1
|
Liu J, Zheng L, Li X, Tang W, Guo M, Wang Y, Tan X, Chang J, Zhao H, Zhu D, Ma YQ, Huo D. Emerging of Ultrafine Membraneless Organelles as the Missing Piece of Nanostress: Mechanism of Biogenesis and Implications at Multilevels. ACS NANO 2025. [PMID: 39882824 DOI: 10.1021/acsnano.4c15876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Understanding the interaction between nanomaterials and cellular structures is crucial for nanoparticle applications in biomedicine. We have identified a subtype of stress granules, called nanomaterial-provoked stress granules (NSGs), induced by gold nanorods (AuNRs). These NSGs differ from traditional SGs in their physical properties and biological functions. Uptake of AuNRs causes reactive oxygen species accumulation and protein misfolding in the cell, leading to NSG formation. Physically, NSGs have a gel-like core and a liquid-like shell, influenced positively by HSP70 and negatively by HSP90 and the ubiquitin-proteasome system. AuNRs promote NSG assembly by interacting with G3BP1, reducing the energy needed for liquid-liquid phase separation (LLPS). NSGs impact cellular functions by affecting mRNA surveillance and activating Adenosine 5'-monophosphate (AMP)-activated protein kinase signaling, crucial for a cellular stress response. Our study highlights the role of LLPS in nanomaterial metabolism and suggests NSGs as potential targets for drug delivery strategies, advancing the field of nanomedicine.
Collapse
Affiliation(s)
- Jia Liu
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Liuting Zheng
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Xinyue Li
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Wei Tang
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Manyu Guo
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Yuxing Wang
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Xiaoqi Tan
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Jiajia Chang
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Huiyue Zhao
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, P. R. China
| | - Dongsheng Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Da Huo
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| |
Collapse
|
2
|
Buchholz HE, Martin SA, Dorweiler JE, Radtke CM, Knier AS, Beans NB, Manogaran AL. Hsp70 chaperones, Ssa1 and Ssa2, limit poly(A) binding protein aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633617. [PMID: 39896508 PMCID: PMC11785122 DOI: 10.1101/2025.01.17.633617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Molecular chaperones play a central role in maintaining protein homeostasis. The highly conserved Hsp70 family of chaperones have major functions in folding of nascent peptides, protein refolding, and protein aggregate disassembly. In yeast, loss of two Hsp70 proteins, Ssa1 and Ssa2, is associated with decreased cellular growth and shortened lifespan. While heterologous or mutant temperature sensitive proteins form anomalous large cytoplasmic inclusions in ssa1Δssa2Δ strains, it is unclear how endogenous wildtype proteins behave and are regulated in the presence of limiting Hsp70s. Using the wildtype yeast Poly A binding protein (Pab1), which is involved in mRNA binding and forms stress granules (SGs) upon heat shock, Pab1 forms large inclusions in approximately half of ssa1Δssa2Δ cells in the absence of stress. Overexpression of Ssa1, Hsp104, and Sis1 almost completely limits the formation of these large inclusions in ssa1Δssa2Δ , suggesting that excess Ssa1, Hsp104 and Sis1 can each compensate for the lower levels of Ssa proteins. Upon heat shock, SGs also form in cells whether large Pab1 inclusions are present or not. Surprisingly, cells containing only SGs disassemble faster than wildtype, whereas cells with both large inclusions disassemble slower albeit completely. We suspect that disassembly of these large inclusions is linked to the elevated heat shock response and elevated Hsp104 and Sis1 levels in ssa1Δssa2Δ strains. We also observed that wildtype cultures grown to saturation also form large Pab1-GFP inclusions. These inclusions can be partially rescued by overexpression of Ssa1. Taken together, our data suggests that Hsp70 not only plays a role in limiting unwanted protein aggregation in normal cells, but as cells age, the depletion of active Hsp70 possibly underlies the age-related aggregation of endogenous proteins.
Collapse
|
3
|
Chen L, Gao Y, Hao X, Yang X, Lindström M, Jiang S, Cao X, Liu H, Nyström T, Sunnerhagen P, Liu B. Stress granule formation is regulated by signaling machinery involving Sch9/Ypk1, sphingolipids, and Ubi4. Theranostics 2025; 15:1987-2005. [PMID: 39897563 PMCID: PMC11780528 DOI: 10.7150/thno.98199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/18/2024] [Indexed: 02/04/2025] Open
Abstract
Rationale: Stress granules (SGs) are membraneless organelles that are formed in response to various stresses. Multiple cellular processes have been reported to be involved in SG formation. However, the signaling cascades that coordinate SG formation remain to be elucidated. Methods: By performing two high-content imaging-based phenomic screens, we identified multiple signaling components that form a possible signal transduction pathway that regulates SG formation. Results: We found that Sch9 and Ypk1 function in an early step of SG formation, leading to a decrease in intermediate long-chain base sphingolipids (LCBs). This further downregulates the polyubiquitin precursor protein Ubi4 through upregulating the deubiquitinase Ubp3. Decreased levels of cellular free ubiquitin may subsequently facilitate Lsm7 phase separation and thus trigger SG formation. Conclusion: The signaling pathway identified in this work, together with its conserved components, provides valuable clues for understanding the mechanisms underlying SG formation and SG-associated human diseases.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuan Gao
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| | - Xiaoxue Yang
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| | - Michelle Lindström
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| | - Shan Jiang
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Huisheng Liu
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Thomas Nyström
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
- EATRIS Center for Large-scale cell-based screening, Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| |
Collapse
|
4
|
Akaree N, Secco V, Levy-Adam F, Younis A, Carra S, Shalgi R. Regulation of physiological and pathological condensates by molecular chaperones. FEBS J 2025. [PMID: 39756021 DOI: 10.1111/febs.17390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Biomolecular condensates are dynamic membraneless compartments that regulate a myriad of cellular functions. A particular type of physiological condensate called stress granules (SGs) has gained increasing interest due to its role in the cellular stress response and various diseases. SGs, composed of several hundred RNA-binding proteins, form transiently in response to stress to protect mRNAs from translation and disassemble when the stress subsides. Interestingly, SGs contain several aggregation-prone proteins, such as TDP-43, FUS, hnRNPA1, and others, which are typically found in pathological inclusions seen in autopsy tissues from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. Moreover, mutations in these genes lead to the familial form of ALS and FTD. This has led researchers to propose that pathological aggregation is seeded by aberrant SGs: SGs that fail to properly disassemble, lose their dynamic properties, and become pathological condensates which finally 'mature' into aggregates. Here, we discuss the evidence supporting this model for various ALS/FTD-associated proteins. We further continue to focus on molecular chaperone-mediated regulation of ALS/FTD-associated physiological condensates on one hand, and pathological condensates on the other. In addition to SGs, we review ALS/FTD-relevant nuclear condensates, namely paraspeckles, anisosomes, and nucleolar amyloid bodies, and discuss their emerging regulation by chaperones. As the majority of chaperoning mechanisms regulate physiological condensate disassembly, we highlight parallel themes of physiological and pathological condensation regulation across different chaperone families, underscoring the potential for early disease intervention.
Collapse
Affiliation(s)
- Nadeen Akaree
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Flonia Levy-Adam
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amal Younis
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Rajendran A, Castañeda CA. Protein quality control machinery: regulators of condensate architecture and functionality. Trends Biochem Sci 2025:S0968-0004(24)00275-5. [PMID: 39755440 DOI: 10.1016/j.tibs.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Protein quality control (PQC) mechanisms including the ubiquitin (Ub)-proteasome system (UPS), autophagy, and chaperone-mediated refolding are essential to maintain protein homeostasis in cells. Recent studies show that these PQC mechanisms are further modulated by biomolecular condensates that sequester PQC components and compartmentalize reactions. Accumulating evidence points towards the PQC machinery playing a pivotal role in regulating the assembly, disassembly, and viscoelastic properties of several condensates. Here, we discuss how the PQC machinery can form their own condensates and also be recruited to known condensates under physiological or stress-induced conditions. We present molecular insights into how the multivalent architecture of polyUb chains, Ub-binding adaptor proteins, and other PQC machinery contribute to condensate assembly, leading to the regulation of downstream PQC outcomes and therapeutic potential.
Collapse
Affiliation(s)
- Anitha Rajendran
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Carlos A Castañeda
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
6
|
Desroches Altamirano C, Alberti S. Surviving the heat: the role of macromolecular assemblies in promoting cellular shutdown. Trends Biochem Sci 2025; 50:18-32. [PMID: 39472187 DOI: 10.1016/j.tibs.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 01/06/2025]
Abstract
During heat shock (HS), cells orchestrate a gene expression program that promotes the synthesis of HS proteins (HSPs) while simultaneously repressing the synthesis of other proteins, including growth-promoting housekeeping proteins. Recent studies show that mRNAs encoding housekeeping proteins, along with associated processing factors, form macromolecular assemblies during HS. These assemblies inhibit transcription, nuclear export, and translation of housekeeping mRNAs, and coincide with structural rearrangements in proteins. These findings reveal a mechanism linking temperature sensitivity through structural rearrangements and macromolecular assembly to the 'shut down' of housekeeping protein synthesis. This review delves into recent findings in yeast, with a focus on macromolecular assembly, offering perspectives into mechanisms that regulate gene expression during HS and how these processes may be conserved.
Collapse
Affiliation(s)
- Christine Desroches Altamirano
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| |
Collapse
|
7
|
Qian M, Wan Z, Liang X, Jing L, Zhang H, Qin H, Duan W, Chen R, Zhang T, He Q, Lu M, Jiang J. Targeting autophagy in HCC treatment: exploiting the CD147 internalization pathway. Cell Commun Signal 2024; 22:583. [PMID: 39627812 PMCID: PMC11616386 DOI: 10.1186/s12964-024-01956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND/AIMS Chemotherapy resistance in liver cancer is a major clinical issue, with CD147 playing a vital role in this process. However, the specific mechanisms underlying these processes remain largely unknown. This study investigates how CD147 internalization leads to cytoprotective autophagy, contributing to chemotherapy resistance in hepatocellular carcinoma (HCC). METHODS Utilizing bioinformatics methods for KEGG pathways enrichment and screening key molecules associated with chemotherapy resistance through analyses of GEO and TCGA databases. An overexpression/knockdown system was used to study how CD147 internalization leads to autophagy in vitro and in vivo. The process was observed using microscopes, and molecular interactions and autophagy flux were analyzed. Analyzing the internalization of CD147 intracellular domains and the interaction with G3BP1 in clinical chemotherapy recurrence HCC tissues by immunohistochemistry, tissue immunofluorescence, and mass spectrometry. A tumor xenograft mice model was used to study cytoprotective autophagy induced by CD147 and test the effectiveness of combining cisplatin with an autophagy inhibitor in nude mice models. RESULTS In our study, we identified the tumor-associated membrane protein CD147, which implicated in chemoresistance lysosome pathways, by evaluating its protein degree value and betweenness centrality using Cytoscape. Our findings revealed that CD147 undergoes internalization and interacts with G3BP1 following treatment with cisplatin and methyl-β-cyclodextrin, forming a complex that is transported to lysosomes via Rab7A. Notably, higher doses of cisplatin enhanced CD147-mediated lysosomal transport while concurrently inhibiting SG assembly. The CD147-G3BP1 complex additionally inhibits mTOR activity, promoting autophagy and augmenting chemoresistance in hepatoma cells. In vivo studies investigations and analyses of clinical samples revealed that elevated internalization of CD147 is associated with chemotherapy recurrence in liver cancer and the maintenance of stem cells. Mice experiments found that the combined administration of cisplatin and hydroxychloroquine enhanced the efficacy of treatment. CONCLUSIONS This study reveals that CD147 internalization and CD147-G3BP1 complex translocation to lysosomes induce cytoprotective autophagy, reducing chemotherapy sensitivity by suppressing mTOR activity. It is also shown that chemotherapy drugs combined with autophagy inhibitors can improve the therapeutic effect of cancer, providing new insights into potential targeted therapeutic approaches in treating HCC.
Collapse
Affiliation(s)
- Meirui Qian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Ziyu Wan
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xue Liang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Lin Jing
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Huijie Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Heyao Qin
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenli Duan
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ruo Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, 710032, China
| | - Tianjiao Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Qian He
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Meng Lu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jianli Jiang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
8
|
Li W, Qin R, Tang Z, Wang C, Xu H, Li W, Leng Y, Wang Y, Xia Z. Inhibition of inflammation and apoptosis through the cyclic GMP-AMP synthase-stimulator of interferon genes pathway by stress granules after ALKBH5 demethylase activation during diabetic myocardial ischaemia-reperfusion injury. Diabetes Obes Metab 2024; 26:3940-3957. [PMID: 38988216 DOI: 10.1111/dom.15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024]
Abstract
AIM Post-transcriptional modifications and their specific mechanisms are the focus of research on the regulation of myocardial damage. Stress granules (SGs) can inhibit the inflammatory response by inhibiting the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. This study investigated whether alkylation repair homologue protein 5 (ALKBH5) could affect myocardial inflammation and apoptosis during diabetic myocardial ischaemia-reperfusion injury (IRI) through the cGAS-STING pathway via SGs. METHODS A diabetes ischaemia-reperfusion rat model and a high glucose hypoxia/reoxygenation cell model were established. Adeno-associated virus (AAV) and lentivirus (LV) were used to overexpress ALKBH5, while the SG agonist arsenite (Ars) and the SG inhibitor anisomycin were used as interventions. Then, the levels of apoptosis and related indicators in the cell and rat models were measured. RESULTS In the in vivo experiment, compared with the normal sham group, the degree of myocardial tissue damage, creatine kinase-MB and cardiac troponin I in serum, and myocardial apoptosis, the infarcted area of myocardium, and the level of B-cell lymphoma 2 associated X protein, cGAS-STING pathway and inflammatory factors in the diabetes ischaemia-reperfusion group were significantly increased. However, the expression of SGs and the levels of ALKBH5, rat sarcoma-GTPase-activating protein-binding protein 1, T-cell intracellular antigen-1 and Bcl2 were significantly decreased. After AAV-ALKBH5 intervention, the degree of myocardial tissue damage, degree of myocardial apoptosis, and extent of myocardial infarction in myocardial tissue were significantly decreased. In the in vitro experiment, compared with those in the normal control group, the levels of lactate dehydrogenase, inflammation and apoptosis were significantly greater, and cell viability and the levels of ALKBH5 and SGs were decreased in the high glucose and hypoxia/reoxygenation groups. In the high glucose hypoxia/reoxygenation cell model, the degree of cell damage, inflammation, and apoptosis was greater than those in the high glucose and hypoxia/reoxygenation models, and the levels of ALKBH5 and SGs were further decreased. LV-ALKBH5 and Ars alleviated the degree of cell damage and inhibited inflammation and cell apoptosis. The inhibition of SGs could partly reverse the protective effect of LV-ALKBH5. The cGAS agonist G140 antagonized the inhibitory effects of the SG agonist Ars on cardiomyocyte apoptosis, inflammation and the cGAS-STING pathway. CONCLUSION Both ALKBH5 and SGs inhibited myocardial inflammation and apoptosis during diabetic myocardial ischaemia-reperfusion. Mechanistically, ALKBH5 might inhibit the apoptosis of cardiomyocytes by promoting the expression of SGs through the cGAS-STING pathway.
Collapse
Affiliation(s)
- Wenyuan Li
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Renwu Qin
- Department of first ward of second Internal Medicine, The Third People's Hospital of Yichang, Yichang, China
| | - Zhen Tang
- Department of second ward of first Internal Medicine, The Third People's Hospital of Yichang, Yichang, China
| | - Changqing Wang
- Department of Surgery, The Third People's Hospital of Yichang, Yichang, China
| | - Heng Xu
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Leng
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongyuan Xia
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Rolli S, Langridge CA, Sontag EM. Clearing the JUNQ: the molecular machinery for sequestration, localization, and degradation of the JUNQ compartment. Front Mol Biosci 2024; 11:1427542. [PMID: 39234568 PMCID: PMC11372896 DOI: 10.3389/fmolb.2024.1427542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024] Open
Abstract
Cellular protein homeostasis (proteostasis) plays an essential role in regulating the folding, sequestration, and turnover of misfolded proteins via a network of chaperones and clearance factors. Previous work has shown that misfolded proteins are spatially sequestered into membrane-less compartments in the cell as part of the proteostasis process. Soluble misfolded proteins in the cytoplasm are trafficked into the juxtanuclear quality control compartment (JUNQ), and nuclear proteins are sequestered into the intranuclear quality control compartment (INQ). However, the mechanisms that control the formation, localization, and degradation of these compartments are unknown. Previously, we showed that the JUNQ migrates to the nuclear membrane adjacent to the INQ at nucleus-vacuole junctions (NVJ), and the INQ moves through the NVJ into the vacuole for clearance in an ESCRT-mediated process. Here we have investigated what mechanisms are involved in the formation, migration, and clearance of the JUNQ. We find Hsp70s Ssa1 and Ssa2 are required for JUNQ localization to the NVJ and degradation of cytoplasmic misfolded proteins. We also confirm that sequestrases Btn2 and Hsp42 sort misfolded proteins to the JUNQ or IPOD, respectively. Interestingly, proteins required for piecemeal microautophagy of the nucleus (PMN) (i.e., Nvj1, Vac8, Atg1, and Atg8) drive the formation and clearance of the JUNQ. This suggests that the JUNQ migrates to the NVJ to be cleared via microautophagy.
Collapse
Affiliation(s)
- Sarah Rolli
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Chloe A Langridge
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Emily M Sontag
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
10
|
Cui Q, Liu Z, Bai G. Friend or foe: The role of stress granule in neurodegenerative disease. Neuron 2024; 112:2464-2485. [PMID: 38744273 DOI: 10.1016/j.neuron.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/12/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Stress granules (SGs) are dynamic membraneless organelles that form in response to cellular stress. SGs are predominantly composed of RNA and RNA-binding proteins that assemble through liquid-liquid phase separation. Although the formation of SGs is considered a transient and protective response to cellular stress, their dysregulation or persistence may contribute to various neurodegenerative diseases. This review aims to provide a comprehensive overview of SG physiology and pathology. It covers the formation, composition, regulation, and functions of SGs, along with their crosstalk with other membrane-bound and membraneless organelles. Furthermore, this review discusses the dual roles of SGs as both friends and foes in neurodegenerative diseases and explores potential therapeutic approaches targeting SGs. The challenges and future perspectives in this field are also highlighted. A more profound comprehension of the intricate relationship between SGs and neurodegenerative diseases could inspire the development of innovative therapeutic interventions against these devastating diseases.
Collapse
Affiliation(s)
- Qinqin Cui
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China.
| | - Zongyu Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ge Bai
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Buchan JR. Stress granule and P-body clearance: Seeking coherence in acts of disappearance. Semin Cell Dev Biol 2024; 159-160:10-26. [PMID: 38278052 PMCID: PMC10939798 DOI: 10.1016/j.semcdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Stress granules and P-bodies are conserved cytoplasmic biomolecular condensates whose assembly and composition are well documented, but whose clearance mechanisms remain controversial or poorly described. Such understanding could provide new insight into how cells regulate biomolecular condensate formation and function, and identify therapeutic strategies in disease states where aberrant persistence of stress granules in particular is implicated. Here, I review and compare the contributions of chaperones, the cytoskeleton, post-translational modifications, RNA helicases, granulophagy and the proteasome to stress granule and P-body clearance. Additionally, I highlight the potentially vital role of RNA regulation, cellular energy, and changes in the interaction networks of stress granules and P-bodies as means of eliciting clearance. Finally, I discuss evidence for interplay of distinct clearance mechanisms, suggest future experimental directions, and suggest a simple working model of stress granule clearance.
Collapse
Affiliation(s)
- J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85716, United States.
| |
Collapse
|
12
|
Glauninger H, Bard JA, Wong Hickernell CJ, Airoldi EM, Li W, Singer RH, Paul S, Fei J, Sosnick TR, Wallace EWJ, Drummond DA. Transcriptome-wide mRNA condensation precedes stress granule formation and excludes stress-induced transcripts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589678. [PMID: 38659805 PMCID: PMC11042329 DOI: 10.1101/2024.04.15.589678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Stress-induced condensation of mRNA and proteins into stress granules is conserved across eukaryotes, yet the function, formation mechanisms, and relation to well-studied conserved transcriptional responses remain largely unresolved. Stress-induced exposure of ribosome-free mRNA following translational shutoff is thought to cause condensation by allowing new multivalent RNA-dependent interactions, with RNA length and associated interaction capacity driving increased condensation. Here we show that, in striking contrast, virtually all mRNA species condense in response to multiple unrelated stresses in budding yeast, length plays a minor role, and instead, stress-induced transcripts are preferentially excluded from condensates, enabling their selective translation. Using both endogenous genes and reporter constructs, we show that translation initiation blockade, rather than resulting ribosome-free RNA, causes condensation. These translation initiation-inhibited condensates (TIICs) are biochemically detectable even when stress granules, defined as microscopically visible foci, are absent or blocked. TIICs occur in unstressed yeast cells, and, during stress, grow before the appearance of visible stress granules. Stress-induced transcripts are excluded from TIICs primarily due to the timing of their expression, rather than their sequence features. Together, our results reveal a simple system by which cells redirect translational activity to newly synthesized transcripts during stress, with broad implications for cellular regulation in changing conditions.
Collapse
Affiliation(s)
- Hendrik Glauninger
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, USA
| | - Jared A.M. Bard
- Department of Biology, Texas A&M University, College Station, TX, USA
| | | | - Edo M. Airoldi
- Fox School of Business and Management, Temple University, Philadelphia, PA, USA
| | - Weihan Li
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sneha Paul
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Jingyi Fei
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Tobin R. Sosnick
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | - D. Allan Drummond
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Wang XQ, Yuan B, Zhang FL, Liu CG, Auesukaree C, Zhao XQ. Novel Roles of the Greatwall Kinase Rim15 in Yeast Oxidative Stress Tolerance through Mediating Antioxidant Systems and Transcriptional Regulation. Antioxidants (Basel) 2024; 13:260. [PMID: 38539794 PMCID: PMC10967648 DOI: 10.3390/antiox13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 11/11/2024] Open
Abstract
The Greatwall-family protein kinase Rim15 is associated with the nutrient starvation response, whereas its role in oxidative stress responses remains unclear. Here, acetic acid and peroxide were used as two oxidative stress elicitors. The antioxidant indicator assay under acetic acid stress revealed the impaired growth in rim15Δ related to the regulation of antioxidant systems. Comparative transcriptome analysis revealed that differentially expressed genes (DEGs) are predicted to be mostly regulated by oxidative stress-responsive transcriptional factor Yap1. Among the DEGs, acetic acid stress-induced genes were found, and YAP1 disruption also inhibited their induction. The deletion of Rim15 or the Rim15 kinase domain in yap1Δ did not further decrease the gene expression, suggesting that Rim15 functions together with Yap1 in regulating acetic acid stress-induced genes, which requires Rim15 kinase activity. Additionally, Rim15 regulated H2O2 stress tolerance through partially similar but special mechanisms in that Rim15 kinase activity impacted acetic acid and H2O2 stress tolerance in different degrees, indicating the different mechanisms underlying Rim15-mediated redox regulation against different stressors. These results benefit the better understanding of stress signaling pathways related to Rim15. Given that Rim15 and some of its target genes are conserved across eukaryotes, these results also provide a basis for studies of oxidative stress-related processes in other organisms.
Collapse
Affiliation(s)
- Xue-Qing Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Bing Yuan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Feng-Li Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| | - Choowong Auesukaree
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-Q.W.); (B.Y.); (F.-L.Z.); (C.-G.L.)
| |
Collapse
|
14
|
Mitchem MM, Shrader C, Abedi E, Truman AW. Novel insights into the post-translational modifications of Ydj1/DNAJA1 co-chaperones. Cell Stress Chaperones 2024; 29:1-9. [PMID: 38309209 PMCID: PMC10939075 DOI: 10.1016/j.cstres.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/18/2023] [Accepted: 11/04/2023] [Indexed: 02/05/2024] Open
Abstract
The activity of the Hsp70 molecular chaperone is regulated by a suite of helper co-chaperones that include J-proteins. Studies on J-proteins have historically focused on their expression, localization, and activation of Hsp70. There is growing evidence that the post-translational modifications (PTMs) of chaperones (the chaperone code) fine-tune chaperone function. This mini-review summarizes the current understanding of the role and regulation of PTMs on the major J-proteins Ydj1 and DNAJA1. Understanding these PTMs may provide novel therapeutic avenues for targeting chaperone activity in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Megan M Mitchem
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Courtney Shrader
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Elizabeth Abedi
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Andrew W Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
15
|
Ryan L, Rubinsztein DC. The autophagy of stress granules. FEBS Lett 2024; 598:59-72. [PMID: 38101818 DOI: 10.1002/1873-3468.14787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/20/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
Our understanding of stress granule (SG) biology has deepened considerably in recent years, and with this, increased understanding of links has been made between SGs and numerous neurodegenerative diseases. One of the proposed mechanisms by which SGs and any associated protein aggregates may become pathological is based upon defects in their autophagic clearance, and so the precise processes governing the degradation of SGs are important to understand. Mutations and disease-associated variants implicated in amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease and frontotemporal lobar dementia compromise autophagy, whilst autophagy-inhibiting drugs or knockdown of essential autophagy proteins result in the persistence of SGs. In this review, we will consider the current knowledge regarding the autophagy of SG.
Collapse
Affiliation(s)
- Laura Ryan
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| |
Collapse
|
16
|
Liu C, Zhou L, Chen J, Yang Z, Chen S, Wang X, Liu X, Li Y, Zhang C, Wang Y, Chen Y, Li H, Shen C, Sun H. Galectin-7 promotes cisplatin efficacy by facilitating apoptosis and G3BP1 degradation in cervical cancer. Biochem Pharmacol 2023; 217:115834. [PMID: 37778447 DOI: 10.1016/j.bcp.2023.115834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
The emergence of chemoresistance in cervical cancer is extremely challenging in chemotherapy. Oxidative stress has emerged as the regulatory factor in drug resistance, but the detailed mechanism is still unknown. Stress granules, are membrane-less ribonucleoprotein-based condensates, could enhance chemoresistance by sequestering proapoptotic proteins inhibition of cell death upon exposure to drug-induced oxidative stress. Galectin-7, a member of galectin family, exerts varied roles in tumor repression or progression in different cancers. However, its role in cervical cancer has not been sufficiently studied. Here, we found that galectin-7 promotes cisplatin (CDDP) induced apoptosis and associates with stress granule-nucleating protein G3BP1 degradation. With the treatment of cisplatin, galectin-7 could enhance apoptosis by upregulating cleaved-PARP1 and the generation of reactive oxygen species (ROS), promoting mitochondrial fission, and reducing mitochondrial membrane potential (MMP). Furthermore, galectin-7 also reduces resistance by facilitating cisplatin-induced stress granules clearance through galectin-7/RACK1/G3BP1 axis. All these data suggested that galectin-7 promotes cisplatin sensitivity, and it would be potential target for potentiating efficacy in cervical cancer chemotherapy.
Collapse
Affiliation(s)
- Chenglong Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Limin Zhou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Jia Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zelan Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shan Chen
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xueqing Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaomei Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yang Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Can Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yirong Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yihao Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huan Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hui Sun
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
17
|
Ripin N, Parker R. Formation, function, and pathology of RNP granules. Cell 2023; 186:4737-4756. [PMID: 37890457 PMCID: PMC10617657 DOI: 10.1016/j.cell.2023.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/28/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023]
Abstract
Ribonucleoprotein (RNP) granules are diverse membrane-less organelles that form through multivalent RNA-RNA, RNA-protein, and protein-protein interactions between RNPs. RNP granules are implicated in many aspects of RNA physiology, but in most cases their functions are poorly understood. RNP granules can be described through four key principles. First, RNP granules often arise because of the large size, high localized concentrations, and multivalent interactions of RNPs. Second, cells regulate RNP granule formation by multiple mechanisms including posttranslational modifications, protein chaperones, and RNA chaperones. Third, RNP granules impact cell physiology in multiple manners. Finally, dysregulation of RNP granules contributes to human diseases. Outstanding issues in the field remain, including determining the scale and molecular mechanisms of RNP granule function and how granule dysfunction contributes to human disease.
Collapse
Affiliation(s)
- Nina Ripin
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
18
|
Zhou H, Luo J, Mou K, Peng L, Li X, Lei Y, Wang J, Lin S, Luo Y, Xiang L. Stress granules: functions and mechanisms in cancer. Cell Biosci 2023; 13:86. [PMID: 37179344 PMCID: PMC10182661 DOI: 10.1186/s13578-023-01030-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Stress granules (SGs) are non-enveloped structures formed primarily via protein and RNA aggregation under various stress conditions, including hypoxia and viral infection, as well as oxidative, osmotic, and heat-shock stress. SGs assembly is a highly conserved cellular strategy to reduce stress-related damage and promote cell survival. At present, the composition and dynamics of SGs are well understood; however, data on the functions and related mechanisms of SGs are limited. In recent years, SGs have continued to attract attention as emerging players in cancer research. Intriguingly, SGs regulate the biological behavior of tumors by participating in various tumor-associated signaling pathways, including cell proliferation, apoptosis, invasion and metastasis, chemotherapy resistance, radiotherapy resistance, and immune escape. This review discusses the roles and mechanisms of SGs in tumors and suggests novel directions for cancer treatment.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoyue Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Lei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Lin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| |
Collapse
|
19
|
Tak Y, Lal SS, Gopan S, Balakrishnan M, Satheesh G, Biswal AK, Verma AK, Cole SJ, Brown RE, Hayward RE, Hines JK, Sahi C. Identification of subfunctionalized aggregate-remodeling J-domain proteins in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1705-1722. [PMID: 36576197 PMCID: PMC10010614 DOI: 10.1093/jxb/erac514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
J-domain proteins (JDPs) are critical components of the cellular protein quality control machinery, playing crucial roles in preventing the formation and, solubilization of cytotoxic protein aggregates. Bacteria, yeast, and plants additionally have large, multimeric heat shock protein 100 (Hsp100)-class disaggregases that resolubilize protein aggregates. JDPs interact with aggregated proteins and specify the aggregate-remodeling activities of Hsp70s and Hsp100s. However, the aggregate-remodeling properties of plant JDPs are not well understood. Here we identify eight orthologs of Sis1 (an evolutionarily conserved Class II JDP of budding yeast) in Arabidopsis thaliana with distinct aggregate-remodeling functionalities. Six of these JDPs associate with heat-induced protein aggregates in vivo and co-localize with Hsp101 at heat-induced protein aggregate centers. Consistent with a role in solubilizing cytotoxic protein aggregates, an atDjB3 mutant had defects in both solubilizing heat-induced aggregates and acquired thermotolerance as compared with wild-type seedlings. Next, we used yeast prions as protein aggregate models to show that the six JDPs have distinct aggregate-remodeling properties. Results presented in this study, as well as findings from phylogenetic analysis, demonstrate that plants harbor multiple, evolutionarily conserved JDPs with capacity to process a variety of protein aggregate conformers induced by heat and other stressors.
Collapse
Affiliation(s)
- Yogesh Tak
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Silviya S Lal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Shilpa Gopan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Madhumitha Balakrishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Gouri Satheesh
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Anup K Biswal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Amit K Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Sierra J Cole
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | | | | | - Justin K Hines
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| |
Collapse
|
20
|
Xing F, Qin Y, Xu J, Wang W, Zhang B. Stress granules dynamics and promising functions in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188885. [PMID: 36990249 DOI: 10.1016/j.bbcan.2023.188885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
Stress granules (SGs), non-membrane subcellular organelles made up of non-translational messenger ribonucleoproteins (mRNPs), assemble in response to various environmental stimuli in cancer cells, including pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC) which has a low 5-year survival rate of 10%. The pertinent research on SGs and pancreatic cancer has not, however, been compiled. In this review, we talk about the dynamics of SGs and their positive effects on pancreatic cancer such as SGs promote PDAC viability and repress apoptosis, meanwhile emphasizing the connection between SGs in pancreatic cancer and signature mutations such KRAS, P53, and SMAD4 as well as the functions of SGs in antitumor drug resistance. This novel stress management technique may open the door to better treatment options in the future.
Collapse
|
21
|
Szewczyk B, Günther R, Japtok J, Frech MJ, Naumann M, Lee HO, Hermann A. FUS ALS neurons activate major stress pathways and reduce translation as an early protective mechanism against neurodegeneration. Cell Rep 2023; 42:112025. [PMID: 36696267 DOI: 10.1016/j.celrep.2023.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder causing progressive loss of motor neurons. Mutations in Fused in sarcoma (FUS) leading to its cytoplasmic mislocalization cause a subset of ALS. Under stress, mutant FUS localizes to stress granules (SGs)-cytoplasmic condensates composed of RNA and various proteins. Aberrant dynamics of SGs is linked to the pathology of ALS. Here, using motor neurons (MNs) derived from human induced pluripotent stem cells, we show that, in mutant FUS, MN dynamics of SGs is disturbed. Additionally, heat-shock response (HSR) and integrated stress response (ISR) involved in the regulation of SGs are upregulated in mutant MNs. HSR activation correlates with the amount of cytoplasmic FUS mislocalization. While inhibition of SG formation, translation, or ISR does not influence survival of FUS ALS neurons, proteotoxicity that cannot be compensated with the activation of stress pathways is the main driver of neurodegeneration in early FUS ALS.
Collapse
Affiliation(s)
- Barbara Szewczyk
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - René Günther
- Department of Neurology, Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Dresden, Dresden, Germany
| | - Julia Japtok
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Moritz J Frech
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Marcel Naumann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Hyun O Lee
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany.
| |
Collapse
|
22
|
Hu R, Qian B, Li A, Fang Y. Role of Proteostasis Regulation in the Turnover of Stress Granules. Int J Mol Sci 2022; 23:ijms232314565. [PMID: 36498892 PMCID: PMC9741362 DOI: 10.3390/ijms232314565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
RNA-binding proteins (RBPs) and RNAs can form dynamic, liquid droplet-like cytoplasmic condensates, known as stress granules (SGs), in response to a variety of cellular stresses. This process is driven by liquid-liquid phase separation, mediated by multivalent interactions between RBPs and RNAs. The formation of SGs allows a temporary suspension of certain cellular activities such as translation of unnecessary proteins. Meanwhile, non-translating mRNAs may also be sequestered and stalled. Upon stress removal, SGs are disassembled to resume the suspended biological processes and restore the normal cell functions. Prolonged stress and disease-causal mutations in SG-associated RBPs can cause the formation of aberrant SGs and/or impair SG disassembly, consequently raising the risk of pathological protein aggregation. The machinery maintaining protein homeostasis (proteostasis) includes molecular chaperones and co-chaperones, the ubiquitin-proteasome system, autophagy, and other components, and participates in the regulation of SG metabolism. Recently, proteostasis has been identified as a major regulator of SG turnover. Here, we summarize new findings on the specific functions of the proteostasis machinery in regulating SG disassembly and clearance, discuss the pathological and clinical implications of SG turnover in neurodegenerative disorders, and point to the unresolved issues that warrant future exploration.
Collapse
Affiliation(s)
- Rirong Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beituo Qian
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration of Ministry of Education, Jinan University, Guangzhou 510632, China
- Correspondence: (A.L.); (Y.F.); Tel.: +86-21-6858-2510 (Y.F.)
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (A.L.); (Y.F.); Tel.: +86-21-6858-2510 (Y.F.)
| |
Collapse
|
23
|
Horvath A, Vendruscolo M, Fuxreiter M. Sequence-based Prediction of the Cellular Toxicity Associated with Amyloid Aggregation within Protein Condensates. Biochemistry 2022; 61:2461-2469. [DOI: 10.1021/acs.biochem.2c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Attila Horvath
- John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601, Canberra2600, Australia
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, UK
| | - Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, Padova, PD35131Italy
- Department of Physics and Astronomy, University of Padova, Padova, PD35131Italy
| |
Collapse
|
24
|
Abstract
Condensed states of proteins, including liquid-like membraneless organelles and solid-like aggregates, contribute in fundamental ways to the organisation and function of the cell. Perturbations of these states can lead to a variety of diseases through mechanisms that we are now beginning to understand. We define protein condensation diseases as conditions caused by the disruption of the normal behaviour of the condensed states of proteins. We analyze the problem of the identification of targets for pharmacological interventions for these diseases and explore opportunities for the regulation of the formation and organisation of aberrant condensed states of proteins. In this review, the authors define protein condensation diseases as conditions caused by aberrant liquid-like or solid-like states of proteins, and describe opportunities for therapeutic interventions to restore the normal phase behaviour of proteins. The review accompanies the related collection of articles published in Nature Communications focusing on possible therapeutic approaches involving liquid-liquid phase separation.
Collapse
|
25
|
Proteostasis Deregulation in Neurodegeneration and Its Link with Stress Granules: Focus on the Scaffold and Ribosomal Protein RACK1. Cells 2022; 11:cells11162590. [PMID: 36010666 PMCID: PMC9406587 DOI: 10.3390/cells11162590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
The role of protein misfolding, deposition, and clearance has been the dominant topic in the last decades of investigation in the field of neurodegeneration. The impairment of protein synthesis, along with RNA metabolism and RNA granules, however, are significantly emerging as novel potential targets for the comprehension of the molecular events leading to neuronal deficits. Indeed, defects in ribosome activity, ribosome stalling, and PQC—all ribosome-related processes required for proteostasis regulation—can contribute to triggering stress conditions and promoting the formation of stress granules (SGs) that could evolve in the formation of pathological granules, usually occurring during neurodegenerating effects. In this review, the interplay between proteostasis, mRNA metabolism, and SGs has been explored in a neurodegenerative context with a focus on Alzheimer’s disease (AD), although some defects in these same mechanisms can also be found in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are discussed here. Finally, we highlight the role of the receptor for activated C kinase 1 (RACK1) in these pathologies and note that, besides its well characterized function as a scaffold protein, it has an important role in translation and can associate to stress granules (SGs) determining cell fate in response to diverse stress stimuli.
Collapse
|
26
|
Li Z, Liu X, Liu M. Stress Granule Homeostasis, Aberrant Phase Transition, and Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2022; 13:2356-2370. [PMID: 35905138 DOI: 10.1021/acschemneuro.2c00262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. In recent years, a large number of ALS-related mutations have been discovered to have a strong link to stress granules (SGs). SGs are cytoplasmic ribonucleoprotein condensates mediated by liquid-liquid phase separation (LLPS) of biomacromolecules. They help cells cope with stress. The normal physiological functions of SGs are dependent on three key aspects of SG "homeostasis": SG assembly, disassembly, and SG components. Any of these three aspects can be disrupted, resulting in abnormalities in the cellular stress response and leading to cytotoxicity. Several ALS-related pathogenic mutants have abnormal LLPS abilities that disrupt SG homeostasis, and some of them can even cause aberrant phase transitions. As a result, ALS-related mutants may disrupt various aspects of SG homeostasis by directly disturbing the intermolecular interactions or affecting core SG components, thus disrupting the phase equilibrium of the cytoplasm during stress. Considering that the importance of the "global view" of SG homeostasis in ALS pathogenesis has not received enough attention, we first systematically summarize the physiological regulatory mechanism of SG homeostasis based on LLPS and then examine ALS pathogenesis from the perspective of disrupted SG homeostasis and aberrant phase transition of biomacromolecules.
Collapse
Affiliation(s)
- Zhanxu Li
- Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Xionghao Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Mujun Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
27
|
Wang B, Fang H, Zhu W, Xu Y, Yang Y, Qian X. Dynamic Compartmentalization of Peptide-Oligonucleotide Conjugates with Reversible Nanovesicle-Microdroplet Phase Transition Behaviors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36998-37008. [PMID: 35925804 DOI: 10.1021/acsami.2c05268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing artificial microsystems based on liquid-liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing attention. However, limitations including complicated components and laborious fabrication techniques have hindered their development. Herein, we describe a new single-component dynamic compartmentalization system using peptide-oligonucleotide conjugates (POCs) produced from short elastin-like polypeptides (sELPs) and oligonucleotides (ONs), which can perform thermoreversible phase transition between a nanovesicle and a microdroplet. The phase transition of sELP-ONs is thoroughly investigated, of which the transition temperature can be controlled by concentration, length of sELPs and ONs, base sequences, and salt. Moreover, the sELP-ON microcompartment can enrich a variety of functional molecules including small molecules, polysaccharides, proteins, and nucleic acids. Two sELP-ON compartments are used as nano- and microreactors for enzymatic reactions, separately, in which chemical activities are successfully regulated under different-scaled confinement effects, demonstrating their broad potential application in matter exchange and artificial cells.
Collapse
Affiliation(s)
- Bin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Honglong Fang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weiping Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yufang Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
28
|
Crosstalk between Biomolecular Condensates and Proteostasis. Cells 2022; 11:cells11152415. [PMID: 35954258 PMCID: PMC9368065 DOI: 10.3390/cells11152415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/23/2022] Open
Abstract
Proper homeostasis of the proteome, referred to as proteostasis, is maintained by chaperone-dependent refolding of misfolded proteins and by protein degradation via the ubiquitin-proteasome system and the autophagic machinery. This review will discuss a crosstalk between biomolecular condensates and proteostasis, whereby the crowding of proteostasis factors into macromolecular assemblies is often established by phase separation of membraneless biomolecular condensates. Specifically, ubiquitin and other posttranslational modifications come into play as agents of phase separation, essential for the formation of condensates and for ubiquitin-proteasome system activity. Furthermore, an intriguing connection associates malfunction of the same pathways to the accumulation of misfolded and ubiquitinated proteins in aberrant condensates, the formation of protein aggregates, and finally, to the pathogenesis of neurodegenerative diseases. The crosstalk between biomolecular condensates and proteostasis is an emerging theme in cellular and disease biology and further studies will focus on delineating specific molecular pathways involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases.
Collapse
|
29
|
Lsm7 phase-separated condensates trigger stress granule formation. Nat Commun 2022; 13:3701. [PMID: 35764627 PMCID: PMC9240020 DOI: 10.1038/s41467-022-31282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Stress granules (SGs) are non-membranous organelles facilitating stress responses and linking the pathology of age-related diseases. In a genome-wide imaging-based phenomic screen, we identify Pab1 co-localizing proteins under 2-deoxy-D-glucose (2-DG) induced stress in Saccharomyces cerevisiae. We find that deletion of one of the Pab1 co-localizing proteins, Lsm7, leads to a significant decrease in SG formation. Under 2-DG stress, Lsm7 rapidly forms foci that assist in SG formation. The Lsm7 foci form via liquid-liquid phase separation, and the intrinsically disordered region and the hydrophobic clusters within the Lsm7 sequence are the internal driving forces in promoting Lsm7 phase separation. The dynamic Lsm7 phase-separated condensates appear to work as seeding scaffolds, promoting Pab1 demixing and subsequent SG initiation, seemingly mediated by RNA interactions. The SG initiation mechanism, via Lsm7 phase separation, identified in this work provides valuable clues for understanding the mechanisms underlying SG formation and SG-associated human diseases.
Collapse
|
30
|
Omkar S, Wani TH, Zheng B, Mitchem MM, Truman AW. The APE2 Exonuclease Is a Client of the Hsp70–Hsp90 Axis in Yeast and Mammalian Cells. Biomolecules 2022; 12:biom12070864. [PMID: 35883419 PMCID: PMC9312491 DOI: 10.3390/biom12070864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
Molecular chaperones such as Hsp70 and Hsp90 help fold and activate proteins in important signal transduction pathways that include DNA damage response (DDR). Previous studies have suggested that the levels of the mammalian APE2 exonuclease, a protein critical for DNA repair, may be dependent on chaperone activity. In this study, we demonstrate that the budding yeast Apn2 exonuclease interacts with molecular chaperones Ssa1 and Hsp82 and the co-chaperone Ydj1. Although Apn2 does not display a binding preference for any specific cytosolic Hsp70 or Hsp90 paralog, Ssa1 is unable to support Apn2 stability when present as the sole Ssa in the cell. Demonstrating conservation of this mechanism, the exonuclease APE2 also binds to Hsp70 and Hsp90 in mammalian cells. Inhibition of chaperone function via specific small molecule inhibitors results in a rapid loss of APE2 in a range of cancer cell lines. Taken together, these data identify APE2 and Apn2 as clients of the chaperone system in yeast and mammalian cells and suggest that chaperone inhibition may form the basis of novel anticancer therapies that target APE2-mediated processes.
Collapse
|
31
|
van Leeuwen W, VanInsberghe M, Battich N, Salmén F, van Oudenaarden A, Rabouille C. Identification of the stress granule transcriptome via RNA-editing in single cells and in vivo. CELL REPORTS METHODS 2022; 2:100235. [PMID: 35784648 PMCID: PMC9243631 DOI: 10.1016/j.crmeth.2022.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/24/2022] [Accepted: 05/20/2022] [Indexed: 11/09/2022]
Abstract
Stress granules are phase-separated assemblies formed around RNAs. So far, the techniques available to identify these RNAs are not suitable for single cells and small tissues displaying cell heterogeneity. Here, we used TRIBE (target of RNA-binding proteins identified by editing) to profile stress granule RNAs. We used an RNA-binding protein (FMR1) fused to the catalytic domain of an RNA-editing enzyme (ADAR), which coalesces into stress granules upon oxidative stress. RNAs colocalized with this fusion are edited, producing mutations that are detectable by VASA sequencing. Using single-molecule FISH, we validated that this purification-free method can reliably identify stress granule RNAs in bulk and single S2 cells and in Drosophila neurons. Similar to mammalian cells, we find that stress granule mRNAs encode ATP binding, cell cycle, and transcription factors. This method opens the possibility to identify stress granule RNAs and other RNA-based assemblies in other single cells and tissues.
Collapse
Affiliation(s)
| | | | - Nico Battich
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, the Netherlands
| | - Fredrik Salmén
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, the Netherlands
| | | | - Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, the Netherlands
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Biomedical Sciences in Cells and Systems, UMC Groningen, Groningen, the Netherlands
| |
Collapse
|
32
|
Omkar S, Truman AW. Feeling the heat: how chaperones deal with biomolecular condensates. Trends Biochem Sci 2022; 47:728-729. [PMID: 35490076 DOI: 10.1016/j.tibs.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022]
Abstract
Yoo et al. have uncovered the minimal requirements of chaperone-mediated dispersal of Pab1 biomolecular condensates. These studies expand our understanding of the uniqueness of co-chaperones and add to our fundamental understanding of the heat shock response in cells.
Collapse
Affiliation(s)
- Siddhi Omkar
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Andrew W Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
33
|
Spatial sequestration of misfolded proteins in neurodegenerative diseases. Biochem Soc Trans 2022; 50:759-771. [PMID: 35311889 DOI: 10.1042/bst20210862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
Abstract
Properly folded, functional proteins are essential for cell health. Cells sustain protein homeostasis, or proteostasis, via protein quality control (PQC) mechanisms. It is currently hypothesized that a breakdown in proteostasis during ageing leads to the accumulation of protein aggregates in the cell and disease. Sequestration of misfolded proteins into PQC compartments represents one branch of the PQC network. In neurodegenerative diseases, certain proteins form abnormal protein deposits. Which PQC compartments house misfolded proteins associated with neurodegenerative diseases is still being investigated. It remains unclear if sequestration of these misfolded proteins is toxic or protective to the cell. Here, we review the current knowledge on various PQC compartments that form in the cell, the kinds of protein aggregates found in neurodegenerative diseases, and what is known about their sequestration. Understanding how protein sequestration occurs can shed light on why aggregates are toxic to the cell and are linked to neurodegenerative diseases like Huntington's, Alzheimer's, and Parkinson's diseases.
Collapse
|
34
|
Singh A, Kandi AR, Jayaprakashappa D, Thuery G, Purohit DJ, Huelsmeier J, Singh R, Pothapragada SS, Ramaswami M, Bakthavachalu B. The transcriptional response to oxidative stress is independent of stress-granule formation. Mol Biol Cell 2022; 33:ar25. [PMID: 34985933 PMCID: PMC9250384 DOI: 10.1091/mbc.e21-08-0418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 11/11/2022] Open
Abstract
Cells respond to stress with translational arrest, robust transcriptional changes, and transcription-independent formation of mRNP assemblies termed stress granules (SGs). Despite considerable interest in the role of SGs in oxidative, unfolded protein and viral stress responses, whether and how SGs contribute to stress-induced transcription have not been rigorously examined. To address this, we characterized transcriptional changes in Drosophila S2 cells induced by acute oxidative-stress and assessed how these were altered under conditions that disrupted SG assembly. Oxidative stress for 3 h predominantly resulted in induction or up-regulation of stress-responsive mRNAs whose levels peaked during recovery after stress cessation. The stress transcriptome is enriched in mRNAs coding for chaperones including HSP70s, small heat shock proteins, glutathione transferases, and several noncoding RNAs. Oxidative stress also induced cytoplasmic SGs that disassembled 3 h after stress cessation. As expected, RNAi-mediated knockdown of the conserved G3BP1/Rasputin protein inhibited SG assembly. However, this disruption had no significant effect on the stress-induced transcriptional response or stress-induced translational arrest. Thus SG assembly and stress-induced gene expression alterations appear to be driven by distinctive signaling processes. We suggest that while SG assembly represents a fast, transient mechanism, the transcriptional response enables a slower, longer-lasting mechanism for adaptation to and recovery from cell stress.
Collapse
Affiliation(s)
- Amanjot Singh
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - Arvind Reddy Kandi
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore 560065, India
| | | | - Guillaume Thuery
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin-2, Ireland
| | - Devam J Purohit
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - Joern Huelsmeier
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin-2, Ireland
| | - Rashi Singh
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | | | - Mani Ramaswami
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin-2, Ireland
| | - Baskar Bakthavachalu
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore 560065, India
- School of Basic Sciences, Indian Institute of Technology, Mandi 175005, India
| |
Collapse
|
35
|
Yoo H, Bard JA, Pilipenko E, Drummond DA. Chaperones directly and efficiently disperse stress-triggered biomolecular condensates. Mol Cell 2022; 82:741-755.e11. [PMID: 35148816 PMCID: PMC8857057 DOI: 10.1016/j.molcel.2022.01.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 01/06/2022] [Indexed: 12/28/2022]
Abstract
Stresses such as heat shock trigger the formation of protein aggregates and the induction of a disaggregation system composed of molecular chaperones. Recent work reveals that several cases of apparent heat-induced aggregation, long thought to be the result of toxic misfolding, instead reflect evolved, adaptive biomolecular condensation, with chaperone activity contributing to condensate regulation. Here we show that the yeast disaggregation system directly disperses heat-induced biomolecular condensates of endogenous poly(A)-binding protein (Pab1) orders of magnitude more rapidly than aggregates of the most commonly used misfolded model substrate, firefly luciferase. Beyond its efficiency, heat-induced condensate dispersal differs from heat-induced aggregate dispersal in its molecular requirements and mechanistic behavior. Our work establishes a bona fide endogenous heat-induced substrate for long-studied heat shock proteins, isolates a specific example of chaperone regulation of condensates, and underscores needed expansion of the proteotoxic interpretation of the heat shock response to encompass adaptive, chaperone-mediated regulation.
Collapse
Affiliation(s)
- Haneul Yoo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Jared A.M. Bard
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Evgeny Pilipenko
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - D. Allan Drummond
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA,Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA,Lead Contact,Correspondence: (D.A.D.)
| |
Collapse
|
36
|
Differential Interactions of Molecular Chaperones and Yeast Prions. J Fungi (Basel) 2022; 8:jof8020122. [PMID: 35205876 PMCID: PMC8877571 DOI: 10.3390/jof8020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Baker’s yeast Saccharomyces cerevisiae is an important model organism that is applied to study various aspects of eukaryotic cell biology. Prions in yeast are self-perpetuating heritable protein aggregates that can be leveraged to study the interaction between the protein quality control (PQC) machinery and misfolded proteins. More than ten prions have been identified in yeast, of which the most studied ones include [PSI+], [URE3], and [PIN+]. While all of the major molecular chaperones have been implicated in propagation of yeast prions, many of these chaperones differentially impact propagation of different prions and/or prion variants. In this review, we summarize the current understanding of the life cycle of yeast prions and systematically review the effects of different chaperone proteins on their propagation. Our analysis clearly shows that Hsp40 proteins play a central role in prion propagation by determining the fate of prion seeds and other amyloids. Moreover, direct prion-chaperone interaction seems to be critically important for proper recruitment of all PQC components to the aggregate. Recent results also suggest that the cell asymmetry apparatus, cytoskeleton, and cell signaling all contribute to the complex network of prion interaction with the yeast cell.
Collapse
|
37
|
Xu X, Zheng C, Lu D, Song CP, Zhang L. Phase separation in plants: New insights into cellular compartmentalization. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1835-1855. [PMID: 34314106 DOI: 10.1111/jipb.13152] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/16/2021] [Indexed: 05/16/2023]
Abstract
A fundamental challenge for cells is how to coordinate various biochemical reactions in space and time. To achieve spatiotemporal control, cells have developed organelles that are surrounded by lipid bilayer membranes. Further, membraneless compartmentalization, a process induced by dynamic physical association of biomolecules through phase transition offers another efficient mechanism for intracellular organization. While our understanding of phase separation was predominantly dependent on yeast and animal models, recent findings have provided compelling evidence for emerging roles of phase separation in plants. In this review, we first provide an overview of the current knowledge of phase separation, including its definition, biophysical principles, molecular features and regulatory mechanisms. Then we summarize plant-specific phase separation phenomena and describe their functions in plant biological processes in great detail. Moreover, we propose that phase separation is an evolutionarily conserved and efficient mechanism for cellular compartmentalization which allows for distinct metabolic processes and signaling pathways, and is especially beneficial for the sessile lifestyle of plants to quickly and efficiently respond to the changing environment.
Collapse
Affiliation(s)
- Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Canhui Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
38
|
Abstract
Hypoxia inhibits the tricarboxylic acid (TCA) cycle and leaves glycolysis as the primary metabolic pathway responsible for converting glucose into usable energy. However, the mechanisms that compensate for this loss in energy production due to TCA cycle inactivation remain poorly understood. Glycolysis enzymes are typically diffuse and soluble in the cytoplasm under normoxic conditions. In contrast, recent studies have revealed dynamic compartmentalization of glycolysis enzymes in response to hypoxic stress in yeast, C. elegans and mammalian cells. These messenger ribonucleoprotein (mRNP) structures, termed glycolytic (G) bodies in yeast, lack membrane enclosure and display properties of phase-separated biomolecular condensates. Disruption of condensate formation correlates with defects such as impaired synaptic function in C. elegans neurons and decreased glucose flux in yeast. Concentrating glycolysis enzymes into condensates may lead to their functioning as 'metabolons' that enhance rates of glucose utilization for increased energy production. Besides condensates, glycolysis enzymes functionally associate in other organisms and specific tissues through protein-protein interactions and membrane association. However, as discussed in this Review, the functional consequences of coalescing glycolytic machinery are only just beginning to be revealed. Through ongoing studies, we anticipate the physiological importance of metabolic regulation mediated by the compartmentalization of glycolysis enzymes will continue to emerge.
Collapse
Affiliation(s)
- Gregory G Fuller
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
39
|
Reversible amyloids of pyruvate kinase couple cell metabolism and stress granule disassembly. Nat Cell Biol 2021; 23:1085-1094. [PMID: 34616026 PMCID: PMC7611853 DOI: 10.1038/s41556-021-00760-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022]
Abstract
Cells respond to stress by blocking translation, rewiring metabolism and forming transient messenger ribonucleoprotein assemblies called stress granules (SGs). After stress release, re-establishing homeostasis and disassembling SGs requires ATP-consuming processes. However, the molecular mechanisms whereby cells restore ATP production and disassemble SGs after stress remain poorly understood. Here we show that upon stress, the ATP-producing enzyme Cdc19 forms inactive amyloids, and that their rapid re-solubilization is essential to restore ATP production and disassemble SGs in glucose-containing media. Cdc19 re-solubilization is initiated by the glycolytic metabolite fructose-1,6-bisphosphate, which directly binds Cdc19 amyloids, allowing Hsp104 and Ssa2 chaperone recruitment and aggregate re-solubilization. Fructose-1,6-bisphosphate then promotes Cdc19 tetramerization, which boosts its activity to further enhance ATP production and SG disassembly. Together, these results describe a molecular mechanism that is critical for stress recovery and directly couples cellular metabolism with SG dynamics via the regulation of reversible Cdc19 amyloids.
Collapse
|
40
|
Dannenmaier S, Desroches Altamirano C, Schüler L, Zhang Y, Hummel J, Milanov M, Oeljeklaus S, Koch HG, Rospert S, Alberti S, Warscheid B. Quantitative proteomics identifies the universally conserved ATPase Ola1p as a positive regulator of heat shock response in Saccharomyces cerevisiae. J Biol Chem 2021; 297:101050. [PMID: 34571008 PMCID: PMC8531669 DOI: 10.1016/j.jbc.2021.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
The universally conserved P-loop ATPase Ola1 is implicated in various cellular stress response pathways, as well as in cancer and tumor progression. However, Ola1p functions are divergent between species, and the involved mechanisms are only poorly understood. Here, we studied the role of Ola1p in the heat shock response of the yeast Saccharomyces cerevisiae using a combination of quantitative and pulse labeling-based proteomics approaches, in vitro studies, and cell-based assays. Our data show that when heat stress is applied to cells lacking Ola1p, the expression of stress-protective proteins is enhanced. During heat stress Ola1p associates with detergent-resistant protein aggregates and rapidly forms assemblies that localize to stress granules. The assembly of Ola1p was also observed in vitro using purified protein and conditions, which resembled those in living cells. We show that loss of Ola1p results in increased protein ubiquitination of detergent-insoluble aggregates recovered from heat-shocked cells. When cells lacking Ola1p were subsequently relieved from heat stress, reinitiation of translation was delayed, whereas, at the same time, de novo synthesis of central factors required for protein refolding and the clearance of aggregates was enhanced when compared with wild-type cells. The combined data suggest that upon acute heat stress, Ola1p is involved in the stabilization of misfolded proteins, which become sequestered in cytoplasmic stress granules. This function of Ola1p enables cells to resume translation in a timely manner as soon as heat stress is relieved.
Collapse
Affiliation(s)
- Stefan Dannenmaier
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Lisa Schüler
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Hummel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Milanov
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Silke Oeljeklaus
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Simon Alberti
- BIOTEC and CMCB, Technische Universität Dresden, Dresden, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
41
|
Ismail H, Liu X, Yang F, Li J, Zahid A, Dou Z, Liu X, Yao X. Mechanisms and regulation underlying membraneless organelle plasticity control. J Mol Cell Biol 2021; 13:239-258. [PMID: 33914074 PMCID: PMC8339361 DOI: 10.1093/jmcb/mjab028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Evolution has enabled living cells to adopt their structural and functional complexity by organizing intricate cellular compartments, such as membrane-bound and membraneless organelles (MLOs), for spatiotemporal catalysis of physiochemical reactions essential for cell plasticity control. Emerging evidence and view support the notion that MLOs are built by multivalent interactions of biomolecules via phase separation and transition mechanisms. In healthy cells, dynamic chemical modifications regulate MLO plasticity, and reversible phase separation is essential for cell homeostasis. Emerging evidence revealed that aberrant phase separation results in numerous neurodegenerative disorders, cancer, and other diseases. In this review, we provide molecular underpinnings on (i) mechanistic understanding of phase separation, (ii) unifying structural and mechanistic principles that underlie this phenomenon, (iii) various mechanisms that are used by cells for the regulation of phase separation, and (iv) emerging therapeutic and other applications.
Collapse
Affiliation(s)
- Hazrat Ismail
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Junying Li
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| | - Ayesha Zahid
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| |
Collapse
|
42
|
Wang L, Yang W, Li B, Yuan S, Wang F. Response to stress in biological disorders: Implications of stress granule assembly and function. Cell Prolif 2021; 54:e13086. [PMID: 34170048 PMCID: PMC8349659 DOI: 10.1111/cpr.13086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
It is indispensable for cells to adapt and respond to environmental stresses, in order for organisms to survive. Stress granules (SGs) are condensed membrane‐less organelles dynamically formed in the cytoplasm of eukaryotes cells to cope with diverse intracellular or extracellular stress factors, with features of liquid‐liquid phase separation. They are composed of multiple constituents, including translationally stalled mRNAs, translation initiation factors, RNA‐binding proteins and also non‐RNA‐binding proteins. SG formation is triggered by stress stimuli, viral infection and signal transduction, while aberrant assembly of SGs may contribute to tissue degenerative diseases. Recently, a growing body of evidence has emerged on SG response mechanisms for cells facing high temperatures, oxidative stress and osmotic stress. In this review, we aim to summarize factors affecting SGs assembly, present the impact of SGs on germ cell development and other biological processes. We particularly emphasize the significance of recently reported RNA modifications in SG stress responses. In parallel, we also review all current perspectives on the roles of SGs in male germ cells, with a particular focus on the dynamics of SG assembly.
Collapse
Affiliation(s)
- Lingjuan Wang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Weina Yang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shuiqiao Yuan
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Fengli Wang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
43
|
Reversible protein aggregation as cytoprotective mechanism against heat stress. Curr Genet 2021; 67:849-855. [PMID: 34091720 PMCID: PMC8592950 DOI: 10.1007/s00294-021-01191-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023]
Abstract
Temperature fluctuation is one of the most frequent threats to which organisms are exposed in nature. The activation of gene expression programs that trigger the transcription of heat stress-protective genes is the main cellular response to resist high temperatures. In addition, reversible accumulation and compartmentalization of thermosensitive proteins in high-order molecular assemblies are emerging as critical mechanisms to ensure cellular protection upon heat stress. Here, we summarize representative examples of membrane-less intracellular bodies formed upon heat stress in yeasts and human cells and highlight how protein aggregation can be turned into a cytoprotective mechanism.
Collapse
|
44
|
Campos-Melo D, Hawley ZCE, Droppelmann CA, Strong MJ. The Integral Role of RNA in Stress Granule Formation and Function. Front Cell Dev Biol 2021; 9:621779. [PMID: 34095105 PMCID: PMC8173143 DOI: 10.3389/fcell.2021.621779] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are phase-separated, membraneless, cytoplasmic ribonucleoprotein (RNP) assemblies whose primary function is to promote cell survival by condensing translationally stalled mRNAs, ribosomal components, translation initiation factors, and RNA-binding proteins (RBPs). While the protein composition and the function of proteins in the compartmentalization and the dynamics of assembly and disassembly of SGs has been a matter of study for several years, the role of RNA in these structures had remained largely unknown. RNA species are, however, not passive members of RNA granules in that RNA by itself can form homo and heterotypic interactions with other RNA molecules leading to phase separation and nucleation of RNA granules. RNA can also function as molecular scaffolds recruiting multivalent RBPs and their interactors to form higher-order structures. With the development of SG purification techniques coupled to RNA-seq, the transcriptomic landscape of SGs is becoming increasingly understood, revealing the enormous potential of RNA to guide the assembly and disassembly of these transient organelles. SGs are not only formed under acute stress conditions but also in response to different diseases such as viral infections, cancer, and neurodegeneration. Importantly, these granules are increasingly being recognized as potential precursors of pathological aggregates in neurodegenerative diseases. In this review, we examine the current evidence in support of RNA playing a significant role in the formation of SGs and explore the concept of SGs as therapeutic targets.
Collapse
Affiliation(s)
- Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
45
|
Malcova I, Senohrabkova L, Novakova L, Hasek J. eIF3a Destabilization and TDP-43 Alter Dynamics of Heat-Induced Stress Granules. Int J Mol Sci 2021; 22:ijms22105164. [PMID: 34068231 PMCID: PMC8153170 DOI: 10.3390/ijms22105164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/17/2022] Open
Abstract
Stress granules (SGs) are membrane-less assemblies arising upon various stresses in eukaryotic cells. They sequester mRNAs and proteins from stressful conditions and modulate gene expression to enable cells to resume translation and growth after stress relief. SGs containing the translation initiation factor eIF3a/Rpg1 arise in yeast cells upon robust heat shock (HS) at 46 °C only. We demonstrate that the destabilization of Rpg1 within the PCI domain in the Rpg1-3 variant leads to SGs assembly already at moderate HS at 42 °C. These are bona fide SGs arising upon translation arrest containing mRNAs, which are components of the translation machinery, and associating with P-bodies. HS SGs associate with endoplasmatic reticulum and mitochondria and their contact sites ERMES. Although Rpg1-3-labeled SGs arise at a lower temperature, their disassembly is delayed after HS at 46 °C. Remarkably, the delayed disassembly of HS SGs after the robust HS is reversed by TDP-43, which is a human protein connected with amyotrophic lateral sclerosis. TDP-43 colocalizes with HS SGs in yeast cells and facilitates cell regrowth after the stress relief. Based on our results, we propose yeast HS SGs labeled by Rpg1 and its variants as a novel model system to study functions of TDP-43 in stress granules disassembly.
Collapse
Affiliation(s)
- Ivana Malcova
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (L.S.); (L.N.); (J.H.)
- Correspondence: ; Tel.: +420-241062769
| | - Lenka Senohrabkova
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (L.S.); (L.N.); (J.H.)
- First Faculty of Medicine, Charles University, Katerinska 42, 12108 Prague, Czech Republic
| | - Lenka Novakova
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (L.S.); (L.N.); (J.H.)
| | - Jiri Hasek
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (L.S.); (L.N.); (J.H.)
| |
Collapse
|
46
|
Verma A, Sumi S, Seervi M. Heat shock proteins-driven stress granule dynamics: yet another avenue for cell survival. Apoptosis 2021; 26:371-384. [PMID: 33978921 DOI: 10.1007/s10495-021-01678-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/24/2022]
Abstract
Heat shock proteins (HSPs) are evolutionary conserved 'stress-response' proteins that facilitate cell survival against various adverse conditions. HSP-mediated cytoprotection was hitherto reported to occur principally in two ways. Firstly, HSPs interact directly or indirectly with apoptosis signaling components and suppress apoptosis. Secondly, through chaperon activity, HSPs suppress proteotoxicity and maintain protein-homeostasis. Recent studies highlight the interaction of HSPs with cytoplasmic stress granules (SGs). SGs are conserved cytoplasmic mRNPs granules that aid in cell survival under stressful conditions. We primarily aim to describe the distinct cell survival strategy mediated by HSPs as the crucial regulators of SGs assembly and disassembly. Based on the growing evidence, HSPs and associated co-chaperones act as important determinants of SG assembly, composition and dissolution. Under cellular stress, as a 'stress-coping mechanism', the formation of SGs reprograms protein translation machinery and modulates signaling pathways indispensable for cell survival. Besides their role in suppressing apoptosis, HSPs also regulate protein-homeostasis by their chaperone activity as well as by their tight regulation of SG dynamics. The intricate molecular signaling in and around the nexus of HSPs-SGs and its importance in diseases has to be unearthed. These studies have significant implications in the management of chronic diseases such as cancer and neurodegenerative diseases where SGs possess pathological functions.
Collapse
Affiliation(s)
- Akanksha Verma
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - S Sumi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Mahendra Seervi
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
47
|
Roden C, Gladfelter AS. RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol 2021; 22:183-195. [PMID: 32632317 PMCID: PMC7785677 DOI: 10.1038/s41580-020-0264-6] [Citation(s) in RCA: 358] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 01/08/2023]
Abstract
Biomolecular condensation partitions cellular contents and has important roles in stress responses, maintaining homeostasis, development and disease. Many nuclear and cytoplasmic condensates are rich in RNA and RNA-binding proteins (RBPs), which undergo liquid-liquid phase separation (LLPS). Whereas the role of RBPs in condensates has been well studied, less attention has been paid to the contribution of RNA to LLPS. In this Review, we discuss the role of RNA in biomolecular condensation and highlight considerations for designing condensate reconstitution experiments. We focus on RNA properties such as composition, length, structure, modifications and expression level. These properties can modulate the biophysical features of native condensates, including their size, shape, viscosity, liquidity, surface tension and composition. We also discuss the role of RNA-protein condensates in development, disease and homeostasis, emphasizing how their properties and function can be determined by RNA. Finally, we discuss the multifaceted cellular functions of biomolecular condensates, including cell compartmentalization through RNA transport and localization, supporting catalytic processes, storage and inheritance of specific molecules, and buffering noise and responding to stress.
Collapse
Affiliation(s)
- Christine Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Whitman Center, Marine Biology Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
48
|
Devi S, Kim JJ, Singh AP, Kumar S, Dubey AK, Singh SK, Singh RS, Kumar V. Proteotoxicity: A Fatal Consequence of Environmental Pollutants-Induced Impairments in Protein Clearance Machinery. J Pers Med 2021; 11:69. [PMID: 33503824 PMCID: PMC7912547 DOI: 10.3390/jpm11020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
A tightly regulated protein quality control (PQC) system maintains a healthy balance between correctly folded and misfolded protein species. This PQC system work with the help of a complex network comprised of molecular chaperones and proteostasis. Any intruder, especially environmental pollutants, disrupt the PQC network and lead to PQCs disruption, thus generating damaged and infectious protein. These misfolded/unfolded proteins are linked to several diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and cataracts. Numerous studies on proteins misfolding and disruption of PQCs by environmental pollutants highlight the necessity of detailed knowledge. This review represents the PQCs network and environmental pollutants' impact on the PQC network, especially through the protein clearance system.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Anand Prakash Singh
- Division of Cardiovascular Disease, The University of Alabama at Birmingham (UAB), 1720 2nd Ave South, Birmingham, AL 35294-1913, USA;
| | - Surendra Kumar
- Cytogenetics Lab, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | | | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Room 4D40, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| |
Collapse
|
49
|
Advani VM, Ivanov P. Stress granule subtypes: an emerging link to neurodegeneration. Cell Mol Life Sci 2020; 77:4827-4845. [PMID: 32500266 PMCID: PMC7668291 DOI: 10.1007/s00018-020-03565-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Stress Granules (SGs) are membraneless cytoplasmic RNA granules, which contain translationally stalled mRNAs, associated translation initiation factors and multiple RNA-binding proteins (RBPs). They are formed in response to various stresses and contribute to reprogramming of cellular metabolism to aid cell survival. Because of their cytoprotective nature, association with translation regulation and cell signaling, SGs are an essential component of the integrated stress response pathway, a complex adaptive program central to stress management. Recent advances in SG biology unambiguously demonstrate that SGs are heterogeneous in their RNA and protein content leading to the idea that various SG subtypes exist. These SG variants are formed in cell type- and stress-specific manners and differ in their composition, dynamics of assembly and disassembly, and contribution to cell viability. As aberrant SG dynamics contribute to the formation of pathological persistent SGs that are implicated in neurodegenerative diseases, the biology of different SG subtypes may be directly implicated in neurodegeneration. Here, we will discuss mechanisms of SG formation, their subtypes, and potential contribution to health and disease.
Collapse
Affiliation(s)
- Vivek M Advani
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Harvard Initiative for RNA Medicine, Boston, MA, USA.
| |
Collapse
|
50
|
Hsp40 proteins phase separate to chaperone the assembly and maintenance of membraneless organelles. Proc Natl Acad Sci U S A 2020; 117:31123-31133. [PMID: 33229560 DOI: 10.1073/pnas.2002437117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Membraneless organelles contain a wide spectrum of molecular chaperones, indicating their important roles in modulating the metastable conformation and biological function of membraneless organelles. Here we report that class I and II Hsp40 (DNAJ) proteins possess a high ability of phase separation rendered by the flexible G/F-rich region. Different Hsp40 proteins localize in different membraneless organelles. Specifically, human Hdj1 (DNAJB1), a class II Hsp40 protein, condenses in ubiquitin (Ub)-rich nuclear bodies, while Hdj2 (DNAJA1), a class I Hsp40 protein, condenses in nucleoli. Upon stress, both Hsp40 proteins incorporate into stress granules (SGs). Mutations of the G/F-rich region not only markedly impaired Hdj1 phase separation and SG involvement and disrupted the synergistic phase separation and colocalization of Hdj1 and fused in sarcoma (FUS) in cells. Being cophase separated with FUS, Hdj1 stabilized the liquid phase of FUS against proceeding into amyloid aggregation in vitro and alleviated abnormal FUS aggregation in cells. Moreover, Hdj1 uses different domains to chaperone FUS phase separation and amyloid aggregation. This paper suggests that phase separation is an intrinsic property of Hsp40 proteins, which enables efficient incorporation and function of Hsp40 in membraneless organelles and may further mediate the buildup of chaperone network in membraneless organelles.
Collapse
|