1
|
Gunes S, Metin Mahmutoglu A, Hekim N. Epigenetics of nonobstructive azoospermia. Asian J Androl 2024:00129336-990000000-00238. [PMID: 39225008 DOI: 10.4103/aja202463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Nonobstructive azoospermia (NOA) is a severe and heterogeneous form of male factor infertility caused by dysfunction of spermatogenesis. Although various factors are well defined in the disruption of spermatogenesis, not all aspects due to the heterogeneity of the disorder have been determined yet. In this review, we focus on the recent findings and summarize the current data on epigenetic mechanisms such as DNA methylation and different metabolites produced during methylation and demethylation and various types of small noncoding RNAs involved in the pathogenesis of different groups of NOA.
Collapse
Affiliation(s)
- Sezgin Gunes
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun 55139, Türkiye
| | - Asli Metin Mahmutoglu
- Department of Medical Biology, Medical Faculty, Yozgat Bozok University, Yozgat 66100, Türkiye
| | - Neslihan Hekim
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun 55139, Türkiye
| |
Collapse
|
2
|
Hitit M, Kaya A, Memili E. Sperm long non-coding RNAs as markers for ram fertility. Front Vet Sci 2024; 11:1337939. [PMID: 38799722 PMCID: PMC11117017 DOI: 10.3389/fvets.2024.1337939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
It is critical in sheep farming to accurately estimate ram fertility for maintaining reproductive effectiveness and for production profitability. However, there is currently a lack of reliable biomarkers to estimate semen quality and ram fertility, which is hindering advances in animal science and technology. The objective of this study was to uncover long non-coding RNAs (lncRNAs) in sperm from rams with distinct fertility phenotypes. Mature rams were allocated into two groups: high and low fertility (HF; n = 31; 94.5 ± 2.8%, LF; n = 25; 83.1 ± 5.73%; P = 0.028) according to the pregnancy rates sired by the rams (average pregnancy rate; 89.4 ± 7.2%). Total RNAs were isolated from sperm of the highest- and lowest-fertility rams (n = 4, pregnancy rate; 99.2 ± 1.6%, and 73.6 ± 4.4%, respectively) followed by next-generation sequencing of the transcripts. We uncovered 11,209 lncRNAs from the sperm of rams with HF and LF. In comparison to each other, there were 93 differentially expressed (DE) lncRNAs in sperm from the two distinct fertility phenotypes. Of these, 141 mRNAs were upregulated and 134 were downregulated between HF and LF, respectively. Genes commonly enriched for 9 + 2 motile cilium and sperm flagellum were ABHD2, AK1, CABS1, ROPN1, SEPTIN2, SLIRP, and TEKT3. Moreover, CABS1, CCDC39, CFAP97D1, ROPN1, SLIRP, TEKT3, and TTC12 were commonly enriched in flagellated sperm motility and sperm motility. Differentially expressed mRNAs were enriched in the top 16 KEGG pathways. Targets of the differentially expressed lncRNAs elucidate functions in cis and trans manner using the genetic context of the lncRNA locus, and lncRNA sequences revealed 471 mRNAs targets of 10 lncRNAs. This study illustrates the existence of potential lncRNA biomarkers that can be implemented in analyzing the quality of ram sperm and determining the sperm fertility and is used in breeding soundness exams for precision livestock farming to ensure food security on a global scale.
Collapse
Affiliation(s)
- Mustafa Hitit
- Department of Genetics, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Türkiye
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| | - Abdullah Kaya
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Erdogan Memili
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| |
Collapse
|
3
|
Shatskikh AS, Fefelova EA, Klenov MS. Functions of RNAi Pathways in Ribosomal RNA Regulation. Noncoding RNA 2024; 10:19. [PMID: 38668377 PMCID: PMC11054153 DOI: 10.3390/ncrna10020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Argonaute proteins, guided by small RNAs, play crucial roles in gene regulation and genome protection through RNA interference (RNAi)-related mechanisms. Ribosomal RNAs (rRNAs), encoded by repeated rDNA units, constitute the core of the ribosome being the most abundant cellular transcripts. rDNA clusters also serve as sources of small RNAs, which are loaded into Argonaute proteins and are able to regulate rDNA itself or affect other gene targets. In this review, we consider the impact of small RNA pathways, specifically siRNAs and piRNAs, on rRNA gene regulation. Data from diverse eukaryotic organisms suggest the potential involvement of small RNAs in various molecular processes related to the rDNA transcription and rRNA fate. Endogenous siRNAs are integral to the chromatin-based silencing of rDNA loci in plants and have been shown to repress rDNA transcription in animals. Small RNAs also play a role in maintaining the integrity of rDNA clusters and may function in the cellular response to rDNA damage. Studies on the impact of RNAi and small RNAs on rRNA provide vast opportunities for future exploration.
Collapse
Affiliation(s)
- Aleksei S. Shatskikh
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia;
| | - Elena A. Fefelova
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia
| | - Mikhail S. Klenov
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
4
|
Lu X. Regulation of endogenous retroviruses in murine embryonic stem cells and early embryos. J Mol Cell Biol 2024; 15:mjad052. [PMID: 37604781 PMCID: PMC10794949 DOI: 10.1093/jmcb/mjad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/24/2022] [Accepted: 08/19/2023] [Indexed: 08/23/2023] Open
Abstract
Endogenous retroviruses (ERVs) are important components of transposable elements that constitute ∼40% of the mouse genome. ERVs exhibit dynamic expression patterns during early embryonic development and are engaged in numerous biological processes. Therefore, ERV expression must be closely monitored in cells. Most studies have focused on the regulation of ERV expression in mouse embryonic stem cells (ESCs) and during early embryonic development. This review touches on the classification, expression, and functions of ERVs in mouse ESCs and early embryos and mainly discusses ERV modulation strategies from the perspectives of transcription, epigenetic modification, nucleosome/chromatin assembly, and post-transcriptional control.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Biondic S, Zhao C, Hagemann-Jensen M, Russell SJ, Vandal K, Canizo J, Librach CL, Petropoulos S. Single-Cell mRNA-sncRNA Co-sequencing of Preimplantation Embryos. Methods Mol Biol 2024; 2767:189-212. [PMID: 37278916 DOI: 10.1007/7651_2023_487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of single-cell multiomics has provided the ability to systematically investigate cellular diversity and heterogeneity in different biological systems via comprehensive delineations of individual cellular states. Single-cell RNA sequencing in particular has served as a powerful tool to the study of the molecular circuitries underlying preimplantation embryonic development in both the mouse and human. Here we describe a method to elucidate the cellular dynamics of the embryo further by performing both single-cell RNA sequencing (Smart-Seq2) and single-cell small non-coding RNA sequencing (Small-Seq) on the same individual embryonic cell.
Collapse
Affiliation(s)
- Savana Biondic
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, QC, Canada
| | - Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska. Universitetssjukhuset, Stockholm, Sweden
| | | | | | - Katherine Vandal
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, QC, Canada
| | - Jesica Canizo
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, QC, Canada
| | - Clifford L Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- University of Toronto, Department of Obstetrics and Gynecology, Toronto, ON, Canada
- University of Toronto, Department of Physiology, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sophie Petropoulos
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, QC, Canada
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska. Universitetssjukhuset, Stockholm, Sweden
| |
Collapse
|
6
|
Banikazemi Z, Heidar Z, Rezaee A, Taghavi SP, Zadeh Modarres S, Asemi Z, Goleij P, Jahed F, Mazaheri E, Taghizadeh M. Long non-coding RNAs and female infertility: What do we know? Pathol Res Pract 2023; 250:154814. [PMID: 37757620 DOI: 10.1016/j.prp.2023.154814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Ten percent of people who are of reproductive age experience infertility. Sometimes the most effective therapies, including technology for assisted reproduction, may lead to unsuccessful implantation. Because of the anticipated epigenetic alterations of in vitro as well as in vitro fertilization growth of embryos, these fertility techniques have also been linked to unfavorable pregnancy outcomes linked to infertility. In this regard, a variety of non-coding RNAs such as long noncoding RNAs (lncRNAs) act as epigenetic regulators in the various physiological and pathophysiological events such as infertility. LncRNAs have been made up of cytoplasmic and nuclear nucleotides; RNA polymerase II transcribes these, which are lengthier than 200 nt. LncRNAs perform critical roles in a number of biological procedures like nuclear transport, X chromosome inactivation, apoptosis, stem cell pluripotency, as well as genomic imprinting. A significant amount of lncRNAs were linked into a variety of biological procedures as high throughput sequencing technology advances, including the development of the testes, preserving spermatogonial stem cells' capacity for differentiation along with self-renewal, and controlling spermatocyte meiosis. All of them point to possible utility of lncRNAs to be biomarkers and treatment aims for female infertility. Herein, we summarize various lncRNAs that are involved in female infertility.
Collapse
Affiliation(s)
- Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Heidar
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahrzad Zadeh Modarres
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Fatemeh Jahed
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elaheh Mazaheri
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Gou LT, Zhu Q, Liu MF. Small RNAs: An expanding world with therapeutic promises. FUNDAMENTAL RESEARCH 2023; 3:676-682. [PMID: 38933305 PMCID: PMC11197668 DOI: 10.1016/j.fmre.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023] Open
Abstract
Small non-coding RNAs (sncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNA (tRNA)-derived small RNAs (tsRNAs), play essential roles in regulating various cellular and developmental processes. Over the past three decades, researchers have identified novel sncRNA species from various organisms. These molecules demonstrate dynamic expression and diverse functions, and they are subject to intricate regulation through RNA modifications in both healthy and diseased states. Notably, certain sncRNAs in gametes, particularly sperm, respond to environmental stimuli and facilitate epigenetic inheritance. Collectively, the in-depth understanding of sncRNA functions and mechanisms has accelerated the development of small RNA-based therapeutics. In this review, we present the recent advances in the field, including new sncRNA species and the regulatory influences of RNA modifications. We also discuss the current limitations and challenges associated with using small RNAs as either biomarkers or therapeutic drugs.
Collapse
Affiliation(s)
- Lan-Tao Gou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qifan Zhu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
8
|
Preconception paternal mental disorders and child health: Mechanisms and interventions. Neurosci Biobehav Rev 2023; 144:104976. [PMID: 36435393 DOI: 10.1016/j.neubiorev.2022.104976] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Mental illness is a significant global health issue with a steady prevalence. High heritability is suspected, but genome-wide association studies only identified a small number of risk genes associated with mental disorders. This 'missing inheritance' can be partially explained by epigenetic heredity. Evidence from numerous animal models and human studies supports the possibility that preconception paternal mental health influences their offspring's mental health via nongenetic means. Here, we review two potential pathways, including sperm epigenetics and seminal plasma components. The current review highlights the role of sperm epigenetics and explores epigenetic message origination and susceptibility to chronic stress. Meanwhile, possible spatiotemporal windows and events that induce sexually dimorphic modes and effects of paternal stress transmission are inferred in this review. Additionally, we discuss emerging interventions that could potentially block the intergenerational transmission of paternal psychiatric disorders and reduce the incidence of mental illness. Understanding the underlying mechanisms by which preconception paternal stress impacts offspring health is critical for identifying strategies supporting healthy development and successfully controlling the prevalence of mental illness.
Collapse
|
9
|
Pittroff A, Kim IV, Demtröder T, Kuhn CD. Genome-Wide Analysis of Planarian piRNAs. Methods Mol Biol 2023; 2680:55-65. [PMID: 37428370 DOI: 10.1007/978-1-0716-3275-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In planarian flatworms, the piRNA pathway is operated by three PIWI proteins, termed SMEDWI-1, SMEDWI-2, and SMEDWI-3 (SMEDWI = Schmidtea mediterranea PIWI). The interplay between these three PIWI proteins and their associated small noncoding RNAs, termed piRNAs, fuels the outstanding regenerative abilities of planarians, enables tissue homeostasis, and, ultimately, ensures animal survival. As the molecular targets of PIWI proteins are determined by the sequences of their co-bound piRNAs, it is imperative to identify these sequences by next-generation sequencing applications. Following sequencing, the genomic targets and the regulatory potential of the isolated piRNA populations need to be uncovered. To that end, here we present a bioinformatics analysis pipeline for processing and systematic characterization of planarian piRNAs. The pipeline includes steps for the removal of PCR duplicates based on unique molecular identifier (UMI) sequences, and it accounts for piRNA multimapping to different loci in the genome. Importantly, our protocol also includes a fully automated pipeline that is freely available at GitHub. Together with the piRNA isolation and library preparation protocol (see accompanying chapter), the presented computational pipeline enables researchers to explore the functional role of the piRNA pathway in flatworm biology.
Collapse
Affiliation(s)
| | - Iana V Kim
- RNA Biochemistry, University of Bayreuth, Bayreuth, Germany
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Tim Demtröder
- RNA Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Claus-D Kuhn
- RNA Biochemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
10
|
Sethi S, Mehta P, Pandey A, Gupta G, Rajender S. miRNA Profiling of Major Testicular Germ Cells Identifies Stage-Specific Regulators of Spermatogenesis. Reprod Sci 2022; 29:3477-3493. [PMID: 35715552 DOI: 10.1007/s43032-022-01005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Spermatogenesis is tightly controlled at transcriptional, post-transcriptional, and epigenetic levels by various regulators, including miRNAs. This study deals with the identification of miRNAs critical to the three important stages of germ cell development (spermatocytes, round spermatids, and mature sperm) during spermatogenesis. We used high-throughput transcriptome sequencing to identify the differentially expressed miRNAs in the pachytene spermatocytes, round spermatids, and mature sperm of rat. We identified 1843 miRNAs that were differentially expressed across the three stages of germ cell development. These miRNAs were further categorized into three classes according to their pattern of expression during spermatogenesis: class 1 - miRNAs found exclusively in one stage and absent in the other two stages; class 2 - miRNAs found in any two stages but absent in the third stage; class 3 - miRNAs expressed in all the three stages. Six hundred forty-six miRNAs were found to be specific to one developmental stage, 443 miRNAs were found to be common across any two stages, and 754 miRNAs were common to all the three stages. Target prediction for ten most abundant miRNAs specific to each category identified miRNA regulators of mitosis, meiosis, and cell differentiation. The expression of each miRNA is specific to a particular developmental stage, which is required to maintain a significant repertoire of target mRNAs in the respective stage. Thus, this study provided valuable data that can be used in the future to identify the miRNAs involved in spermatogenic arrest at a particular stage of the germ cell development.
Collapse
Affiliation(s)
- Shruti Sethi
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Poonam Mehta
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Aastha Pandey
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Gopal Gupta
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Singh Rajender
- CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India.
| |
Collapse
|
11
|
Hitit M, Memili E. Sperm Signatures of Fertility and Freezability. Anim Reprod Sci 2022; 247:107147. [DOI: 10.1016/j.anireprosci.2022.107147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
12
|
Amelkina O, da Silva AM, Silva AR, Comizzoli P. Feline microRNAome in ovary and testis: Exploration of in-silico miRNA-mRNA networks involved in gonadal function and cellular stress response. Front Genet 2022; 13:1009220. [PMID: 36226169 PMCID: PMC9548565 DOI: 10.3389/fgene.2022.1009220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of the study was to perform the first in-depth analysis of miRNAs in ovarian and testicular tissues of the domestic cat, a critical biomedical model. Specifically, potential miRNA involvement was explored in gonadal function, testis development, and cellular stress response to preservation protocols. We performed miRNA-sequencing on 20 ovarian and 20 testicular samples from 15 cats, including different ages and tissue treatments. Using fresh tissues (n = 15), we confirmed gonadal expression of 183 miRNA precursors and discovered additional 52 novel feline candidate precursors. We integrated the mRNA data from our previous study on the same age and treatment groups to create in-silico miRNA-mRNA networks and their functional enrichment, which allows comprehensive exploration into possible miRNA functions in cat gonads. Clusters of miRNAs united by shared differentially expressed mRNA targets are potentially involved in testicular development and spermatogenesis. MicroRNAs could play a significant role in ovarian tissue response to stress from microwave-assisted dehydration, with smaller roles in cellular response to vitrification in both ovary and testis. This new list of miRNAs with potential function in cat gonads is a major step towards understanding the gonadal biology, as well as optimizing fertility preservation protocols.
Collapse
Affiliation(s)
- Olga Amelkina
- Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Andreia M. da Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid—UFERSA, Mossoró, Brazil
| | - Alexandre R. Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid—UFERSA, Mossoró, Brazil
| | - Pierre Comizzoli
- Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC, United States
| |
Collapse
|
13
|
Unraveling mitochondrial piRNAs in mouse embryonic gonadal cells. Sci Rep 2022; 12:10730. [PMID: 35750721 PMCID: PMC9232517 DOI: 10.1038/s41598-022-14414-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Although mitochondria are widely studied organelles, the recent interest in the role of mitochondrial small noncoding RNAs (sncRNAs), miRNAs, and more recently, piRNAs, is providing new functional perspectives in germ cell development and differentiation. piRNAs (PIWI-interacting RNAs) are single-stranded sncRNAs of mostly about 20-35 nucleotides, generated from the processing of pre-piRNAs. We leverage next-generation sequencing data obtained from mouse primordial germ cells and somatic cells purified from early-differentiating embryonic ovaries and testis from 11.5 to 13.5 days postcoitum. Using bioinformatic tools, we elucidate (i) the origins of piRNAs as transcribed from mitochondrial DNA fragments inserted in the nucleus or from the mitochondrial genome; (ii) their levels of expression; and (iii) their potential roles, as well as their association with genomic regions encoding other sncRNAs (such as tRNAs and rRNAs) and the mitochondrial regulatory region (D-loop). Finally, our results suggest how nucleo-mitochondrial communication, both anterograde and retrograde signaling, may be mediated by mitochondria-associated piRNAs.
Collapse
|
14
|
Kataruka S, Kinterova V, Horvat F, Kulmann MIR, Kanka J, Svoboda P. Physiologically relevant miRNAs in mammalian oocytes are rare and highly abundant. EMBO Rep 2022; 23:e53514. [PMID: 34866300 PMCID: PMC8811628 DOI: 10.15252/embr.202153514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
miRNAs, ~22nt small RNAs associated with Argonaute (AGO) proteins, are important negative regulators of gene expression in mammalian cells. However, mammalian maternal miRNAs show negligible repressive activity and the miRNA pathway is dispensable for oocytes and maternal-to-zygotic transition. The stoichiometric hypothesis proposed that this is caused by dilution of maternal miRNAs during oocyte growth. As the dilution affects miRNAs but not mRNAs, it creates unfavorable miRNA:mRNA stoichiometry for efficient repression of cognate mRNAs. Here, we report that porcine ssc-miR-205 and bovine bta-miR-10b are exceptional miRNAs, which resist the diluting effect of oocyte growth and can efficiently suppress gene expression. Additional analysis of ssc-miR-205 shows that it has higher stability, reduces expression of endogenous targets, and contributes to the porcine oocyte-to-embryo transition. Consistent with the stoichiometric hypothesis, our results show that the endogenous miRNA pathway in mammalian oocytes is intact and that maternal miRNAs can efficiently suppress gene expression when a favorable miRNA:mRNA stoichiometry is established.
Collapse
Affiliation(s)
- Shubhangini Kataruka
- Institute of Molecular Genetics of the Czech Academy of SciencesPrague 4Czech Republic
| | - Veronika Kinterova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
| | - Filip Horvat
- Institute of Molecular Genetics of the Czech Academy of SciencesPrague 4Czech Republic
- Bioinformatics GroupFaculty of ScienceUniversity of ZagrebZagrebCroatia
| | | | - Jiri Kanka
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics of the Czech Academy of SciencesPrague 4Czech Republic
| |
Collapse
|
15
|
Cheng J, Yang F, Liu S, Zhao H, Lu W, Zhang Q. Transcriptomic Analysis Reveals Functional Interaction of mRNA-lncRNA-miRNA in Steroidogenesis and Spermatogenesis of Gynogenetic Japanese Flounder ( Paralichthys olivaceus). BIOLOGY 2022; 11:biology11020213. [PMID: 35205081 PMCID: PMC8869744 DOI: 10.3390/biology11020213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023]
Abstract
Teleost fishes exhibit extraordinary diversity, plasticity and adaptability with their sex determination and sexual development, and there is growing evidence that non-coding RNAs (ncRNAs) are emerging as critical regulators of reproduction. Japanese flounder (Paralichthys olivaceus) is an important marine cultured fish that presents significant sexual dimorphism with bigger females, in which gynogenesis has been applied for aquaculture industry. In order to reveal the regulatory mechanisms of sexual development in gynogenetic female and sex-reversed neo-male P. olivaceus, the lncRNA-miRNA-mRNA interactions were investigated using high-throughput sequencing. A total of 6772 differentially expressed mRNAs (DEmRNAs), 2284 DElncRNAs, and 244 DEmiRNAs were obtained between gynogenetic female ovaries and sex-reversed neo-male testes. Genes in the steroid hormone biosynthesis and secretion pathway were enriched and mostly significantly upregulated in neo-male testes. Subsequently, network analysis uncovered high functional specificity for gynogenetic P. olivaceus sperm motility, as co-expressed DEmRNAs were significantly enriched in microtubule and cytoskeleton-related biological processes. Clustered miRNAs were characterized in the P. olivaceus genome with examples of the largest conserved let-7 clusters. The 20 let-7 members are distributed in 11 clusters and may not transcribe together with their neighboring miR-125b, with let-7 repressing cyp11a and miR-125b repressing esr2b, both as key steroidogenesis pathway genes. In summary, this study provides comprehensive insights into the mRNA-miRNA-lncRNA functional crosstalk in teleost sexual development and gametogenesis and will expand our understanding of ncRNA biology in teleost gynogenesis.
Collapse
Affiliation(s)
- Jie Cheng
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (F.Y.); (S.L.); (H.Z.); (W.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
- Correspondence: (J.C.); (Q.Z.); Tel.: +86-0532-82031986 (J.C.)
| | - Fan Yang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (F.Y.); (S.L.); (H.Z.); (W.L.)
| | - Saisai Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (F.Y.); (S.L.); (H.Z.); (W.L.)
| | - Haitao Zhao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (F.Y.); (S.L.); (H.Z.); (W.L.)
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (F.Y.); (S.L.); (H.Z.); (W.L.)
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (F.Y.); (S.L.); (H.Z.); (W.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
- Correspondence: (J.C.); (Q.Z.); Tel.: +86-0532-82031986 (J.C.)
| |
Collapse
|
16
|
Small Noncoding RNAs in Reproduction and Infertility. Biomedicines 2021; 9:biomedicines9121884. [PMID: 34944700 PMCID: PMC8698561 DOI: 10.3390/biomedicines9121884] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Infertility has been reported as one of the most common reproductive impairments, affecting nearly one in six couples worldwide. A large proportion of infertility cases are diagnosed as idiopathic, signifying a deficit in information surrounding the pathology of infertility and necessity of medical intervention such as assisted reproductive therapy. Small noncoding RNAs (sncRNAs) are well-established regulators of mammalian reproduction. Advanced technologies have revealed the dynamic expression and diverse functions of sncRNAs during mammalian germ cell development. Mounting evidence indicates sncRNAs in sperm, especially microRNAs (miRNAs) and transfer RNA (tRNA)-derived small RNAs (tsRNAs), are sensitive to environmental changes and mediate the inheritance of paternally acquired metabolic and mental traits. Here, we review the critical roles of sncRNAs in mammalian germ cell development. Furthermore, we highlight the functions of sperm-borne sncRNAs in epigenetic inheritance. We also discuss evidence supporting sncRNAs as promising biomarkers for fertility and embryo quality in addition to the present limitations of using sncRNAs for infertility diagnosis and treatment.
Collapse
|
17
|
He C, Wang K, Gao Y, Wang C, Li L, Liao Y, Hu K, Liang M. Roles of Noncoding RNA in Reproduction. Front Genet 2021; 12:777510. [PMID: 34956326 PMCID: PMC8695933 DOI: 10.3389/fgene.2021.777510] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/18/2021] [Indexed: 12/17/2022] Open
Abstract
The World Health Organization predicts that infertility will be the third major health threat after cancer and cardiovascular disease, and will become a hot topic in medical research. Studies have shown that epigenetic changes are an important component of gametogenesis and related reproductive diseases. Epigenetic regulation of noncoding RNA (ncRNA) is appropriate and is a research hotspot in the biomedical field; these include long noncoding RNA (lncRNA), microRNA (miRNA), and PIWI-interacting RNA (piRNA). As vital members of the intracellular gene regulatory network, they affect various life activities of cells. LncRNA functions as a molecular bait, molecular signal and molecular scaffold in the body through molecular guidance. miRNAs are critical regulators of gene expression; they mainly control the stability or translation of their target mRNA after transcription. piRNA functions mainly through silencing genomic transposable elements and the post-transcriptional regulation of mRNAs in animal germ cells. Current studies have shown that these ncRNAs also play significant roles in the reproductive system and are involved in the regulation of essential cellular events in spermatogenesis and follicular development. The abnormal expression of ncRNA is closely linked to testicular germ cell tumors, poly cystic ovary syndrome and other diseases. This paper briefly presents the research on the reproductive process and reproductive diseases involving ncRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ke Hu
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, China
| |
Collapse
|
18
|
Khanehzad M, Abolhasani F, Hassanzadeh G, Nourashrafeddin SM, Hedayatpour A. Determination of the Excitatory Effects of MicroRNA-30 in the Self-Renewal and Differentiation Process of Neonatal Mouse Spermatogonial Stem Cells. Galen Med J 2021; 9:e1829. [PMID: 34466599 PMCID: PMC8344142 DOI: 10.31661/gmj.v9i0.1829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/17/2020] [Accepted: 04/26/2020] [Indexed: 01/15/2023] Open
Abstract
Background: Spermatogonial stem cells (SSCs) are considered as special stem cells since they have the ability of self-renewal, differentiation, and transferring genetic information to the next generation. Also, they considered as vital players in initiating and preserving spermatogenesis. The fate decisions of SSCs are mediated by intrinsic and extrinsic factors, among which microRNAs (miRNAs) are one of the most essential factors in spermatogenesis among endogenous regulators. However, the mechanisms by which individual miRNAs regulate self-renewal and differentiation of SSCs are unclear. The present study aimed to evaluate the impact of miRNA-30 mimic on fate determinations of SSCs. Materials and Methods: The obtained SSCs from neonatal mice (3-6 days old) were purified by MACS and flow cytometry with a promyelocytic leukemia zinc-finger marker. Then, the cultured cells were transfected with miRNA- 30 mimic, and finally, the changes in expressing ID4 and c-kit proteins were assessed by western blot analysis. Results: According to flow cytometry findings, the percentage of SSC purity was about 98.32. The expression of ID4 protein and colonization increased significantly through the transfection of miRNA-30 mimic (P<0.05). Conclusion: The miRNA-30 controls spermatogonial stem cell self-renewal and differentiation, which may have significant implications for treating male infertility.
Collapse
Affiliation(s)
- Maryam Khanehzad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abolhasani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Nourashrafeddin
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, USA
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Correspondence to: Azim Hedayatpour Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran Telephone Number: +982166419072 Email Address:
| |
Collapse
|
19
|
Khanehzad M, Nourashrafeddin SM, Abolhassani F, Kazemzadeh S, Madadi S, Shiri E, Khanlari P, Khosravizadeh Z, Hedayatpour A. MicroRNA-30a-5p promotes differentiation in neonatal mouse spermatogonial stem cells (SSCs). Reprod Biol Endocrinol 2021; 19:85. [PMID: 34108007 PMCID: PMC8188658 DOI: 10.1186/s12958-021-00758-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The importance of spermatogonial stem cells (SSCs) in spermatogenesis is crucial and intrinsic factors and extrinsic signals mediate fate decisions of SSCs. Among endogenous regulators, microRNAs (miRNAs) play critical role in spermatogenesis. However, the mechanisms which individual miRNAs regulate self- renewal and differentiation of SSCs are unknown. The aim of this study was to investigate effects of miRNA-30a-5p inhibitor on fate determinations of SSCs. METHODS SSCs were isolated from testes of neonate mice (3-6 days old) and their purities were performed by flow cytometry with ID4 and Thy1 markers. Cultured cells were transfected with miRNA- 30a-5p inhibitor. Evaluation of the proliferation (GFRA1, PLZF and ID4) and differentiation (C-Kit & STRA8) markers of SSCs were accomplished by immunocytochemistry and western blot 48 h after transfection. RESULTS Based on the results of flow cytometry with ID4 and Thy1 markers, percentage of purity of SSCs was about 84.3 and 97.4 % respectively. It was found that expression of differentiation markers after transfection was significantly higher in miRNA-30a- 5p inhibitor group compared to other groups. The results of proliferation markers evaluation also showed decrease of GFRA1, PLZF and ID4 protein in SSCs transfected with miRNA-30a-5p inhibitor compared to the other groups. CONCLUSIONS It can be concluded that inhibition of miRNA-30a-5p by overexpression of differentiation markers promotes differentiation of Spermatogonial Stem Cells.
Collapse
Affiliation(s)
- Maryam Khanehzad
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Mehdi Nourashrafeddin
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, USA
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abolhassani
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Shokoofeh Kazemzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Soheila Madadi
- Department of Anatomy, School of Medicine, Arak University of Medical Science, Arak, Iran
| | - Elham Shiri
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parastoo Khanlari
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Khosravizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
20
|
Vashisht A, Gahlay GK. Using miRNAs as diagnostic biomarkers for male infertility: opportunities and challenges. Mol Hum Reprod 2021; 26:199-214. [PMID: 32084276 DOI: 10.1093/molehr/gaaa016] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
The non-coding genome has been extensively studied for its role in human development and diseases. MicroRNAs (miRNAs) are small non-coding RNAs, which can regulate the expression of hundreds of genes at the post-transcriptional level. Therefore, any defects in miRNA biogenesis or processing can affect the genes and have been linked to several diseases. Male infertility is a clinical disorder with a significant number of cases being idiopathic. Problems in spermatogenesis and epididymal maturation, testicular development, sperm maturation or migration contribute to male infertility, and many of these idiopathic cases are related to issues with the miRNAs which tightly regulate these processes. This review summarizes the recent research on various such miRNAs and puts together the candidate miRNAs that may be used as biomarkers for diagnosis. The development of strategies for male infertility treatment using anti-miRs or miRNA mimics is also discussed. Although promising, the development of miRNA diagnostics and therapeutics is challenging, and ways to overcome some of these challenges are also reviewed.
Collapse
Affiliation(s)
- A Vashisht
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - G K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
21
|
Sellem E, Marthey S, Rau A, Jouneau L, Bonnet A, Le Danvic C, Guyonnet B, Kiefer H, Jammes H, Schibler L. Dynamics of cattle sperm sncRNAs during maturation, from testis to ejaculated sperm. Epigenetics Chromatin 2021; 14:24. [PMID: 34030709 PMCID: PMC8146655 DOI: 10.1186/s13072-021-00397-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background During epididymal transit, spermatozoa go through several functional maturation steps, resulting from interactions with epididymal secretomes specific to each region. In particular, the sperm membrane is under constant remodeling, with sequential attachment and shedding of various molecules provided by the epididymal lumen fluid and epididymosomes, which also deliver sncRNA cargo to sperm. As a result, the payload of sperm sncRNAs changes during the transit from the epididymis caput to the cauda. This work was designed to study the dynamics of cattle sperm sncRNAs from spermatogenesis to final maturation. Results Comprehensive catalogues of sperm sncRNAs were obtained from testicular parenchyma, epididymal caput, corpus and cauda, as well as ejaculated semen from three Holstein bulls. The primary cattle sncRNA sperm content is markedly remodeled as sperm mature along the epididymis. Expression of piRNAs, which are abundant in testis parenchyma, decreases dramatically at epididymis. Conversely, sperm progressively acquires miRNAs, rsRNAs, and tsRNAs along epididymis, with regional specificities. For instance, miRNAs and tsRNAs are enriched in epididymis cauda and ejaculated sperm, while rsRNA expression peaks at epididymis corpus. In addition, epididymis corpus contains mainly 20 nt long piRNAs, instead of 30 nt in all other locations. Beyond the bulk differences in abundance of sncRNAs classes, K-means clustering was performed to study their spatiotemporal expression profile, highlighting differences in specific sncRNAs and providing insights into their putative biological role at each maturation stage. For instance, Gene Ontology analyses using miRNA targets highlighted enriched processes such as cell cycle regulation, response to stress and ubiquitination processes in testicular parenchyma, protein metabolism in epididymal sperm, and embryonic morphogenesis in ejaculated sperm. Conclusions Our findings confirm that the sperm sncRNAome does not simply reflect a legacy of spermatogenesis. Instead, sperm sncRNA expression shows a remarkable level of plasticity resulting probably from the combination of multiple factors such as loss of the cytoplasmic droplet, interaction with epididymosomes, and more surprisingly, the putative in situ production and/or modification of sncRNAs by sperm. Given the suggested role of sncRNA in epigenetic trans-generational inheritance, our detailed spatiotemporal analysis may pave the way for a study of sperm sncRNAs role in embryo development. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00397-5.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.
| | - Sylvain Marthey
- AgroParisTech, INRAE, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,INRAE, MaIAGE, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Andrea Rau
- AgroParisTech, INRAE, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, Estrées-Mons, France
| | - Luc Jouneau
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Aurelie Bonnet
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | | | - Benoît Guyonnet
- R&D Department, Union Evolution, rue Eric Tabarly, 35538, Noyal-Sur-Vilaine, France
| | - Hélène Kiefer
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Hélène Jammes
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | | |
Collapse
|
22
|
Khanlari P, Khanehzad M, Khosravizadeh Z, Sobhani A, Barakzai S, Kazemzadeh S, Hedayatpour A. Effect of miR-30a-5p on Apoptosis, Colonization, and Oxidative Stress Variables in Frozen-Thawed Neonatal Mice Spermatogonial Stem Cells. Biopreserv Biobank 2021; 19:258-268. [PMID: 33913738 DOI: 10.1089/bio.2020.0121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cryopreservation of spermatogonial stem cells (SSCs) is a useful method for fertility preservation in preadolescent children suffering from cancer. However, SSCs may become damaged during cryopreservation due to the generation of reactive oxygen species (ROS). For this reason, various antioxidant agents have been used to protect SSCs from cryopreservation-induced damages. Recently, it has been reported that miR-30a-5p has antiapoptotic and antioxidant activity. The aim of this study was to assess the antiapoptotic and antioxidant effects of miR-30a-5p mimics in frozen-thawed SSCs. To this end, SSCs were isolated from male BALB/C mice (3-6 days old) and cultivated for 14 days. After the detection of optimum concentration, a miR-30a-5p mimic or miR-30a-5p inhibitor with Lipofectamine was transfected into SSCs and, finally, the cell groups were frozen for 1 week. After thawing, different properties, including cell viability (using MTT), colonization of SSCs (number and diameter of colonies), ROS generation (using DCFH-DA assay), levels of malondialdehyde (MDA) and superoxide dismutase (SOD), and gene expression of Bcl-2 and BAXBax (using quantitative real-time PCR), were investigated. The transfection of SSCs with miR-30a-5p mimics before the freezing-thawing process significantly increased the viability, number, and diameter of SSCs colonies. Also, the miR-30a-5p mimic decreased the levels of ROS production and MDA, but it increased the SOD levels. Moreover, the miR-30a-5p mimic decreased BAX and increased Bcl-2 expression in frozen-thawed SSCs. The transfection of SSCs with the miR-30a-5p mimic can increase cell viability and antioxidant defense, and it can decrease apoptosis during the freezing-thawing process. If SSC is able to produce spermatozoa after the transfection of miR-30a-5p and the freezing-thawing process, it can be suggested as a promising strategy for the cryopreservation of SSCs in prepubertal boys suffering from cancer.
Collapse
Affiliation(s)
- Parastoo Khanlari
- Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Khanehzad
- Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Aligholi Sobhani
- Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shogoofa Barakzai
- Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Azim Hedayatpour
- Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Pourrajab F, Hekmatimoghaddam S. Transposable elements, contributors in the evolution of organisms (from an arms race to a source of raw materials). Heliyon 2021; 7:e06029. [PMID: 33532648 PMCID: PMC7829209 DOI: 10.1016/j.heliyon.2021.e06029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
There is a concept proposing that the primitive lineages of prokaryotes, eukaryotes, and viruses emerged from the primordial pool of primitive genetic elements. In this genetic pool, transposable elements (TEs) became a source of raw material for primitive genomes, tools of genetic innovation, and ancestors of modern genes (e.g. ncRNAs, tRNAs, and rRNAs). TEs contributed directly to the genome evolution of three forms of life on the earth. TEs now appear as tools that were used to giving rise to sexual dimorphism and sex determination, lineage-specific expression of genes and tissue differentiation and finally genome stability and lifespan determination.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedhossein Hekmatimoghaddam
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
24
|
Barreñada O, Fernández-Pérez D, Larriba E, Brieño-Enriquez M, Del Mazo J. Diversification of piRNAs expressed in PGCs and somatic cells during embryonic gonadal development. RNA Biol 2020; 17:1309-1323. [PMID: 32375541 DOI: 10.1080/15476286.2020.1757908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
piRNAs are small non-coding RNAs known to play a main role in defence against transposable elements in germ cells. However, other potential functions, such as biogenesis and differences in somatic and germline expression of these regulatory elements, are not yet fully unravelled. Here, we analysed a variety of piRNA sequences detected in mouse male and female primordial germ cells (PGCs) and gonadal somatic cells at crucial stages during embryonic differentiation of germ cells (11.5-13.5 days post-coitum). NGS of sncRNA and bioinformatic characterization of piRNAs from PGCs and somatic cells, in addition to piRNAs associated with TEs, indicated functional diversification in both cell types. Differences in the proportion of the diverse types of piRNAs are detected between somatic and germline during development. However, the global diversified patterns of piRNA expression are mainly shared between germ and somatic cells, we identified piRNAs related with molecules involved in ribosome components and translation pathway, including piRNAs derived from rRNA (34%), tRNA (10%) and snoRNA (8%). piRNAs from both tRNA and snoRNA are mainly derived from 3' and 5' end regions. These connections between piRNAs and rRNAs, tRNAs or snoRNAs suggest important functions of specialized piRNAs in translation regulation during this window of gonadal development.
Collapse
Affiliation(s)
- Odei Barreñada
- Department of Cellular & Molecular Biology, Centro De Investigaciones Biológicas C.I.B. (CSIC) , Madrid, Spain
| | - Daniel Fernández-Pérez
- Department of Cellular & Molecular Biology, Centro De Investigaciones Biológicas C.I.B. (CSIC) , Madrid, Spain
| | - Eduardo Larriba
- Department of Cellular & Molecular Biology, Centro De Investigaciones Biológicas C.I.B. (CSIC) , Madrid, Spain
| | - Miguel Brieño-Enriquez
- Department of Cellular & Molecular Biology, Centro De Investigaciones Biológicas C.I.B. (CSIC) , Madrid, Spain
| | - Jesús Del Mazo
- Department of Cellular & Molecular Biology, Centro De Investigaciones Biológicas C.I.B. (CSIC) , Madrid, Spain
| |
Collapse
|
25
|
Bizuayehu TT, Babiak I. Heterogenic Origin of Micro RNAs in Atlantic Salmon ( Salmo salar) Seminal Plasma. Int J Mol Sci 2020; 21:ijms21082723. [PMID: 32326572 PMCID: PMC7216159 DOI: 10.3390/ijms21082723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/21/2022] Open
Abstract
The origin and contribution of seminal plasma RNAs into the whole semen RNA repertoire are poorly known, frequently being overlooked or neglected. In this study, we used high-throughput sequencing and RT-qPCR to profile microRNA (miRNA) constituents in the whole semen, as well as in fractionated spermatozoa and seminal plasma of Atlantic salmon (Salmo salar). We found 85 differentially accumulated miRNAs between spermatozoa and the seminal plasma. We identified a number of seminal plasma-enriched and spermatozoa-enriched miRNAs. We localized the expression of some miRNAs in juvenile and mature testes. Two abundant miRNAs, miR-92a-3p and miR-202-5p, localized to both spermatogonia and somatic supporting cells in immature testis, and they were also highly abundant in somatic cells in mature testis. miR-15c-5p, miR-30d-5p, miR-93a-5p, and miR-730-5p were detected only in mature testis. miRs 92a-3p, 202-5p, 15c-5p, and 30d-5p were also detected in a juvenile ovary. The RT-qPCR experiment demonstrated lack of correlation in miRNA transcript levels in seminal plasma versus blood plasma. Our results indicate that salmon semen is rich in miRNAs, which are present in both spermatozoa and seminal plasma. Testicular-supporting somatic cells are likely the source of seminal plasma enrichment, whereas blood plasma is unlikely to contribute to the seminal plasma miRNA repertoire.
Collapse
|
26
|
Abu‐Halima M, Galata V, Backes C, Keller A, Hammadeh M, Meese E. MicroRNA signature in spermatozoa and seminal plasma of proven fertile men and in testicular tissue of men with obstructive azoospermia. Andrologia 2019; 52:e13503. [DOI: 10.1111/and.13503] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Masood Abu‐Halima
- Institute of Human Genetics Saarland University Homburg Saar Germany
| | - Valentina Galata
- Chair for Clinical Bioinformatics Saarland University Saarbruecken Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics Saarland University Saarbruecken Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics Saarland University Saarbruecken Germany
| | - Mohamad Hammadeh
- Department of Obstetrics and Gynecology IVF and Andrology Laboratory Saarland University Homburg Saar Germany
| | - Eckart Meese
- Institute of Human Genetics Saarland University Homburg Saar Germany
| |
Collapse
|
27
|
Zhao Z, Qiao L, Dai Z, He Q, Lan X, Huang S, He L. LncNONO-AS regulates AR expression by mediating NONO. Theriogenology 2019; 145:198-206. [PMID: 31732162 DOI: 10.1016/j.theriogenology.2019.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
Spermatogenesis and healthy testicular development are prerequisites for male reproductive function. Androgen receptor (AR), an important receptor in testicular sertoli cells, is involved in androgen specific response and its dysfunction will lead to abnormal sperm development, resulting in male infertility. NONO (non-POU-domain-containing octamer binding protein) can act as a coactivator to enhance the transcription of AR, while AR may be regulated by NONO in testicular sertoli cells. LncRNAs are involved in almost every step of spermatogenesis. However, there are few studies focus on the relationship between lncRNAs and spermatogenesis in goat testis. Therefore, in this research, high throughput sequencing and bioinformatics analysis were performed on testicular tissues of Dazu black goats at different stages of development to obtain the target NONO lncRNA. It's called lncNONO-AS. This study further explored the biological functions of lncRNA through RNA pull down, overexpression, interference, fluorescence quantification, Western blot and other techniques on the basis of in vitro culture of testis sertoli cells, and we got the following results: The gene expression levels of NONO and AR in lncNONO-AS overexpression group were significantly higher than that in the empty vector group (P < 0.01). Compared with the untreated negative control group, the expression of NONO decreased from 1.00 to 0.68 (P < 0.01), and the expression of AR decreased from 1.01 to 0.34 (P < 0.01). The results showed that lncNONO-AS could regulate the expression of AR by mediating the expression of NONO.
Collapse
Affiliation(s)
- Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Lei Qiao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zinuo Dai
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qijie He
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Siyi Huang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Lina He
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
28
|
Small Non-Coding RNAs Derived From Eukaryotic Ribosomal RNA. Noncoding RNA 2019; 5:ncrna5010016. [PMID: 30720712 PMCID: PMC6468398 DOI: 10.3390/ncrna5010016] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
The advent of RNA-sequencing (RNA-Seq) technologies has markedly improved our knowledge and expanded the compendium of small non-coding RNAs, most of which derive from the processing of longer RNA precursors. In this review article, we will present a nonexhaustive list of referenced small non-coding RNAs (ncRNAs) derived from eukaryotic ribosomal RNA (rRNA), called rRNA fragments (rRFs). We will focus on the rRFs that are experimentally verified, and discuss their origin, length, structure, biogenesis, association with known regulatory proteins, and potential role(s) as regulator of gene expression. This relatively new class of ncRNAs remained poorly investigated and underappreciated until recently, due mainly to the a priori exclusion of rRNA sequences-because of their overabundance-from RNA-Seq datasets. The situation surrounding rRFs resembles that of microRNAs (miRNAs), which used to be readily discarded from further analyses, for more than five decades, because no one could believe that RNA of such a short length could bear biological significance. As if we had not yet learned our lesson not to restrain our investigative, scientific mind from challenging widely accepted beliefs or dogmas, and from looking for the hidden treasures in the most unexpected places.
Collapse
|
29
|
Identification of the X-linked germ cell specific miRNAs (XmiRs) and their functions. PLoS One 2019; 14:e0211739. [PMID: 30707741 PMCID: PMC6358104 DOI: 10.1371/journal.pone.0211739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) play a critical role in multiple aspects of biology. Dicer, an RNase III endonuclease, is essential for the biogenesis of miRNAs, and the germ cell-specific Dicer1 knockout mouse shows severe defects in gametogenesis. How miRNAs regulate germ cell development is still not fully understood. In this study, we identified germ cell-specific miRNAs (miR-741-3p, miR-871-3p, miR-880-3p) by analyzing published RNA-seq data of mouse. These miRNA genes are contiguously located on the X chromosome near other miRNA genes. We named them X chromosome-linked miRNAs (XmiRs). To elucidate the functions of XmiRs, we generated knockout mice of these miRNA genes using the CRISPR/Cas9-mediated genome editing system. Although no histological abnormalities were observed in testes of F0 mice in which each miRNA gene was disrupted, a deletion covering miR-871 and miR-880 or covering all XmiRs (ΔXmiRs) resulted in arrested spermatogenesis in meiosis in a few seminiferous tubules, indicating their redundant functions in spermatogenesis. Among candidate targets of XmiRs, we found increased expression of a gene encoding a WNT receptor, FZD4, in ΔXmiRs testis compared with that in wildtype testis. miR-871-3p and miR-880-3p repressed the expression of Fzd4 via the 3′-untranslated region of its mRNA. In addition, downstream genes of the WNT/β-catenin pathway were upregulated in ΔXmiRs testis. We also found that miR-871, miR-880, and Fzd4 were expressed in spermatogonia, spermatocytes and spermatids, and overexpression of miR-871 and miR-880 in germ stem cells in culture repressed their increase in number and Fzd4 expression. Previous studies indicated that the WNT/β-catenin pathway enhances and represses proliferation and differentiation of spermatogonia, respectively, and our results consistently showed that stable β-catenin enhanced GSC number. In addition, stable β-catenin partially rescued reduced GSC number by overexpression of miR-871 and miR-880. The results together suggest that miR-871 and miR-880 cooperatively regulate the WNT/β-catenin pathway during testicular germ cell development.
Collapse
|
30
|
The nucleolar transcriptome regulates Piwi shuttling between the nucleolus and the nucleoplasm. Chromosome Res 2018; 27:141-152. [DOI: 10.1007/s10577-018-9595-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 01/25/2023]
|
31
|
Klastrup LK, Bak ST, Nielsen AL. The influence of paternal diet on sncRNA-mediated epigenetic inheritance. Mol Genet Genomics 2018; 294:1-11. [PMID: 30229293 DOI: 10.1007/s00438-018-1492-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022]
Abstract
The risk of developing metabolic diseases is conferred by genetic predisposition from risk genes and by environmental exposures that can manifest in epigenetic changes. The global rise in obesity and type II diabetes has motivated a search for the epigenetic factors underlying these diseases. The possibility of transgenerational inheritance of epigenetic changes raises questions regarding how spermatozoa transmit acquired epigenetic changes that affect the metabolic health of the next generation. The purpose of this review is to describe current key literature concerning small non-coding RNA (sncRNA), specifically (1) the effects of high-fat or low-protein diets on sncRNA presence in spermatozoa; (2) sncRNA transmission from father to offspring; and (3) the functional effects of inherited sncRNA on offspring metabolic phenotype. Current research has identified alterations in the content of sncRNA subtypes, including microRNA (miRNA), Piwi-interacting RNA (piRNA), and transferRNA (tRNA)-derived small non-coding RNA (tsncRNA), in spermatozoa in response to both high-fat diets and low-protein diets. The altered content of spermatozoa sncRNA due to high-fat diets was associated with a changed phenotype in offspring, with offspring displaying insulin resistance, altered body weight, and glucose intolerance. The altered sncRNA content of spermatozoa due to a low-protein diet was associated with altered levels of lipid metabolites in offspring and decreased expression of specific genes starting in two-cell embryos. The current literature suggests that sncRNAs mediate paternal intergenerational epigenetic inheritance and thus has a direct functional importance, as well as possess biomarker potential, for metabolic diseases. Further research is urgently required to identify the specific sncRNAs with the most profound impacts.
Collapse
Affiliation(s)
- Line Katrine Klastrup
- Department of Biomedicine, Aarhus University, Bartholin Building, 8000, Aarhus C, Denmark
| | - Stine Thorhauge Bak
- Department of Biomedicine, Aarhus University, Bartholin Building, 8000, Aarhus C, Denmark
| | - Anders Lade Nielsen
- Department of Biomedicine, Aarhus University, Bartholin Building, 8000, Aarhus C, Denmark.
| |
Collapse
|
32
|
Larriba E, Rial E, Del Mazo J. The landscape of mitochondrial small non-coding RNAs in the PGCs of male mice, spermatogonia, gametes and in zygotes. BMC Genomics 2018; 19:634. [PMID: 30153810 PMCID: PMC6114042 DOI: 10.1186/s12864-018-5020-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
Background Mitochondria are organelles that fulfill a fundamental role in cell bioenergetics, as well as in other processes like cell signaling and death. Small non-coding RNAs (sncRNA) are now being considered as pivotal post-transcriptional regulators, widening the landscape of their diversity and functions. In mammalian cells, small RNAs encoded by the mitochondrial genome, mitosRNAs were discovered recently, although their biological role remains uncertain. Results Here, using specific bioinformatics analyses, we have defined the diversity of mitosRNAs present in early differentiated germ cells of male mice (PGCs and spermatogonia), and in the gametes of both sexes and in zygotes. We found strong transcription of mitosRNAs relative to the size of the mtDNA, and classifying these mitosRNAs into different functional sncRNA groups highlighted the predominance of Piwi-interacting RNAs (piRNAs) relative to the other types of mitosRNAs. Mito-piRNAs were more abundant in oocytes and zygotes, where mitochondria fulfill key roles in fecundation process. Functional analysis of some particular mito-piRNAs (mito-piR-7,456,245), also expressed in 3T3-L1 cells, was assessed after exposure to RNA antagonists. Conclusions As far as we are aware, this is the first integrated analysis of sncRNAs encoded by mtDNA in germ cells and zygotes. The data obtained suggesting that mitosRNAs fulfill key roles in gamete differentiation and fertilization. Electronic supplementary material The online version of this article (10.1186/s12864-018-5020-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eduardo Larriba
- Department of Cellular & Molecular Biology, Centro de Investigaciones Biológicas C.I.B. (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Eduardo Rial
- Department of Chemical & Physical Biology, Centro de Investigaciones Biológicas C.I.B. (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Jesús Del Mazo
- Department of Cellular & Molecular Biology, Centro de Investigaciones Biológicas C.I.B. (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
33
|
An integrative piRNA analysis of mouse gametes and zygotes reveals new potential origins and gene regulatory roles. Sci Rep 2018; 8:12832. [PMID: 30150632 PMCID: PMC6110870 DOI: 10.1038/s41598-018-31032-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are a subclass of the small non-coding RNAs (sncRNAs). Their main reported function was to exert control over transposable elements (TEs) in mammalian germline. In this study undertaking a deeper bioinformatics analysis of piRNAs present in mouse oocytes, sperm cells and zygotes, we first elaborated a new piRNA database based on sequences identified as piRNAs by immunoprecipitation with PIWI proteins. Our bioinformatics analysis revealed that, at least in gametes and zygotes, piRNAs could encompass multifunctional cell-dependent regulatory molecules. Indeed, genome analysis of the piRNA mapping density (reads/kb) evidenced in all samples an enrichment of intron-derived piRNAs. Further, piRNA population was classified into sequences not associated to TEs or repeats (NRapiRNAs) and associated to repetitive genome elements (RapiRNAs). In oocytes most of the NRapiRNAs mapped to the 5′UTRs of coding mRNAs, while higher proportion of NRapiRNAs was detected in sperm cells associated to the 3′UTRs of mRNAs. This piRNA complementarity to mRNA UTRs suggests key post-transcriptional regulatory roles over mRNAs such as those encoding MHC genes. In addition, a striking association of RapiRNA with long non-coding RNAs (lncRNAs) was identified. piRNAs associated with relevant lncRNAs such as: Rab26os and GAS5 and key mRNAs, were particularly assessed.
Collapse
|
34
|
Reza AMMT, Choi YJ, Han SG, Song H, Park C, Hong K, Kim JH. Roles of microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos. Biol Rev Camb Philos Soc 2018; 94:415-438. [PMID: 30151880 PMCID: PMC7379200 DOI: 10.1111/brv.12459] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are active regulators of numerous biological and physiological processes including most of the events of mammalian reproduction. Understanding the biological functions of miRNAs in the context of mammalian reproduction will allow a better and comparative understanding of fertility and sterility in male and female mammals. Herein, we summarize recent progress in miRNA‐mediated regulation of mammalian reproduction and highlight the significance of miRNAs in different aspects of mammalian reproduction including the biogenesis of germ cells, the functionality of reproductive organs, and the development of early embryos. Furthermore, we focus on the gene expression regulatory feedback loops involving hormones and miRNA expression to increase our understanding of germ cell commitment and the functioning of reproductive organs. Finally, we discuss the influence of miRNAs on male and female reproductive failure, and provide perspectives for future studies on this topic.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| |
Collapse
|
35
|
Lecluze E, Jégou B, Rolland AD, Chalmel F. New transcriptomic tools to understand testis development and functions. Mol Cell Endocrinol 2018; 468:47-59. [PMID: 29501799 DOI: 10.1016/j.mce.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
The testis plays a central role in the male reproductive system - secreting several hormones including male steroids and producing male gametes. A complex and coordinated molecular program is required for the proper differentiation of testicular cell types and maintenance of their functions in adulthood. The testicular transcriptome displays the highest levels of complexity and specificity across all tissues in a wide range of species. Many studies have used high-throughput sequencing technologies to define the molecular dynamics and regulatory networks in the testis as well as to identify novel genes or gene isoforms expressed in this organ. This review intends to highlight the complementarity of these transcriptomic studies and to show how the use of different sequencing protocols contribute to improve our global understanding of testicular biology.
Collapse
Affiliation(s)
- Estelle Lecluze
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Antoine D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France.
| |
Collapse
|
36
|
Karlic R, Ganesh S, Franke V, Svobodova E, Urbanova J, Suzuki Y, Aoki F, Vlahovicek K, Svoboda P. Long non-coding RNA exchange during the oocyte-to-embryo transition in mice. DNA Res 2018; 24:129-141. [PMID: 28087610 PMCID: PMC5397607 DOI: 10.1093/dnares/dsw058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/28/2016] [Indexed: 01/02/2023] Open
Abstract
The oocyte-to-embryo transition (OET) transforms a differentiated gamete into pluripotent blastomeres. The accompanying maternal-zygotic RNA exchange involves remodeling of the long non-coding RNA (lncRNA) pool. Here, we used next generation sequencing and de novo transcript assembly to define the core population of 1,600 lncRNAs expressed during the OET (lncRNAs). Relative to mRNAs, OET lncRNAs were less expressed and had shorter transcripts, mainly due to fewer exons and shorter 5′ terminal exons. Approximately half of OET lncRNA promoters originated in retrotransposons suggesting their recent emergence. Except for a small group of ubiquitous lncRNAs, maternal and zygotic lncRNAs formed two distinct populations. The bulk of maternal lncRNAs was degraded before the zygotic genome activation. Interestingly, maternal lncRNAs seemed to undergo cytoplasmic polyadenylation observed for dormant mRNAs. We also identified lncRNAs giving rise to trans-acting short interfering RNAs, which represent a novel lncRNA category. Altogether, we defined the core OET lncRNA transcriptome and characterized its remodeling during early development. Our results are consistent with the notion that rapidly evolving lncRNAs constitute signatures of cells-of-origin while a minority plays an active role in control of gene expression across OET. Our data presented here provide an excellent source for further OET lncRNA studies.
Collapse
Affiliation(s)
- Rosa Karlic
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Sravya Ganesh
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Vedran Franke
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Eliska Svobodova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jana Urbanova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Kristian Vlahovicek
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
37
|
Fernández-Pérez D, Brieño-Enríquez MA, Isoler-Alcaraz J, Larriba E, Del Mazo J. MicroRNA dynamics at the onset of primordial germ and somatic cell sex differentiation during mouse embryonic gonad development. RNA (NEW YORK, N.Y.) 2018; 24:287-303. [PMID: 29187591 PMCID: PMC5824349 DOI: 10.1261/rna.062869.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
In mammals, commitment and specification of germ cell lines involves complex programs that include sex differentiation, control of proliferation, and meiotic initiation. Regulation of these processes is genetically controlled by fine-tuned mechanisms of gene regulation in which microRNAs (miRNAs) are involved. We have characterized, by small-RNA-seq and bioinformatics analyses, the miRNA expression patterns of male and female mouse primordial germ cells (PGCs) and gonadal somatic cells at embryonic stages E11.5, E12.5, and E13.5. Differential expression analyses revealed differences in the regulation of key miRNA clusters such as miR-199-214, miR-182-183-96, and miR-34c-5p, whose targets have defined roles during gonadal sexual determination in both germ and somatic cells. Extensive analyses of miRNA sequences revealed an increase in noncanonical isoforms on PGCs at E12.5 and dramatic changes of 3' isomiR expression and 3' nontemplate nucleotide additions in female PGCs at E13.5. Additionally, RT-qPCR analyses of genes encoding proteins involved in miRNA biogenesis and 3' nucleotide addition uncovered sexually and developmentally specific expression, characterized by the decay of Drosha, Dgcr8, and Xpo5 expression along gonadal development. These results demonstrate that miRNAs, their isomiRs, and miRNA machinery are differentially regulated and participate actively in gonadal sexual differentiation in both PGCs and gonadal somatic cells.
Collapse
Affiliation(s)
- Daniel Fernández-Pérez
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| | - Miguel A Brieño-Enríquez
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| | - Javier Isoler-Alcaraz
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| | - Eduardo Larriba
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| | - Jesús Del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| |
Collapse
|
38
|
Che D, Wang Y, Bai W, Li L, Liu G, Zhang L, Zuo Y, Tao S, Hua J, Liao M. Dynamic and modular gene regulatory networks drive the development of gametogenesis. Brief Bioinform 2017; 18:712-721. [PMID: 27373733 DOI: 10.1093/bib/bbw056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Indexed: 12/12/2022] Open
Abstract
Gametogenesis is a complex process, which includes mitosis and meiosis and results in the production of ovum and sperm. The development of gametogenesis is dynamic and needs many different genes to work synergistically, but it is lack of global perspective research about this process. In this study, we detected the dynamic process of gametogenesis from the perspective of systems biology based on protein-protein interaction networks (PPINs) and functional analysis. Results showed that gametogenesis genes have strong synergistic effects in PPINs within and between different phases during the development. Addition to the synergistic effects on molecular networks, gametogenesis genes showed functional consistency within and between different phases, which provides the further evidence about the dynamic process during the development of gametogenesis. At last, we detected and provided the core molecular modules of different phases about gametogenesis. The gametogenesis genes and related modules can be obtained from our Web site Gametogenesis Molecule Online (GMO, http://gametsonline.nwsuaflmz.com/index.php), which is freely accessible. GMO may be helpful for the reference and application of these genes and modules in the future identification of key genes about gametogenesis. Summary, this work provided a computational perspective and frame to the analysis of the gametogenesis dynamics and modularity in both human and mouse.
Collapse
|
39
|
Zhang H, Liu J, Tai Y, Zhang X, Zhang J, Liu S, Lv J, Liu Z, Kong Q. Identification and characterization of L1-specific endo-siRNAs essential for early embryonic development in pig. Oncotarget 2017; 8:23167-23176. [PMID: 28423565 PMCID: PMC5410294 DOI: 10.18632/oncotarget.15517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/08/2017] [Indexed: 01/17/2023] Open
Abstract
Small noncoding RNAs (sncRNAs) play important roles in RNA interference (RNAi). In addition to microRNA (miRNA) and Piwi-interacting RNA (piRNA), one key member of sncRNAs group is endogenous small interfering RNA (endo-siRNA). Some studies do show the role of endo-siRNAs in Dicer and/or Ago mutants, however, the biological functions of specific endo-siRNAs remains mostly unanswered. In the study, we have performed a comparative analysis of endo-siRNAs present in porcine sperms, oocytes and zygotes, identified by deep sequencing and bioinformatics analysis. Further, we observe a large amount of endo-siRNAs specific binding on ORF2 and 3′ UTR of porcine L1 (L1-siRNAs). And, 9 L1-siRNAs generated from a dsRNA formed between L1 transcript and a newly identified an antisense noncoding RNA was characterized. We show the L1-siRNAs regulate early embryonic development by inhibiting the activity of L1 retrotransposition. This work can contribute to understanding the functional role of abundant endo-siRNAs in embryonic development.
Collapse
Affiliation(s)
- Heng Zhang
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Jilong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou Province 510642, China
| | - Yurong Tai
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Xiaolei Zhang
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Jiaming Zhang
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Shichao Liu
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Jiawei Lv
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Zhonghua Liu
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Qingran Kong
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| |
Collapse
|
40
|
Isoler-Alcaraz J, Fernández-Pérez D, Larriba E, del Mazo J. Cellular and molecular characterization of gametogenic progression in ex vivo cultured prepuberal mouse testes. Reprod Biol Endocrinol 2017; 15:85. [PMID: 29047395 PMCID: PMC5648490 DOI: 10.1186/s12958-017-0305-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, an effective testis culture method using a gas-liquid interphase, capable of differentiate male germ cells from neonatal spermatogonia to spermatozoa has been developed. Nevertheless, this methodology needs deep analyses that allow future experimental approaches in basic, pathologic and/or reprotoxicologic studies. Because of this, we characterized at cellular and molecular levels the entire in vitro spermatogenic progression, in order to understand and evaluate the characteristics that define the spermatogenic process in ex vivo cultured testes compared to the in vivo development. METHODS Testicular explants of CD1 mice aged 6 and 10 days post-partum were respectively cultured during 55 and 89 days. Cytological and molecular approaches were performed, analyzing germ cell proportion at different time culture points, meiotic markers immunodetecting synaptonemal complex protein SYCP3 by immunocytochemistry and the relative expression of different marker genes along the differentiation process by Reverse Transcription - quantitative Polymerase Chain Reaction. In addition, microRNA and piwi-interactingRNA profiles were also evaluated by Next Generation Sequencing and bioinformatic approaches. RESULTS The method promoted and maintained the spermatogenic process during 89 days. At a cytological level we detected spermatogenic development delays of cultured explants compared to the natural in vivo process. The expression of different spermatogenic stages gene markers correlated with the proportion of different cell types detected in the cytological preparations. CONCLUSIONS In vitro progression analysis of the different spermatogenic cell types, from both 6.5 dpp and 10.5 dpp testes explants, has revealed a relative delay in relation to in vivo process. The expression of the genes studied as biomarkers correlates with the cytologically and functional detected progression and differential expression identified in vivo. After a first analysis of deep sequencing data it has been observed that as long as cultures progress, the proportion of microRNAs declined respect to piwi-interactingRNAs levels that increased, showing a similar propensity than which happens in in vivo spermatogenesis. Our study allows to improve and potentially to control the ex vivo spermatogenesis development, opening new perspectives in the reproductive biology fields including male fertility.
Collapse
Affiliation(s)
- J. Isoler-Alcaraz
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain
| | - D. Fernández-Pérez
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain
| | - E. Larriba
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain
| | - J. del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain
| |
Collapse
|
41
|
Hilz S, Modzelewski AJ, Cohen PE, Grimson A. The roles of microRNAs and siRNAs in mammalian spermatogenesis. Development 2017; 143:3061-73. [PMID: 27578177 PMCID: PMC5047671 DOI: 10.1242/dev.136721] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
MicroRNAs and siRNAs, both of which are AGO-bound small RNAs, are essential for mammalian spermatogenesis. Although their precise germline roles remain largely uncharacterized, recent discoveries suggest that they function in mechanisms beyond microRNA-mediated post-transcriptional control, playing roles in DNA repair and transcriptional regulation within the nucleus. Here, we discuss the latest findings regarding roles for AGO proteins and their associated small RNAs in the male germline. We integrate genetic, clinical and genomics data, and draw upon findings from non-mammalian models, to examine potential roles for AGO-bound small RNAs during spermatogenesis. Finally, we evaluate the emerging and differing roles for AGOs and AGO-bound small RNAs in the male and female germlines, suggesting potential reasons for these sexual dimorphisms. Summary: This Review article summarizes the latest findings regarding roles for AGO proteins and their associated small RNAs in the male germline, with a particular focus on spermatogenesis.
Collapse
Affiliation(s)
- Stephanie Hilz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew J Modzelewski
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
42
|
Cui L, Fang L, Shi B, Qiu S, Ye Y. Spermatozoa Expression of piR-31704, piR-39888, and piR-40349 and Their Correlation to Sperm Concentration and Fertilization Rate After ICSI. Reprod Sci 2017; 25:733-739. [DOI: 10.1177/1933719117725822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Long Cui
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Fang
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Biwei Shi
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sunquan Qiu
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinghui Ye
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
Jackowiak P, Hojka-Osinska A, Philips A, Zmienko A, Budzko L, Maillard P, Budkowska A, Figlerowicz M. Small RNA fragments derived from multiple RNA classes - the missing element of multi-omics characteristics of the hepatitis C virus cell culture model. BMC Genomics 2017; 18:502. [PMID: 28666407 PMCID: PMC5493846 DOI: 10.1186/s12864-017-3891-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/21/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A pool of small RNA fragments (RFs) derived from diverse cellular RNAs has recently emerged as a rich source of functionally relevant molecules. Although their formation and accumulation has been connected to various stress conditions, the knowledge on RFs produced upon viral infections is very limited. Here, we applied the next generation sequencing (NGS) to characterize RFs generated in the hepatitis C virus (HCV) cell culture model (HCV-permissive Huh-7.5 cell line). RESULTS We found that both infected and non-infected cells contained a wide spectrum of RFs derived from virtually all RNA classes. A significant fraction of identified RFs accumulated to similar levels as miRNAs. Our analysis, focused on RFs originating from constitutively expressed non-coding RNAs, revealed three major patterns of parental RNA cleavage. We found that HCV infection induced significant changes in the accumulation of low copy number RFs, while subtly altered the levels of high copy number ones. Finally, the candidate RFs potentially relevant for host-virus interactions were identified. CONCLUSIONS Our results indicate that RFs should be considered an important component of the Huh-7.5 transcriptome and suggest that the main factors influencing the RF biogenesis are the RNA structure and RNA protection by interacting proteins. The data presented here significantly complement the existing transcriptomic, miRnomic, proteomic and metabolomic characteristics of the HCV cell culture model.
Collapse
Affiliation(s)
- Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Anna Hojka-Osinska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Anna Philips
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Computing Science, Poznan University of Technology, Piotrowo 3A, 60-965, Poznan, Poland
| | - Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Patrick Maillard
- Institut Pasteur, Hepacivirus and Innate Immunity, CNRS, UMR3569, 75724, Paris, France
| | - Agata Budkowska
- Institut Pasteur, Hepacivirus and Innate Immunity, CNRS, UMR3569, 75724, Paris, France.,Scientific Advisor for the Department of International Affairs, Institut Pasteur, 75724, Paris, France
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland. .,Institute of Computing Science, Poznan University of Technology, Piotrowo 3A, 60-965, Poznan, Poland.
| |
Collapse
|
44
|
Nakajima R, Sato T, Ogawa T, Okano H, Noce T. A noncoding RNA containing a SINE-B1 motif associates with meiotic metaphase chromatin and has an indispensable function during spermatogenesis. PLoS One 2017; 12:e0179585. [PMID: 28658256 PMCID: PMC5489172 DOI: 10.1371/journal.pone.0179585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/01/2017] [Indexed: 12/24/2022] Open
Abstract
A search for early response genes that are activated following germ cell induction from mouse embryonic stem cells in vitro led us to the isolation of a long noncoding RNA that contains a SINE (short interspersed element)-B1F motif that was named R53. In situ hybridization and northern blot analyses revealed that the R53 subfragment RNA bears a B1F motif, is processed from the primary transcript, is expressed in adult testis and is predominantly localized in meiotic metaphase chromatin during spermatogenesis. Recent studies of chromosome-associated RNAs have explored novel functions of noncoding RNAs. Specifically, chromosome-bound noncoding RNAs function not only as structural components of chromosome but also as scaffolds that recruit epigenetic modulators for transcriptional regulation, and they are dynamically rearranged during the cell cycle. However, few studies have explored meiotic chromatin; thus, R53 RNA appears to be the first long noncoding RNA to be tightly associated with the metaphase chromatin during spermatogenesis. Furthermore, R53 knockdown using a lentivirus-mediated RNAi injected into mouse testis and organ culture of the fragments revealed a remarkable reduction in postmeiotic cells and irregular up-regulation of several postmeiotic genes, which suggests the possibility that the SINE-B1-derived noncoding RNA R53 plays an indispensable role in the transcriptional regulation of key spermatogenesis genes.
Collapse
Affiliation(s)
- Ryusuke Nakajima
- Department of Physiology, Keio University School of Medicine, 35 Shinamomachi, Shinjuku-ku, Tokyo, Japan
- * E-mail: (RN); (TN)
| | - Takuya Sato
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Kanagawa, Japan
| | - Takehiko Ogawa
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Kanagawa, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinamomachi, Shinjuku-ku, Tokyo, Japan
| | - Toshiaki Noce
- Department of Physiology, Keio University School of Medicine, 35 Shinamomachi, Shinjuku-ku, Tokyo, Japan
- * E-mail: (RN); (TN)
| |
Collapse
|
45
|
Romney AL, Podrabsky JE. Transcriptomic analysis of maternally provisioned cues for phenotypic plasticity in the annual killifish, Austrofundulus limnaeus. EvoDevo 2017; 8:6. [PMID: 28439397 PMCID: PMC5401559 DOI: 10.1186/s13227-017-0069-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/14/2017] [Indexed: 12/20/2022] Open
Abstract
Background Genotype and environment can interact during development to produce novel adaptive traits that support life in extreme conditions. The development of the annual killifish Austrofundulus limnaeus is unique among vertebrates because the embryos have distinct cell movements that separate epiboly from axis formation during early development, can enter into a state of metabolic dormancy known as diapause and can survive extreme environmental conditions. The ability to enter into diapause can be maternally programmed, with young females producing embryos that do not enter into diapause. Alternately, embryos can be programmed to “escape” from diapause and develop directly by both maternal factors and embryonic incubation conditions. Thus, maternally packaged gene products are hypothesized to regulate developmental trajectory and perhaps the other unique developmental characters in this species. Results Using high-throughput RNA sequencing, we generated transcriptomic profiles of mRNAs, long non-coding RNAs and small non-coding RNAs (sncRNAs) in 1–2 cell stage embryos of A. limnaeus. Transcriptomic analyses suggest maternal programming of embryos through alternatively spliced mRNAs and antisense sncRNAs. Comparison of these results to those of comparable studies on zebrafish and other fishes reveals a surprisingly high abundance of transcripts involved in the cellular response to stress and a relatively lower expression of genes required for rapid transition through the cell cycle. Conclusions Maternal programming of developmental trajectory is unlikely accomplished by differential expression of diapause-specific genes. Rather, evidence suggests a role for trajectory-specific splice variants of genes expressed in both phenotypes. In addition, based on comparative studies with zebrafish, the A. limnaeus 1–2 cell stage transcriptome is unique in ways that are consistent with their unique life history. These results not only impact our understanding of the genetic mechanisms that regulate entrance into diapause, but also provide insight into the epigenetic regulation of gene expression during development. Electronic supplementary material The online version of this article (doi:10.1186/s13227-017-0069-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amie L Romney
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207 USA
| | - Jason E Podrabsky
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207 USA
| |
Collapse
|
46
|
Chen C, Wu H, Shen D, Wang S, Zhang L, Wang X, Gao B, Wu T, Li B, Li K, Song C. Comparative profiling of small RNAs of pig seminal plasma and ejaculated and epididymal sperm. Reproduction 2017; 153:785-796. [PMID: 28314792 DOI: 10.1530/rep-17-0014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022]
Abstract
The similarities and differences of small RNAs in seminal plasma, epididymal sperm and ejaculated sperm remain largely undefined. We conducted a systematic comparative analysis of small RNA profiles in pig ejaculated sperm, epididymal sperm and seminal plasma and found that the diversity distribution of small RNA species was generally similar, whereas the abundance of small RNAs is dramatically different across the three libraries; miRNAs and small RNAs derived from rRNA, tRNA, small nuclear RNA, 7SK RNA, NRON RNA and cis-regulatory RNA were enriched in the three libraries, but piRNA was absent. A large population of small RNAs from ejaculated sperm are ejaculated sperm specific, and only 8-30% of small RNAs overlapped with those of epididymal sperm or seminal plasma and a small proportion (5-18%) of small RNAs were shared in the three libraries, suggesting that, in addition to the testes, sperm RNAs may also originate from seminal plasma, epididymis as well as other resources. Most miRNAs were co-distributed but differentially expressed across the three libraries, with epididymal sperm exhibiting the highest abundance, followed by ejaculated sperm and seminal plasma. The prediction of target genes of the top 10 highly expressed miRNAs across the three libraries revealed that these miRNAs may be involved in spermatogenesis, zygote development and the interaction between the environment and animals. Our study provides the first description of the similarities and differences of small RNA profiles in ejaculated sperm, epididymal sperm and seminal plasma and indicates that sperm RNA may have origins other than the testes.
Collapse
Affiliation(s)
- Cai Chen
- The Key Laboratory for Domestic Animal Genetic Resources and Breeding of the Ministry of Agriculture of ChinaInstitute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Joint International Research Laboratory of Agriculture and Agri-Product SafetyCollege of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Han Wu
- Joint International Research Laboratory of Agriculture and Agri-Product SafetyCollege of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dan Shen
- Joint International Research Laboratory of Agriculture and Agri-Product SafetyCollege of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Saisai Wang
- Joint International Research Laboratory of Agriculture and Agri-Product SafetyCollege of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product SafetyCollege of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoyan Wang
- Joint International Research Laboratory of Agriculture and Agri-Product SafetyCollege of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bo Gao
- Joint International Research Laboratory of Agriculture and Agri-Product SafetyCollege of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tianwen Wu
- The Key Laboratory for Domestic Animal Genetic Resources and Breeding of the Ministry of Agriculture of ChinaInstitute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product SafetyCollege of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kui Li
- The Key Laboratory for Domestic Animal Genetic Resources and Breeding of the Ministry of Agriculture of ChinaInstitute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengyi Song
- The Key Laboratory for Domestic Animal Genetic Resources and Breeding of the Ministry of Agriculture of ChinaInstitute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China .,Joint International Research Laboratory of Agriculture and Agri-Product SafetyCollege of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
47
|
Schuster A, Tang C, Xie Y, Ortogero N, Yuan S, Yan W. SpermBase: A Database for Sperm-Borne RNA Contents. Biol Reprod 2016; 95:99. [PMID: 27628216 PMCID: PMC5178153 DOI: 10.1095/biolreprod.116.142190] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/07/2016] [Indexed: 12/31/2022] Open
Abstract
Since their discovery approximately three decades ago, sperm-borne RNAs, both large/small and coding/noncoding, have been reported in multiple organisms, and some have been implicated in spermatogenesis, early development, and epigenetic inheritance. Despite these advances, isolation, quantification, and annotation of sperm-borne RNAs remain nontrivial. The yields and subspecies of sperm-borne RNAs isolated from sperm can vary drastically depending on the methods used, and no cross-species analyses of sperm RNA contents have ever been conducted using a standardized sperm RNA isolation protocol. To address these issues, we developed a simple RNA isolation method that is applicable to sperm of various species, thus allowing for reliable interspecies comparisons. Based on RNA-Seq analyses, we established SpermBase (
www.spermbase.org), a database dedicated to sperm-borne RNA profiling of multiple species. Currently, SpermBase contains large and small RNA expression data for mouse, rat, rabbit, and human total sperm and sperm heads. By analyzing large and small RNAs for conserved features, we found that many sperm-borne RNA species were conserved across all four species analyzed, and among the conserved small RNAs, sperm-borne tRNA-derived small noncoding RNAs and miRNAs can target a large number of genes known to be critical for early development.
Collapse
Affiliation(s)
- Andrew Schuster
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Nicole Ortogero
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
- Department of Biology, University of Nevada, Reno, Reno, Nevada
- Correspondence: Wei Yan, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV 89557. E-mail:
| |
Collapse
|
48
|
Brieño-Enríquez MA, Larriba E, Del Mazo J. Endocrine disrupters, microRNAs, and primordial germ cells: a dangerous cocktail. Fertil Steril 2016; 106:871-9. [PMID: 27521771 DOI: 10.1016/j.fertnstert.2016.07.1100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 12/23/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are environmental pollutants that may change the homeostasis of the endocrine system, altering the differentiation of germ cells with consequences for reproduction. In mammals, germ cell differentiation begins with primordial germ cells (PGCs) during embryogenesis. Primordial germ cell development and gametogenesis are genetically regulated processes, in which the posttranscriptional gene regulation could be mediated by small noncoding RNAs (sncRNAs) such as microRNAs (miRNAs). Here, we review the deleterious effects of exposure during fetal life to EDCs mediated by deregulation of ncRNAs, and specifically miRNAs on PGC differentiation. Moreover, the environmental stress induced by exposure to some EDCs during the embryonic window of development could trigger reproductive dysfunctions transgenerationally transmitted by epigenetic mechanisms with the involvement of miRNAs expressed in germ line cells.
Collapse
Affiliation(s)
| | - Eduardo Larriba
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Jesús Del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
49
|
The Epigenetic Consequences of Paternal Exposure to Environmental Contaminants and Reproductive Toxicants. Curr Environ Health Rep 2016; 3:202-13. [DOI: 10.1007/s40572-016-0101-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Marczylo EL, Jacobs MN, Gant TW. Environmentally induced epigenetic toxicity: potential public health concerns. Crit Rev Toxicol 2016; 46:676-700. [PMID: 27278298 PMCID: PMC5030620 DOI: 10.1080/10408444.2016.1175417] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Throughout our lives, epigenetic processes shape our development and enable us to adapt to a constantly changing environment. Identifying and understanding environmentally induced epigenetic change(s) that may lead to adverse outcomes is vital for protecting public health. This review, therefore, examines the present understanding of epigenetic mechanisms involved in the mammalian life cycle, evaluates the current evidence for environmentally induced epigenetic toxicity in human cohorts and rodent models and highlights the research considerations and implications of this emerging knowledge for public health and regulatory toxicology. Many hundreds of studies have investigated such toxicity, yet relatively few have demonstrated a mechanistic association among specific environmental exposures, epigenetic changes and adverse health outcomes in human epidemiological cohorts and/or rodent models. While this small body of evidence is largely composed of exploratory in vivo high-dose range studies, it does set a precedent for the existence of environmentally induced epigenetic toxicity. Consequently, there is worldwide recognition of this phenomenon, and discussion on how to both guide further scientific research towards a greater mechanistic understanding of environmentally induced epigenetic toxicity in humans, and translate relevant research outcomes into appropriate regulatory policies for effective public health protection.
Collapse
Affiliation(s)
- Emma L Marczylo
- a Toxicology Department, CRCE, PHE, Chilton , Oxfordshire , UK
| | - Miriam N Jacobs
- a Toxicology Department, CRCE, PHE, Chilton , Oxfordshire , UK
| | - Timothy W Gant
- a Toxicology Department, CRCE, PHE, Chilton , Oxfordshire , UK
| |
Collapse
|