1
|
Cui H, Shi Q, Macarios CM, Schimmel P. Metabolic regulation of mRNA splicing. Trends Cell Biol 2024; 34:756-770. [PMID: 38431493 DOI: 10.1016/j.tcb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Alternative mRNA splicing enables the diversification of the proteome from a static genome and confers plasticity and adaptiveness on cells. Although this is often explored in development, where hard-wired programs drive the differentiation and specialization, alternative mRNA splicing also offers a way for cells to react to sudden changes in outside stimuli such as small-molecule metabolites. Fluctuations in metabolite levels and availability in particular convey crucial information to which cells react and adapt. We summarize and highlight findings surrounding the metabolic regulation of mRNA splicing. We discuss the principles underlying the biochemistry and biophysical properties of mRNA splicing, and propose how these could intersect with metabolite levels. Further, we present examples in which metabolites directly influence RNA-binding proteins and splicing factors. We also discuss the interplay between alternative mRNA splicing and metabolite-responsive signaling pathways. We hope to inspire future research to obtain a holistic picture of alternative mRNA splicing in response to metabolic cues.
Collapse
Affiliation(s)
- Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| | - Qingyu Shi
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | | | - Paul Schimmel
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Banerjee S, Galarza-Muñoz G, Garcia-Blanco MA. Role of RNA Alternative Splicing in T Cell Function and Disease. Genes (Basel) 2023; 14:1896. [PMID: 37895245 PMCID: PMC10606310 DOI: 10.3390/genes14101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative RNA splicing, a ubiquitous mechanism of gene regulation in eukaryotes, expands genome coding capacity and proteomic diversity. It has essential roles in all aspects of human physiology, including immunity. This review highlights the importance of RNA alternative splicing in regulating immune T cell function. We discuss how mutations that affect the alternative splicing of T cell factors can contribute to abnormal T cell function and ultimately lead to autoimmune diseases. We also explore the potential applications of strategies that target the alternative splicing changes of T cell factors. These strategies could help design therapeutic approaches to treat autoimmune disorders and improve immunotherapy.
Collapse
Affiliation(s)
- Shefali Banerjee
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22903, USA;
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Mariano A. Garcia-Blanco
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22903, USA;
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
| |
Collapse
|
3
|
Vahlensieck C, Thiel CS, Pöschl D, Bradley T, Krammer S, Lauber B, Polzer J, Ullrich O. Post-Transcriptional Dynamics is Involved in Rapid Adaptation to Hypergravity in Jurkat T Cells. Front Cell Dev Biol 2022; 10:933984. [PMID: 35859900 PMCID: PMC9289288 DOI: 10.3389/fcell.2022.933984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
The transcriptome of human immune cells rapidly reacts to altered gravity in a highly dynamic way. We could show in previous experiments that transcriptional patterns show profound adaption after seconds to minutes of altered gravity. To gain further insight into these transcriptional alteration and adaption dynamics, we conducted a highly standardized RNA-Seq experiment with human Jurkat T cells exposed to 9xg hypergravity for 3 and 15 min, respectively. We investigated the frequency with which individual exons were used during transcription and discovered that differential exon usage broadly appeared after 3 min and became less pronounced after 15 min. Additionally, we observed a shift in the transcript pool from coding towards non-coding transcripts. Thus, adaption of gravity-sensitive differentially expressed genes followed a dynamic transcriptional rebound effect. The general dynamics were compatible with previous studies on the transcriptional effects of short hypergravity on human immune cells and suggest that initial up-regulatory changes mostly result from increased elongation rates. The shift correlated with a general downregulation of the affected genes. All chromosome bands carried homogenous numbers of gravity-sensitive genes but showed a specific tendency towards up- or downregulation. Altered gravity affected transcriptional regulation throughout the entire genome, whereby the direction of differential expression was strongly dependent on the structural location in the genome. A correlation analysis with potential mediators of the early transcriptional response identified a link between initially upregulated genes with certain transcription factors. Based on these findings, we have been able to further develop our model of the transcriptional response to altered gravity.
Collapse
Affiliation(s)
- Christian Vahlensieck
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
| | - Cora S. Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center (KSC), Merritt Island, FL, United States
- Space Biotechnology, Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- *Correspondence: Cora S. Thiel, ; Oliver Ullrich,
| | - Daniel Pöschl
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Timothy Bradley
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Sonja Krammer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
| | - Beatrice Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center (KSC), Merritt Island, FL, United States
- Space Biotechnology, Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Space Medicine, Ernst-Abbe-Hochschule (EAH) Jena, Department of Industrial Engineering, Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- *Correspondence: Cora S. Thiel, ; Oliver Ullrich,
| |
Collapse
|
4
|
Karginov TA, Ménoret A, Vella AT. Optimal CD8 + T cell effector function requires costimulation-induced RNA-binding proteins that reprogram the transcript isoform landscape. Nat Commun 2022; 13:3540. [PMID: 35725727 PMCID: PMC9209503 DOI: 10.1038/s41467-022-31228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/25/2022] [Indexed: 11/11/2022] Open
Abstract
Boosting T cell activation through costimulation directs defense against cancer and viral infections. Despite multiple studies targeting costimulation in clinical trials, the increased potency and reprogramming of T cells endowed by costimulation is poorly understood. Canonical dogma states that transcription mediates T cell activation. Here, we show that the spliceosome, controlling post-transcriptional alternative splicing and alternative polyadenylation, is the most enriched pathway in T cells after CD134/CD137 costimulation. Costimulation of CD8+ T cells significantly increases expression of 29 RNA-binding proteins while RNA-seq uncovers over 1000 differential alternative splicing and polyadenylation events. Using in vivo mouse and in vitro human models, we demonstrate that RNA-binding protein Tardbp is required for effector cytokine production, CD8+ T cell clonal expansion, and isoform regulation after costimulation. The prospect of immune response optimization through reprogramming of mRNA isoform production offered herein opens new avenues for experimentally and therapeutically tuning the activities of T cells.
Collapse
Affiliation(s)
- Timofey A Karginov
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Antoine Ménoret
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
5
|
Kim EY, Che Y, Dean HJ, Lorenzo-Redondo R, Stewart M, Keller CK, Whorf D, Mills D, Dulin NN, Kim T, Votoupal M, Walter M, Fernandez-Sesma A, Kim H, Wolinsky SM. Transcriptome-wide changes in gene expression, splicing, and lncRNAs in response to a live attenuated dengue virus vaccine. Cell Rep 2022; 38:110341. [PMID: 35139383 PMCID: PMC8994511 DOI: 10.1016/j.celrep.2022.110341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/20/2021] [Accepted: 01/14/2022] [Indexed: 01/26/2023] Open
Abstract
The tetravalent dengue vaccine candidate, TAK-003, induces a functional antibody response, but the titers of antibodies against the four serotypes of the dengue virus (DENV) can vary. Here, through a transcriptomic analysis on whole blood collected from recipients of a two-dose schedule of TAK-003, we examine gene expression, splicing, and transcript isoform-level changes for both protein-coding and noncoding genes to broaden our understanding of the immune response. Our analysis reveals a dynamic pattern of vaccine-associated regulation of long noncoding RNAs (lncRNAs), differential splicing of interferon-stimulated gene exons, and gene expression changes related to multiple signaling pathways that detect viral infection. Co-expression networks isolate immune cell-type-related and interferon-response modules that represent specific biological processes that correlate with more robust antibody responses. These data provide insights into the early determinants of the variable immune response to the vaccine, highlighting the significance of splicing and isoform-level gene regulatory mechanisms in defining vaccine immunogenicity.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Yan Che
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | | | - Ramon Lorenzo-Redondo
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Michael Stewart
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Caroline K Keller
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Daniel Whorf
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Dawson Mills
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Nikita N Dulin
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Tiffany Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Megan Votoupal
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Miriam Walter
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Heejin Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA
| | - Steven M Wolinsky
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60011, USA.
| |
Collapse
|
6
|
Blake D, Radens CM, Ferretti MB, Gazzara MR, Lynch KW. Alternative splicing of apoptosis genes promotes human T cell survival. eLife 2022; 11:80953. [PMID: 36264057 PMCID: PMC9625086 DOI: 10.7554/elife.80953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing occurs in the vast majority of human genes, giving rise to distinct mRNA and protein isoforms. We, and others, have previously identified hundreds of genes that change their isoform expression upon T cell activation via alternative splicing; however, how these changes link activation input with functional output remains largely unknown. Here, we investigate how costimulation of T cells through the CD28 receptor impacts alternative splicing in T cells activated through the T cell receptor (TCR, CD3) and find that while CD28 signaling alone has minimal impact on splicing, it enhances the extent of change for up to 20% of TCR-induced alternative splicing events. Interestingly, a set of CD28-enhanced splicing events occur within genes encoding key components of the apoptotic signaling pathway; namely caspase-9, Bax, and Bim. Using both CRISPR-edited cells and antisense oligos to force expression of specific isoforms, we show for all three of these genes that the isoform induced by CD3/CD28 costimulation promotes resistance to apoptosis, and that changes in all three genes together function combinatorially to further promote cell viability. Finally, we show that the JNK signaling pathway, induced downstream of CD3/CD28 costimulation, is required for each of these splicing events, further highlighting their co-regulation. Together, these findings demonstrate that alternative splicing is a key mechanism by which costimulation of CD28 promotes viability of activated T cells.
Collapse
Affiliation(s)
- Davia Blake
- Immunology Graduate Group, University of PennsylvaniaPhiladelphiaUnited States,Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| | - Caleb M Radens
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| | - Max B Ferretti
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States,Department of Genetics, University of PennsylvaniaPhildelphiaUnited States
| | - Kristen W Lynch
- Immunology Graduate Group, University of PennsylvaniaPhiladelphiaUnited States,Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
7
|
Lai HC, Ho UY, James A, De Souza P, Roberts TL. RNA metabolism and links to inflammatory regulation and disease. Cell Mol Life Sci 2021; 79:21. [PMID: 34971439 PMCID: PMC11072290 DOI: 10.1007/s00018-021-04073-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
Inflammation is vital to protect the host against foreign organism invasion and cellular damage. It requires tight and concise gene expression for regulation of pro- and anti-inflammatory gene expression in immune cells. Dysregulated immune responses caused by gene mutations and errors in post-transcriptional regulation can lead to chronic inflammatory diseases and cancer. The mechanisms underlying post-transcriptional gene expression regulation include mRNA splicing, mRNA export, mRNA localisation, mRNA stability, RNA/protein interaction, and post-translational events such as protein stability and modification. The majority of studies to date have focused on transcriptional control pathways. However, post-transcriptional regulation of mRNA in eukaryotes is equally important and related information is lacking. In this review, we will focus on the mechanisms involved in the pre-mRNA splicing events, mRNA surveillance, RNA degradation pathways, disorders or symptoms caused by mutations or errors in post-transcriptional regulation during innate immunity especially toll-like receptor mediated pathways.
Collapse
Affiliation(s)
- Hui-Chi Lai
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.
- South West Sydney Clinical School, UNSW Australia, Liverpool, NSW, Australia.
| | - Uda Y Ho
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Alexander James
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Paul De Souza
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, Western Sydney University, Macarthur, NSW, Australia
| | - Tara L Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- South West Sydney Clinical School, UNSW Australia, Liverpool, NSW, Australia
- School of Medicine, Western Sydney University, Macarthur, NSW, Australia
| |
Collapse
|
8
|
Blake D, Lynch KW. The three as: Alternative splicing, alternative polyadenylation and their impact on apoptosis in immune function. Immunol Rev 2021; 304:30-50. [PMID: 34368964 DOI: 10.1111/imr.13018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
The latest advances in next-generation sequencing studies and transcriptomic profiling over the past decade have highlighted a surprising frequency of genes regulated by RNA processing mechanisms in the immune system. In particular, two control steps in mRNA maturation, namely alternative splicing and alternative polyadenylation, are now recognized to occur in the vast majority of human genes. Both have the potential to alter the identity of the encoded protein, as well as control protein abundance or even protein localization or association with other factors. In this review, we will provide a summary of the general mechanisms by which alternative splicing (AS) and alternative polyadenylation (APA) occur, their regulation within cells of the immune system, and their impact on immunobiology. In particular, we will focus on how control of apoptosis by AS and APA is used to tune cell fate during an immune response.
Collapse
Affiliation(s)
- Davia Blake
- Immunology Graduate Group and the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen W Lynch
- Immunology Graduate Group and the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Kuan PF, Yang X, Ren X, Che C, Waszczuk M, Kotov R, Clouston S, Singh PK, Glenn ST, Gomez EC, Wang J, Bromet E, Luft BJ. Mapping the transcriptomics landscape of post-traumatic stress disorder symptom dimensions in World Trade Center responders. Transl Psychiatry 2021; 11:310. [PMID: 34031375 PMCID: PMC8144574 DOI: 10.1038/s41398-021-01431-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Gene expression has provided promising insights into the pathophysiology of post-traumatic stress disorder (PTSD); however, specific regulatory transcriptomic mechanisms remain unknown. The present study addressed this limitation by performing transcriptome-wide RNA-Seq of whole-blood samples from 226 World Trade Center responders. The investigation focused on differential expression (DE) at the gene, isoform, and for the first time, alternative splicing (AS) levels associated with the symptoms of PTSD: total burden, re-experiencing, avoidance, numbing, and hyperarousal subdimensions. These symptoms were associated with 76, 1, 48, 15, and 49 DE genes, respectively (FDR < 0.05). Moreover, they were associated with 103, 11, 0, 43, and 32 AS events. Avoidance differed the most from other dimensions with respect to DE genes and AS events. Gene set enrichment analysis (GSEA) identified pathways involved in inflammatory and metabolic processes, which may have implications in the treatment of PTSD. Overall, the findings shed a novel light on the wide range of transcriptomic alterations associated with PTSD at the gene and AS levels. The results of DE analysis associated with PTSD subdimensions highlights the importance of studying PTSD symptom heterogeneity.
Collapse
Affiliation(s)
- Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA.
| | - Xiaohua Yang
- grid.36425.360000 0001 2216 9681Department of Medicine, Stony Brook University, Stony Brook, NY USA
| | - Xu Ren
- grid.36425.360000 0001 2216 9681Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY USA
| | - Chang Che
- grid.36425.360000 0001 2216 9681Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY USA
| | - Monika Waszczuk
- grid.262641.50000 0004 0388 7807Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL USA
| | - Roman Kotov
- Department of Psychiatry, Stony Book University, Stony Brook, NY USA
| | - Sean Clouston
- Department of Family and Preventive Medicine, Stony Book University, Stony Brook, NY USA
| | - Prashant K. Singh
- grid.240614.50000 0001 2181 8635Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY USA
| | - Sean T. Glenn
- grid.240614.50000 0001 2181 8635Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY USA
| | - Eduardo Cortes Gomez
- grid.240614.50000 0001 2181 8635Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY USA
| | - Jianmin Wang
- grid.240614.50000 0001 2181 8635Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY USA
| | - Evelyn Bromet
- Department of Psychiatry, Stony Book University, Stony Brook, NY USA
| | - Benjamin J. Luft
- grid.36425.360000 0001 2216 9681Department of Medicine, Stony Brook University, Stony Brook, NY USA
| |
Collapse
|
10
|
Freen-van Heeren JJ. Post-transcriptional control of T-cell cytokine production: Implications for cancer therapy. Immunology 2021; 164:57-72. [PMID: 33884612 DOI: 10.1111/imm.13339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/05/2023] Open
Abstract
As part of the adaptive immune system, T cells are vital for the eradication of infected and malignantly transformed cells. To perform their protective function, T cells produce effector molecules that are either directly cytotoxic, such as granzymes, perforin, interferon-γ and tumour necrosis factor α, or attract and stimulate (immune) cells, such as interleukin-2. As these molecules can also induce immunopathology, tight control of their production is required. Indeed, inflammatory cytokine production is regulated on multiple levels. Firstly, locus accessibility and transcription factor availability and activity determine the amount of mRNA produced. Secondly, post-transcriptional mechanisms, influencing mRNA splicing/codon usage, stability, decay, localization and translation rate subsequently determine the amount of protein that is produced. In the immune suppressive environments of tumours, T cells gradually lose the capacity to produce effector molecules, resulting in tumour immune escape. Recently, the role of post-transcriptional regulation in fine-tuning T-cell effector function has become more appreciated. Furthermore, several groups have shown that exhausted or dysfunctional T cells from cancer patients or murine models possess mRNA for inflammatory mediators, but fail to produce effector molecules, hinting that post-transcriptional events also play a role in hampering tumour-infiltrating lymphocyte effector function. Here, the post-transcriptional regulatory events governing T-cell cytokine production are reviewed, with a specific focus on the importance of post-transcriptional regulation in anti-tumour responses. Furthermore, potential approaches to circumvent tumour-mediated dampening of T-cell effector function through the (dis)engagement of post-transcriptional events are explored, such as CRISPR/Cas9-mediated genome editing or chimeric antigen receptors.
Collapse
|
11
|
Geng G, Xu C, Peng N, Li Y, Liu J, Wu J, Liang J, Zhu Y, Shi L. PTBP1 is necessary for dendritic cells to regulate T-cell homeostasis and antitumour immunity. Immunology 2021; 163:74-85. [PMID: 33421118 PMCID: PMC8044338 DOI: 10.1111/imm.13304] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/25/2023] Open
Abstract
Dendritic cells (DCs) play an important role in linking innate and adaptive immunity. DCs can sense endogenous and exogenous antigens and present those antigens to T cells to induce an immune response or immune tolerance. During activation, alternative splicing (AS) in DCs is dramatically changed to induce cytokine secretion and upregulation of surface marker expression. PTBP1, an RNA-binding protein, is essential in alternative splicing, but the function of PTBP1 in DCs is unknown. Here, we found that a specific deficiency of Ptbp1 in DCs could increase MHC II expression and perturb T-cell homeostasis without affecting DC development. Functionally, Ptbp1 deletion in DCs could enhance antitumour immunity and asthma exacerbation. Mechanistically, we found that Pkm alternative splicing and a subset of Ifn response genes could be regulated by PTBP1. These findings revealed the function of PTBP1 in DCs and indicated that PTBP1 might be a novel therapeutic target for antitumour treatment.
Collapse
Affiliation(s)
- Guangfeng Geng
- State Key Laboratory of Experimental HematologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Changlu Xu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Nan Peng
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Yue Li
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Jinhua Liu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Jing Wu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Jing Liang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Yushan Zhu
- State Key Laboratory of Experimental HematologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Lihong Shi
- State Key Laboratory of Experimental HematologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| |
Collapse
|
12
|
Metz PJ, Ching KA, Xie T, Delgado Cuenca P, Niessen S, Tatlock JH, Jensen-Pergakes K, Murray BW. Symmetric Arginine Dimethylation Is Selectively Required for mRNA Splicing and the Initiation of Type I and Type III Interferon Signaling. Cell Rep 2021; 30:1935-1950.e8. [PMID: 32049022 DOI: 10.1016/j.celrep.2020.01.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/07/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Alternative splicing is well understood to enhance proteome diversity as cells respond to stimuli. However, mechanistic understanding for how the spliceosome processes precursor messenger RNA (mRNA) transcripts to achieve template diversification is incomplete. We use recently developed enzymatic inhibitors of protein arginine methyltransferase 5 (PRMT5) and human naive T lymphocyte activation as a model system to uncover a precise set of mRNA transcripts that require symmetric arginine dimethylation. This methylation-dependent splicing selectivity is associated with a limited set of signaling pathways that are affected when PRMT5 is inhibited. Specifically, we identify a conserved role for symmetric arginine dimethylation in the induction of antiviral type I and type III interferon signaling following T cell receptor and pattern recognition receptor stimulation in human T lymphocytes and undifferentiated human THP-1 monocytes. Altogether, these findings reveal a mechanism by which cells may be enabled to precisely modulate transcript heterogeneity to orchestrate specific functional outcomes.
Collapse
Affiliation(s)
- Patrick J Metz
- Tumor Cell Biology, Pfizer Oncology Research & Development, La Jolla, Pfizer Inc., 10777 Science Center Drive, San Diego, CA 92121, USA.
| | - Keith A Ching
- Computational Biology, Pfizer Oncology Research & Development, La Jolla, Pfizer Inc., 10777 Science Center Drive, San Diego, CA 92121, USA
| | - Tao Xie
- Computational Biology, Pfizer Oncology Research & Development, La Jolla, Pfizer Inc., 10777 Science Center Drive, San Diego, CA 92121, USA
| | - Paulina Delgado Cuenca
- Tumor Cell Biology, Pfizer Oncology Research & Development, La Jolla, Pfizer Inc., 10777 Science Center Drive, San Diego, CA 92121, USA
| | - Sherry Niessen
- Tumor Cell Biology, Pfizer Oncology Research & Development, La Jolla, Pfizer Inc., 10777 Science Center Drive, San Diego, CA 92121, USA
| | - John H Tatlock
- Worldwide Medicinal Chemistry, Pfizer Oncology Research & Development, La Jolla, Pfizer Inc., 10777 Science Center Drive, San Diego, CA 92121, USA
| | - Kristen Jensen-Pergakes
- Tumor Cell Biology, Pfizer Oncology Research & Development, La Jolla, Pfizer Inc., 10777 Science Center Drive, San Diego, CA 92121, USA
| | - Brion W Murray
- Tumor Cell Biology, Pfizer Oncology Research & Development, La Jolla, Pfizer Inc., 10777 Science Center Drive, San Diego, CA 92121, USA
| |
Collapse
|
13
|
Liu X, Andrews MV, Skinner JP, Johanson TM, Chong MMW. A comparison of alternative mRNA splicing in the CD4 and CD8 T cell lineages. Mol Immunol 2021; 133:53-62. [PMID: 33631555 DOI: 10.1016/j.molimm.2021.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/05/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
T cells can be subdivided into a number of different subsets that are defined by their distinct functions. While the specialization of different T cell subsets is partly achieved by the expression of specific genes, the overall transcriptional profiles of all T cells appear very similar. Alternative mRNA splicing is a mechanism that facilitates greater transcript/protein diversity from a limited number of genes, which may contribute to the functional specialization of distinct T cell subsets. In this study we employ a combination of short-read and long-read sequencing technologies to compare alternative mRNA splicing between the CD4 and CD8 T cell lineages. While long-read technology was effective at assembling full-length alternatively spliced transcripts, the low sequencing depth did not facilitate accurate quantitation. On the other hand, short-read technology was ineffective at assembling full-length transcripts but was highly accurate for quantifying expression. We show that integrating long-read and short-read data together achieves a more complete view of transcriptomic diversity. We found that while the overall usage of transcript isoforms was very similar between the CD4 and CD8 lineages, there were numerous alternative spliced mRNA isoforms that were preferentially used by one lineage over the other. These alternative spliced isoforms included ones with different exon usage, exon exclusion or intron inclusion, all of which are expected to significantly alter the protein sequence.
Collapse
Affiliation(s)
- Xin Liu
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Matthew V Andrews
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Jarrod P Skinner
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Timothy M Johanson
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Mark M W Chong
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine (St Vincent's), The University of Melbourne, Fitzroy, Victoria, Australia.
| |
Collapse
|
14
|
Thompson MG, Dittmar M, Mallory MJ, Bhat P, Ferretti MB, Fontoura BM, Cherry S, Lynch KW. Viral-induced alternative splicing of host genes promotes influenza replication. eLife 2020; 9:55500. [PMID: 33269701 PMCID: PMC7735754 DOI: 10.7554/elife.55500] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Viral infection induces the expression of numerous host genes that impact the outcome of infection. Here, we show that infection of human lung epithelial cells with influenza A virus (IAV) also induces a broad program of alternative splicing of host genes. Although these splicing-regulated genes are not enriched for canonical regulators of viral infection, we find that many of these genes do impact replication of IAV. Moreover, in several cases, specific inhibition of the IAV-induced splicing pattern also attenuates viral infection. We further show that approximately a quarter of the IAV-induced splicing events are regulated by hnRNP K, a host protein required for efficient splicing of the IAV M transcript in nuclear speckles. Finally, we find an increase in hnRNP K in nuclear speckles upon IAV infection, which may alter accessibility of hnRNP K for host transcripts thereby leading to a program of host splicing changes that promote IAV replication.
Collapse
Affiliation(s)
- Matthew G Thompson
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
| | - Mark Dittmar
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Michael J Mallory
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
| | - Prasanna Bhat
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, United States
| | - Max B Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.,Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Beatriz Ma Fontoura
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, United States
| | - Sara Cherry
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.,Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Kristen W Lynch
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
15
|
Radens CM, Blake D, Jewell P, Barash Y, Lynch KW. Meta-analysis of transcriptomic variation in T-cell populations reveals both variable and consistent signatures of gene expression and splicing. RNA (NEW YORK, N.Y.) 2020; 26:1320-1333. [PMID: 32554554 PMCID: PMC7491319 DOI: 10.1261/rna.075929.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Human CD4+ T cells are often subdivided into distinct subtypes, including Th1, Th2, Th17, and Treg cells, that are thought to carry out distinct functions in the body. Typically, these T-cell subpopulations are defined by the expression of distinct gene repertoires; however, there is variability between studies regarding the methods used for isolation and the markers used to define each T-cell subtype. Therefore, how reliably studies can be compared to one another remains an open question. Moreover, previous analysis of gene expression in CD4+ T-cell subsets has largely focused on gene expression rather than alternative splicing. Here we take a meta-analysis approach, comparing eleven independent RNA-seq studies of human Th1, Th2, Th17, and/or Treg cells to determine the consistency in gene expression and splicing within each subtype across studies. We find that known master-regulators are consistently enriched in the appropriate subtype; however, cytokines and other genes often used as markers are more variable. Importantly, we also identify previously unknown transcriptomic markers that appear to consistently differentiate between subsets, including a few Treg-specific splicing patterns. Together this work highlights the heterogeneity in gene expression between samples designated as the same subtype, but also suggests additional markers that can be used to define functional groupings.
Collapse
Affiliation(s)
- Caleb M Radens
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Davia Blake
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Paul Jewell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Computer Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yoseph Barash
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Computer Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kristen W Lynch
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
16
|
Li J, Comeau HY, Zhang Z, Ren X. Landscape of transcript isoforms in single T cells infiltrating in non-small-cell lung cancer. J Genet Genomics 2020; 47:373-388. [PMID: 32998846 DOI: 10.1016/j.jgg.2020.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 01/14/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) has enabled high-resolution characterization of molecular signatures of tumor-infiltrating lymphocytes. However, analyses at the transcript isoform level are rarely reported. As alternative splicing is critical to T-cell differentiation and activation, here, we proposed a computational method named IDEA (Isoform Detection, Enrichment, and functional Annotation) to comprehensively detect and annotate differentially used isoforms across cell subtypes. We applied IDEA on a scRNA-seq data set of 12,346 T cells from non-small-cell lung cancer (NSCLC). We found that most genes tend to dominantly express one isoform in single T cells, enabling typing T cells based on the isotypes, given a gene. Isotype analysis suggested that tumor-infiltrating T cells significantly preferred specific isotypes for 245 genes in CD8+ T cells and 456 genes in CD4+ T cells. Functional annotation suggests that the preferred isoforms involved in coding/noncoding switches, transcription start site changes, gains/losses of domains, and subcellular translocation. Clonal analysis revealed that isoform switching occurred during T-cell activation/differentiation. Our analysis provides precise characterization of the molecular events in tumor-infiltrating T cells and sheds new light on the regulatory mechanisms of tumor-infiltrating T cells.
Collapse
Affiliation(s)
- Jiesheng Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Hannah Y Comeau
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zemin Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Xianwen Ren
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
17
|
Ozay EI, Shanthalingam S, Torres JA, Osborne BA, Tew GN, Minter LM. Protein Kinase C Theta Modulates PCMT1 through hnRNPL to Regulate FOXP3 Stability in Regulatory T Cells. Mol Ther 2020; 28:2220-2236. [PMID: 32592691 DOI: 10.1016/j.ymthe.2020.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022] Open
Abstract
T cell receptor signaling, together with cytokine-induced signals, can differentially regulate RNA processing to influence T helper versus regulatory T cell fate. Protein kinase C family members have been shown to function in alternative splicing and RNA processing in various cell types. T cell-specific protein kinase C theta, a molecular regulator of T cell receptor downstream signaling, has been shown to phosphorylate splicing factors and affect post-transcriptional control of T cell gene expression. In this study, we explored how using a synthetic cell-penetrating peptide mimic for intracellular anti-protein kinase C theta delivery fine-tunes differentiation of induced regulatory T cells through its differential effects on RNA processing. We identified protein kinase C theta signaling as a critical modulator of two key RNA regulatory factors, heterogeneous nuclear ribonucleoprotein L (hnRNPL) and protein-l-isoaspartate O-methyltransferase-1 (PCMT1), and loss of protein kinase C theta function initiated a "switch" in post-transcriptional organization in induced regulatory T cells. More interestingly, we discovered that protein-l-isoaspartate O- methyltransferase-1 acts as an instability factor in induced regulatory T cells, by methylating the forkhead box P3 (FOXP3) promoter. Targeting protein-l-isoaspartate O-methyltransferase-1 using a cell-penetrating antibody revealed an efficient means of modulating RNA processing to confer a stable regulatory T cell phenotype.
Collapse
Affiliation(s)
- E Ilker Ozay
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Joe A Torres
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Barbara A Osborne
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gregory N Tew
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Lisa M Minter
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
18
|
Agosto LM, Gazzara MR, Radens CM, Sidoli S, Baeza J, Garcia BA, Lynch KW. Deep profiling and custom databases improve detection of proteoforms generated by alternative splicing. Genome Res 2019; 29:2046-2055. [PMID: 31727681 PMCID: PMC6886501 DOI: 10.1101/gr.248435.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/16/2019] [Indexed: 02/05/2023]
Abstract
Alternative pre-mRNA splicing has long been proposed to contribute greatly to proteome complexity. However, the extent to which mature mRNA isoforms are successfully translated into protein remains controversial. Here, we used high-throughput RNA sequencing and mass spectrometry (MS)–based proteomics to better evaluate the translation of alternatively spliced mRNAs. To increase proteome coverage and improve protein quantitation, we optimized cell fractionation and sample processing steps at both the protein and peptide level. Furthermore, we generated a custom peptide database trained on analysis of RNA-seq data with MAJIQ, an algorithm optimized to detect and quantify differential and unannotated splice junction usage. We matched tandem mass spectra acquired by data-dependent acquisition (DDA) against our custom RNA-seq based database, as well as SWISS-PROT and RefSeq databases to improve identification of splicing-derived proteoforms by 28% compared with use of the SWISS-PROT database alone. Altogether, we identified peptide evidence for 554 alternate proteoforms corresponding to 274 genes. Our increased depth and detection of proteins also allowed us to track changes in the transcriptome and proteome induced by T-cell stimulation, as well as fluctuations in protein subcellular localization. In sum, our data here confirm that use of generic databases in proteomic studies underestimates the number of spliced mRNA isoforms that are translated into protein and provides a workflow that improves isoform detection in large-scale proteomic experiments.
Collapse
Affiliation(s)
- Laura M Agosto
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Caleb M Radens
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Genetics and Epigenetics, Cell & Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Josue Baeza
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
19
|
Differential Interleukin-2 Transcription Kinetics Render Mouse but Not Human T Cells Vulnerable to Splicing Inhibition Early after Activation. Mol Cell Biol 2019; 39:MCB.00035-19. [PMID: 31160491 DOI: 10.1128/mcb.00035-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
T cells are nodal players in the adaptive immune response against pathogens and malignant cells. Alternative splicing plays a crucial role in T cell activation, which is analyzed mainly at later time points upon stimulation. Here we have discovered a 2-h time window early after stimulation where optimal splicing efficiency or, more generally, gene expression efficiency is crucial for successful T cell activation. Reducing the splicing efficiency at 4 to 6 h poststimulation significantly impaired murine T cell activation, which was dependent on the expression dynamics of the Egr1-Nab2-interleukin-2 (IL-2) pathway. This time window overlaps the time of peak IL-2 de novo transcription, which, we suggest, represents a permissive time window in which decreased splicing (or transcription) efficiency reduces mature IL-2 production, thereby hampering murine T cell activation. Notably, the distinct expression kinetics of the Egr1-Nab2-IL-2 pathway between mouse and human render human T cells refractory to this vulnerability. We propose that the rational temporal modulation of splicing or transcription during peak de novo expression of key effectors can be used to fine-tune stimulation-dependent biological outcomes. Our data also show that critical consideration is required when extrapolating mouse data to the human system in basic and translational research.
Collapse
|
20
|
Vogel M, Weigand JE, Kluge B, Grez M, Suess B. A small, portable RNA device for the control of exon skipping in mammalian cells. Nucleic Acids Res 2019; 46:e48. [PMID: 29420816 PMCID: PMC5934650 DOI: 10.1093/nar/gky062] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 01/29/2018] [Indexed: 12/17/2022] Open
Abstract
Splicing is an essential and highly regulated process in mammalian cells. We developed a synthetic riboswitch that efficiently controls alternative splicing of a cassette exon in response to the small molecule ligand tetracycline. The riboswitch was designed to control the accessibility of the 3' splice site by placing the latter inside the closing stem of a conformationally controlled tetracycline aptamer. In the presence of tetracycline, the cassette exon is skipped, whereas it is included in the ligand's absence. The design allows for an easy, context-independent integration of the regulatory device into any gene of interest. Portability of the device was shown through its functionality in four different systems: a synthetic minigene, a reporter gene and two endogenous genes. Furthermore, riboswitch functionality to control cellular signaling cascades was demonstrated by using it to specifically induce cell death through the conditionally controlled expression of CD20, which is a target in cancer therapy.
Collapse
Affiliation(s)
- Marc Vogel
- Department of Biology, Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Julia E Weigand
- Department of Biology, Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Britta Kluge
- Department of Biology, Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt/M, Germany
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| |
Collapse
|
21
|
Kulemzin SV, Matvienko DA, Sabirov AH, Sokratyan AM, Chernikova DS, Belovezhets TN, Chikaev AN, Taranin AV, Gorchakov AA. Design and analysis of stably integrated reporters for inducible transgene expression in human T cells and CAR NK-cell lines. BMC Med Genomics 2019; 12:44. [PMID: 30871576 PMCID: PMC6417161 DOI: 10.1186/s12920-019-0489-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Cytotoxic activity of T- and NK-cells can be efficiently retargeted against cancer cells using chimeric antigen receptors (CARs) and rTCRs. In the context of solid cancers, use of armored CAR T- and NK cells secreting additional anti-cancer molecules such as cytokines, chemokines, antibodies, BiTEs, inverted cytokine receptors, and checkpoint inhibitors, appears particularly promising, as this may help overcome immunosuppressive tumor microenvironment, attract bystander immune cells, and boost CAR T/NK-cell persistence. Placing the expression of such molecules under the transcriptional control downstream of CAR-mediated T/NK-cell activation offers the advantage of targeted delivery, high local concentration, and reduced toxicity. Several canonic DNA sequences that are known to function as activation-inducible promoters in human T and B cells have been described to date and typically encompass the multimers of NFkB and NFAT binding sites. However, relatively little is known about the DNA sequences that may function as activation-driven switches in the context of NK cells. We set out to compare the functionality of several activation-inducible promoters in primary human T cells, as well as in NK cell lines NK-92 and YT. Methods Lentiviral constructs were engineered to express two fluorescent reporters: mCherry under 4xNFAT, 2xNFkB, 5xNFkB, 10xNFkB, 30xNFkB promoters, as well as two variants of the CD69 promoter, and copGFP under the strong constitutive promoter of the human EF1a gene. Pseudotyped lentiviral particles obtained using these constructs were transduced into primary human T cells and NK-92 and YT cell lines expressing a CAR specific for PSMA. The transgenic cells obtained were activated by CD3/CD28 beads (T cells) or via a CAR (CAR-NK cell lines). Promoter activity before and after activation was assayed using FACS analysis. Results In T cells, the CD69 promoter encompassing CNS1 and CNS2 regions displayed the highest signal/noise ratio. Intriguingly, in the context of CAR-YT cell line neither of the seven promoters tested displayed acceptable activation profile. In CAR-NK-92 cells, the largest fold activation (which was modest) was achieved with the 10xNFkB and 30xNFkB promoters, however its expression was clearly leaky in “resting” non-activated cells. Conclusions Unlike in T cells, the robust activation-driven inducible expression of genetic cassettes in NK cells requires unbiased genome-wide identification of promoter sequences. Electronic supplementary material The online version of this article (10.1186/s12920-019-0489-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergey V Kulemzin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Daria A Matvienko
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Artur H Sabirov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Arpine M Sokratyan
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Daria S Chernikova
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana N Belovezhets
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Anton N Chikaev
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Aleksandr V Taranin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Andrey A Gorchakov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia. .,Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
22
|
Pai AA, Luca F. Environmental influences on RNA processing: Biochemical, molecular and genetic regulators of cellular response. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1503. [PMID: 30216698 PMCID: PMC6294667 DOI: 10.1002/wrna.1503] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/19/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022]
Abstract
RNA processing has emerged as a key mechanistic step in the regulation of the cellular response to environmental perturbation. Recent work has uncovered extensive remodeling of transcriptome composition upon environmental perturbation and linked the impacts of this molecular plasticity to health and disease outcomes. These isoform changes and their underlying mechanisms are varied-involving alternative sites of transcription initiation, alternative splicing, and alternative cleavage at the 3' end of the mRNA. The mechanisms and consequences of differential RNA processing have been characterized across a range of common environmental insults, including chemical stimuli, immune stimuli, heat stress, and cancer pathogenesis. In each case, there are perturbation-specific contributions of local (cis) regulatory elements or global (trans) factors and downstream consequences. Overall, it is clear that choices in isoform usage involve a balance between the usage of specific genetic elements (i.e., splice sites, polyadenylation sites) and the timing at which certain decisions are made (i.e., transcription elongation rate). Fine-tuned cellular responses to environmental perturbation are often dependent on the genetic makeup of the cell. Genetic analyses of interindividual variation in splicing have identified genetic effects on splicing that contribute to variation in complex traits. Finally, the increase in the number of tissue types and environmental conditions analyzed for RNA processing is paralleled by the need to develop appropriate analytical tools. The combination of large datasets, novel methods and conditions explored promises to provide a much greater understanding of the role of RNA processing response in human phenotypic variation. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Evolution and Genomics > Computational Analyses of RNA RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Athma A Pai
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, and Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| |
Collapse
|
23
|
Yoon BH, Kim M, Kim MH, Kim HJ, Kim JH, Kim JH, Kim J, Kim YS, Lee D, Kang SJ, Kim SY. Dynamic Transcriptome, DNA Methylome, and DNA Hydroxymethylome Networks During T-Cell Lineage Commitment. Mol Cells 2018; 41:953-963. [PMID: 30396239 PMCID: PMC6277565 DOI: 10.14348/molcells.2018.0213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/14/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
The stepwise development of T cells from a multipotent precursor is guided by diverse mechanisms, including interactions among lineage-specific transcription factors (TFs) and epigenetic changes, such as DNA methylation and hydroxymethylation, which play crucial roles in mammalian development and lineage commitment. To elucidate the transcriptional networks and epigenetic mechanisms underlying T-cell lineage commitment, we investigated genome-wide changes in gene expression, DNA methylation and hydroxymethylation among populations representing five successive stages of T-cell development (DN3, DN4, DP, CD4+, and CD8+) by performing RNA-seq, MBD-seq and hMeDIP-seq, respectively. The most significant changes in the transcriptomes and epigenomes occurred during the DN4 to DP transition. During the DP stage, many genes involved in chromatin modification were up-regulated and exhibited dramatic changes in DNA hydroxymethylation. We also observed 436 alternative splicing events, and approximately 57% (252) of these events occurred during the DP stage. Many stage-specific, differentially methylated regions were observed near the stage-specific, differentially expressed genes. The dynamic changes in DNA methylation and hydroxymethylation were associated with the recruitment of stage-specific TFs. We elucidated interactive networks comprising TFs, chromatin modifiers, and DNA methylation and hope that this study provides a framework for the understanding of the molecular networks underlying T-cell lineage commitment.
Collapse
Affiliation(s)
- Byoung-Ha Yoon
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon,
Korea
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,
Korea
| | - Mirang Kim
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon,
Korea
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,
Korea
| | - Min-Hyeok Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon,
Korea
| | - Hee-Jin Kim
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,
Korea
| | - Jeong-Hwan Kim
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,
Korea
| | - Jong Hwan Kim
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon,
Korea
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,
Korea
| | - Jina Kim
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon,
Korea
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,
Korea
| | - Yong Sung Kim
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon,
Korea
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,
Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon,
Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon,
Korea
| | - Seon-Young Kim
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon,
Korea
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,
Korea
| |
Collapse
|
24
|
Differential Expression of Tissue Transglutaminase Splice Variants in Peripheral Blood Mononuclear Cells of Primary Progressive Multiple Sclerosis Patients. Med Sci (Basel) 2018; 6:medsci6040108. [PMID: 30486475 PMCID: PMC6313466 DOI: 10.3390/medsci6040108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 02/03/2023] Open
Abstract
Multiple Sclerosis (MS) is an inflammatory and neurodegenerative disorder of the central nervous system (CNS) characterized by inflammation and immune cell infiltration in the brain parenchyma. Tissue transglutaminase (TG2), a calcium-dependent cross-linking enzyme, has been shown to be present in infiltrating MHC-II positive cells in lesions of patients suffering from MS. Moreover, TG2 mRNA levels in peripheral blood mononuclear cells (PBMC)-derived from primary progressive (PP)-MS patients correlated with clinical parameters, thus highlighting the importance of TG2 in MS pathology. In the present study, we further characterized TG2 expression by measuring the mRNA levels of full-length TG2 and four TG2 alternative splice variants in PBMCs derived from PP-MS patients and healthy control (HC) subjects. In PP-MS-derived PBMCs, TG2 variant V4b was significantly higher expressed, and both V4a and V4b variants were relatively more expressed in relation to full-length TG2. These observations open new avenues to unravel the importance of TG2 alternative splicing in the pathophysiology of PP-MS.
Collapse
|
25
|
Urbanski L, Leclair N, Anczuków O. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1476. [PMID: 29693319 PMCID: PMC6002934 DOI: 10.1002/wrna.1476] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
Defects in alternative splicing are frequently found in human tumors and result either from mutations in splicing-regulatory elements of specific cancer genes or from changes in the regulatory splicing machinery. RNA splicing regulators have emerged as a new class of oncoproteins and tumor suppressors, and contribute to disease progression by modulating RNA isoforms involved in the hallmark cancer pathways. Thus, dysregulation of alternative RNA splicing is fundamental to cancer and provides a potentially rich source of novel therapeutic targets. Here, we review the alterations in splicing regulatory factors detected in human tumors, as well as the resulting alternatively spliced isoforms that impact cancer hallmarks, and discuss how they contribute to disease pathogenesis. RNA splicing is a highly regulated process and, as such, the regulators are themselves tightly regulated. Differential transcriptional and posttranscriptional regulation of splicing factors modulates their levels and activities in tumor cells. Furthermore, the composition of the tumor microenvironment can also influence which isoforms are expressed in a given cell type and impact drug responses. Finally, we summarize current efforts in targeting alternative splicing, including global splicing inhibition using small molecules blocking the spliceosome or splicing-factor-modifying enzymes, as well as splice-switching RNA-based therapeutics to modulate cancer-specific splicing isoforms. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
|
26
|
Morel PA. Differential T-cell receptor signals for T helper cell programming. Immunology 2018; 155:63-71. [PMID: 29722021 DOI: 10.1111/imm.12945] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/29/2018] [Accepted: 04/17/2018] [Indexed: 12/24/2022] Open
Abstract
Upon encounter with their cognate antigen, naive CD4 T cells become activated and are induced to differentiate into several possible T helper (Th) cell subsets. This differentiation depends on a number of factors including antigen-presenting cells, cytokines and co-stimulatory molecules. The strength of the T-cell receptor (TCR) signal, related to the affinity of TCR for antigen and antigen dose, has emerged as a dominant factor in determining Th cell fate. Recent studies have revealed that TCR signals of high or low strength do not simply induce quantitatively different signals in the T cells, but rather qualitatively distinct pathways can be induced based on TCR signal strength. This review examines the recent literature in this area and highlights important new developments in our understanding of Th cell differentiation and TCR signal strength.
Collapse
Affiliation(s)
- Penelope A Morel
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Zeng W, Liu X, Liu Z, Zheng Y, Yu T, Fu S, Li X, Zhang J, Zhang S, Ma X, Liu XR, Qin X, Khanniche A, Zhang Y, Tian F, Lin Y. Deep Surveying of the Transcriptional and Alternative Splicing Signatures for Decidual CD8 + T Cells at the First Trimester of Human Healthy Pregnancy. Front Immunol 2018; 9:937. [PMID: 29780389 PMCID: PMC5946033 DOI: 10.3389/fimmu.2018.00937] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
Decidual CD8+ (dCD8) T cells have been proposed to play important roles in immune protection against the invading pathogens and in tolerance toward the growing semi-allogeneic fetus during early pregnancy. However, their phenotypic and functional characteristics remain poorly defined. Here, we performed the first analysis of the transcriptional and alternative splicing (AS) signatures for human first-trimester dCD8 T cells using high-throughput mRNA sequencing. Our data revealed that dCD8 T cells have distinct transcriptional and AS landscapes when compared with their autologous peripheral blood CD8+ (pCD8) T counterparts. Furthermore, human dCD8 T cells were observed to contain CD8-Treg and effector-memory T-cell subsets, and display enhanced functionality in terms of degranulation and cytokine production on a per-cell basis. Additionally, we have identified the novel splice junctions that use a high ratio of the non-canonical splicing motif GC-AG and found that AS is not a major contributor to the gene expression-level changes between paired pCD8 and dCD8 T cells. Together, our findings not only provide a comprehensive framework of the transcriptional and AS landscapes but also reveal the functional feature of human dCD8 T cells, which are of great importance in understanding the biology of these cells and the physiology of human healthy pregnancy.
Collapse
Affiliation(s)
- Weihong Zeng
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinmei Liu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicui Liu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Zheng
- Out-Patient Operatingroom, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Yu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaliu Fu
- School of Life Science, Tongji University, Shanghai, China
| | - Xiao Li
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhang
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siming Zhang
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Ma
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Rui Liu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Qin
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Asma Khanniche
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fuju Tian
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Schaub A, Glasmacher E. Splicing in immune cells-mechanistic insights and emerging topics. Int Immunol 2018; 29:173-181. [PMID: 28498981 PMCID: PMC5890895 DOI: 10.1093/intimm/dxx026] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/27/2017] [Indexed: 11/26/2022] Open
Abstract
Differential splicing of mRNAs not only enables regulation of gene expression levels, but also ensures a high degree of gene-product diversity. The extent to which splicing of mRNAs is utilized as a mechanism in immune cells has become evident within the last few years. Still, only a few of these mechanisms have been well studied. In this review, we discuss some of the best-understood mechanisms, for instance the differential splicing of CD45 in T cells, as well as immunoglobulin genes in B cells. Beyond that we provide general mechanistic insights on how, when and where this process takes place and discuss the current knowledge regarding these topics in immune cells. We also highlight some of the reported links to immune-related diseases, genome-wide sequencing studies that revealed thousands of differentially spliced transcripts, as well as splicing studies on immune cells that remain mechanistically not fully understood. We thereby display potential emerging topics for future studies centered on splicing mechanisms in immune cells.
Collapse
Affiliation(s)
- Annalisa Schaub
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Elke Glasmacher
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| |
Collapse
|
29
|
Blohmke CJ, Hill J, Darton TC, Carvalho-Burger M, Eustace A, Jones C, Schreiber F, Goodier MR, Dougan G, Nakaya HI, Pollard AJ. Induction of Cell Cycle and NK Cell Responses by Live-Attenuated Oral Vaccines against Typhoid Fever. Front Immunol 2017; 8:1276. [PMID: 29075261 PMCID: PMC5643418 DOI: 10.3389/fimmu.2017.01276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
The mechanisms by which oral, live-attenuated vaccines protect against typhoid fever are poorly understood. Here, we analyze transcriptional responses after vaccination with Ty21a or vaccine candidate, M01ZH09. Alterations in response profiles were related to vaccine-induced immune responses and subsequent outcome after wild-type Salmonella Typhi challenge. Despite broad genetic similarity, we detected differences in transcriptional responses to each vaccine. Seven days after M01ZH09 vaccination, marked cell cycle activation was identified and associated with humoral immunogenicity. By contrast, vaccination with Ty21a was associated with NK cell activity and validated in peripheral blood mononuclear cell stimulation assays confirming superior induction of an NK cell response. Moreover, transcriptional signatures of amino acid metabolism in Ty21a recipients were associated with protection against infection, including increased incubation time and decreased severity. Our data provide detailed insight into molecular immune responses to typhoid vaccines, which could aid the rational design of improved oral, live-attenuated vaccines against enteric pathogens.
Collapse
Affiliation(s)
- Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Thomas C Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | | | - Andrew Eustace
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Fernanda Schreiber
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Martin R Goodier
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Gordon Dougan
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Helder I Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
30
|
Shinde MY, Sidoli S, Kulej K, Mallory MJ, Radens CM, Reicherter AL, Myers RL, Barash Y, Lynch KW, Garcia BA, Klein PS. Phosphoproteomics reveals that glycogen synthase kinase-3 phosphorylates multiple splicing factors and is associated with alternative splicing. J Biol Chem 2017; 292:18240-18255. [PMID: 28916722 DOI: 10.1074/jbc.m117.813527] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/08/2017] [Indexed: 11/06/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a constitutively active, ubiquitously expressed protein kinase that regulates multiple signaling pathways. In vitro kinase assays and genetic and pharmacological manipulations of GSK-3 have identified more than 100 putative GSK-3 substrates in diverse cell types. Many more have been predicted on the basis of a recurrent GSK-3 consensus motif ((pS/pT)XXX(S/T)), but this prediction has not been tested by analyzing the GSK-3 phosphoproteome. Using stable isotope labeling of amino acids in culture (SILAC) and MS techniques to analyze the repertoire of GSK-3-dependent phosphorylation in mouse embryonic stem cells (ESCs), we found that ∼2.4% of (pS/pT)XXX(S/T) sites are phosphorylated in a GSK-3-dependent manner. A comparison of WT and Gsk3a;Gsk3b knock-out (Gsk3 DKO) ESCs revealed prominent GSK-3-dependent phosphorylation of multiple splicing factors and regulators of RNA biosynthesis as well as proteins that regulate transcription, translation, and cell division. Gsk3 DKO reduced phosphorylation of the splicing factors RBM8A, SRSF9, and PSF as well as the nucleolar proteins NPM1 and PHF6, and recombinant GSK-3β phosphorylated these proteins in vitro RNA-Seq of WT and Gsk3 DKO ESCs identified ∼190 genes that are alternatively spliced in a GSK-3-dependent manner, supporting a broad role for GSK-3 in regulating alternative splicing. The MS data also identified posttranscriptional regulation of protein abundance by GSK-3, with ∼47 proteins (1.4%) whose levels increased and ∼78 (2.4%) whose levels decreased in the absence of GSK-3. This study provides the first unbiased analysis of the GSK-3 phosphoproteome and strong evidence that GSK-3 broadly regulates alternative splicing.
Collapse
Affiliation(s)
| | - Simone Sidoli
- the Penn Epigenetics Institute.,the Department of Biochemistry and Biophysics
| | - Katarzyna Kulej
- the Penn Epigenetics Institute.,the Department of Biochemistry and Biophysics
| | | | | | | | | | - Yoseph Barash
- the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Benjamin A Garcia
- the Penn Epigenetics Institute.,the Department of Biochemistry and Biophysics
| | - Peter S Klein
- From the Pharmacology Graduate Group, .,the Cell and Molecular Biology Graduate Group.,the Department of Medicine (Hematology-Oncology), and
| |
Collapse
|
31
|
Brinegar AE, Xia Z, Loehr JA, Li W, Rodney GG, Cooper TA. Extensive alternative splicing transitions during postnatal skeletal muscle development are required for calcium handling functions. eLife 2017; 6:27192. [PMID: 28826478 PMCID: PMC5577920 DOI: 10.7554/elife.27192] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023] Open
Abstract
Postnatal development of skeletal muscle is a highly dynamic period of tissue remodeling. Here, we used RNA-seq to identify transcriptome changes from late embryonic to adult mouse muscle and demonstrate that alternative splicing developmental transitions impact muscle physiology. The first 2 weeks after birth are particularly dynamic for differential gene expression and alternative splicing transitions, and calcium-handling functions are significantly enriched among genes that undergo alternative splicing. We focused on the postnatal splicing transitions of the three calcineurin A genes, calcium-dependent phosphatases that regulate multiple aspects of muscle biology. Redirected splicing of calcineurin A to the fetal isoforms in adult muscle and in differentiated C2C12 slows the timing of muscle relaxation, promotes nuclear localization of calcineurin target Nfatc3, and/or affects expression of Nfatc transcription targets. The results demonstrate a previously unknown specificity of calcineurin isoforms as well as the broader impact of alternative splicing during muscle postnatal development.
Collapse
Affiliation(s)
- Amy E Brinegar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States
| | - Zheng Xia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States.,Division of Biostatistics, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, United States
| | - James Anthony Loehr
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Wei Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States.,Division of Biostatistics, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, United States
| | - George Gerald Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Thomas A Cooper
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| |
Collapse
|
32
|
Latorre E, Harries LW. Splicing regulatory factors, ageing and age-related disease. Ageing Res Rev 2017; 36:165-170. [PMID: 28456680 DOI: 10.1016/j.arr.2017.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
Alternative splicing is a co-transcriptional process, which allows for the production of multiple transcripts from a single gene and is emerging as an important control point for gene expression. Alternatively expressed isoforms often have antagonistic function and differential temporal or spatial expression patterns, yielding enormous plasticity and adaptability to cells and increasing their ability to respond to environmental challenge. The regulation of alternative splicing is critical for numerous cellular functions in both pathological and physiological conditions, and deregulated alternative splicing is a key feature of common chronic diseases. Isoform choice is controlled by a battery of splicing regulatory proteins, which include the serine arginine rich (SRSF) proteins and the heterogeneous ribonucleoprotein (hnRNP) classes of genes. These important splicing regulators have been implicated in age-related disease, and in the ageing process itself. This review will outline the important contribution of splicing regulator proteins to ageing and age-related disease.
Collapse
|
33
|
Zeng W, Liu Z, Liu X, Zhang S, Khanniche A, Zheng Y, Ma X, Yu T, Tian F, Liu XR, Fan J, Lin Y. Distinct Transcriptional and Alternative Splicing Signatures of Decidual CD4 + T Cells in Early Human Pregnancy. Front Immunol 2017; 8:682. [PMID: 28659920 PMCID: PMC5466981 DOI: 10.3389/fimmu.2017.00682] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/26/2017] [Indexed: 01/28/2023] Open
Abstract
Decidual CD4+ T (dCD4 T) cells are crucial for the maternal-fetal immune tolerance required for a healthy pregnancy outcome. However, their molecular and functional characteristics are not well elucidated. In this study, we performed the first analysis of transcriptional and alternative splicing (AS) landscapes for paired decidual and peripheral blood CD4+ T (pCD4 T) cells in human early pregnancy using high throughput mRNA sequencing. Our data showed that dCD4 T cells are endowed with a unique transcriptional signature when compared to pCD4 T cells: dCD4 T cells upregulate 1,695 genes enriched in immune system process whereas downregulate 1,011 genes mainly related to mRNA catabolic process and the ribosome. Moreover, dCD4 T cells were observed to be at M phase, and show increased activation, proliferation, and cytokine production, as well as display an effector-memory phenotype and a heterogenous nature containing Th1, Th17, and Treg cell subsets. However, dCD4 T cells undergo a comparable number of upregulated and downregulated AS events, both of which are enriched in the genes related to cellular metabolic process. And the changes at the AS event level do not reflect measurable differences at the gene expression level in dCD4 T cells. Collectively, our findings provide a comprehensive portrait of the unique transcriptional signature and AS profile of CD4+ T cells in human decidua and help us gain more understanding of the functional characteristic of these cells during early pregnancy.
Collapse
Affiliation(s)
- Weihong Zeng
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicui Liu
- Department of Dermatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinmei Liu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siming Zhang
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Asma Khanniche
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zheng
- Out-patient Operating Room, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Ma
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Yu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuju Tian
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Rui Liu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxia Fan
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Gallego-Paez LM, Bordone MC, Leote AC, Saraiva-Agostinho N, Ascensão-Ferreira M, Barbosa-Morais NL. Alternative splicing: the pledge, the turn, and the prestige : The key role of alternative splicing in human biological systems. Hum Genet 2017; 136:1015-1042. [PMID: 28374191 PMCID: PMC5602094 DOI: 10.1007/s00439-017-1790-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/25/2017] [Indexed: 02/06/2023]
Abstract
Alternative pre-mRNA splicing is a tightly controlled process conducted by the spliceosome, with the assistance of several regulators, resulting in the expression of different transcript isoforms from the same gene and increasing both transcriptome and proteome complexity. The differences between alternative isoforms may be subtle but enough to change the function or localization of the translated proteins. A fine control of the isoform balance is, therefore, needed throughout developmental stages and adult tissues or physiological conditions and it does not come as a surprise that several diseases are caused by its deregulation. In this review, we aim to bring the splicing machinery on stage and raise the curtain on its mechanisms and regulation throughout several systems and tissues of the human body, from neurodevelopment to the interactions with the human microbiome. We discuss, on one hand, the essential role of alternative splicing in assuring tissue function, diversity, and swiftness of response in these systems or tissues, and on the other hand, what goes wrong when its regulatory mechanisms fail. We also focus on the possibilities that splicing modulation therapies open for the future of personalized medicine, along with the leading techniques in this field. The final act of the spliceosome, however, is yet to be fully revealed, as more knowledge is needed regarding the complex regulatory network that coordinates alternative splicing and how its dysfunction leads to disease.
Collapse
Affiliation(s)
- L M Gallego-Paez
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M C Bordone
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A C Leote
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N Saraiva-Agostinho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M Ascensão-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N L Barbosa-Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
35
|
Sun H. Deciphering alternative splicing and nonsense-mediated decay modulate expression in primary lymphoid tissues of birds infected with avian pathogenic E. coli (APEC). BMC Genet 2017; 18:21. [PMID: 28270101 PMCID: PMC5341183 DOI: 10.1186/s12863-017-0488-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Background Avian pathogenic E. coli (APEC) can lead to a loss in millions of dollars in poultry annually because of mortality and produce contamination. Studies have verified that many immune-related genes undergo changes in alternative splicing (AS), along with nonsense mediated decay (NMD), to regulate the immune system under different conditions. Therefore, the splicing profiles of primary lymphoid tissues with systemic APEC infection need to be comprehensively examined. Results Gene expression in RNAseq data were obtained for three different immune tissues (bone marrow, thymus, and bursa) from three phenotype birds (non-challenged, resistant, and susceptible birds) at two time points. Alternative 5′ splice sites and exon skipping/inclusion were identified as the major alternative splicing events in avian primary immune organs under systemic APEC infection. In this study, we detected hundreds of differentially-expressed-transcript-containing genes (DETs) between different phenotype birds at 5 days post-infection (dpi). DETs, PSAP and STT3A, with NMD have important functions under systemic APEC infection. DETs, CDC45, CDK1, RAG2, POLR1B, PSAP, and DNASE1L3, from the same transcription start sites (TSS) indicate that cell death, cell cycle, cellular function, and maintenance were predominant in host under systemic APEC. Conclusions With the use of RNAseq technology and bioinformatics tools, this study provides a portrait of the AS event and NMD in primary lymphoid tissues, which play critical roles in host homeostasis under systemic APEC infection. According to this study, AS plays a pivotal regulatory role in the immune response in chicken under systemic APEC infection via either NMD or alternative TSSs. This study elucidates the regulatory role of AS for the immune complex under systemic APEC infection. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0488-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
36
|
SPSB1-mediated HnRNP A1 ubiquitylation regulates alternative splicing and cell migration in EGF signaling. Cell Res 2017; 27:540-558. [PMID: 28084329 DOI: 10.1038/cr.2017.7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 12/31/2022] Open
Abstract
Extracellular signals have been shown to impact on alternative pre-mRNA splicing; however, the molecular mechanisms and biological significance of signal-induced splicing regulation remain largely unknown. Here, we report that epidermal growth factor (EGF) induces splicing changes through ubiquitylation of a well-known splicing regulator, hnRNP A1. EGF signaling upregulates an E3 ubiquitin (Ub) ligase adaptor, SPRY domain-containing SOCS box protein 1 (SPSB1), which recruits Elongin B/C-Cullin complexes to conjugate lysine 29-linked polyUb chains onto hnRNP A1. Importantly, SPSB1 and ubiquitylation of hnRNP A1 have a critical role in EGF-driven cell migration. Mechanistically, EGF-induced ubiquitylation of hnRNP A1 together with the activation of SR protein kinases (SRPKs) results in the upregulation of a Rac1 splicing isoform, Rac1b, to promote cell motility. These findings unravel a novel crosstalk between protein ubiquitylation and alternative splicing in EGF/EGF receptor signaling, and identify a new EGF/SPSB1/hnRNP A1/Rac1 axis in modulating cell migration, which may have important implications for cancer treatment.
Collapse
|
37
|
Genome-wide analysis of alternative splicing during human heart development. Sci Rep 2016; 6:35520. [PMID: 27752099 PMCID: PMC5067579 DOI: 10.1038/srep35520] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 09/27/2016] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing (AS) drives determinative changes during mouse heart development. Recent high-throughput technological advancements have facilitated genome-wide AS, while its analysis in human foetal heart transition to the adult stage has not been reported. Here, we present a high-resolution global analysis of AS transitions between human foetal and adult hearts. RNA-sequencing data showed extensive AS transitions occurred between human foetal and adult hearts, and AS events occurred more frequently in protein-coding genes than in long non-coding RNA (lncRNA). A significant difference of AS patterns was found between foetal and adult hearts. The predicted difference in AS events was further confirmed using quantitative reverse transcription-polymerase chain reaction analysis of human heart samples. Functional foetal-specific AS event analysis showed enrichment associated with cell proliferation-related pathways including cell cycle, whereas adult-specific AS events were associated with protein synthesis. Furthermore, 42.6% of foetal-specific AS events showed significant changes in gene expression levels between foetal and adult hearts. Genes exhibiting both foetal-specific AS and differential expression were highly enriched in cell cycle-associated functions. In conclusion, we provided a genome-wide profiling of AS transitions between foetal and adult hearts and proposed that AS transitions and deferential gene expression may play determinative roles in human heart development.
Collapse
|
38
|
Lin J, Hu Y, Nunez S, Foulkes AS, Cieply B, Xue C, Gerelus M, Li W, Zhang H, Rader DJ, Musunuru K, Li M, Reilly MP. Transcriptome-Wide Analysis Reveals Modulation of Human Macrophage Inflammatory Phenotype Through Alternative Splicing. Arterioscler Thromb Vasc Biol 2016; 36:1434-47. [PMID: 27230130 PMCID: PMC4919157 DOI: 10.1161/atvbaha.116.307573] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Human macrophages can shift phenotype across the inflammatory M1 and reparative M2 spectrum in response to environmental challenges, but the mechanisms promoting inflammatory and cardiometabolic disease-associated M1 phenotypes remain incompletely understood. Alternative splicing (AS) is emerging as an important regulator of cellular function, yet its role in macrophage activation is largely unknown. We investigated the extent to which AS occurs in M1 activation within the cardiometabolic disease context and validated a functional genomic cell model for studying human macrophage-related AS events. APPROACH AND RESULTS From deep RNA-sequencing of resting, M1, and M2 primary human monocyte-derived macrophages, we found 3860 differentially expressed genes in M1 activation and detected 233 M1-induced AS events; the majority of AS events were cell- and M1-specific with enrichment for pathways relevant to macrophage inflammation. Using genetic variant data for 10 cardiometabolic traits, we identified 28 trait-associated variants within the genomic loci of 21 alternatively spliced genes and 15 variants within 7 differentially expressed regulatory splicing factors in M1 activation. Knockdown of 1 such splicing factor, CELF1, in primary human macrophages led to increased inflammatory response to M1 stimulation, demonstrating CELF1's potential modulation of the M1 phenotype. Finally, we demonstrated that an induced pluripotent stem cell-derived macrophage system recapitulates M1-associated AS events and provides a high-fidelity macrophage AS model. CONCLUSIONS AS plays a role in defining macrophage phenotype in a cell- and stimulus-specific fashion. Alternatively spliced genes and splicing factors with trait-associated variants may reveal novel pathways and targets in cardiometabolic diseases.
Collapse
Affiliation(s)
- Jennie Lin
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.).
| | - Yu Hu
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Sara Nunez
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Andrea S Foulkes
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Benjamin Cieply
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Chenyi Xue
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Mark Gerelus
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Wenjun Li
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Hanrui Zhang
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Daniel J Rader
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Kiran Musunuru
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Mingyao Li
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Muredach P Reilly
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.).
| |
Collapse
|
39
|
Yurova KA, Sokhonevich NA, Khaziakhmatova OG, Litvinova LS. [Cytokine-mediated regulation of expression of Gfi1 and U2afll4 genes activated by T-cells with different differentiation status in vitro]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:180-6. [PMID: 27143377 DOI: 10.18097/pbmc20166202180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The dose-dependent effects of cytokines (IL-2, IL-7, and IL-15), which have a common g-chain, on mRNA expression of U2afll4 and GFi1 genes involved in regulation of alternative splicing of the Ptprc gene, have been investigated in vitro using T-lymphocyte cultures with different degrees of differentiation. IL-2, IL-7, and IL-15 caused a similar unidirectional inhibitory effect of various severity on restimulated CD45RO+ T-cells exposed to an antigen-independent activation; they caused a dose-dependent decrease of the U2af1l4 gene expression, and an increase of Gfi1 gene expression. This may suggest formation of active forms of the CD45 receptor, and also limitation of the formation of low-molecular short splice variants of the CD45RO receptor. Under conditions of antigen-independent stimulation of naive CD45RA+-cells rIL-7 and IL-15 exhibited opposite effects on U2af1l4 and Gfi1 gene expression. The increase of IL-7 concentrations in the incubation medium of naive cells was accompanied by a decrease in expression of both genes. IL-15 IL-7 exhibited opposite effects. Cytokines possessing a common g-chain (IL-2, IL-7, and IL-15) prevented antigen-independent differentiation of naive T-cells, by preventing the formation of polyclonal "surrogate" cells. In general, the study of the molecular mechanisms of genetic control determining homeostatic processes of T-cells in response to exposure to antigenic or non-antigenic treatments may be important for construction of a general model of self-maintenance and differentiation of immune cells.
Collapse
Affiliation(s)
- K A Yurova
- Kant Baltic Federal University, Kaliningrad, Russia
| | | | | | | |
Collapse
|
40
|
Alternative splicing of MALT1 controls signalling and activation of CD4(+) T cells. Nat Commun 2016; 7:11292. [PMID: 27068814 PMCID: PMC4832065 DOI: 10.1038/ncomms11292] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/09/2016] [Indexed: 12/25/2022] Open
Abstract
MALT1 channels proximal T-cell receptor (TCR) signalling to downstream signalling pathways. With MALT1A and MALT1B two conserved splice variants exist and we demonstrate here that MALT1 alternative splicing supports optimal T-cell activation. Inclusion of exon7 in MALT1A facilitates the recruitment of TRAF6, which augments MALT1 scaffolding function, but not protease activity. Naive CD4+ T cells express almost exclusively MALT1B and MALT1A expression is induced by TCR stimulation. We identify hnRNP U as a suppressor of exon7 inclusion. Whereas selective depletion of MALT1A impairs T-cell signalling and activation, downregulation of hnRNP U enhances MALT1A expression and T-cell activation. Thus, TCR-induced alternative splicing augments MALT1 scaffolding to enhance downstream signalling and to promote optimal T-cell activation. MALT1 regulates NFκB signalling both as a scaffolding protein and as a protease. Here the authors show that during T cell activation the expression of MALT1 gene switches to an alternatively spliced variant, which increases TCR signal transduction due to enhanced TRAF6 binding.
Collapse
|
41
|
Karczewski J, Dobrowolska A, Rychlewska-Hańczewska A, Adamski Z. New insights into the role of T cells in pathogenesis of psoriasis and psoriatic arthritis. Autoimmunity 2016; 49:435-450. [DOI: 10.3109/08916934.2016.1166214] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation. Genes Dev 2016; 29:2054-66. [PMID: 26443849 PMCID: PMC4604346 DOI: 10.1101/gad.267245.115] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, Martinez et al. find a positive feedback loop in the JNK signaling pathway through the alternative splicing of MKK7, identify the RNA-binding protein CELF2 as a major regulator of MKK7 splicing, and show that ∼25% of T-cell receptor-mediated alternative splicing events are dependent on JNK signaling. This study provides insight into a novel paradigm for the reciprocal interplay of signaling and splicing. Alternative splicing is prevalent among genes encoding signaling molecules; however, the functional consequence of differential isoform expression remains largely unknown. Here we demonstrate that, in response to T-cell activation, the Jun kinase (JNK) kinase MAP kinase kinase 7 (MKK7) is alternatively spliced to favor an isoform that lacks exon 2. This isoform restores a JNK-docking site within MKK7 that is disrupted in the larger isoform. Consistently, we show that skipping of MKK7 exon 2 enhances JNK pathway activity, as indicated by c-Jun phosphorylation and up-regulation of TNF-α. Moreover, this splicing event is itself dependent on JNK signaling. Thus, MKK7 alternative splicing represents a positive feedback loop through which JNK promotes its own signaling. We further show that repression of MKK7 exon 2 is dependent on the presence of flanking sequences and the JNK-induced expression of the RNA-binding protein CELF2, which binds to these regulatory elements. Finally, we found that ∼25% of T-cell receptor-mediated alternative splicing events are dependent on JNK signaling. Strikingly, these JNK-dependent events are also significantly enriched for responsiveness to CELF2. Together, our data demonstrate a widespread role for the JNK–CELF2 axis in controlling splicing during T-cell activation, including a specific role in propagating JNK signaling.
Collapse
|
43
|
The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation. Int J Mol Sci 2015; 17:ijms17010003. [PMID: 26703587 PMCID: PMC4730250 DOI: 10.3390/ijms17010003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system.
Collapse
|
44
|
Whisenant TC, Peralta ER, Aarreberg LD, Gao NJ, Head SR, Ordoukhanian P, Williamson JR, Salomon DR. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells. PLoS One 2015; 10:e0144409. [PMID: 26641092 PMCID: PMC4671683 DOI: 10.1371/journal.pone.0144409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022] Open
Abstract
Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as "central" interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, "peripheral" interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly of RNA splicing interactomes that is important for understanding T cell activation.
Collapse
Affiliation(s)
- Thomas C. Whisenant
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Eigen R. Peralta
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Lauren D. Aarreberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Nina J. Gao
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Steven R. Head
- NGS and Microarray Core Facility, The Scripps Research Institute, La Jolla, California, United States of America
| | - Phillip Ordoukhanian
- NGS and Microarray Core Facility, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jamie R. Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Daniel R. Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Cole BS, Tapescu I, Allon SJ, Mallory MJ, Qiu J, Lake RJ, Fan HY, Fu XD, Lynch KW. Global analysis of physical and functional RNA targets of hnRNP L reveals distinct sequence and epigenetic features of repressed and enhanced exons. RNA (NEW YORK, N.Y.) 2015; 21:2053-66. [PMID: 26437669 PMCID: PMC4647460 DOI: 10.1261/rna.052969.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/24/2015] [Indexed: 05/27/2023]
Abstract
HnRNP L is a ubiquitous splicing-regulatory protein that is critical for the development and function of mammalian T cells. Previous work has identified a few targets of hnRNP L-dependent alternative splicing in T cells and has described transcriptome-wide association of hnRNP L with RNA. However, a comprehensive analysis of the impact of hnRNP L on mRNA expression remains lacking. Here we use next-generation sequencing to identify transcriptome changes upon depletion of hnRNP L in a model T-cell line. We demonstrate that hnRNP L primarily regulates cassette-type alternative splicing, with minimal impact of hnRNP L depletion on transcript abundance, intron retention, or other modes of alternative splicing. Strikingly, we find that binding of hnRNP L within or flanking an exon largely correlates with exon repression by hnRNP L. In contrast, exons that are enhanced by hnRNP L generally lack proximal hnRNP L binding. Notably, these hnRNP L-enhanced exons share sequence and context features that correlate with poor nucleosome positioning, suggesting that hnRNP may enhance inclusion of a subset of exons via a cotranscriptional or epigenetic mechanism. Our data demonstrate that hnRNP L controls inclusion of a broad spectrum of alternative cassette exons in T cells and suggest both direct RNA regulation as well as indirect mechanisms sensitive to the epigenetic landscape.
Collapse
Affiliation(s)
- Brian S Cole
- Department of Biochemistry and Biophysics Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Iulia Tapescu
- Department of Biochemistry and Biophysics Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Samuel J Allon
- Department of Biochemistry and Biophysics Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael J Mallory
- Department of Biochemistry and Biophysics Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jinsong Qiu
- Department of Cell and Molecular Medicine, University of California San Diego, San Diego, California 92093, USA
| | - Robert J Lake
- Department of Biochemistry and Biophysics Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hua-Ying Fan
- Department of Biochemistry and Biophysics Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xiang-Dong Fu
- Department of Cell and Molecular Medicine, University of California San Diego, San Diego, California 92093, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
46
|
McCuaig RD, Dunn J, Li J, Masch A, Knaute T, Schutkowski M, Zerweck J, Rao S. PKC-Theta is a Novel SC35 Splicing Factor Regulator in Response to T Cell Activation. Front Immunol 2015; 6:562. [PMID: 26594212 PMCID: PMC4633479 DOI: 10.3389/fimmu.2015.00562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/21/2015] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing of nuclear pre-mRNA is essential for generating protein diversity and regulating gene expression. While many immunologically relevant genes undergo alternative splicing, the role of regulated splicing in T cell immune responses is largely unexplored, and the signaling pathways and splicing factors that regulate alternative splicing in T cells are poorly defined. Here, we show using a combination of Jurkat T cells, human primary T cells, and ex vivo naïve and effector virus-specific T cells isolated after influenza A virus infection that SC35 phosphorylation is induced in response to stimulatory signals. We show that SC35 colocalizes with RNA polymerase II in activated T cells and spatially overlaps with H3K27ac and H3K4me3, which mark transcriptionally active genes. Interestingly, SC35 remains coupled to the active histone marks in the absence of continuing stimulatory signals. We show for the first time that nuclear PKC-θ co-exists with SC35 in the context of the chromatin template and is a key regulator of SC35 in T cells, directly phosphorylating SC35 peptide residues at RNA recognition motif and RS domains. Collectively, our findings suggest that nuclear PKC-θ is a novel regulator of the key splicing factor SC35 in T cells.
Collapse
Affiliation(s)
- Robert Duncan McCuaig
- Discipline of Biomedical Sciences, Faculty of Education, Science, Technology and Maths, University of Canberra , Canberra, ACT , Australia
| | - Jennifer Dunn
- Discipline of Biomedical Sciences, Faculty of Education, Science, Technology and Maths, University of Canberra , Canberra, ACT , Australia
| | - Jasmine Li
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, VIC , Australia
| | - Antonia Masch
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University , Halle , Germany
| | | | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University , Halle , Germany
| | | | - Sudha Rao
- Discipline of Biomedical Sciences, Faculty of Education, Science, Technology and Maths, University of Canberra , Canberra, ACT , Australia
| |
Collapse
|
47
|
Seok J, Xu W, Davis RW, Xiao W. RASA: Robust Alternative Splicing Analysis for Human Transcriptome Arrays. Sci Rep 2015; 5:11917. [PMID: 26145443 PMCID: PMC4491729 DOI: 10.1038/srep11917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/09/2015] [Indexed: 11/28/2022] Open
Abstract
Human transcriptome arrays (HTA) have recently been developed for high-throughput alternative splicing analysis by measuring signals not only from exons but also from exon-exon junctions. Effective use of these rich signals requires the development of computational methods for better gene and alternative splicing analyses. In this work, we introduce a computational method, Robust Alternative Splicing Analysis (RASA), for the analysis of the new transcriptome arrays by effective integration of the exon and junction signals. To increase robustness, RASA calculates the expression of each gene by selecting exons classified as not alternatively spliced. It then identifies alternatively spliced exons that are supported by both exon and junction signals to reduce the false positives. Finally, it detects additional alternative splicing candidates that are supported by only exon signals because the signals from the corresponding junctions are not well detected. RASA was demonstrated with Affymetrix HTAs and its performance was evaluated with mRNA-Seq and RT-PCR. The validation rate is 52.4%, which is a 60% increase when compared with previous methods that do not use selected exons for gene expression calculation and junction signals for splicing detection. These results suggest that RASA significantly improves alternative splicing analyses on HTA platforms.
Collapse
Affiliation(s)
- Junhee Seok
- School of Electrical Engineering, Korea University, Seoul 136-701, Korea
| | - Weihong Xu
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | - Ronald W Davis
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | - Wenzhong Xiao
- 1] Stanford Genome Technology Center, Palo Alto, CA 94304, USA [2] Massachusetts General Hospital and Shriners Hospital for Children, Boston, MA 02114, USA
| |
Collapse
|
48
|
Induced transcription and stability of CELF2 mRNA drives widespread alternative splicing during T-cell signaling. Proc Natl Acad Sci U S A 2015; 112:E2139-48. [PMID: 25870297 DOI: 10.1073/pnas.1423695112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Studies in several cell types have highlighted dramatic and diverse changes in mRNA processing that occur upon cellular stimulation. However, the mechanisms and pathways that lead to regulated changes in mRNA processing remain poorly understood. Here we demonstrate that expression of the splicing factor CELF2 (CUGBP, Elav-like family member 2) is regulated in response to T-cell signaling through combined increases in transcription and mRNA stability. Transcriptional induction occurs within 6 h of stimulation and is dependent on activation of NF-κB. Subsequently, there is an increase in the stability of the CELF2 mRNA that correlates with a change in CELF2 3'UTR length and contributes to the total signal-induced enhancement of CELF2 expression. Importantly, we uncover dozens of splicing events in cultured T cells whose changes upon stimulation are dependent on CELF2 expression, and provide evidence that CELF2 controls a similar proportion of splicing events during human thymic T-cell development. Taken together, these findings expand the physiologic impact of CELF2 beyond that previously documented in developing neuronal and muscle cells to T-cell development and function, identify unappreciated instances of alternative splicing in the human thymus, and uncover novel mechanisms for CELF2 regulation that may broadly impact CELF2 expression across diverse cell types.
Collapse
|
49
|
Huang W, August A. The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation. J Leukoc Biol 2015; 97:477-85. [PMID: 25525115 PMCID: PMC4338847 DOI: 10.1189/jlb.1ri0614-293r] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/03/2014] [Accepted: 11/13/2014] [Indexed: 01/07/2023] Open
Abstract
T cell development, differentiation, and maintenance are orchestrated by 2 key signaling axes: the antigen-specific TCR and cytokine-mediated signals. The TCR signals the recognition of self- and foreign antigens to control T cell homeostasis for immune tolerance and immunity, which is regulated by a variety of cytokines to determine T cell subset homeostasis and differentiation. TCR signaling can synergize with or antagonize cytokine-mediated signaling to fine tune T cell fate; however, the latter is less investigated. Murine models with attenuated TCR signaling strength have revealed that TCR signaling can function as regulatory feedback machinery for T cell homeostasis and differentiation in differential cytokine milieus, such as IL-2-mediated Treg development; IL-7-mediated, naïve CD8(+) T cell homeostasis; and IL-4-induced innate memory CD8(+) T cell development. In this review, we discuss the symphonic cross-talk between TCR and cytokine-mediated responses that differentially control T cell behavior, with a focus on the negative tuning by TCR activation on the cytokine effects.
Collapse
Affiliation(s)
- Weishan Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
50
|
Thénoz M, Vernin C, Mortada H, Karam M, Pinatel C, Gessain A, Webb TR, Auboeuf D, Wattel E, Mortreux F. HTLV-1-infected CD4+ T-cells display alternative exon usages that culminate in adult T-cell leukemia. Retrovirology 2014; 11:119. [PMID: 25519886 PMCID: PMC4293115 DOI: 10.1186/s12977-014-0119-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/02/2014] [Indexed: 12/18/2022] Open
Abstract
Background Reprogramming cellular gene transcription sustains HTLV-1 viral persistence that ultimately leads to the development of adult T-cell leukemia/lymphoma (ATLL). We hypothesized that besides these quantitative transcriptional effects, HTLV-1 qualitatively modifies the pattern of cellular gene expression. Results Exon expression analysis shows that patients’ untransformed and malignant HTLV-1+ CD4+ T-cells exhibit multiple alternate exon usage (AEU) events. These affect either transcriptionally modified or unmodified genes, culminate in ATLL, and unveil new functional pathways involved in cancer and cell cycle. Unsupervised hierarchical clustering of array data permitted to isolate exon expression patterns of 3977 exons that discriminate uninfected, infected, and transformed CD4+ T-cells. Furthermore, untransformed infected CD4+ clones and ATLL samples shared 486 exon modifications distributed in 320 genes, thereby indicating a role of AEUs in HTLV-1 leukemogenesis. Exposing cells to splicing modulators revealed that Sudemycin E reduces cell viability of HTLV-1 transformed cells without affecting primary control CD4+ cells and HTLV-1 negative cell lines, suggesting that the huge excess of AEU might provide news targets for treating ATLL. Conclusions Taken together, these data reveal that HTLV-1 significantly modifies the structure of cellular transcripts and unmask new putative leukemogenic pathways and possible therapeutic targets. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0119-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Morgan Thénoz
- Université de Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Laboratoire de Biologie Moléculaire de la Cellule, Faculté de Médecine Lyon Sud, Pierre Bénite, France.
| | - Céline Vernin
- Université de Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Laboratoire de Biologie Moléculaire de la Cellule, Faculté de Médecine Lyon Sud, Pierre Bénite, France.
| | - Hussein Mortada
- Centre de Recherche sur le Cancer de Lyon, France Epissage alternatif et progression tumorale, Lyon, France.
| | - Maroun Karam
- Université de Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Laboratoire de Biologie Moléculaire de la Cellule, Faculté de Médecine Lyon Sud, Pierre Bénite, France.
| | - Christiane Pinatel
- Centre de Recherche sur le Cancer de Lyon, France Epissage alternatif et progression tumorale, Lyon, France.
| | - Antoine Gessain
- Institut Pasteur, Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France.
| | - Thomas R Webb
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA, 94025-3493, USA.
| | - Didier Auboeuf
- Centre de Recherche sur le Cancer de Lyon, France Epissage alternatif et progression tumorale, Lyon, France.
| | - Eric Wattel
- Université de Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Laboratoire de Biologie Moléculaire de la Cellule, Faculté de Médecine Lyon Sud, Pierre Bénite, France. .,Université Lyon I, Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud, Pierre Bénite, France. .,Oncovirologie et Biotherapies, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239 CNRS/ENS, Lyon/UCBL/HCL; Ecole normale supérieure de Lyon, 46, allée d'Italie; 69364, Lyon cedex 07, France.
| | - Franck Mortreux
- Université de Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Laboratoire de Biologie Moléculaire de la Cellule, Faculté de Médecine Lyon Sud, Pierre Bénite, France. .,Oncovirologie et Biotherapies, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239 CNRS/ENS, Lyon/UCBL/HCL; Ecole normale supérieure de Lyon, 46, allée d'Italie; 69364, Lyon cedex 07, France.
| |
Collapse
|