is essential in the diagnosis and management, including surveillance, of known or suspected cancer in children. The independent and combined roles of the various modalities, consisting of radiography, fluoroscopy, ultrasonography (US), computed tomography (CT), magnetic resonance imaging (MRI), and nuclear medicine (NM), are both prescribed through protocols but also function in caring for complications that may occur during or subsequent to treatment such as infection, bleeding, or organ compromise. Use of a specific imaging modality may be based on situational circumstances such as a brain CT or MR for a new onset seizure, chest CT for respiratory signs or symptoms, or US for gross hematuria. However, in many situations, there are competing choices that do not easily lend themselves to a formulaic approach as options; these situations depend on the contributions of a variety of factors based on a combination of the clinical scenario and the strengths and limitations of the imaging modalities. Therefore, an improved understanding of the potential influence of the imaging decision pathways in pediatric cancer care can come from comparison among the individual diagnostic imaging modalities. The purpose of the following material to is to provide such a comparison. To do this, pediatric imaging content experts for the individual modalities of radiography and fluoroscopy, US, CT, MRI, and NM will discuss the individual modality strengths and limitations.
Collapse
Affiliation(s)
- Donald P. Frush
- Department of Radiology, Box 3808, Duke University Medical Center, Durham, NC 27710
| | - Michael J. Callahan
- Department of Radiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Brian D. Coley
- Division of Radiology and Medical Imaging, 3333 Burnet Avenue MLC 15017., Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Helen R. Nadel
- Pediatric Radiology, Lucile Packard Children’s Hospital at Stanford, Stanford University School of Medicine, 725 Welch Rd, MC 5913, Palo Alto, CA 94304
| | - R. Paul Guillerman
- Department of Radiology, Texas Children’s Hospital, 6701 Fannin Street, Suite 470, Houston, TX 77030
| |
Collapse
|
15
|
Yoshitake T, Miyazaki O, Kitamura M, Ono K, Kai M. Quantitative Analysis of the Clinical Reasons Influencing the Frequency of Pediatric Head CT Examinations: A Single-Center Observation Study. Tomography 2023; 9:829-839. [PMID: 37104138 PMCID: PMC10144250 DOI: 10.3390/tomography9020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Epidemiological studies on radiation exposure from pediatric CT scans have attracted attention in terms of radiological protection. These studies have not taken into account the reasons why CT examinations were performed. It is presumed that there are clinical reasons that justify more frequent CT examinations in children. The purpose of this study was to characterize the clinical reasons why relatively high numbers of head CT examinations (NHCT) are frequently performed and to conduct a statistical analysis to determine the factors governing the NHCT. Patient information, the date of examination, and medical conditions for examination data stored on the radiology information system were used to investigate the reasons for undergoing CT examinations. The target facility was National Children's Hospital; data were obtained from March 2002 to April 2017, and the age of the study population was less than 16 years old. Quantitative analysis of the factors associated with frequent examinations was conducted by Poisson regression analysis. Among all patients who had a CT scan, 76.6% had head CT examinations, and 43.4% of children were under 1 year old at the time of the initial examination. There were marked differences in the number of examinations depending on the disease. The average NHCT was higher for children younger than 5 days of age. Among children less than 1 year of age with surgery, there was a marked difference between hydrocephalus, with a mean = 15.5 (95% CI 14.3,16.8), and trauma, with a mean = 8.3 (95% CI 7.2,9.4). In conclusion, this study revealed that NHCT was significantly higher in children who had undergone surgery than in those who had not been to the hospital. The clinical reasons behind patients with higher NHCT should be considered in investigating a causal relationship between CT exposure and brain tumors.
Collapse
Affiliation(s)
- Takayasu Yoshitake
- Doctoral Course of Health Science, Graduate School of Nursing, Oita University of Nursing and Health Sciences, 2944-9 Megusuno, Oita 870-1201, Japan
| | - Osamu Miyazaki
- National Center for Child Health and Development, 2-10-1 Ohkura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Masayuki Kitamura
- National Center for Child Health and Development, 2-10-1 Ohkura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Koji Ono
- Division of Nursing, Higashigaoka Faculty of Nursing, Tokyo Health University, 2-5-1 Setagaya, Setagaya-ku, Tokyo 152-8558, Japan
| | - Michiaki Kai
- Department of Health Science, School of Health Science, Nippon Bunri University, 1727 Ichiki, Oita 870-0397, Japan
| |
Collapse
|
16
|
Wollschläger D, Jahnen A, Hermen J, Giussani A, Stamm G, Borowski M, Huisinga C, Mentzel HJ, Braun J, Sigmund G, Wagner J, Adolph J, Gunschera J, Koerber F, Schiefer A, Müller B, Lenzen H, Doering T, Entz K, Kunze C, Starck P, Staatz G, Mildenberger P, Pokora R. Pediatric computed tomography doses in Germany from 2016 to 2018 based on large-scale data collection. Eur J Radiol 2023; 163:110832. [PMID: 37059005 DOI: 10.1016/j.ejrad.2023.110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE Accumulating evidence from epidemiological studies that pediatric computed tomography (CT) examinations can be associated with a small but non-zero excess risk for developing leukemia or brain tumor highlights the need to optimize doses of pediatric CT procedures. Mandatory dose reference levels (DRL) can support reduction of collective dose from CT imaging. Regular surveys of applied dose-related parameters are instrumental to decide when technological advances and optimized protocol design allow lower doses without sacrificing image quality. Our aim was to collect dosimetric data to support adapting current DRL to changing clinical practice. METHOD Dosimetric data and technical scan parameters from common pediatric CT examinations were retrospectively collected directly from Picture Archiving and Communication Systems (PACS), Dose Management Systems (DMS), and Radiological Information Systems (RIS). RESULTS We collected data from 17 institutions on 7746 CT series from the years 2016 to 2018 from examinations of the head, thorax, abdomen, cervical spine, temporal bone, paranasal sinuses and knee in patients below 18 years of age. Most of the age-stratified parameter distributions were lower than distributions from previously-analyzed data from before 2010. Most of the third quartiles were lower than German DRL at the time of the survey. CONCLUSIONS Directly interfacing PACS, DMS, and RIS installations allows large-scale data collection but relies on high data-quality at the documentation stage. Data should be validated by expert knowledge or guided questionnaires. Observed clinical practice in pediatric CT imaging suggests lowering some DRL in Germany is reasonable.
Collapse
Affiliation(s)
- Daniel Wollschläger
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Andreas Jahnen
- Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| | - Johannes Hermen
- Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| | | | - Georg Stamm
- Department of Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - Markus Borowski
- Department of Radiology and Nuclear Medicine, Städtisches Klinikum Braunschweig, Braunschweig, Germany
| | - Carolin Huisinga
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Hans-Joachim Mentzel
- Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - Jochen Braun
- Diagnosticum Neuburg MVZ, Neuburg an der Donau, Germany
| | | | - Joachim Wagner
- Institute for Radiology and Interventional Therapy, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | - Juergen Adolph
- Department of Radiology, Klinikum Worms gGmbH, Worms, Germany
| | - Jana Gunschera
- Department of Radiology, Carl-Thiem-Klinikum Cottbus, Cottbus, Germany
| | - Friederike Koerber
- Institute for Diagnostic and Interventional Radiology, University Hospital of Cologne, Cologne, Germany
| | - Anna Schiefer
- Pediatric Radiology, Klinikum Nuremberg, Nuremberg, Germany
| | - Birgit Müller
- Institute of Medical Physics, Klinikum Nuremberg, Nuremberg, Germany
| | - Horst Lenzen
- Institute of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | | | - Kathrin Entz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Christian Kunze
- Clinic and Policlinic of Radiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Peter Starck
- Institute for Diagnostic and Interventional Radiology, Städtisches Klinikum Karlsruhe gGmbH, Karlsruhe, Germany
| | - Gundula Staatz
- Department of Diagnostic and Interventional Radiology, Section of Pediatric Radiology. University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter Mildenberger
- Department of Diagnostic and Interventional Radiology. University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Roman Pokora
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
17
|
Togher CJ, Ferrise T, Sahli H, Sebag JA, Butterfield J, Shane AM, Reeves C. Identifying the Potential Role of Regional Bone Mineral Density on the Degree of Malleolar Involvement in Acute Ankle Fractures. J Foot Ankle Surg 2023; 62:333-337. [PMID: 36210259 DOI: 10.1053/j.jfas.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 02/03/2023]
Abstract
Ankle fractures are a common traumatic lower extremity injury and are generally classified and characterized by the rotational mechanism of injury. At each malleolus (i.e., posterior, medial, and lateral) a fracture can occur or a ligamentous injury may be sustained. The purpose of this retrospective study was to determine if bone mineral density is a contributing factor on the number of fractured malleoli versus soft tissue injury in adult ankle fractures. Data was obtained from a registry of ankle fractures that were operatively treated by the foot and ankle team throughout our institutional facilities, from July 2017 to August 2019, and in which a preoperative computerized tomography scan was performed. Regional bone mineral density (BMD) was measured by calculating the average Hounsfield Unit (HU) on axial computerized tomography images of the distal fibula and tibia. The average HU was then compared to the number of fractured malleoli. One hundred eight patients met the study criteria. We identified statistically significant relationships between decreased BMD with increasing age (p < .01) and the male gender (p < .01). After adjusting for the covariates age and gender, no statistically significant relationship was identified between BMD and the number of malleoli involved in a given ankle fracture (p = .11). These findings suggest that while more investigation is required for ankle fracture patterns and BMD evaluation, increased age and biologic female gender is significantly related to decreased BMD as identified via HU.
Collapse
Affiliation(s)
| | - Thomas Ferrise
- Advent Health East Orlando Podiatric Surgery Residency, Orlando, FL
| | | | - Joshua A Sebag
- Coastal Orthopedic & Sports Medicine Center, Port Saint Lucie, FL
| | | | - Amber M Shane
- Orlando Foot and Ankle Clinic-Upperline Health, Orlando, FL
| | | |
Collapse
|
18
|
The why, who, how, and what of communicating CT radiation risks to patients and healthcare providers. ABDOMINAL RADIOLOGY (NEW YORK) 2023; 48:1514-1525. [PMID: 36799998 DOI: 10.1007/s00261-022-03778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 02/18/2023]
Abstract
Computed tomography (CT) has witnessed tremendous growth in utilization. Despite its immense benefits, there is a growing concern from the general public and the medical community about the detrimental consequences of ionizing radiation from CT. Anxiety from the perceived risks associated with CT can deter referring physicians from ordering clinically indicated CT scans and patients from undergoing medically necessary exams. This article discusses various strategies for educating patients and healthcare providers on the benefits and risks of CT scanning and salient techniques for effective communication.
Collapse
|
19
|
Shubayr N, Alashban Y. Estimation of radiation doses and lifetime attributable risk of radiation-induced cancer in the uterus and prostate from abdomen pelvis CT examinations. Front Public Health 2023; 10:1094328. [PMID: 36699908 PMCID: PMC9868812 DOI: 10.3389/fpubh.2022.1094328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Computed tomography (CT) scans are one of the most common radiation imaging modalities, and CT scans are rising steadily worldwide. CT has the potential to enhance radiography practice, but it also has the risk of drastically increasing patient doses. One CT procedure for the abdomen pelvis (AP) area can expose a patient's prostate or uterus to a substantial radiation dose, leading to concerns about radiation-induced cancer. This study aimed to estimate organ doses of the uterus and prostate and evaluate the lifetime attributable risk (LAR) of cancer incidence and mortality resulting from AP CT examinations. This retrospective study included 665 patients, of which 380 (57%) were female, and 285 (43%) were male. Data were collected from the picture archiving and communication system for AP CT procedures and exposure parameter data. Organ doses for the uterus and prostate were calculated using National Cancer Institute CT (NCICT) software. Based on the risk models proposed by the BEIR VII report, the calculated organ doses were used to estimate the LAR of prostate and uterus cancer incidence and mortality due to radiation exposure from AP CT procedures. The mean effective dose resulting from AP CT for females and males was 5.76 ± 3.22 (range: 1.13-12.71 mSv) and 4.37 ± 1.66 mSv (range: 1.36-8.07 mSv), respectively. The mean organ dose to the uterus was 10.86 ± 6.09 mGy (range: 2.13-24.06 mGy). The mean organ dose to the prostate was 7.00 ± 2.66 mGy (range: 2.18-12.94 mGy). The LAR of uterus and prostate cancer incidence was 1.75 ± 1.19 cases and 2.24 ± 1.06 cases per 100,000 persons, respectively. The LAR of cancer mortality rates from uterus and prostate cancers were 0.36 ± 0.22 and 0.48 ± 0.18 cases per 100,000 persons, respectively. The LAR of prostate and uterus cancer occurrence and mortality from radiation doses with AP CT procedures was low but not trivial. Therefore, efforts should be made to lower patient doses while retaining image quality. Although the minimization of the patient's radiation dose must guide clinical practice, the estimated slight increase in risk could aid in easing fears regarding well-justified AP CT procedures.
Collapse
Affiliation(s)
- Nasser Shubayr
- Department of Diagnostic Radiography Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia,*Correspondence: Nasser Shubayr ✉
| | - Yazeed Alashban
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Simon S, Kendall G, Bouffler S, Little M. The Evidence for Excess Risk of Cancer and Non-Cancer Disease at Low Doses and Dose Rates. Radiat Res 2022; 198:615-624. [PMID: 36136740 PMCID: PMC9797580 DOI: 10.1667/rade-22-00132.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 12/31/2022]
Abstract
The question of whether there are excess radiation-associated health risks at low dose is controversial. We present evidence of excess cancer risks in a number of (largely pediatrically or in utero exposed) groups exposed to low doses of radiation (<0.1 Gy). Moreover, the available data on biological mechanisms do not provide support for the idea of a low-dose threshold or hormesis for any of these endpoints. There are emerging data suggesting risks of cardiovascular disease and cataract at low doses, but this is less well established. This large body of evidence does not suggest and, indeed, is not statistically compatible with any very large threshold in dose (>10 mGy), or with possible beneficial effects from exposures. The presented data suggest that exposure to low-dose radiation causes excess cancer risks and quite possibly also excess risks of various non-cancer endpoints.
Collapse
Affiliation(s)
- S.L. Simon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (retired)
| | - G.M. Kendall
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, United Kingdom
| | - S.D. Bouffler
- Radiation Effects Department, UK Health Security Agency (UKHSA), Chilton, Didcot OX11 0RQ, United Kingdom
| | - M.P. Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892-9778
| |
Collapse
|
21
|
Hemaya M, Hemaya M, Habeeb A. The Risks Associated With Computed Tomography Scans: An Assessment of the Readability and Reliability of Online Text Available for Patient Information and Guidance. Cureus 2022; 14:e30758. [DOI: 10.7759/cureus.30758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/07/2022] Open
|
22
|
Environmental Risk Factors for Childhood Central Nervous System Tumors: an Umbrella Review. CURR EPIDEMIOL REP 2022. [DOI: 10.1007/s40471-022-00309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Shi HM, Sun ZC, Ju FH. Recommendations for reducing exposure to medical X-ray irradiation (Review). MEDICINE INTERNATIONAL 2022; 2:22. [PMID: 36699506 PMCID: PMC9829209 DOI: 10.3892/mi.2022.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023]
Abstract
With the increasing frequency of X-ray examinations in clinical medicine, public concern regarding the harm caused by exposure to X-ray radiation is also increasing. However, some physicians are not completely aware of the dangers of exposure to X-ray irradiation. Individuals specialized in this field, including physicians, have a better understanding of these dangers, which limits the use of X-rays in medicine. The present study aimed to address strategies for reducing the harm caused by exposure to medical X-rays and increase public awareness regarding X-ray radiation. Through a literature search and review, combined with the current status of clinical X-ray examination and the authors' professional experience, the present study highlights the importance of reducing X-ray exposure, and proposes several specific recommendations and measures for reducing the frequency or dose of X-ray irradiation. On the whole, the finding discussed in the present review suggest the minimal use of medical X-ray examinations and that alternative tests should be selected whenever possible. When medical X-ray screening and treatments are necessary, the risk-benefit ratio should be assessed, possibly aiming to achieve avoidable exposure. Further attention should be paid to protect sensitive glands and reduce the risks in children.
Collapse
Affiliation(s)
- Hai-Min Shi
- Department of Gynecology and Obstetrics Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China,Department of Gynecology and Obstetrics Medicine, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhi-Chao Sun
- Department of Medical Imaging, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China,Department of Medical Imaging, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Fang-He Ju
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China,Department of Respiratory Medicine, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310006, P.R. China,Correspondence to: Dr Fang-He Ju, Department of Respiratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
24
|
Rehani MM, Brady Z. Contemporary issues in radiation protection in medical imaging: introductory editorial. Br J Radiol 2021; 94:bjr20219004. [PMID: 34545765 DOI: 10.1259/bjr.20219004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Madan M Rehani
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Zoe Brady
- Department of Radiology, Alfred Health, Melbourne, Australia.,Department of Neuroscience, Monash University, Melbourne, Australia
| |
Collapse
|