1
|
Arora K, Rai AK, Devanna BN, Dubey H, Narula A, Sharma TR. Deciphering the role of microRNAs during Pi54 gene mediated Magnaporthe oryzae resistance response in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:633-647. [PMID: 33854289 PMCID: PMC7981355 DOI: 10.1007/s12298-021-00960-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 05/08/2023]
Abstract
The broad-spectrum resistance gene Pi54 confers resistance to multiple isolates of Magnaporthe oryzae in rice. In order to decipher the molecular mechanism underlying the Pi54 mediated resistance in rice line Taipei309 Pi54 (carrying Pi54), miRNAome study was performed at 24 h post-inoculation (hpi) with M. oryzae. A total of 222 known miRNAs representing 101 miRNA families were found in this study. Of these, 29 and 24 miRNAs were respectively up- and down-regulated in the resistant Taipei309 Pi54 . Defence response (DR) genes, like, NBSGO35, and OsWAK129b, and genes related to transcription factors were up-regulated in Taipei309 Pi54 line. The vast array of miRNA candidates identified here are miR159c, miR167c, miR2100, miR2118o, miR2118l, miR319a, miR393, miR395l, miR397a, miR397b, miR398, miR439g, miR531b, miR812f, and miR815c, and they manifest their role in balancing the interplay between various DR genes during Pi54 mediated resistance. We also validated miRNA/target gene pairs involved in hormone signalling, and cross-talk among hormone pathways regulating the rice immunity. This study suggests that the Pi54 gene mediated blast resistance is influenced by several microRNAs through PTI and ETI components in the rice line Taipei309 Pi54 , leading to incompatible host-pathogen interaction.
Collapse
Affiliation(s)
- Kirti Arora
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062 India
| | - Amit Kumar Rai
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - B. N. Devanna
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- ICAR-National Rice Research Institute, Cuttack, 753006 India
| | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - Alka Narula
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062 India
| | - Tilak Raj Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110 001 India
| |
Collapse
|
2
|
Rymen B, Ferrafiat L, Blevins T. Non-coding RNA polymerases that silence transposable elements and reprogram gene expression in plants. Transcription 2020; 11:172-191. [PMID: 33180661 PMCID: PMC7714444 DOI: 10.1080/21541264.2020.1825906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multisubunit RNA polymerase (Pol) complexes are the core machinery for gene expression in eukaryotes. The enzymes Pol I, Pol II and Pol III transcribe distinct subsets of nuclear genes. This family of nuclear RNA polymerases expanded in terrestrial plants by the duplication of Pol II subunit genes. Two Pol II-related enzymes, Pol IV and Pol V, are highly specialized in the production of regulatory, non-coding RNAs. Pol IV and Pol V are the central players of RNA-directed DNA methylation (RdDM), an RNA interference pathway that represses transposable elements (TEs) and selected genes. Genetic and biochemical analyses of Pol IV/V subunits are now revealing how these enzymes evolved from ancestral Pol II to sustain non-coding RNA biogenesis in silent chromatin. Intriguingly, Pol IV-RdDM regulates genes that influence flowering time, reproductive development, stress responses and plant–pathogen interactions. Pol IV target genes vary among closely related taxa, indicating that these regulatory circuits are often species-specific. Data from crops like maize, rice, tomato and Brassicarapa suggest that dynamic repositioning of TEs, accompanied by Pol IV targeting to TE-proximal genes, leads to the reprogramming of plant gene expression over short evolutionary timescales.
Collapse
Affiliation(s)
- Bart Rymen
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| | - Laura Ferrafiat
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| | - Todd Blevins
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| |
Collapse
|
3
|
Small RNA Mobility: Spread of RNA Silencing Effectors and its Effect on Developmental Processes and Stress Adaptation in Plants. Int J Mol Sci 2019; 20:ijms20174306. [PMID: 31484348 PMCID: PMC6747330 DOI: 10.3390/ijms20174306] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 01/22/2023] Open
Abstract
Plants are exposed every day to multiple environmental cues, and tight transcriptome reprogramming is necessary to control the balance between responses to stress and processes of plant growth. In this context, the silencing phenomena mediated by small RNAs can drive transcriptional and epigenetic regulatory modifications, in turn shaping plant development and adaptation to the surrounding environment. Mounting experimental evidence has recently pointed to small noncoding RNAs as fundamental players in molecular signalling cascades activated upon exposure to abiotic and biotic stresses. Although, in the last decade, studies on stress responsive small RNAs increased significantly in many plant species, the physiological responses triggered by these molecules in the presence of environmental stresses need to be further explored. It is noteworthy that small RNAs can move either cell-to-cell or systemically, thus acting as mobile silencing effectors within the plant. This aspect has great importance when physiological changes, as well as epigenetic regulatory marks, are inspected in light of plant environmental adaptation. In this review, we provide an overview of the categories of mobile small RNAs in plants, particularly focusing on the biological implications of non-cell autonomous RNA silencing in the stress adaptive response and epigenetic modifications.
Collapse
|
4
|
Xu J, Hou QM, Khare T, Verma SK, Kumar V. Exploring miRNAs for developing climate-resilient crops: A perspective review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:91-104. [PMID: 30408672 DOI: 10.1016/j.scitotenv.2018.10.340] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 05/21/2023]
Abstract
Climate changes and environmental stresses have significant implications on global crop production and necessitate developing crops that can withstand an array of climate changes and environmental perturbations such as irregular water-supplies leading to drought or water-logging, hyper soil-salinity, extreme and variable temperatures, ultraviolet radiations and metal stress. Plants have intricate molecular mechanisms to cope with these dynamic environmental changes, one of the most common and effective being the reprogramming of expression of stress-responsive genes. Plant microRNAs (miRNAs) have emerged as key post-transcriptional and translational regulators of gene-expression for modulation of stress implications. Recent reports are establishing their key roles in epigenetic regulations of stress/adaptive responses as well as in providing plants genome-stability. Several stress responsive miRNAs are being identified from different crop plants and miRNA-driven RNA-interference (RNAi) is turning into a technology of choice for improving crop traits and providing phenotypic plasticity in challenging environments. Here we presents a perspective review on exploration of miRNAs as potent targets for engineering crops that can withstand multi-stress environments via loss-/gain-of-function approaches. This review also shed a light on potential roles plant miRNAs play in genome-stability and their emergence as potent target for genome-editing. Current knowledge on plant miRNAs, their biogenesis, function, their targets, and latest developments in bioinformatics approaches for plant miRNAs are discussed. Though there are recent reviews discussing primarily the individual miRNAs responsive to single stress factors, however, considering practical limitation of this approach, special emphasis is given in this review on miRNAs involved in responses and adaptation of plants to multi-stress environments including at epigenetic and/or epigenomic levels.
Collapse
Affiliation(s)
- Jin Xu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qin-Min Hou
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India
| | - Sandeep Kumar Verma
- Biotechnology Laboratory (TUBITAK Fellow), Department of Biology, Bolu Abant Izeet Baysal University, 14030 Bolu, Turkey
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
5
|
Seifert F, Thiemann A, Schrag TA, Rybka D, Melchinger AE, Frisch M, Scholten S. Small RNA-based prediction of hybrid performance in maize. BMC Genomics 2018; 19:371. [PMID: 29783940 PMCID: PMC5963143 DOI: 10.1186/s12864-018-4708-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Small RNA (sRNA) sequences are known to have a broad impact on gene regulation by various mechanisms. Their performance for the prediction of hybrid traits has not yet been analyzed. Our objective was to analyze the relation of parental sRNA expression with the performance of their hybrids, to develop a sRNA-based prediction approach, and to compare it to more common SNP and mRNA transcript based predictions using a factorial mating scheme of a maize hybrid breeding program. RESULTS Correlation of genomic differences and messenger RNA (mRNA) or sRNA expression differences between parental lines with hybrid performance of their hybrids revealed that sRNAs showed an inverse relationship in contrast to the other two data types. We associated differences for SNPs, mRNA and sRNA expression between parental inbred lines with the performance of their hybrid combinations and developed two prediction approaches using distance measures based on associated markers. Cross-validations revealed parental differences in sRNA expression to be strong predictors for hybrid performance for grain yield in maize, comparable to genomic and mRNA data. The integration of both positively and negatively associated markers in the prediction approaches enhanced the prediction accurary. The associated sRNAs belong predominantly to the canonical size classes of 22- and 24-nt that show specific genomic mapping characteristics. CONCLUSION Expression profiles of sRNA are a promising alternative to SNPs or mRNA expression profiles for hybrid prediction, especially for plant species without reference genome or transcriptome information. The characteristics of the sRNAs we identified suggest that association studies based on breeding populations facilitate the identification of sRNAs involved in hybrid performance.
Collapse
Affiliation(s)
- Felix Seifert
- Developmental Biology, Biocenter Klein Flottbek, University of Hamburg, 22609 Hamburg, Germany
| | - Alexander Thiemann
- Developmental Biology, Biocenter Klein Flottbek, University of Hamburg, 22609 Hamburg, Germany
| | - Tobias A. Schrag
- Institute for Plant Breeding, Seed Science and Population Genetics, Quantitative Genetics and Genomics of Crops, University of Hohenheim, Fruwirthstrasse 21, 70599 Stuttgart, Germany
| | - Dominika Rybka
- Developmental Biology, Biocenter Klein Flottbek, University of Hamburg, 22609 Hamburg, Germany
| | - Albrecht E. Melchinger
- Institute for Plant Breeding, Seed Science and Population Genetics, Quantitative Genetics and Genomics of Crops, University of Hohenheim, Fruwirthstrasse 21, 70599 Stuttgart, Germany
| | - Matthias Frisch
- Institute of Agronomy and Plant Breeding II, Justus Liebig University, 35392 Giessen, Germany
| | - Stefan Scholten
- Developmental Biology, Biocenter Klein Flottbek, University of Hamburg, 22609 Hamburg, Germany
- Institute for Plant Breeding, Seed Science and Population Genetics, Quantitative Genetics and Genomics of Crops, University of Hohenheim, Fruwirthstrasse 21, 70599 Stuttgart, Germany
| |
Collapse
|
6
|
Kumar V, Khare T, Shriram V, Wani SH. Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance. PLANT CELL REPORTS 2018; 37:61-75. [PMID: 28951953 DOI: 10.1007/s00299-017-2210-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/12/2017] [Indexed: 05/07/2023]
Abstract
Saline environment cues distort the plant growth, development and crop yield. Epigenetics has emerged as one of the prime themes in plant functional genomics for molecular-stress-physiology research, as copious studies have provided new visions into the epigenetic control of stress adaptations. The epigenetic control is associated with the regulation of the expression of stress-related genes which also comprises many steady alterations inherited in next cellular generation as stress memory. These epigenetic amendments also implicate induction of small RNA (sRNA)-mediated fine-tuning of transcriptional and post-transcriptional regulations of gene expression. These tiny (19-24 nt) RNA species, particularly microRNAs (miRNAs) besides endogenous small interfering RNA (siRNA) have emerged as important responsive entities for epigenetic modulation of salt-stress effects on plants. There is a recent upsurge in development of tools and databases useful for prediction, identification and validation of small RNAs (sRNAs) and their target messenger RNAs (mRNAs). Therefore, these small but key regulatory molecules have received a wide attention in post-genomic era as potential targets for engineering stress tolerance in major glycophytic crops, though it is yet to be explored optimally. This review aims to provide critical updates on plant sRNAs as key epigenetic regulators of plant salt-stress responses, their target prediction and validation, computational tools and databases available for plant small RNAs, besides discussing their roles in salt-stress regulatory networks and adaptive mechanisms in plants, with special emphasis on their exploration for engineering salinity tolerance in plants.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016, India.
- Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College (Savitribai Phule Pune University), Akurdi, Pune, 411044, India
| | - Shabir H Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Anantnag, Jammu and Kashmir, 192101, India.
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Yu D, Ma X, Zuo Z, Shao W, Wang H, Meng Y. Bioinformatics resources for deciphering the biogenesis and action pathways of plant small RNAs. RICE (NEW YORK, N.Y.) 2017; 10:38. [PMID: 28786034 PMCID: PMC5545994 DOI: 10.1186/s12284-017-0177-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/03/2017] [Indexed: 05/31/2023]
Abstract
The next-generation sequencing (NGS) technology has revolutionized our previous understanding of the plant genomes, relying on its innate advantages, such as high throughput and deep sequencing depth. In addition to the protein-coding gene loci, massive transcription signals have been detected within intergenic or intragenic regions. Most of these signals belong to non-coding ones, considering their weak protein-coding potential. Generally, these transcripts could be divided into long non-coding RNAs and small non-coding RNAs (sRNAs) based on their sequence length. In addition to the well-known microRNAs (miRNAs), many plant endogenous sRNAs were collectively referred to as small interfering RNAs. However, an increasing number of unclassified sRNA species are being discovered by NGS. The high heterogeneity of these novel sRNAs greatly hampered the mechanistic studies, especially on the clear description of their biogenesis and action pathways. Fortunately, public databases, bioinformatics softwares and NGS datasets are increasingly available for plant sRNA research. Here, by summarizing these valuable resources, we proposed a general workflow to decipher the RDR (RNA-dependent RNA polymerase)- and DCL (Dicer-like)-dependent biogenesis pathways, and the Argonaute-mediated action modes (such as target cleavages and chromatin modifications) for specific sRNA species in plants. Taken together, we hope that by summarizing a list of the public resources, this work will facilitate the plant biologists to perform classification and functional characterization of the interesting sRNA species.
Collapse
Affiliation(s)
- Dongliang Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xiaoxia Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Ziwei Zuo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Weishan Shao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China.
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China.
| |
Collapse
|
8
|
Hubé F, Ulveling D, Sureau A, Forveille S, Francastel C. Short intron-derived ncRNAs. Nucleic Acids Res 2017; 45:4768-4781. [PMID: 28053119 PMCID: PMC5416886 DOI: 10.1093/nar/gkw1341] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/21/2016] [Indexed: 01/02/2023] Open
Abstract
Introns represent almost half of the human genome, although they are eliminated from transcripts through RNA splicing. Yet, different classes of non-canonical miRNAs have been proposed to originate directly from intron splicing. Here, we considered the alternative splicing of introns as an interesting source of miRNAs, compatible with a developmental switch. We report computational prediction of new Short Intron-Derived ncRNAs (SID), defined as precursors of smaller ncRNAs like miRNAs and snoRNAs produced directly by splicing, and tested their dependence on each key factor in canonical or alternative miRNAs biogenesis (Drosha, DGCR8, DBR1, snRNP70, U2AF65, PRP8, Dicer, Ago2). We found that about half of predicted SID rely on debranching of the excised intron-lariat by the enzyme DBR1, as proposed for mirtrons. However, we identified new classes of SID for which miRNAs biogenesis may rely on intermingling between canonical and alternative pathways. We validated selected SID as putative miRNAs precursors and identified new endogenous miRNAs produced by non-canonical pathways, including one hosted in the first intron of SRA (Steroid Receptor RNA activator). Consistent with increased SRA intron retention during myogenic differentiation, release of SRA intron and its associated mature miRNA decreased in cells from healthy subjects but not from myotonic dystrophy patients with splicing defects.
Collapse
Affiliation(s)
- Florent Hubé
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| | - Damien Ulveling
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| | - Alain Sureau
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| | - Sabrina Forveille
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| | - Claire Francastel
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| |
Collapse
|
9
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
10
|
|
11
|
Clustering and evolutionary analysis of small RNAs identify regulatory siRNA clusters induced under drought stress in rice. BMC SYSTEMS BIOLOGY 2016; 10:115. [PMID: 28155667 PMCID: PMC5260113 DOI: 10.1186/s12918-016-0355-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Motivation Drought tolerance is an important trait related to growth and yield in crop. Until now, drought related research has focused on coding genes. However, non-coding RNAs also respond significantly to environmental stimuli such as drought stress. Unfortunately, characterizing the role of siRNAs under drought stress is difficult since a large number of heterogenous siRNA species are expressed under drought stress and non-coding RNAs have very weak evolutionary conservation. Thus, to characterize the role of siRNAs, we need a well designed biological and bioinformatics strategy. In this paper, to characterize the function of siRNAs we developed and used a bioinformatics pipeline that includes a genomic-location based clustering technique and an evolutionary conservation tool. Results By comparing the wild type Nipponbare and two drought resistant rice varities, we found that 21 nt and 24 nt siRNAs are significantly expressed in the three rice plants but at different time points under a short-term (0, 1, and 6 hrs) drought treatment. siRNAs were up-regulated in the wild type at an early stage while the up-regulation was delayed in the two drought tolerant plants. Genes targeted by up-regulated siRNAs were related to oxidation reduction and proteolysis, which are well known to be associated with water deficit phenotypes. More interestingly, we found that siRNAs were located in intronic regions as clusters and were of high evolutionary conservation among monocot grass plants. In summary, we show that siRNAs are important respondents to drought stress and regulate genes related to the drought tolerance in water deficit conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0355-3) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Zavallo D, Debat HJ, Conti G, Manacorda CA, Rodriguez MC, Asurmendi S. Differential mRNA Accumulation upon Early Arabidopsis thaliana Infection with ORMV and TMV-Cg Is Associated with Distinct Endogenous Small RNAs Level. PLoS One 2015; 10:e0134719. [PMID: 26237414 PMCID: PMC4597857 DOI: 10.1371/journal.pone.0134719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/13/2015] [Indexed: 12/04/2022] Open
Abstract
Small RNAs (sRNAs) play important roles in plant development and host-pathogen interactions. Several studies have highlighted the relationship between viral infections, endogenous sRNA accumulation and transcriptional changes associated with symptoms. However, few studies have described a global analysis of endogenous sRNAs by comparing related viruses at early stages of infection, especially before viral accumulation reaches systemic tissues. An sRNA high-throughput sequencing of Arabidopsis thaliana leaf samples infected either with Oilseed rape mosaic virus (ORMV) or crucifer-infecting Tobacco mosaic virus (TMV-Cg) with slightly different symptomatology at two early stages of infection (2 and 4dpi) was performed. At early stages, both viral infections strongly alter the patterns of several types of endogenous sRNA species in distal tissues with no virus accumulation suggesting a systemic signaling process foregoing to virus spread. A correlation between sRNAs derived from protein coding genes and the associated mRNA transcripts was also detected, indicating that an unknown recursive mechanism is involved in a regulatory circuit encompassing this sRNA/mRNA equilibrium. This work represents the initial step in uncovering how differential accumulation of endogenous sRNAs contributes to explain the massive alteration of the transcriptome associated with plant-virus interactions.
Collapse
Affiliation(s)
- Diego Zavallo
- Instituto de Biotecnología, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Humberto Julio Debat
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), INTA, Córdoba, Argentina
| | - Gabriela Conti
- Instituto de Biotecnología, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Maria Cecilia Rodriguez
- Instituto de Biotecnología, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sebastian Asurmendi
- Instituto de Biotecnología, CICVyA-INTA, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
13
|
Datta R, Paul S. Plant microRNAs: master regulator of gene expression mechanism. Cell Biol Int 2015; 39:1185-90. [PMID: 26095071 DOI: 10.1002/cbin.10502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023]
Abstract
Several signaling molecules critically regulate the physiological responses in plants. Among them, miRNAs, generally 21-24 nucleotides long, are widely distributed in different plant species and play as key signaling intermediates in diverse physiological responses. The mature miRNAs are synthesized from MIR genes by RNA polymerase II and processed by Dicer-like (DCL) protein family members associated with some accessory protein molecules. The processed miRNAs are transported to the cytoplasm from the nucleus by specific group of transporters and incorporated into RNA-induced silencing complex (RISC) for specific mRNA cleavage. MicroRNAs can suppress the diverse gene expression, depending on the sequence complementarity of the target transcript except of its own gene. Besides, miRNAs can modulate the gene expression by DNA methylation and translational inhibition of the target transcript. Different classes of DCLs and Argonaute proteins (AGOs) help the miRNAs-mediated gene silencing mechanism in plants.
Collapse
Affiliation(s)
- Riddhi Datta
- Department of Botany, Government General Degree College, New Town, Rajarhat, Kolkata, 700157, West Bengal, India
| | - Soumitra Paul
- Department of Botany, Krishnagar Government College, Krishnanagar, Nadia, 741101, West Bengal, India
| |
Collapse
|
14
|
Kuo TCY, Chen CH, Chen SH, Lu IH, Chu MJ, Huang LC, Lin CY, Chen CY, Lo HF, Jeng ST, Chen LFO. The effect of red light and far-red light conditions on secondary metabolism in agarwood. BMC PLANT BIOLOGY 2015; 15:139. [PMID: 26067652 PMCID: PMC4464252 DOI: 10.1186/s12870-015-0537-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/12/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Agarwood, a heartwood derived from Aquilaria trees, is a valuable commodity that has seen prevalent use among many cultures. In particular, it is widely used in herbal medicine and many compounds in agarwood are known to exhibit medicinal properties. Although there exists much research into medicinal herbs and extraction of high value compounds, few have focused on increasing the quantity of target compounds through stimulation of its related pathways in this species. RESULTS In this study, we observed that cucurbitacin yield can be increased through the use of different light conditions to stimulate related pathways and conducted three types of high-throughput sequencing experiments in order to study the effect of light conditions on secondary metabolism in agarwood. We constructed genome-wide profiles of RNA expression, small RNA, and DNA methylation under red light and far-red light conditions. With these profiles, we identified a set of small RNA which potentially regulates gene expression via the RNA-directed DNA methylation pathway. CONCLUSIONS We demonstrate that light conditions can be used to stimulate pathways related to secondary metabolism, increasing the yield of cucurbitacins. The genome-wide expression and methylation profiles from our study provide insight into the effect of light on gene expression for secondary metabolism in agarwood and provide compelling new candidates towards the study of functional secondary metabolic components.
Collapse
Affiliation(s)
- Tony Chien-Yen Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, 11529, Nankang, Taipei, Taiwan.
- Department of Bio-industrial Mechatronics Engineering, National Taiwan University, Taipei, 106, Taiwan.
| | - Chuan-Hung Chen
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, 11529, Nankang, Taipei, Taiwan.
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
| | - Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan.
| | - I-Hsuan Lu
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan.
| | - Mei-Ju Chu
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, 11529, Nankang, Taipei, Taiwan.
| | - Li-Chun Huang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, 11529, Nankang, Taipei, Taiwan.
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan.
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, 350, Taiwan.
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
| | - Chien-Yu Chen
- Department of Bio-industrial Mechatronics Engineering, National Taiwan University, Taipei, 106, Taiwan.
- Center for Systems Biology, National Taiwan University, Taipei, 106, Taiwan.
| | - Hsiao-Feng Lo
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, 106, Taiwan.
| | - Shih-Tong Jeng
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
| | - Long-Fang O Chen
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, 11529, Nankang, Taipei, Taiwan.
| |
Collapse
|
15
|
Qin J, Ma X, Yi Z, Tang Z, Meng Y. Intronic regions of plant genes potentially encode RDR (RNA-dependent RNA polymerase)-dependent small RNAs. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1763-8. [PMID: 25609829 PMCID: PMC4669554 DOI: 10.1093/jxb/eru542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recent research has linked the non-coding intronic regions of plant genes to the production of small RNAs (sRNAs). Certain introns, called 'mirtrons' and 'sirtrons', could serve as the single-stranded RNA precursors for the generation of microRNA and small interfering RNA, respectively. However, whether the intronic regions could serve as the template for double-stranded RNA synthesis and then for sRNA biogenesis through an RDR (RNA-dependent RNA polymerase)-dependent pathway remains unclear. In this study, a genome-wide search was made for the RDR-dependent sRNA loci within the intronic regions of the Arabidopsis genes. Hundreds of intronic regions encoding three or more RDR-dependent sRNAs were found to be covered by dsRNA-seq (double-stranded RNA sequencing) reads, indicating that the intron-derived sRNAs were indeed generated from long double-stranded RNA precursors. More interestingly, phase-distributed sRNAs were discovered on some of the dsRNA-seq read-covered intronic regions, and those sRNAs were largely 24 nt in length. Based on these results, the opinion is put forward that the intronic regions might serve as the genomic origins for the RDR-dependent sRNAs. This opinion might add a novel layer to the current biogenesis model of the intron-derived sRNAs.
Collapse
Affiliation(s)
- Jingping Qin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiaoxia Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Zili Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhonghai Tang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| |
Collapse
|
16
|
Galvez LC, Banerjee J, Pinar H, Mitra A. Engineered plant virus resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:11-25. [PMID: 25438782 DOI: 10.1016/j.plantsci.2014.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 06/04/2023]
Abstract
Virus diseases are among the key limiting factors that cause significant yield loss and continuously threaten crop production. Resistant cultivars coupled with pesticide application are commonly used to circumvent these threats. One of the limitations of the reliance on resistant cultivars is the inevitable breakdown of resistance due to the multitude of variable virus populations. Similarly, chemical applications to control virus transmitting insect vectors are costly to the farmers, cause adverse health and environmental consequences, and often result in the emergence of resistant vector strains. Thus, exploiting strategies that provide durable and broad-spectrum resistance over diverse environments are of paramount importance. The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Genetic engineering offers various options for introducing transgenic virus resistance into crop plants to provide a wide range of resistance to viral pathogens. This review examines the current strategies of developing virus resistant transgenic plants.
Collapse
Affiliation(s)
- Leny C Galvez
- Department of Plant Pathology, University of Nebarska, Lincoln, NE 68583-0722, USA
| | - Joydeep Banerjee
- Department of Plant Pathology, University of Nebarska, Lincoln, NE 68583-0722, USA
| | - Hasan Pinar
- Department of Plant Pathology, University of Nebarska, Lincoln, NE 68583-0722, USA
| | - Amitava Mitra
- Department of Plant Pathology, University of Nebarska, Lincoln, NE 68583-0722, USA.
| |
Collapse
|
17
|
Gai YP, Li YQ, Guo FY, Yuan CZ, Mo YY, Zhang HL, Wang H, Ji XL. Analysis of phytoplasma-responsive sRNAs provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease. Sci Rep 2014; 4:5378. [PMID: 24946736 PMCID: PMC5381547 DOI: 10.1038/srep05378] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/02/2014] [Indexed: 02/04/2023] Open
Abstract
The yellow dwarf disease associated with phytoplasmas is one of the most devastating diseases of mulberry and the pathogenesis involved in the disease is poorly understood. To analyze the molecular mechanisms mediating gene expression in mulberry-phytoplasma interaction, the comprehensive sRNA changes of mulberry leaf in response to phytoplasma-infection were examined. A total of 164 conserved miRNAs and 23 novel miRNAs were identified, and 62 conserved miRNAs and 13 novel miRNAs were found to be involved in the response to phytoplasma-infection. Meanwhile, target genes of the responsive miRNAs were identified by sequencing of the degradome library. In addition, the endogenous siRNAs were sequenced, and their expression profiles were characterized. Interestingly, we found that phytoplasma infection induced the accumulation of mul-miR393-5p which was resulted from the increased transcription of MulMIR393A, and mul-miR393-5p most likely initiate the biogenesis of siRNAs from TIR1 transcript. Based on the results, we can conclude that phytoplasma-responsive sRNAs modulate multiple hormone pathways and play crucial roles in the regulation of development and metabolism. These responsive sRNAs may work cooperatively in the response to phytoplasma-infection and be responsible for some symptoms in the infected plants.
Collapse
Affiliation(s)
- Ying-Ping Gai
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Yi-Qun Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Fang-Yue Guo
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Chuan-Zhong Yuan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Yao-Yao Mo
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Hua-Liang Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Hong Wang
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xian-Ling Ji
- 1] State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China [2] College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| |
Collapse
|
18
|
Yang GD, Yan K, Wu BJ, Wang YH, Gao YX, Zheng CC. Genomewide analysis of intronic microRNAs in rice and Arabidopsis. J Genet 2013; 91:313-24. [PMID: 23271017 DOI: 10.1007/s12041-012-0199-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are potent regulators of gene transcription and posttranscriptional processes. The majority of miRNAs are localized within intronic regions of protein-coding genes (host genes) and have diverse functions in regulating important cellular processes in animals. To date, few plant intronic miRNAs have been studied functionally. Here we report a comprehensive computational analysis to characterize intronic miRNAs in rice and Arabidopsis. RT-PCR analysis confirmed that the identified intronic miRNAs were derived from the real introns of host genes. Interestingly, 13 intronic miRNAs in rice and two in Arabidopsis were located within seven clusters, of which four polycistronic clusters contain miRNAs derived from different families, suggesting that these clustered intronic miRNAs might be involved in extremely complex regulation in rice. Length analysis of miRNA-carrying introns, promoter prediction and qRT-PCR analysis results indicated that intronic miRNAs are coexpressed with their host genes. Expression pattern analysis demonstrated that host genes had a very broad expression spectrum in different stages of development, suggesting the intronic miRNAs might play an important role in plant development. This comparative genomics analysis of intronic miRNAs in rice and Arabidopsis provides new insight into the functions and regulatory mechanisms of intronic miRNAs in monocots and dicots.
Collapse
Affiliation(s)
- G D Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Lin JS, Lin CC, Li YC, Wu MT, Tsai MH, Hsing YIC, Jeng ST. Interaction of small RNA-8105 and the intron of IbMYB1 RNA regulates IbMYB1 family genes through secondary siRNAs and DNA methylation after wounding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:781-794. [PMID: 23663233 DOI: 10.1111/tpj.12238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
Small RNAs (sRNAs) play important roles in plants under stress conditions. However, limited research has been performed on the sRNAs involved in plant wound responses. In the present study, a novel wounding-induced sRNA, sRNA8105, was identified in sweet potato (Ipomoea batatas cv. Tainung 57) using microarray analysis. It was found that expression of sRNA8105 increased after mechanical wounding. Furthermore, Dicer-like 1 (DCL1) is required for the sRNA8105 precursor (pre-sRNA8105) to generate 22 and 24 nt mature sRNA8105. sRNA8105 targeted the first intron of IbMYB1 (MYB domain protein 1) before RNA splicing, and mediated RNA cleavage and DNA methylation of IbMYB1. The interaction between sRNA8105 and IbMYB1 was confirmed by cleavage site mapping, agro-infiltration analyses, and use of a transgenic sweet potato over-expressing pre-sRNA8105 gene. Induction of IbMYB1-siRNA was observed in the wild-type upon wounding and in transgenic sweet potato over-expressing pre-sRNA8105 gene without wounding, resulting in decreased expression of the whole IbMYB1 gene family, i.e. IbMYB1 and the IbMYB2 genes, and thus directing metabolic flux toward biosynthesis of lignin in the phenylpropanoid pathway. In conclusion, sRNA8105 induced by wounding binds to the first intron of IbMYB1 RNA to methylate IbMYB1, cleave IbMYB1 RNA, and trigger production of secondary siRNAs, further repressing the expression of the IbMYB1 family genes and regulating the phenylpropanoid pathway.
Collapse
Affiliation(s)
- Jeng-Shane Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Roosevelt Road, Taipei, 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
20
|
Gao C, Ren X, Mason AS, Li J, Wang W, Xiao M, Fu D. Revisiting an important component of plant genomes: microsatellites. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:645-661. [PMID: 32481138 DOI: 10.1071/fp12325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/16/2013] [Indexed: 06/11/2023]
Abstract
Microsatellites are some of the most highly variable repetitive DNA tracts in genomes. Few studies focus on whether the characteristic instability of microsatellites is linked to phenotypic effects in plants. We summarise recent data to investigate how microsatellite variations affect gene expression and hence phenotype. We discuss how the basic characteristics of microsatellites may contribute to phenotypic effects. In summary, microsatellites in plants are universal and highly mutable, they coexist and coevolve with transposable elements, and are under selective pressure. The number of motif nucleotides, the type of motif and transposon activity all contribute to the nonrandom generation and decay of microsatellites, and to conservation and distribution biases. Although microsatellites are generated by accident, they mature through responses to environmental change before final decay. This process is mediated by organism adjustment mechanisms, which maintain a balance between birth versus death and growth versus decay in microsatellites. Close relationships also exist between the physical structure, variation and functionality of microsatellites: in most plant species, sequences containing microsatellites are associated with catalytic activity and binding functions, are expressed in the membrane and organelles, and participate in the developmental and metabolic processes. Microsatellites contribute to genome structure and functional plasticity, and may be considered to promote species evolution in plants in response to environmental changes. In conclusion, the generation, loss, functionality and evolution of microsatellites can be related to plant gene expression and functional alterations. The effect of microsatellites on phenotypic variation may be as significant in plants as it is in animals.
Collapse
Affiliation(s)
- Caihua Gao
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaodong Ren
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Annaliese S Mason
- Centre for Integrative Legume Research and School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Qld, Australia
| | - Jiana Li
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Wei Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Meili Xiao
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
21
|
Shao C, Ma X, Xu X, Wang H, Meng Y. Genome-wide identification of reverse complementary microRNA genes in plants. PLoS One 2012; 7:e46991. [PMID: 23110057 PMCID: PMC3479107 DOI: 10.1371/journal.pone.0046991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/07/2012] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) are ∼21-nucleotide small RNAs (sRNAs) with essential regulatory roles in plants. They are generated from stem-loop-structured precursors through two sequential Dicer-like 1 (DCL1)-mediated cleavages. To date, hundreds of plant miRNAs have been uncovered. However, the question, whether the sequences reverse complementary (RC) to the miRNA precursors could form hairpin-like structures and produce sRNA duplexes similar to the miRNA/miRNA* pairs has not been solved yet. Here, we interrogated this possibility in 16 plant species based on sRNA high-throughput sequencing data and secondary structure prediction. A total of 59 RC sequences with great potential to form stem-loop structures and generate miRNA/miRNA*-like duplexes were identified in ten plants, which were named as RC-miRNA precursors. Unlike the canonical miRNAs, only a few cleavage targets of the RC-miRNAs were identified in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), and none in Soybean (Glycine max) based on degradome data. Surprisingly, the genomic regions surrounding some of the RC-miRNA target recognition sites were observed to be specifically methylated in both Arabidopsis and rice. Taken together, we reported a new class of miRNAs, called RC-miRNAs, which were generated from the antisense strands of the miRNA precursors. Based on the results, we speculated that the mature RC-miRNAs might have subtle regulatory activity through target cleavages, but might possess short interfering RNA-like activity by guiding sequence-specific DNA methylation.
Collapse
Affiliation(s)
- Chaogang Shao
- College of Life Sciences, Huzhou Teachers College, Huzhou, The People’s Republic of China
| | - Xiaoxia Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, The People’s Republic of China
| | - Xiufang Xu
- College of Life Sciences, Huzhou Teachers College, Huzhou, The People’s Republic of China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, The People’s Republic of China
- * E-mail: (YM); (HW)
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, The People’s Republic of China
- * E-mail: (YM); (HW)
| |
Collapse
|
22
|
Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proc Natl Acad Sci U S A 2012; 109:18198-203. [PMID: 23071326 DOI: 10.1073/pnas.1216199109] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are important for plant development and stress responses. However, factors regulating miRNA metabolism are not completely understood. SICKLE (SIC), a proline-rich protein critical for development and abiotic stress tolerance of Arabidopsis, was identified in this study. Loss-of-function sic-1 mutant plants exhibited a serrated, sickle-like leaf margin, reduced height, delayed flowering, and abnormal inflorescence phyllotaxy, which are common characteristics of mutants involved in miRNA biogenesis. The sic-1 mutant plants accumulated lower levels of a subset of miRNAs and transacting siRNAs but higher levels of corresponding primary miRNAs than the WT. The SIC protein colocalizes with the miRNA biogenesis component HYL1 in distinct subnuclear bodies. sic-1 mutant plants also accumulated higher levels of introns from hundreds of loci. In addition, sic-1 mutant plants are hypersensitive to chilling and salt stresses. These results suggest that SIC is a unique factor required for the biogenesis of some miRNAs and degradation of some spliced introns and important for plant development and abiotic stress responses.
Collapse
|
23
|
Yifhar T, Pekker I, Peled D, Friedlander G, Pistunov A, Sabban M, Wachsman G, Alvarez JP, Amsellem Z, Eshed Y. Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. THE PLANT CELL 2012; 24:3575-89. [PMID: 23001036 PMCID: PMC3480288 DOI: 10.1105/tpc.112.100222] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/17/2012] [Accepted: 08/29/2012] [Indexed: 05/21/2023]
Abstract
Interfering with small RNA production is a common strategy of plant viruses. A unique class of small RNAs that require microRNA and short interfering (siRNA) biogenesis for their production is termed trans-acting short interfering RNAs (ta-siRNAs). Tomato (Solanum lycopersicum) wiry mutants represent a class of phenotype that mimics viral infection symptoms, including shoestring leaves that lack leaf blade expansion. Here, we show that four WIRY genes are involved in siRNA biogenesis, and in their corresponding mutants, levels of ta-siRNAs that regulate AUXIN RESPONSE FACTOR3 (ARF3) and ARF4 are reduced, while levels of their target ARFs are elevated. Reducing activity of both ARF3 and ARF4 can rescue the wiry leaf lamina, and increased activity of either can phenocopy wiry leaves. Thus, a failure to negatively regulate these ARFs underlies tomato shoestring leaves. Overexpression of these ARFs in Arabidopsis thaliana, tobacco (Nicotiana tabacum), and potato (Solanum tuberosum) failed to produce wiry leaves, suggesting that the dramatic response in tomato is exceptional. As negative regulation of orthologs of these ARFs by ta-siRNA is common to land plants, we propose that ta-siRNA levels serve as universal sensors for interference with small RNA biogenesis, and changes in their levels direct species-specific responses.
Collapse
Affiliation(s)
- Tamar Yifhar
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Irena Pekker
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dror Peled
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gilgi Friedlander
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anna Pistunov
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moti Sabban
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Guy Wachsman
- Department of Biology, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - John Paul Alvarez
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ziva Amsellem
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yuval Eshed
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
24
|
Boerner S, McGinnis KM. Computational identification and functional predictions of long noncoding RNA in Zea mays. PLoS One 2012; 7:e43047. [PMID: 22916204 PMCID: PMC3420876 DOI: 10.1371/journal.pone.0043047] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/16/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Computational analysis of cDNA sequences from multiple organisms suggests that a large portion of transcribed DNA does not code for a functional protein. In mammals, noncoding transcription is abundant, and often results in functional RNA molecules that do not appear to encode proteins. Many long noncoding RNAs (lncRNAs) appear to have epigenetic regulatory function in humans, including HOTAIR and XIST. While epigenetic gene regulation is clearly an essential mechanism in plants, relatively little is known about the presence or function of lncRNAs in plants. METHODOLOGY/PRINCIPAL FINDINGS To explore the connection between lncRNA and epigenetic regulation of gene expression in plants, a computational pipeline using the programming language Python has been developed and applied to maize full length cDNA sequences to identify, classify, and localize potential lncRNAs. The pipeline was used in parallel with an SVM tool for identifying ncRNAs to identify the maximal number of ncRNAs in the dataset. Although the available library of sequences was small and potentially biased toward protein coding transcripts, 15% of the sequences were predicted to be noncoding. Approximately 60% of these sequences appear to act as precursors for small RNA molecules and may function to regulate gene expression via a small RNA dependent mechanism. ncRNAs were predicted to originate from both genic and intergenic loci. Of the lncRNAs that originated from genic loci, ∼20% were antisense to the host gene loci. CONCLUSIONS/SIGNIFICANCE Consistent with similar studies in other organisms, noncoding transcription appears to be widespread in the maize genome. Computational predictions indicate that maize lncRNAs may function to regulate expression of other genes through multiple RNA mediated mechanisms.
Collapse
Affiliation(s)
- Susan Boerner
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Karen M. McGinnis
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
The intron–exon architecture of many eukaryotic genes raises the intriguing question of whether this unique organization serves any function, or is it simply a result of the spread of functionless introns in eukaryotic genomes. In this review, we show that introns in contemporary species fulfill a broad spectrum of functions, and are involved in virtually every step of mRNA processing. We propose that this great diversity of intronic functions supports the notion that introns were indeed selfish elements in early eukaryotes, but then independently gained numerous functions in different eukaryotic lineages. We suggest a novel criterion of evolutionary conservation, dubbed intron positional conservation, which can identify functional introns.
Collapse
Affiliation(s)
- Michal Chorev
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Jerusalem, Israel
| | | |
Collapse
|
26
|
Joven J, Espinel E, Rull A, Aragonès G, Rodríguez-Gallego E, Camps J, Micol V, Herranz-López M, Menéndez JA, Borrás I, Segura-Carretero A, Alonso-Villaverde C, Beltrán-Debón R. Plant-derived polyphenols regulate expression of miRNA paralogs miR-103/107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice. Biochim Biophys Acta Gen Subj 2012; 1820:894-9. [PMID: 22503922 DOI: 10.1016/j.bbagen.2012.03.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/09/2012] [Accepted: 03/29/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND MicroRNAs have the potential for clinical application. Probable modulation by plant-derived polyphenols might open preventive measures using simple dietary recommendations. METHODS We assessed the ability of continuous administration of high-dose polyphenols to modulate hepatic metabolism and microRNA expression in diet-induced fatty liver disease in commercially available hyperlipidemic mice using well-established and accepted procedures that included the development of new antibodies against modified quercetin. RESULTS Weight gain, liver steatosis, changes in the composition of liver tissue, and insulin resistance were all attenuated by the continuous administration of polyphenols. We also demonstrated that metabolites of polyphenols accumulate in immune cells and at the surface of hepatic lipid droplets indicating not only bioavailability but a direct likely action on liver cells. The addition of polyphenols also resulted in changes in the expression of miR-103, miR-107 and miR-122. CONCLUSIONS Polyphenols prevent fatty liver disease under these conditions. The differential expression of mRNAs and miRNAs was also associated with changes in lipid and glucose metabolism and with the activation of 5'-adenosine monophosphate-activated protein kinase, effects that are not necessarily connected. miRNAs function via different mechanisms and miRNA-mRNA interactions are difficult to ascertain with current knowledge. Further, cell models usually elicit contradictory results with those obtained in animal models. GENERAL SIGNIFICANCE Our data indicate that plant-derived polyphenols should be tested in humans as preventive rather than therapeutic agents in the regulation of hepatic fatty acid utilization. A multi-faceted mechanism of action is likely and the regulation of liver miRNA expression blaze new trails in further research.
Collapse
Affiliation(s)
- Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB), Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pseudorabies virus infected porcine epithelial cell line generates a diverse set of host microRNAs and a special cluster of viral microRNAs. PLoS One 2012; 7:e30988. [PMID: 22292087 PMCID: PMC3264653 DOI: 10.1371/journal.pone.0030988] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 12/29/2011] [Indexed: 12/29/2022] Open
Abstract
Pseudorabies virus (PRV) belongs to Alphaherpesvirinae subfamily that causes huge economic loss in pig industry worldwide. It has been recently demonstrated that many herpesviruses encode microRNAs (miRNAs), which play crucial roles in viral life cycle. However, the knowledge about PRV-encoded miRNAs is still limited. Here, we report a comprehensive analysis of both viral and host miRNA expression profiles in PRV-infected porcine epithelial cell line (PK-15). Deep sequencing data showed that the ∼4.6 kb intron of the large latency transcript (LLT) functions as a primary microRNA precursor (pri-miRNA) that encodes a cluster of 11 distinct miRNAs in the PRV genome, and 209 known and 39 novel porcine miRNAs were detected. Viral miRNAs were further confirmed by stem-loop RT-PCR and northern blot analysis. Intriguingly, all of these viral miRNAs exhibited terminal heterogeneity both at the 5′ and 3′ ends. Seven miRNA genes produced mature miRNAs from both arms and two of the viral miRNA genes showed partially overlapped in their precursor regions. Unexpectedly, a terminal loop-derived small RNA with high abundance and one special miRNA offset RNA (moRNA) were processed from a same viral miRNA precursor. The polymorphisms of viral miRNAs shed light on the complexity of host miRNA-processing machinery and viral miRNA-regulatory mechanism. The swine genes and PRV genes were collected for target prediction of the viral miRNAs, revealing a complex network formed by both host and viral genes. GO enrichment analysis of host target genes suggests that PRV miRNAs are involved in complex cellular pathways including cell death, immune system process, metabolic pathway, indicating that these miRNAs play significant roles in virus-cells interaction of PRV and its hosts. Collectively, these data suggest that PRV infected epithelial cell line generates a diverse set of host miRNAs and a special cluster of viral miRNAs, which might facilitate PRV replication in cells.
Collapse
|
28
|
Meng Y, Shao C, Wang H, Chen M. The regulatory activities of plant microRNAs: a more dynamic perspective. PLANT PHYSIOLOGY 2011; 157:1583-95. [PMID: 22003084 PMCID: PMC3327222 DOI: 10.1104/pp.111.187088] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/13/2011] [Indexed: 05/19/2023]
Affiliation(s)
- Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China.
| | | | | | | |
Collapse
|