1
|
Huang W, Wang J, Wang C, Liu Y, Li W, Chen Q, Zhai J, Xiang Z, Liu C. Expanding Cas12a Activity Control with an RNA G-Quadruplex at the 5' end of CRISPR RNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411305. [PMID: 39721016 DOI: 10.1002/advs.202411305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/24/2024] [Indexed: 12/28/2024]
Abstract
Precise control of Cas12a activity is essential for the improvement of the detection limit of clinical diagnostics and the minimization of errors. This study addresses the challenge of controlling Cas12a activity, especially in the context of nucleic acid detection where the inherent incompatibility between isothermal amplification and CRISPR reactions complicates accurate diagnostics. An RNA G-quadruplex (RG4) structure at the 5' end of crRNA is introduced to modulate Cas12a activity accurately without the need for chemical modifications. The results indicate that the presence of RG4 does not significantly impact Cas12a's cleavage activity but can be controlled by RG4 stabilizers, enabling the suppression and subsequent restoration of Cas12a activity with potential for precise activity control. Moreover, the use of RG4 is expanded by incorporating it into split crRNA, introducing RG4 directly at the 5' end of the direct repeat (DR) region, enabling tailored activity regulation for different targets by matching with various Spacer regions. Additionally, a light-controlled one-pot method for activating Cas12a is developed, thereby enhancing the accuracy and sensitivity of clinical samples. This study showcases the pioneering use of RG4 in manipulating Cas12a activity, streamlining diagnostics, and paving the way for advances in clinical nucleic acid testing.
Collapse
Affiliation(s)
- Wenjuan Huang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, P. R. China
| | - Jiaqi Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Cheng Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, P. R. China
| | - Yuanfang Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Wentao Li
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Qiaozhen Chen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Junqiu Zhai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Zhenyang Xiang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, P. R. China
| | - Chaoxing Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| |
Collapse
|
2
|
Zhao H, Lau HL, Zhang K, Kwok CK. Selective recognition of RNA G-quadruplex in vitro and in cells by L-aptamer-D-oligonucleotide conjugate. Nucleic Acids Res 2024; 52:13544-13560. [PMID: 39558155 DOI: 10.1093/nar/gkae1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
RNA Guanine-quadruplexes (rG4s) are important nucleic acid structures that govern vital biological processes. Although numerous tools have been developed to target rG4s, few specific tools are capable of discerning individual rG4 of interest. Herein, we design and synthesize the first L-aptamer-antisense oligonucleotide (ASO) conjugate, L-Apt.4-1c-ASO15nt(APP), with a focus on recognizing the amyloid precursor protein (APP) rG4 region as an example. The L-aptamer module binds with the rG4 structure, whereas ASO hybridizes with flanking sequences. Together, these two modules enhance the precise recognition of APP rG4. We demonstrate that the L-Apt.4-1c-ASO15nt(APP) conjugate can interact with the APP rG4 region with sub-nanomolar binding affinity, and distinguish APP rG4 from other G4s and non-G4s in vitro and in cells. We also show that L-Apt.4-1c-ASO15nt(APP) can inhibit APP protein expression. Notably, we investigate the inhibitory mechanism of this newly developed tool, and reveal that it controls gene expression by hindering DHX36 protein from unraveling the rG4, as well as by promoting translational inhibition and RNase H-mediated mRNA knockdown activity. Our novel L-aptamer-ASO conjugate tool not only enables the specific recognition of rG4 region of interest, but also allows efficient gene control via targeting rG4-containing transcripts in cells.
Collapse
Affiliation(s)
- Haizhou Zhao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Hill Lam Lau
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Kun Zhang
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
- Shenzhen Research Institute of City University of Hong Kong, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Shenzhen, 518057, China
| |
Collapse
|
3
|
Oleynikov M, Jaffrey SR. RNA tertiary structure and conformational dynamics revealed by BASH MaP. eLife 2024; 13:RP98540. [PMID: 39625751 PMCID: PMC11614387 DOI: 10.7554/elife.98540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
The functional effects of an RNA can arise from complex three-dimensional folds known as tertiary structures. However, predicting the tertiary structure of an RNA and whether an RNA adopts distinct tertiary conformations remains challenging. To address this, we developed BASH MaP, a single-molecule dimethyl sulfate (DMS) footprinting method and DAGGER, a computational pipeline, to identify alternative tertiary structures adopted by different molecules of RNA. BASH MaP utilizes potassium borohydride to reveal the chemical accessibility of the N7 position of guanosine, a key mediator of tertiary structures. We used BASH MaP to identify diverse conformational states and dynamics of RNA G-quadruplexes, an important RNA tertiary motif, in vitro and in cells. BASH MaP and DAGGER analysis of the fluorogenic aptamer Spinach reveals that it adopts alternative tertiary conformations which determine its fluorescence states. BASH MaP thus provides an approach for structural analysis of RNA by revealing previously undetectable tertiary structures.
Collapse
Affiliation(s)
- Maxim Oleynikov
- Department of Pharmacology, Weill Medical College, Cornell UniversityNew YorkUnited States
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell UniversityNew YorkUnited States
| |
Collapse
|
4
|
Kharel P, Bhatter N, Zubair S, Lyons S, Anderson PJ, Ivanov P. G-quadruplex topologies determine the functional outcome of guanine-rich bioactive oligonucleotides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626249. [PMID: 39651178 PMCID: PMC11623680 DOI: 10.1101/2024.12.01.626249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Guanine-rich nucleic acid sequences can exert sequence and/or structure specific activities to influence biological and pathobiological cellular processes. As such, it has been reported that different G-rich oligonucleotides (both DNA and RNA) can have cytotoxic as well as cytoprotective effects to the cells. However, the mechanisms of such a biological outcome are unclear. In this report, we report that G-rich DNA oligonucleotides (ODNs) that can form four stranded secondary structures called G-quadruplexes (G4s) can have topology-dependent biological outcome. Using different biochemical, biophysical, and cellular approaches, we demonstrate that only the parallel topology G4-forming ODNs can repress eukaryotic translation by directly interacting with eukaryotic translation initiation protein 1 (EIF4G1), while the antiparallel topology G4s do not have inhibitory effect on mRNA translation To the best of our knowledge, this is the first report to directly connect the G4 topological differences with differential functional biological impacts. Our study provides the foundation for the rational design of G-rich oligonucleotides for a desired therapeutic outcome.
Collapse
|
5
|
Bohdan D, Bujnicki J, Baulin E. ARTEMIS: a method for topology-independent superposition of RNA 3D structures and structure-based sequence alignment. Nucleic Acids Res 2024; 52:10850-10861. [PMID: 39258540 PMCID: PMC11472068 DOI: 10.1093/nar/gkae758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Non-coding RNAs play a major role in diverse processes in living cells with their sequence and spatial structure serving as the principal determinants of their function. Superposition of RNA 3D structures is the most accurate method for comparative analysis of RNA molecules and for inferring structure-based sequence alignments. Topology-independent superposition is particularly relevant, as evidenced by structurally similar RNAs with sequence permutations such as tRNA and Y RNA. To date, state-of-the-art methods for RNA 3D structure superposition rely on intricate heuristics, and the potential for topology-independent superposition has not been exhausted. Recently, we introduced the ARTEM method for unrestrained pairwise superposition of RNA 3D modules and now we developed it further to solve the global RNA 3D structure alignment problem. Our new tool ARTEMIS significantly outperforms state-of-the-art tools in both sequentially-ordered and topology-independent RNA 3D structure superposition. Using ARTEMIS we discovered a helical packing motif to be preserved within different backbone topology contexts across various non-coding RNAs, including multiple ribozymes and riboswitches. We anticipate that ARTEMIS will be essential for elucidating the landscape of RNA 3D folds and motifs featuring sequence permutations that thus far remained unexplored due to limitations in previous computational approaches.
Collapse
Affiliation(s)
- Davyd R Bohdan
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Janusz M Bujnicki
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Eugene F Baulin
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Breunig K, Lei X, Montalbano M, Guardia GDA, Ostadrahimi S, Alers V, Kosti A, Chiou J, Klein N, Vinarov C, Wang L, Li M, Song W, Kraus WL, Libich DS, Tiziani S, Weintraub ST, Galante PAF, Penalva LOF. SERBP1 interacts with PARP1 and is present in PARylation-dependent protein complexes regulating splicing, cell division, and ribosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586270. [PMID: 38585848 PMCID: PMC10996453 DOI: 10.1101/2024.03.22.586270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1's interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer's brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.
Collapse
|
7
|
Herbert A. A Compendium of G-Flipon Biological Functions That Have Experimental Validation. Int J Mol Sci 2024; 25:10299. [PMID: 39408629 PMCID: PMC11477331 DOI: 10.3390/ijms251910299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
As with all new fields of discovery, work on the biological role of G-quadruplexes (GQs) has produced a number of results that at first glance are quite baffling, sometimes because they do not fit well together, but mostly because they are different from commonly held expectations. Like other classes of flipons, those that form G-quadruplexes have a repeat sequence motif that enables the fold. The canonical DNA motif (G3N1-7)3G3, where N is any nucleotide and G is guanine, is a feature that is under active selection in avian and mammalian genomes. The involvement of G-flipons in genome maintenance traces back to the invertebrate Caenorhabditis elegans and to ancient DNA repair pathways. The role of GQs in transcription is supported by the observation that yeast Rap1 protein binds both B-DNA, in a sequence-specific manner, and GQs, in a structure-specific manner, through the same helix. Other sequence-specific transcription factors (TFs) also engage both conformations to actuate cellular transactions. Noncoding RNAs can also modulate GQ formation in a sequence-specific manner and engage the same cellular machinery as localized by TFs, linking the ancient RNA world with the modern protein world. The coevolution of noncoding RNAs and sequence-specific proteins is supported by studies of early embryonic development, where the transient formation of G-quadruplexes coordinates the epigenetic specification of cell fate.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Unit 3412, Charlestown, MA 02129, USA
| |
Collapse
|
8
|
Kharel P, Ivanov P. RNA G-quadruplexes and stress: emerging mechanisms and functions. Trends Cell Biol 2024; 34:771-784. [PMID: 38341346 DOI: 10.1016/j.tcb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
RNA G-quadruplexes (rG4s) are noncanonical secondary structures formed by guanine-rich sequences that are found in different regions of RNA molecules. These structures have been implicated in diverse biological processes, including translation, splicing, and RNA stability. Recent studies have suggested that rG4s play a role in the cellular response to stress. This review summarizes the current knowledge on rG4s under stress, focusing on their formation, regulation, and potential functions in stress response pathways. We discuss the molecular mechanisms that regulate the formation of rG4 under different stress conditions and the impact of these structures on RNA metabolism, gene expression, and cell survival. Finally, we highlight the potential therapeutic implications of targeting rG4s for the treatment of stress-related diseases through modulating cell survival.
Collapse
Affiliation(s)
- Prakash Kharel
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; HMS Initiative for RNA Medicine, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Oleynikov M, Jaffrey SR. RNA tertiary structure and conformational dynamics revealed by BASH MaP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589009. [PMID: 38645201 PMCID: PMC11030352 DOI: 10.1101/2024.04.11.589009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The functional effects of an RNA can arise from complex three-dimensional folds known as tertiary structures. However, predicting the tertiary structure of an RNA and whether an RNA adopts distinct tertiary conformations remains challenging. To address this, we developed BASH MaP, a single-molecule dimethyl sulfate (DMS) footprinting method and DAGGER, a computational pipeline, to identify alternative tertiary structures adopted by different molecules of RNA. BASH MaP utilizes potassium borohydride to reveal the chemical accessibility of the N7 position of guanosine, a key mediator of tertiary structures. We used BASH MaP to identify diverse conformational states and dynamics of RNA G-quadruplexes, an important RNA tertiary motif, in vitro and in cells. BASH MaP and DAGGER analysis of the fluorogenic aptamer Spinach reveals that it adopts alternative tertiary conformations which determine its fluorescence states. BASH MaP thus provides an approach for structural analysis of RNA by revealing previously undetectable tertiary structures.
Collapse
Affiliation(s)
- Maxim Oleynikov
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA
| | - Samie R. Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA
| |
Collapse
|
10
|
Johnson K, Seidel JM, Cech TR. Small molecule telomerase inhibitors are also potent inhibitors of telomeric C-strand synthesis. RNA (NEW YORK, N.Y.) 2024; 30:1213-1226. [PMID: 38918043 PMCID: PMC11331414 DOI: 10.1261/rna.080043.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Telomere replication is essential for continued proliferation of human cells, such as stem cells and cancer cells. Telomerase lengthens the telomeric G-strand, while C-strand replication is accomplished by CST-polymerase α-primase (CST-PP). Replication of both strands is inhibited by formation of G-quadruplex (GQ) structures in the G-rich single-stranded DNA. TMPyP4 and pyridostatin (PDS), which stabilize GQ structures in both DNA and RNA, inhibit telomerase in vitro, and in human cells they cause telomere shortening that has been attributed to telomerase inhibition. Here, we show that TMPyP4 and PDS also inhibit C-strand synthesis by stabilizing DNA secondary structures and thereby preventing CST-PP from binding to telomeric DNA. We also show that these small molecules inhibit CST-PP binding to a DNA sequence containing no consecutive guanine residues, which is unlikely to form GQs. Thus, while these "telomerase inhibitors" indeed inhibit telomerase, they are also robust inhibitors of telomeric C-strand synthesis. Furthermore, given their binding to GQ RNA and their limited specificity for GQ structures, they may disrupt many other protein-nucleic acid interactions in human cells.
Collapse
Affiliation(s)
- Kaitlin Johnson
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Julia M Seidel
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Thomas R Cech
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| |
Collapse
|
11
|
Sun H, Sun R, Yang D, Li Q, Jiang W, Zhou T, Bai R, Zhong F, Zhang B, Xiang J, Liu J, Tang Y, Yao L. A Cyanine Dye for Highly Specific Recognition of Parallel G-Quadruplex Topology and Its Application in Clinical RNA Detection for Cancer Diagnosis. J Am Chem Soc 2024; 146:22736-22746. [PMID: 39078265 DOI: 10.1021/jacs.4c07698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
G-quadruplex (G4), an unconventional nucleic acid structure, shows polymorphism in its topological morphology. The parallel G4 topology is the most prevalent form in organisms and plays a regulatory role in many biological processes. Designing fluorescent probes with high specificity for parallel G4s is important but challenging. Herein, a supramolecular assembly of the anionic cyanine dye SCY-5 is reported, which selectively identifies parallel G4 topology. SCY-5 can clearly distinguish parallel G4s from other G4s and non-G4s, even including hybrid-type G4s with parallel characteristics. The high specificity mechanism of SCY-5 involves a delicate balance between electrostatic repulsion and π-π interaction between SCY-5 and G4s. Using SCY-5, cellular RNA extracted from peripheral venous blood was quantitatively detected, and a remarkable increase in RNA G4 content in cancer patients compared to healthy volunteers was confirmed for the first time. This study provides new insights for designing specific probes for parallel G4 topology and opens a new path for clinical cancer diagnosis using RNA G4 as a biomarker.
Collapse
Affiliation(s)
- Hongxia Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ranran Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Li
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenna Jiang
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Tianxing Zhou
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Ruiyang Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Fanru Zhong
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Boyang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Junfeng Xiang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Gruenke P, Mayer MD, Aneja R, Schulze WJ, Song Z, Burke DH, Heng X, Lange MJ. A Branched SELEX Approach Identifies RNA Aptamers That Bind Distinct HIV-1 Capsid Structural Components. ACS Infect Dis 2024; 10:2637-2655. [PMID: 39016538 PMCID: PMC11320578 DOI: 10.1021/acsinfecdis.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
The HIV-1 capsid protein (CA) assumes distinct structural forms during replication, each presenting unique, solvent-accessible surfaces that facilitate multifaceted functions and host factor interactions. However, functional contributions of individual CA structures remain unclear, as evaluation of CA presents several technical challenges. To address this knowledge gap, we identified CA-targeting aptamers with different structural specificities, which emerged through a branched SELEX approach using an aptamer library previously selected to bind the CA hexamer lattice. Subsets were either highly specific for the CA lattice or bound both the CA lattice and CA hexamer. We then evaluated four representatives to reveal aptamer regions required for binding, highlighting interesting structural features and challenges in aptamer structure determination. Further, we demonstrate binding to biologically relevant CA structural forms and aptamer-mediated affinity purification of CA from cell lysates without virus or host modification, supporting the development of structural form-specific aptamers as exciting new tools for the study of CA.
Collapse
Affiliation(s)
- Paige
R. Gruenke
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Bond
Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Miles D. Mayer
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Rachna Aneja
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
| | - William J. Schulze
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
| | - Zhenwei Song
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Donald H. Burke
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Bond
Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiao Heng
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Margaret J. Lange
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
13
|
Troisi R, Sica F. Structural overview of DNA and RNA G-quadruplexes in their interaction with proteins. Curr Opin Struct Biol 2024; 87:102846. [PMID: 38848656 DOI: 10.1016/j.sbi.2024.102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
Since the discovery of G-quadruplex (G4) participation in vital cellular processes, the regulation of the interaction of naturally occurring G4s with the relative target proteins has emerged as a promising approach for therapeutic development. Additionally, a synthetic strategy has produced several oligonucleotide aptamers, embodying a G4 module, which exhibit relevant biological activity by binding selectively to a target protein. In this context, the G4-protein structures available in the Protein Data Bank represent a valuable molecular view of the different G4 topologies involved in protein interaction. Interestingly, recent results have shown the co-existence of G4s with other structural domains such as duplexes. Overall, these findings allow a better understanding of the mechanisms that regulate intricate biological functions and suggest new design for innovative medical treatments.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126 Naples, Italy; Institute of Biostructures and Bioimaging, CNR, via Pietro Castellino 111, 80131 Naples, Italy. https://twitter.com/TroRom
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126 Naples, Italy.
| |
Collapse
|
14
|
Terrell JR, Le TT, Paul A, Brinton MA, Wilson WD, Poon GMK, Germann MW, Siemer JL. Structure of an RNA G-quadruplex from the West Nile virus genome. Nat Commun 2024; 15:5428. [PMID: 38926367 PMCID: PMC11208454 DOI: 10.1038/s41467-024-49761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Potential G-quadruplex sites have been identified in the genomes of DNA and RNA viruses and proposed as regulatory elements. The genus Orthoflavivirus contains arthropod-transmitted, positive-sense, single-stranded RNA viruses that cause significant human disease globally. Computational studies have identified multiple potential G-quadruplex sites that are conserved across members of this genus. Subsequent biophysical studies established that some G-quadruplexes predicted in Zika and tickborne encephalitis virus genomes can form and known quadruplex binders reduced viral yields from cells infected with these viruses. The susceptibility of RNA to degradation and the variability of loop regions have made structure determination challenging. Despite these difficulties, we report a high-resolution structure of the NS5-B quadruplex from the West Nile virus genome. Analysis reveals two stacked tetrads that are further stabilized by a stacked triad and transient noncanonical base pairing. This structure expands the landscape of solved RNA quadruplex structures and demonstrates the diversity and complexity of biological quadruplexes. We anticipate that the availability of this structure will assist in solving further viral RNA quadruplexes and provides a model for a conserved antiviral target in Orthoflavivirus genomes.
Collapse
Affiliation(s)
- J Ross Terrell
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Thao T Le
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ananya Paul
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Markus W Germann
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| | - Jessica L Siemer
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
15
|
Ciaco S, Aronne R, Fiabane M, Mori M. The Rise of Bacterial G-Quadruplexes in Current Antimicrobial Discovery. ACS OMEGA 2024; 9:24163-24180. [PMID: 38882119 PMCID: PMC11170735 DOI: 10.1021/acsomega.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Antimicrobial resistance (AMR) is a silent critical issue that poses several challenges to health systems. While the discovery of novel antibiotics is currently stalled and prevalently focused on chemical variations of the scaffolds of available drugs, novel targets and innovative strategies are urgently needed to face this global threat. In this context, bacterial G-quadruplexes (G4s) are emerging as timely and profitable targets for the design and development of antimicrobial agents. Indeed, they are expressed in regulatory regions of bacterial genomes, and their modulation has been observed to provide antimicrobial effects with translational perspectives in the context of AMR. In this work, we review the current knowledge of bacterial G4s as well as their modulation by small molecules, including tools and techniques suitable for these investigations. Finally, we critically analyze the needs and future directions in the field, with a focus on the development of small molecules as bacterial G4s modulators endowed with remarkable drug-likeness.
Collapse
Affiliation(s)
- Stefano Ciaco
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Rossella Aronne
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Martina Fiabane
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
16
|
Butcher SE. A left-handed RNA quadruplex directs gene silencing. Trends Biochem Sci 2024; 49:387-390. [PMID: 38368181 PMCID: PMC11069436 DOI: 10.1016/j.tibs.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Poly(UG) or 'pUG' dinucleotide repeats direct gene silencing in Caenorhabditis elegans by adopting an unusual quadruplex structure. Humans have thousands of pUG sequences and proteins that interact with them. The pUG fold reveals new aspects of gene regulation and RNA folding, highlighting how a simple sequence can encode a complex structure.
Collapse
Affiliation(s)
- Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
17
|
Singha Roy A, Majumder S, Saha P. Stable RNA G-Quadruplex in the 5'-UTR of Human cIAP1 mRNA Promotes Translation in an IRES-Independent Manner. Biochemistry 2024. [PMID: 38334276 DOI: 10.1021/acs.biochem.3c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
RNA G-quadruplex (rG4) structures can influence the fate and functions of mRNAs, especially the translation process. The presence of rG4 structures in 5'-untranslated regions (5'-UTRs) of mRNAs generally represses translation. However, rG4 structures can also promote internal ribosome entry site (IRES)-mediated translation as one of its determinants. Here, we report the identification of an evolutionary conserved rG4-forming sequence motif at the extreme 5'-end of the unusually long 5'-UTR (1.7 kb) in the transcript of human cIAP1 gene encoding the cellular inhibitor of apoptosis protein-1 that promotes cell survival by suppressing apoptosis and is overexpressed in various cancer cells. Expectedly, NMR study, CD spectroscopy, and UV melting assay confirm the formation of a potassium ion-dependent intramolecular and parallel rG4 structure at the sequence stretch. Moreover, the G4-RNA-specific precipitation using biotin-linked biomimetic BioCyTASQ validates the formation of the rG4 structure in the cIAP1 5'-UTR in cells. Interestingly, disruption of the rG4 structure in the cIAP1 5'-UTR results in a dramatic reduction in translation of the downstream luciferase reporter in cells, suggesting a translation-promoting effect of the rG4 structure, contrary to many earlier reports. Furthermore, enhancement of translation by the cIAP1 rG4 structure occurs in an IRES-independent manner.
Collapse
Affiliation(s)
- Aditya Singha Roy
- Crystallography and Molecular Biology Division, Biophysical Sciences Group, Saha Institute of Nuclear Physics, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Subhabrata Majumder
- Homi Bhabha National Institute, Mumbai 400094, India
- Biophysics and Structural Biology Division, Biophysical Sciences Group, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Partha Saha
- Crystallography and Molecular Biology Division, Biophysical Sciences Group, Saha Institute of Nuclear Physics, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
18
|
Wang W, Li D, Xu Q, Cheng J, Yu Z, Li G, Qiao S, Pan J, Wang H, Shi J, Zheng T, Sui G. G-quadruplexes promote the motility in MAZ phase-separated condensates to activate CCND1 expression and contribute to hepatocarcinogenesis. Nat Commun 2024; 15:1045. [PMID: 38316778 PMCID: PMC10844655 DOI: 10.1038/s41467-024-45353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
G-quadruplexes (G4s) can recruit transcription factors to activate gene expression, but detailed mechanisms remain enigmatic. Here, we demonstrate that G4s in the CCND1 promoter propel the motility in MAZ phase-separated condensates and subsequently activate CCND1 transcription. Zinc finger (ZF) 2 of MAZ is a responsible for G4 binding, while ZF3-5, but not a highly disordered region, is critical for MAZ condensation. MAZ nuclear puncta overlaps with signals of G4s and various coactivators including BRD4, MED1, CDK9 and active RNA polymerase II, as well as gene activation histone markers. MAZ mutants lacking either G4 binding or phase separation ability did not form nuclear puncta, and showed deficiencies in promoting hepatocellular carcinoma cell proliferation and xenograft tumor formation. Overall, we unveiled that G4s recruit MAZ to the CCND1 promoter and facilitate the motility in MAZ condensates that compartmentalize coactivators to activate CCND1 expression and subsequently exacerbate hepatocarcinogenesis.
Collapse
Affiliation(s)
- Wenmeng Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Qingqing Xu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jiahui Cheng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhiwei Yu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Guangyue Li
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Shiyao Qiao
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jiasong Pan
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hao Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Key Laboratory of Molecular Oncology of Heilongjiang Province, Harbin, China
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
19
|
Sahayasheela VJ, Sugiyama H. RNA G-quadruplex in functional regulation of noncoding RNA: Challenges and emerging opportunities. Cell Chem Biol 2024; 31:53-70. [PMID: 37909035 DOI: 10.1016/j.chembiol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023]
Abstract
G-quadruplexes (G4s) are stable, noncanonical structures formed in guanine (G)-rich sequences of DNA/RNA. G4 structures are reported to play a regulatory role in various cellular processes and, recently, a considerable number of studies have attributed new biological functions to these structures, especially in RNA. Noncoding RNA (ncRNA), which does not translate into a functional protein, is widely expressed and has been shown to play a key role in shaping cellular activity. There has been growing evidence of G4 formation in several ncRNA classes, and it has been identified as a key part for diverse biological functions and physio-pathological contexts in neurodegenerative diseases and cancer. This review discusses RNA G4s (rG4s) in ncRNA, focusing on the molecular mechanism underlying its function. This review also aims to highlight potential and emerging opportunities to identify and target the rG4s in ncRNA to understand its function and, ultimately, treat many diseases.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
20
|
Xu Y, Komiyama M. G-Quadruplexes in Human Telomere: Structures, Properties, and Applications. Molecules 2023; 29:174. [PMID: 38202757 PMCID: PMC10780218 DOI: 10.3390/molecules29010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
G-quadruplexes, intricate four-stranded structures composed of G-tetrads formed by four guanine bases, are prevalent in both DNA and RNA. Notably, these structures play pivotal roles in human telomeres, contributing to essential cellular functions. Additionally, the existence of DNA:RNA hybrid G-quadruplexes adds a layer of complexity to their structural diversity. This review provides a comprehensive overview of recent advancements in unraveling the intricacies of DNA and RNA G-quadruplexes within human telomeres. Detailed insights into their structural features are presented, encompassing the latest developments in chemical approaches designed to probe these G-quadruplex structures. Furthermore, this review explores the applications of G-quadruplex structures in targeting human telomeres. Finally, the manuscript outlines the imminent challenges in this evolving field, setting the stage for future investigations.
Collapse
Affiliation(s)
- Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
21
|
Escobar CA, Petersen RJ, Tonelli M, Fan L, Henzler-Wildman KA, Butcher SE. Solution Structure of Poly(UG) RNA. J Mol Biol 2023; 435:168340. [PMID: 37924862 PMCID: PMC10841838 DOI: 10.1016/j.jmb.2023.168340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Poly(UG) or "pUG" RNAs are UG or GU dinucleotide repeat sequences which are highly abundant in eukaryotes. Post-transcriptional addition of pUGs to RNA 3' ends marks mRNAs as vectors for gene silencing in C. elegans. We previously determined the crystal structure of pUG RNA bound to the ligand N-methyl mesoporphyrin IX (NMM), but the structure of free pUG RNA is unknown. Here we report the solution structure of the free pUG RNA (GU)12, as determined by nuclear magnetic resonance spectroscopy and small and wide-angle x-ray scattering (NMR-SAXS-WAXS). The low complexity sequence and 4-fold symmetry of the structure result in overlapped NMR signals that complicate chemical shift assignment. We therefore utilized single site-specific deoxyribose modifications which did not perturb the structure and introduced well-resolved methylene signals that are easily identified in NMR spectra. The solution structure ensemble has a root mean squared deviation (RMSD) of 0.62 Å and is a compact, left-handed quadruplex with a Z-form backbone, or "pUG fold." Overall, the structure agrees with the crystal structure of (GU)12 bound to NMM, indicating the pUG fold is unaltered by docking of the NMM ligand. The solution structure reveals conformational details that could not be resolved by x-ray crystallography, which explain how the pUG fold can form within longer RNAs.
Collapse
Affiliation(s)
- Cristian A Escobar
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Riley J Petersen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility of National Cancer Institute, Frederick, MD, USA
| | - Katherine A Henzler-Wildman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
22
|
Largy E, Ranz M, Gabelica V. A General Framework to Interpret Hydrogen-Deuterium Exchange Native Mass Spectrometry of G-Quadruplex DNA. J Am Chem Soc 2023; 145:26843-26857. [PMID: 38044563 DOI: 10.1021/jacs.3c09365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
G-quadruplexes (G4s) are secondary structures formed by guanine-rich oligonucleotides involved in various biological processes. However, characterizing G4s is challenging, because of their structural polymorphism. Here, we establish how hydrogen-deuterium exchange native mass spectrometry (HDX/MS) can help to characterize the G4 structures and dynamics in solution. We correlated the time range of G4 exchange to the number of guanines involved in the inner and outer tetrads. We also established relationships among exchange rates, numbers of tetrads and bound cations, and stability. The use of HDX/native MS allows for the determination of tetrads formed and assessment of G4 stability at a constant temperature. A key finding is that stable G4s exchange through local fluctuations (EX2 exchange), whereas less stable G4s also undergo exchange through partial or complete unfolding (EX1 exchange). Deconvolution of the bimodal isotope distributions resulting from EX1 exchange provides valuable insight into the kinetics of folding and unfolding processes and allows one to detect and characterize transiently unfolded intermediates, even if scarcely populated. HDX/native MS thus represents a powerful tool for a more comprehensive exploration of the folding landscapes of G4s.
Collapse
Affiliation(s)
- Eric Largy
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Matthieu Ranz
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Valérie Gabelica
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
23
|
Gruenke PR, Mayer MD, Aneja R, Song Z, Burke DH, Heng X, Lange MJ. Differentiation SELEX approach identifies RNA aptamers with different specificities for HIV-1 capsid assembly forms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571135. [PMID: 38168417 PMCID: PMC10760009 DOI: 10.1101/2023.12.11.571135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The HIV-1 capsid protein (CA) assumes distinct assembly forms during replication, each presenting unique, solvent-accessible surfaces that facilitate multifaceted functions and host factor interactions. However, contributions of individual CA assemblies remain unclear, as the evaluation of CA in cells presents several technical challenges. To address this need, we sought to identify CA assembly form-specific aptamers. Aptamer subsets with different specificities emerged from within a highly converged, pre-enriched aptamer library previously selected to bind the CA hexamer lattice. Subsets were either highly specific for CA lattice or bound both CA lattice and CA hexamer. We further evaluated four representatives to reveal aptamer structural features required for binding, highlighting interesting features and challenges in aptamer structure determination. Importantly, our aptamers bind biologically relevant forms of CA and we demonstrate aptamer-mediated affinity purification of CA from cell lysates without virus or host modification. Thus, we have identified CA assembly form-specific aptamers that represent exciting new tools for the study of CA.
Collapse
|
24
|
Turcotte MA, Bolduc F, Vannutelli A, Mitteaux J, Monchaud D, Perreault JP. Development of a highly optimized procedure for the discovery of RNA G-quadruplexes by combining several strategies. Biochimie 2023; 214:24-32. [PMID: 37479077 DOI: 10.1016/j.biochi.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
RNA G-quadruplexes (rG4s) are non-canonical secondary structures that are formed by the self-association of guanine quartets and that are stabilized by monovalent cations (e.g. potassium). rG4s are key elements in several post-transcriptional regulation mechanisms, including both messenger RNA (mRNA) and microRNA processing, mRNA transport and translation, to name but a few examples. Over the past few years, multiple high-throughput approaches have been developed in order to identify rG4s, including bioinformatic prediction, in vitro assays and affinity capture experiments coupled to RNA sequencing. Each individual approach had its limits, and thus yielded only a fraction of the potential rG4 that are further confirmed (i.e., there is a significant level of false positive). This report aims to benefit from the strengths of several existing approaches to identify rG4s with a high potential of being folded in cells. Briefly, rG4s were pulled-down from cell lysates using the biotinylated biomimetic G4 ligand BioTASQ and the sequences thus isolated were then identified by RNA sequencing. Then, a novel bioinformatic pipeline that included DESeq2 to identify rG4 enriched transcripts, MACS2 to identify rG4 peaks, rG4-seq to increase rG4 formation probability and G4RNA Screener to detect putative rG4s was performed. This workflow uncovers new rG4 candidates whose rG4-folding was then confirmed in vitro using an array of established biophysical methods. Clearly, this workflow led to the identification of novel rG4s in a highly specific and reliable manner.
Collapse
Affiliation(s)
- Marc-Antoine Turcotte
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - François Bolduc
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Anaïs Vannutelli
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Jérémie Mitteaux
- Institut de Chimie Moléculaire de l'Université de Bourgogne, CNRS, UMR 6302, Dijon, 21078, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, CNRS, UMR 6302, Dijon, 21078, France
| | - Jean-Pierre Perreault
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada.
| |
Collapse
|
25
|
Chan KH, Wang Y, Zheng BX, Long W, Feng X, Wong WL. RNA-Selective Small-Molecule Ligands: Recent Advances in Live-Cell Imaging and Drug Discovery. ChemMedChem 2023; 18:e202300271. [PMID: 37649155 DOI: 10.1002/cmdc.202300271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
RNA structures, including those formed from coding and noncoding RNAs, alternative to protein-based drug targets, could be a promising target of small molecules for drug discovery against various human diseases, particularly in anticancer, antibacterial and antivirus development. The normal cellular activity of cells is critically dependent on the function of various RNA molecules generated from DNA transcription. Moreover, many studies support that mRNA-targeting small molecules may regulate the synthesis of disease-related proteins via the non-covalent mRNA-ligand interactions that do not involve gene modification. RNA-ligand interaction is thus an attractive approach to address the challenge of "undruggable" proteins in drug discovery because the intracellular activity of these proteins is hard to be suppressed with small molecule ligands. We selectively surveyed a specific area of RNA structure-selective small molecule ligands in fluorescence live cell imaging and drug discovery because the area was currently underexplored. This state-of-the-art review thus mainly focuses on the research published within the past three years and aims to provide the most recent information on this research area; hopefully, it could be complementary to the previously reported reviews and give new insights into the future development on RNA-specific small molecule ligands for live cell imaging and drug discovery.
Collapse
Affiliation(s)
- Ka Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
| | - Yakun Wang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
| | - Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
| | - Xinxin Feng
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
26
|
Balaratnam S, Torrey ZR, Calabrese DR, Banco MT, Yazdani K, Liang X, Fullenkamp CR, Seshadri S, Holewinski RJ, Andresson T, Ferré-D'Amaré AR, Incarnato D, Schneekloth JS. Investigating the NRAS 5' UTR as a target for small molecules. Cell Chem Biol 2023; 30:643-657.e8. [PMID: 37257453 PMCID: PMC11623308 DOI: 10.1016/j.chembiol.2023.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
Neuroblastoma RAS (NRAS) is an oncogene that is deregulated and highly mutated in cancers including melanomas and acute myeloid leukemias. The 5' untranslated region (UTR) (5' UTR) of the NRAS mRNA contains a G-quadruplex (G4) that regulates translation. Here we report a novel class of small molecule that binds to the G4 structure located in the 5' UTR of the NRAS mRNA. We used a small molecule microarray screen to identify molecules that selectively bind to the NRAS-G4 with submicromolar affinity. One compound inhibits the translation of NRAS in vitro but showed only moderate effects on the NRAS levels in cellulo. Rapid Amplification of cDNA Ends and RT-PCR analysis revealed that the predominant NRAS transcript does not possess the G4 structure. Thus, although NRAS transcripts lack a G4 in many cell lines the concept of targeting folded regions within 5' UTRs to control translation remains a highly attractive strategy.
Collapse
Affiliation(s)
- Sumirtha Balaratnam
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Zachary R Torrey
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - David R Calabrese
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Michael T Banco
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Kamyar Yazdani
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Xiao Liang
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | - Srinath Seshadri
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ronald J Holewinski
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
27
|
Passalacqua LFM, Banco MT, Moon JD, Li X, Jaffrey SR, Ferré-D'Amaré AR. Intricate 3D architecture of a DNA mimic of GFP. Nature 2023; 618:1078-1084. [PMID: 37344591 PMCID: PMC10754392 DOI: 10.1038/s41586-023-06229-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
Numerous studies have shown how RNA molecules can adopt elaborate three-dimensional (3D) architectures1-3. By contrast, whether DNA can self-assemble into complex 3D folds capable of sophisticated biochemistry, independent of protein or RNA partners, has remained mysterious. Lettuce is an in vitro-evolved DNA molecule that binds and activates4 conditional fluorophores derived from GFP. To extend previous structural studies5,6 of fluorogenic RNAs, GFP and other fluorescent proteins7 to DNA, we characterize Lettuce-fluorophore complexes by X-ray crystallography and cryogenic electron microscopy. The results reveal that the 53-nucleotide DNA adopts a four-way junction (4WJ) fold. Instead of the canonical L-shaped or H-shaped structures commonly seen8 in 4WJ RNAs, the four stems of Lettuce form two coaxial stacks that pack co-linearly to form a central G-quadruplex in which the fluorophore binds. This fold is stabilized by stacking, extensive nucleobase hydrogen bonding-including through unusual diagonally stacked bases that bridge successive tiers of the main coaxial stacks of the DNA-and coordination of monovalent and divalent cations. Overall, the structure is more compact than many RNAs of comparable size. Lettuce demonstrates how DNA can form elaborate 3D structures without using RNA-like tertiary interactions and suggests that new principles of nucleic acid organization will be forthcoming from the analysis of complex DNAs.
Collapse
Affiliation(s)
- Luiz F M Passalacqua
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael T Banco
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jared D Moon
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Xing Li
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Samie R Jaffrey
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Adrian R Ferré-D'Amaré
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Assmann SM, Chou HL, Bevilacqua PC. Rock, scissors, paper: How RNA structure informs function. THE PLANT CELL 2023; 35:1671-1707. [PMID: 36747354 PMCID: PMC10226581 DOI: 10.1093/plcell/koad026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 05/30/2023]
Abstract
RNA can fold back on itself to adopt a wide range of structures. These range from relatively simple hairpins to intricate 3D folds and can be accompanied by regulatory interactions with both metabolites and macromolecules. The last 50 yr have witnessed elucidation of an astonishing array of RNA structures including transfer RNAs, ribozymes, riboswitches, the ribosome, the spliceosome, and most recently entire RNA structuromes. These advances in RNA structural biology have deepened insight into fundamental biological processes including gene editing, transcription, translation, and structure-based detection and response to temperature and other environmental signals. These discoveries reveal that RNA can be relatively static, like a rock; that it can have catalytic functions of cutting bonds, like scissors; and that it can adopt myriad functional shapes, like paper. We relate these extraordinary discoveries in the biology of RNA structure to the plant way of life. We trace plant-specific discovery of ribozymes and riboswitches, alternative splicing, organellar ribosomes, thermometers, whole-transcriptome structuromes and pan-structuromes, and conclude that plants have a special set of RNA structures that confer unique types of gene regulation. We finish with a consideration of future directions for the RNA structure-function field.
Collapse
Affiliation(s)
- Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
29
|
Passalacqua LFM, Starich MR, Link KA, Wu J, Knutson JR, Tjandra N, Jaffrey SR, Ferré-D'Amaré AR. Co-crystal structures of the fluorogenic aptamer Beetroot show that close homology may not predict similar RNA architecture. Nat Commun 2023; 14:2969. [PMID: 37221204 PMCID: PMC10205801 DOI: 10.1038/s41467-023-38683-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Beetroot is a homodimeric in vitro selected RNA that binds and activates DFAME, a conditional fluorophore derived from GFP. It is 70% sequence-identical to the previously characterized homodimeric aptamer Corn, which binds one molecule of its cognate fluorophore DFHO at its interprotomer interface. We have now determined the Beetroot-DFAME co-crystal structure at 1.95 Å resolution, discovering that this RNA homodimer binds two molecules of the fluorophore, at sites separated by ~30 Å. In addition to this overall architectural difference, the local structures of the non-canonical, complex quadruplex cores of Beetroot and Corn are distinctly different, underscoring how subtle RNA sequence differences can give rise to unexpected structural divergence. Through structure-guided engineering, we generated a variant that has a 12-fold fluorescence activation selectivity switch toward DFHO. Beetroot and this variant form heterodimers and constitute the starting point for engineered tags whose through-space inter-fluorophore interaction could be used to monitor RNA dimerization.
Collapse
Affiliation(s)
- Luiz F M Passalacqua
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mary R Starich
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katie A Link
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiahui Wu
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
- Department of Chemistry, Binghamton University, Binghamton, NY, 13902, USA
| | - Jay R Knutson
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Son A, Huizar Cabral V, Huang Z, Litberg TJ, Horowitz S. G-quadruplexes rescuing protein folding. Proc Natl Acad Sci U S A 2023; 120:e2216308120. [PMID: 37155907 PMCID: PMC10194009 DOI: 10.1073/pnas.2216308120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Maintaining the health of the proteome is a critical cellular task. Recently, we found G-quadruplex (G4) nucleic acids are especially potent at preventing protein aggregation in vitro and could at least indirectly improve the protein folding environment of Escherichia coli. However, the roles of G4s in protein folding were not yet explored. Here, through in vitro protein folding experiments, we discover that G4s can accelerate protein folding by rescuing kinetically trapped intermediates to both native and near-native folded states. Time-course folding experiments in E. coli further demonstrate that these G4s primarily improve protein folding quality in E. coli as opposed to preventing protein aggregation. The ability of a short nucleic acid to rescue protein folding opens up the possibility of nucleic acids and ATP-independent chaperones to play considerable roles in dictating the ultimate folding fate of proteins.
Collapse
Affiliation(s)
- Ahyun Son
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| | - Veronica Huizar Cabral
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| | - Zijue Huang
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| | - Theodore J. Litberg
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| |
Collapse
|
31
|
Li F, Zhou J. G-quadruplexes from non-coding RNAs. J Mol Med (Berl) 2023:10.1007/s00109-023-02314-7. [PMID: 37069370 DOI: 10.1007/s00109-023-02314-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
Non-coding RNAs (ncRNAs) are significant regulators of gene expression in a wide range of biological processes, such as transcription, RNA maturation, or translation. ncRNAs interplay with proteins or other RNAs through not only classical sequence-based mechanisms but also unique higher-order structures such as RNA G-quadruplexes (rG4s). rG4s are predictably formed in guanine-rich sequences and are closely related to various human diseases, such as tumors, neurodegenerative diseases, and infections. This review focuses on the vital role of rG4s in ncRNAs, particularly lncRNAs and miRNAs. We outline the dynamic balance between rG4s and RNA stem-loop/hairpin structures and the interplay between ncRNAs and interactors, thereby modulating gene expression and disease progression. A complete understanding of the biological regulatory role and mechanism of rG4s in ncRNAs affirms the critical importance of folding into the appropriate three-dimensional structure in maintaining or modulating the functions of ncRNAs. It makes them novel therapeutic targets for adjusting potential-G4-containing-ncRNAs-associated diseases.
Collapse
Affiliation(s)
- Fangyuan Li
- Department Medical Research Central, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
32
|
Jansson-Fritzberg LI, Sousa CI, Smallegan MJ, Song JJ, Gooding AR, Kasinath V, Rinn JL, Cech TR. DNMT1 inhibition by pUG-fold quadruplex RNA. RNA (NEW YORK, N.Y.) 2023; 29:346-360. [PMID: 36574982 PMCID: PMC9945446 DOI: 10.1261/rna.079479.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Aberrant DNA methylation is one of the earliest hallmarks of cancer. DNMT1 is responsible for methylating newly replicated DNA, but the precise regulation of DNMT1 to ensure faithful DNA methylation remains poorly understood. A link between RNA and chromatin-associated proteins has recently emerged, and several studies have shown that DNMT1 can be regulated by a variety of RNAs. In this study, we have confirmed that human DNMT1 indeed interacts with multiple RNAs, including its own nuclear mRNA. Unexpectedly, we found that DNMT1 exhibits a strong and specific affinity for GU-rich RNAs that form a pUG-fold, a noncanonical G-quadruplex. We find that pUG-fold-capable RNAs inhibit DNMT1 activity by inhibiting binding of hemimethylated DNA, and we additionally provide evidence for multiple RNA binding modes with DNMT1. Together, our data indicate that a human chromatin-associated protein binds to and is regulated by pUG-fold RNA.
Collapse
Affiliation(s)
- Linnea I Jansson-Fritzberg
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Camila I Sousa
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Michael J Smallegan
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Jessica J Song
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Anne R Gooding
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Vignesh Kasinath
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - John L Rinn
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Thomas R Cech
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| |
Collapse
|
33
|
Zheng BX, Yu J, Long W, Chan KH, Leung ASL, Wong WL. Structurally diverse G-quadruplexes as the noncanonical nucleic acid drug target for live cell imaging and antibacterial study. Chem Commun (Camb) 2023; 59:1415-1433. [PMID: 36636928 DOI: 10.1039/d2cc05945b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The formation of G-quadruplex structures (G4s) in vitro from guanine (G)-rich nucleic acid sequences of DNA and RNA stabilized with monovalent cations, typically K+ and Na+, under physiological conditions, has been verified experimentally and some of them have high-resolution NMR or X-ray crystal structures; however, the biofunction of these special noncanonical secondary structures of nucleic acids has not been fully understood and their existence in vivo is still controversial at present. It is generally believed that the folding and unfolding of G4s in vivo is a transient process. Accumulating evidence has shown that G4s may play a role in the regulation of certain important cellular functions including telomere maintenance, replication, transcription and translation. Therefore, both DNA and RNA G4s of human cancer hallmark genes are recognized as the potential anticancer drug target for the investigation in cancer biology, chemical biology and drug discovery. The relationship between the sequence, structure and stability of G4s, the interaction of G4s with small molecules, and insights into the rational design of G4-selective binding ligands have been intensively studied over the decade. At present, some G4-ligands have achieved a new milestone and successfully entered the human clinical trials for anticancer therapy. Over the past few decades, numerous efforts have been devoted to anticancer therapy; however, G4s for molecular recognition and live cell imaging and for application as antibacterial agents and antibiofilms against antibiotic resistance have been obviously underexplored. The recent advances in G4-ligands in these areas are thus selected and discussed concentratedly in this article in order to shed light on the emerging role of G4s in chemical biology and therapeutic prospects against bacterial infections. In addition, the recently published molecular scaffolds for designing small ligands selectively targeting G4s in live cell imaging, bacterial biofilm imaging, and antibacterial studies are discussed. Furthermore, a number of underexplored G4-targets from the cytoplasmic membrane-associated DNA, the conserved promoter region of K. pneumoniae genomes, the RNA G4-sites in the transcriptome of E. coli and P. aeruginosa, and the mRNA G4-sites in the sequence for coding the vital bacterial FtsZ protein are highlighted to further explore in G4-drug development against human diseases.
Collapse
Affiliation(s)
- Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Jie Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wei Long
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Ka Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
34
|
Monchaud D. Why does the pUG tail curl? Mol Cell 2023; 83:330-331. [PMID: 36736307 DOI: 10.1016/j.molcel.2022.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 02/05/2023]
Abstract
Roschdi et al.1 report on a new, higher-order RNA structure folding from an alternating uridine (U)/guanosine (G) repeated sequence-the pUG tail-into a peculiar G-quadruplex structure-the pUG fold-found to orchestrate the gene-silencing activity of pUGylated RNAs.
Collapse
Affiliation(s)
- David Monchaud
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, Dijon, France.
| |
Collapse
|
35
|
Stark M, Levin M, Ulitsky I, Assaraf YG. Folylpolyglutamate synthetase mRNA G-quadruplexes regulate its cell protrusion localization and enhance a cancer cell invasive phenotype upon folate repletion. BMC Biol 2023; 21:13. [PMID: 36721160 PMCID: PMC9889130 DOI: 10.1186/s12915-023-01525-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Folates are crucial for the biosynthesis of nucleotides and amino acids, essential for cell proliferation and development. Folate deficiency induces DNA damage, developmental defects, and tumorigenicity. The obligatory enzyme folylpolyglutamate synthetase (FPGS) mediates intracellular folate retention via cytosolic and mitochondrial folate polyglutamylation. Our previous paper demonstrated the association of the cytosolic FPGS (cFPGS) with the cytoskeleton and various cell protrusion proteins. Based on these recent findings, the aim of the current study was to investigate the potential role of cFPGS at cell protrusions. RESULTS Here we uncovered a central role for two G-quadruplex (GQ) motifs in the 3'UTR of FPGS mediating the localization of cFPGS mRNA and protein at cell protrusions. Using the MBSV6-loop reporter system and fluorescence microscopy, we demonstrate that following folate deprivation, cFPGS mRNA is retained in the endoplasmic reticulum, whereas upon 15 min of folate repletion, this mRNA is rapidly translocated to cell protrusions in a 3'UTR- and actin-dependent manner. The actin dependency of this folate-induced mRNA translocation is shown by treatment with Latrunculin B and inhibitors of the Ras homolog family member A (RhoA) pathway. Upon folate repletion, the FPGS 3'UTR GQs induce an amoeboid/mesenchymal hybrid cell phenotype during migration and invasion through a collagen gel matrix. Targeted disruption of the 3'UTR GQ motifs by introducing point mutations or masking them by antisense oligonucleotides abrogated cell protrusion targeting of cFPGS mRNA. CONCLUSIONS Collectively, the GQ motifs within the 3'UTR of FPGS regulate its transcript and protein localization at cell protrusions in response to a folate cue, inducing cancer cell invasive phenotype. These novel findings suggest that the 3'UTR GQ motifs of FPGS constitute an attractive druggable target aimed at inhibition of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Michal Stark
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - May Levin
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel ,grid.507132.2Present address: May Levin, MeMed Diagnostics Ltd, Tirat Carmel, Israel
| | - Igor Ulitsky
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yehuda G. Assaraf
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
36
|
Abstract
G-quadruplexes (G4s) are distinctive four-stranded DNA or RNA structures found within cells that are thought to play functional roles in gene regulation and transcription, translation, recombination, and DNA damage/repair. While G4 structures can be uni-, bi-, or tetramolecular with respect to strands, folded unimolecular conformations are most significant in vivo. Unimolecular G4 can potentially form in sequences with runs of guanines interspersed with what will become loops in the folded structure: 5'GxLyGxLyGxLyGx, where x is typically 2-4 and y is highly variable. Such sequences are highly conserved and specifically located in genomes. In the folded structure, guanines from each run combine to form planar tetrads with four hydrogen-bonded guanine bases; these tetrads stack on one another to produce four strand segments aligned in specific parallel or antiparallel orientations, connected by the loop sequences. Three types of loops (lateral, diagonal, or "propeller") have been identified. The stacked tetrads form a central cavity that features strong coordination sites for monovalent cations that stabilize the G4 structure, with potassium or sodium preferred. A single monomeric G4 typically forms from a sequence containing roughly 20-30 nucleotides. Such short sequences have been the primary focus of X-ray crystallographic or NMR studies that have produced high-resolution structures of a variety of monomeric G4 conformations. These structures are often used as the basis for drug design efforts to modulate G4 function.We believe that the focus on monomeric G4 structures formed by such short sequences is perhaps myopic. Such short sequences for structural studies are often arbitrarily selected and removed from their native genomic sequence context, and then are often changed from their native sequences by base substitutions or deletions intended to optimize the formation of a homogeneous G4 conformation. We believe instead that G-quadruplexes prefer company and that in a longer natural sequence context multiple adjacent G4 units can form to combine into more complex multimeric G4 structures with richer topographies than simple monomeric forms. Bioinformatic searches of the human genome show that longer sequences with the potential for forming multiple G4 units are common. Telomeric DNA, for example, has a single-stranded overhang of hundreds of nucleotides with the requisite repetitive sequence with the potential for formation of multiple G4s. Numerous extended promoter sequences have similar potentials for multimeric G4 formation. X-ray crystallography and NMR methods are challenged by these longer sequences (>30 nt), so other tools are needed to explore the possible multimeric G4 landscape. We have implemented an integrated structural biology approach to address this challenge. This approach integrates experimental biophysical results with atomic-level molecular modeling and molecular dynamics simulations that provide quantitatively testable model structures. In every long sequence we have studied so far, we found that multimeric G4 structures readily form, with a surprising diversity of structures dependent on the exact native sequence used. In some cases, stable hairpin duplexes form along with G4 units to provide an even richer landscape. This Account provides an overview of our approach and recent progress and provides a new perspective on the G-quadruplex folding landscape.
Collapse
Affiliation(s)
- Robert C Monsen
- UofL Health Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, Kentucky 40202, United States
| | - John O Trent
- UofL Health Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, Kentucky 40202, United States.,Department of Medicine, University of Louisville, 505 S. Hancock St., Louisville, Kentucky 40202, United States.,Department of Biochemistry and Molecular Genetics, University of Louisville, 505 S. Hancock St., Louisville, Kentucky 40202, United States
| | - Jonathan B Chaires
- UofL Health Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, Kentucky 40202, United States.,Department of Medicine, University of Louisville, 505 S. Hancock St., Louisville, Kentucky 40202, United States.,Department of Biochemistry and Molecular Genetics, University of Louisville, 505 S. Hancock St., Louisville, Kentucky 40202, United States
| |
Collapse
|
37
|
Zhao J, Chow EYC, Yeung PY, Zhang QC, Chan TF, Kwok CK. Enhanced transcriptome-wide RNA G-quadruplex sequencing for low RNA input samples with rG4-seq 2.0. BMC Biol 2022; 20:257. [PMID: 36372875 PMCID: PMC9661767 DOI: 10.1186/s12915-022-01448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 10/24/2022] [Indexed: 11/14/2022] Open
Abstract
Background RNA G-quadruplexes (rG4s) are non-canonical structural motifs that have diverse functional and regulatory roles, for instance in transcription termination, alternative splicing, mRNA localization and stabilization, and translational process. We recently developed the RNA G-quadruplex structure sequencing (rG4-seq) technique and described rG4s in both eukaryotic and prokaryotic transcriptomes. However, rG4-seq suffers from a complicated gel purification step and limited PCR product yield, thus requiring a high amount of RNA input, which limits its applicability in more physiologically or clinically relevant studies often characterized by the limited availability of biological material and low RNA abundance. Here, we redesign and enhance the workflow of rG4-seq to address this issue. Results We developed rG4-seq 2.0 by introducing a new ssDNA adapter containing deoxyuridine during library preparation to enhance library quality with no gel purification step, less PCR amplification cycles and higher yield of PCR products. We demonstrate that rG4-seq 2.0 produces high-quality cDNA libraries that support reliable and reproducible rG4 identification at varying RNA inputs, including RNA mounts as low as 10 ng. rG4-seq 2.0 also improved the rG4-seq calling outcome and nucleotide bias in rG4 detection persistent in rG4-seq 1.0. We further provide in vitro mapping of rG4 in the HEK293T cell line, and recommendations for assessing RNA input and sequencing depth for individual rG4 studies based on transcript abundance. Conclusions rG4-seq 2.0 can improve the identification and study of rG4s in low abundance transcripts, and our findings can provide insights to optimize cDNA library preparation in other related methods. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01448-3.
Collapse
|
38
|
An atypical RNA quadruplex marks RNAs as vectors for gene silencing. Nat Struct Mol Biol 2022; 29:1113-1121. [PMID: 36352138 PMCID: PMC10092862 DOI: 10.1038/s41594-022-00854-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
The addition of poly(UG) ('pUG') repeats to 3' termini of mRNAs drives gene silencing and transgenerational epigenetic inheritance in the metazoan Caenorhabditis elegans. pUG tails promote silencing by recruiting an RNA-dependent RNA polymerase (RdRP) that synthesizes small interfering RNAs. Here we show that active pUG tails require a minimum of 11.5 repeats and adopt a quadruplex (G4) structure we term the pUG fold. The pUG fold differs from known G4s in that it has a left-handed backbone similar to Z-RNA, no consecutive guanosines in its sequence, and three G quartets and one U quartet stacked non-sequentially. The compact pUG fold binds six potassium ions and brings the RNA ends into close proximity. The biological importance of the pUG fold is emphasized by our observations that porphyrin molecules bind to the pUG fold and inhibit both gene silencing and binding of RdRP. Moreover, specific 7-deaza substitutions that disrupt the pUG fold neither bind RdRP nor induce RNA silencing. These data define the pUG fold as a previously unrecognized RNA structural motif that drives gene silencing. The pUG fold can also form internally within larger RNA molecules. Approximately 20,000 pUG-fold sequences are found in noncoding regions of human RNAs, suggesting that the fold probably has biological roles beyond gene silencing.
Collapse
|
39
|
Escaja N, Mir B, Garavís M, González C. Non-G Base Tetrads. Molecules 2022; 27:5287. [PMID: 36014524 PMCID: PMC9414646 DOI: 10.3390/molecules27165287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Tetrads (or quartets) are arrangements of four nucleobases commonly involved in the stability of four-stranded nucleic acids structures. Four-stranded or quadruplex structures have attracted enormous attention in the last few years, being the most extensively studied guanine quadruplex (G-quadruplex). Consequently, the G-tetrad is the most common and well-known tetrad. However, this is not the only possible arrangement of four nucleobases. A number of tetrads formed by the different nucleobases have been observed in experimental structures. In most cases, these tetrads occur in the context of G-quadruplex structures, either inserted between G-quartets, or as capping elements at the sides of the G-quadruplex core. In other cases, however, non-G tetrads are found in more unusual four stranded structures, such as i-motifs, or different types of peculiar fold-back structures. In this report, we review the diversity of these non-canonical tetrads, and the structural context in which they have been found.
Collapse
Affiliation(s)
- Núria Escaja
- Organic Chemistry Section, Inorganic and Organic Chemistry Department, University of Barcelona, Martí i Franquès 1–11, 08028 Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Bartomeu Mir
- Organic Chemistry Section, Inorganic and Organic Chemistry Department, University of Barcelona, Martí i Franquès 1–11, 08028 Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Miguel Garavís
- Instituto de Química Física ‘Rocasolano’, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Carlos González
- Instituto de Química Física ‘Rocasolano’, CSIC, Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
40
|
Bhogadia M, Stone B, Del Villar Guerra R, Muskett FW, Ghosh S, Taladriz-Sender A, Burley GA, Eperon IC, Hudson AJ, Dominguez C. Biophysical characterisation of the Bcl-x pre-mRNA and binding specificity of the ellipticine derivative GQC-05: Implication for alternative splicing regulation. Front Mol Biosci 2022; 9:943105. [PMID: 36060245 PMCID: PMC9428248 DOI: 10.3389/fmolb.2022.943105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
The BCL2L1 gene expresses two isoforms of Bcl-x protein via the use of either of two alternative 5′ splice sites (5′ss) in exon 2. These proteins have antagonistic actions, Bcl-XL being anti-apoptotic and Bcl-XS pro-apoptotic. In a number of cancers the Bcl-XL isoform is over-expressed, resulting in cancer cell survival and growth, so switching splicing to the Xs isoform could have therapeutic benefits. We have previously proposed that a putative G-quadruplex (G4) exists downstream of the XS 5′ss and shown that the ellipticine derivative GQC-05, a previously identified DNA G4-specific ligand, induces an increase in the XS/XL ratio both in vitro and in cells. Here, we demonstrate that this G4 forms in vitro and that the structure is stabilised in the presence of GQC-05. We also show that GQC-05 binds RNA non-specifically in buffer conditions, but selectively to the Bcl-x G4 in the presence of nuclear extract, highlighting the limitations of biophysical measurements taken outside of a functional environment. We also demonstrate that GQC-05 is able to shift the equilibrium between competing G4 and duplex structures towards the G4 conformation, leading to an increase in accessibility of the XS 5′ss, supporting our previous model on the mechanism of action of GQC-05.
Collapse
Affiliation(s)
- Mohammed Bhogadia
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Beth Stone
- The Leicester Institute of Structural and Chemical Biology, Department of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Rafael Del Villar Guerra
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Frederick W. Muskett
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Sudipta Ghosh
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Andrea Taladriz-Sender
- Department of Pure Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Glenn A. Burley
- Department of Pure Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Ian C. Eperon
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
- *Correspondence: Ian C. Eperon, ; Andrew J. Hudson, ; Cyril Dominguez,
| | - Andrew J. Hudson
- The Leicester Institute of Structural and Chemical Biology, Department of Chemistry, University of Leicester, Leicester, United Kingdom
- *Correspondence: Ian C. Eperon, ; Andrew J. Hudson, ; Cyril Dominguez,
| | - Cyril Dominguez
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
- *Correspondence: Ian C. Eperon, ; Andrew J. Hudson, ; Cyril Dominguez,
| |
Collapse
|
41
|
Abstract
We present single-molecule experimental and computational modeling studies investigating the accessibility of human telomeric overhangs of physiologically relevant lengths. We studied 25 different overhangs that contain 4-28 repeats of GGGTTA (G-Tract) sequence and accommodate one to seven tandem G-quadruplex (GQ) structures. Using the FRET-PAINT method, we probed the distribution of accessible sites via a short imager strand, which is complementary to a G-Tract and transiently binds to available sites. We report accessibility patterns that periodically change with overhang length and interpret these patterns in terms of the underlying folding landscape and folding frustration. Overhangs that have [4n]G-Tracts, (12, 16, 20…) demonstrate the broadest accessibility patterns where the peptide nucleic acid probe accesses G-Tracts throughout the overhang. On the other hand, constructs with [4n+2]G-Tracts, (14, 18, 22…) have narrower patterns where the neighborhood of the junction between single- and double-stranded telomeres is most accessible. We interpret these results as the folding frustration being higher in [4n]G-Tract constructs compared to [4n+2]G-Tract constructs. We also developed a computational model that tests the consistency of different folding stabilities and cooperativities between neighboring GQs with the observed accessibility patterns. Our experimental and computational studies suggest the neighborhood of the junction between single- and double-stranded telomeres is least stable and most accessible, which is significant as this is a potential site where the connection between POT1/TPP1 (bound to single-stranded telomere) and other shelterin proteins (localized on double-stranded telomere) is established.
Collapse
|
42
|
RNA Modification in Inflammatory Bowel Diseases. Biomedicines 2022; 10:biomedicines10071695. [PMID: 35885000 PMCID: PMC9313455 DOI: 10.3390/biomedicines10071695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder characterized by damage to the intestinal mucosa, which is caused by a combination of factors. These include genetic and epigenetic alterations, environmental influence, microorganism interactions, and immune conditions. Some populations with IBD show a cancer-prone phenotype. Recent studies have provided insight into the involvement of RNA modifications in the specific pathogenesis of IBD through regulation of RNA biology in epithelial and immune cells. Studies of several RNA modification-targeting reagents have shown preferable outcomes in patients with colitis. Here, we note a new awareness of RNA modification in the targeting of IBD and related diseases, which will contribute to early diagnosis, disease monitoring, and possible control by innovative therapeutic approaches.
Collapse
|
43
|
Zhao H, Wong HY, Ji D, Lyu K, Kwok CK. Novel L-RNA Aptamer Controls APP Gene Expression in Cells by Targeting RNA G-Quadruplex Structure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30582-30594. [PMID: 35762921 DOI: 10.1021/acsami.2c06390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Guanine quadruplex (G4) structure is a four-stranded nucleic acid secondary structure motif with unique chemical properties and important biological roles. Amyloid precursor protein (APP) is an Alzheimer's disease (AD)-related gene, and recently, we reported the formation of RNA G4 (rG4) at the 3'UTR of APP mRNA and demonstrated its repressive role in translation. Herein, we apply rG4-SELEX to develop a novel L-RNA aptamer, L-Apt.8f, which binds to APP 3'UTR D-rG4 strongly with subnanomolar affinity. We structurally characterize the aptamer and find that it contains a thermostable and parallel G4 motif, and mutagenesis analysis identifies the key nucleotides that are involved in the target recognition. We also reveal that the L-Apt.8f-APP D-rG4 interaction is enantiomeric-, magnesium ion-, and potassium ion-dependent. Notably, L-Apt.8f preferentially recognizes APP rG4 over other structural motifs, and it can control the APP reporter gene and native transcript translation in cells. Our work introduces a novel strategy and reports a new L-aptamer candidate to target APP 3'UTR rG4 structure, which laid the foundation for further applying L-RNA as an important class of biomolecule for practical L-aptamer-based targeting and controlling of gene expression in cells.
Collapse
Affiliation(s)
- Haizhou Zhao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, China
| | - Hei Yuen Wong
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, China
| | - Danyang Ji
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, China
| | - Kaixin Lyu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
44
|
Stochastic dynamic quantitative and 3D structural matrix assisted laser desorption/ionization mass spectrometric analyses of mixture of nucleosides. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Cagirici HB, Budak H, Sen TZ. G4Boost: a machine learning-based tool for quadruplex identification and stability prediction. BMC Bioinformatics 2022; 23:240. [PMID: 35717172 PMCID: PMC9206279 DOI: 10.1186/s12859-022-04782-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background G-quadruplexes (G4s), formed within guanine-rich nucleic acids, are secondary structures involved in important biological processes. Although every G4 motif has the potential to form a stable G4 structure, not every G4 motif would, and accurate energy-based methods are needed to assess their structural stability. Here, we present a decision tree-based prediction tool, G4Boost, to identify G4 motifs and predict their secondary structure folding probability and thermodynamic stability based on their sequences, nucleotide compositions, and estimated structural topologies.
Results G4Boost predicted the quadruplex folding state with an accuracy greater then 93% and an F1-score of 0.96, and the folding energy with an RMSE of 4.28 and R2 of 0.95 only by the means of sequence intrinsic feature. G4Boost was successfully applied and validated to predict the stability of experimentally-determined G4 structures, including for plants and humans. Conclusion G4Boost outperformed the three machine-learning based prediction tools, DeepG4, Quadron, and G4RNA Screener, in terms of both accuracy and F1-score, and can be highly useful for G4 prediction to understand gene regulation across species including plants and humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04782-z.
Collapse
Affiliation(s)
- H Busra Cagirici
- US Department of Agriculture - Agricultural Research Service, Crop Improvement Genetics Research Unit, Western Regional Research Center, 800 Buchanan St, Albany, CA, 94710, USA
| | | | - Taner Z Sen
- US Department of Agriculture - Agricultural Research Service, Crop Improvement Genetics Research Unit, Western Regional Research Center, 800 Buchanan St, Albany, CA, 94710, USA.
| |
Collapse
|
46
|
Santos T, Miranda A, Imbert L, Monchaud D, Salgado GF, Cabrita EJ, Cruz C. Targeting a G-quadruplex from let-7e pre-miRNA with small molecules and nucleolin. J Pharm Biomed Anal 2022; 215:114757. [PMID: 35462282 DOI: 10.1016/j.jpba.2022.114757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/28/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Let-7e precursor microRNA has the potential to adopt a G-quadruplex (rG4) structure and recently, its roles in oncology have been the focus of much attention, as it is now known that let-7e pre-miRNA is frequently dysregulated in cancers. Therefore, it is crucial to unveil and fully characterize its ability to adopt a rG4 structure, which could be stabilized or destabilized by small molecules and proteins such as nucleolin, a protein that is deeply associated with miRNA biogenesis. Herein, by combining a set of different methods such as circular dichroism (CD), nuclear magnetic resonance (NMR), UV spectroscopy (thermal difference spectra (TDS) and isothermal difference spectra (IDS)) and polyacrylamide gel electrophoresis (PAGE), we demonstrate the formation of the rG4 structure found in let-7e pre-miRNA sequence in the presence of K+ (5'-GGGCUGAGGUAGGAGG-3'). The ability of eight small molecules (or ligands) to bind to and stabilize this rG4 structure was also fully assessed. The dissociation constants for each RNA G-quadruplex/ligand complex, determined by surface plasmon resonance (SPR), ranged in the 10-6 to 10-9 M range. Lastly, the binding of the rG4 structure to nucleolin in the presence and absence of ligands was evaluated via CD, SPR, PAGE and confocal microscopy. The small molecules 360 A and PDS demonstrated attractive properties to targetthe rG4 structure of let-7e pre-miRNA and control its biology. Our findings also highlighted that the interaction of TMPyP4 with the G-quadruplex of let-7e precursor miRNA could block the formation of the complex between the rG4 and nucleolin. Overall, this study introduces an approach to target the rG4 found in let-7e pre-miRNA which opens up a new opportunity to control the microRNA biogenesis.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal
| | - André Miranda
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Lionel Imbert
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France; Univ. Grenoble Alpes, CNRS, CEA, EMBL Integrated Structural Biology Grenoble (ISBG), Grenoble, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, Dijon 21078, France
| | - Gilmar F Salgado
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, Pessac 33607, France
| | - Eurico J Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2819-516, Portugal
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal.
| |
Collapse
|
47
|
Marqués M, Sorolla MA, Urdanibia I, Parisi E, Hidalgo I, Morales S, Salud A, Sorolla A. Are Transcription Factors Plausible Oncotargets for Triple Negative Breast Cancers? Cancers (Basel) 2022; 14:cancers14051101. [PMID: 35267409 PMCID: PMC8909618 DOI: 10.3390/cancers14051101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Triple negative breast cancer is a type of breast cancer that does not have a selective and effective therapy. It is known that this cancer possesses high abundance of certain proteins called transcription factors, which are essential for their growth. However, inhibiting transcription factors is very difficult with common therapeutics due to their inaccessibility inside the cell and their molecular structure. In this work, we identified the most important transcription factors for the growth of triple negative breast cancers, and that can predict worse clinical outcome. Moreover, we described different strategies that have been utilised to inhibit them. A successful inhibition of these transcription factors could reduce the mortality and convalescence associated with triple negative breast cancers. Abstract Breast cancer (BC) is the most diagnosed cancer worldwide and one of the main causes of cancer deaths. BC is a heterogeneous disease composed of different BC intrinsic subtypes such as triple-negative BC (TNBC), which is one of the most aggressive subtypes and which lacks a targeted therapy. Recent comprehensive analyses across cell types and cancer types have outlined a vast network of protein–protein associations between transcription factors (TFs). Not surprisingly, protein–protein networks central to oncogenesis and disease progression are highly altered during TNBC pathogenesis and are responsible for the activation of oncogenic programs, such as uncontrollable proliferation, epithelial-to-mesenchymal transition (EMT) and stemness. From the therapeutic viewpoint, inhibiting the interactions between TFs represents a very significant challenge, as the contact surfaces of TFs are relatively large and featureless. However, promising tools have emerged to offer a solution to the targeting problem. At the clinical level, some TF possess diagnostic and prognostic value in TNBC. In this review, we outline the recent advances in TFs relevant to TNBC growth and progression. Moreover, we highlight different targeting approaches to inhibit these TFs. Furthermore, the validity of such TFs as clinical biomarkers has been explored. Finally, we discuss how research is likely to evolve in the field.
Collapse
Affiliation(s)
- Marta Marqués
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Izaskun Urdanibia
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Iván Hidalgo
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Serafín Morales
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Correspondence:
| |
Collapse
|
48
|
The fluorescent aptamer Squash extensively repurposes the adenine riboswitch fold. Nat Chem Biol 2022; 18:191-198. [PMID: 34937911 PMCID: PMC9812287 DOI: 10.1038/s41589-021-00931-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/21/2021] [Indexed: 01/07/2023]
Abstract
Squash is an RNA aptamer that strongly activates the fluorescence of small-molecule analogs of the fluorophore of green fluorescent protein (GFP). Unlike other fluorogenic aptamers, isolated de novo from random-sequence RNA, Squash was evolved from the bacterial adenine riboswitch to leverage its optimized in vivo folding and stability. We now report the 2.7-Å resolution cocrystal structure of fluorophore-bound Squash, revealing that while the overall fold of the riboswitch is preserved, the architecture of the ligand-binding core is dramatically transformed. Unlike previously characterized aptamers that activate GFP-derived fluorophores, Squash does not harbor a G-quadruplex, sandwiching its fluorophore between a base triple and a noncanonical base quadruple in a largely apolar pocket. The expanded structural core of Squash allows it to recognize unnatural fluorophores that are larger than the simple purine ligand of the parental adenine riboswitch, and suggests that stable RNA scaffolds can tolerate larger variation than has hitherto been appreciated.
Collapse
|
49
|
Mou X, Liew SW, Kwok CK. Identification and targeting of G-quadruplex structures in MALAT1 long non-coding RNA. Nucleic Acids Res 2022; 50:397-410. [PMID: 34904666 PMCID: PMC8754639 DOI: 10.1093/nar/gkab1208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
RNA G-quadruplexes (rG4s) have functional roles in many cellular processes in diverse organisms. While a number of rG4 examples have been reported in coding messenger RNAs (mRNA), so far only limited works have studied rG4s in non-coding RNAs (ncRNAs), especially in long non-coding RNAs (lncRNAs) that are of emerging interest and significance in biology. Herein, we report that MALAT1 lncRNA contains conserved rG4 motifs, forming thermostable rG4 structures with parallel topology. We also show that rG4s in MALAT1 lncRNA can interact with NONO protein with high specificity and affinity in vitro and in nuclear cell lysate, and we provide cellular data to support that NONO protein recognizes MALAT1 lncRNA via rG4 motifs. Notably, we demonstrate that rG4s in MALAT1 lncRNA can be targeted by the rG4-specific small molecule, peptide, and L-aptamer, leading to the dissociation of MALAT1 rG4-NONO protein interaction. Altogether, this study uncovers new and important rG4s in MALAT1 lncRNAs, reveals their specific interactions with NONO protein, offers multiple strategies for targeting MALAT1 and its RNA-protein complex via its rG4 structure and illustrates the prevalence and significance of rG4s in ncRNAs.
Collapse
Affiliation(s)
- Xi Mou
- Department of Chemistry and State Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon Tong, Hong Kong
SAR, China
| | - Shiau Wei Liew
- Department of Chemistry and State Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon Tong, Hong Kong
SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon Tong, Hong Kong
SAR, China
- Shenzhen Research Institute of City University of Hong Kong,
Shenzhen, China
| |
Collapse
|
50
|
Jamaluddin ND, Mazlan NF, Tan LL, Yusof NYM, Khalid B. G-quadruplex microspheres-based optical RNA biosensor for arthropod-borne virus pathogen detection: A proof-of-concept with dengue serotype 2. Int J Biol Macromol 2021; 199:1-9. [PMID: 34922999 DOI: 10.1016/j.ijbiomac.2021.12.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
Dengue virus (DENV) is a positive-sense single-stranded RNA virus and that the detection of viral RNA itself is highly desirable, which can be achieved by using RNA biosensor diagnostic method. Herein, acrylic micropolymer-based optical RNA biosensor was developed by binding anionic copper(II) phthalocyanine (CPC) planar aromatic ligand to the G-quadruplex DNA probe via end-stacking with π-system of the guanine (G) quartet, and a blue coloration was developed on the G-quadruplex microspheres. Hybridization of G-quadruplex DNA probe with target DENV serotype 2 (DENV2) RNA unfolded the G-quadruplex, and rendering release of the CPC planar optical label, causing discoloration of the G-quadruplex microbiosensor. Optical characterization of the RNA biosensor was performed by means of fiber optic reflectance spectrophotometer at maximum reflectance wavelength of 774 nm. The reflectance response enhancement of the RNA-responsive G-quadruplex-based reflectometric biosensor was linearly proportional to the target oligo DENV2 RNA concentration in the range of 2 zM-2 μM, with a 0.447 zM limit of detection and a rapid response time of 30 min. Heightening in the reflectance signal based on structural transition of G-quadruplex in response to target RNA was successfully implemented in real-time DENV2 detection in non-invasive human fluid samples (i.e. saliva and urine) under informed consent.
Collapse
Affiliation(s)
- Nur Diyana Jamaluddin
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Nur-Fadhilah Mazlan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia.
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Bahariah Khalid
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Hospital Serdang, Jalan Puchong, 43000 Kajang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|