1
|
Baños-Jaime B, Corrales-Guerrero L, Pérez-Mejías G, Rejano-Gordillo CM, Velázquez-Campoy A, Martínez-Cruz LA, Martínez-Chantar ML, De la Rosa MA, Díaz-Moreno I. Phosphorylation at the disordered N-end makes HuR accumulate and dimerize in the cytoplasm. Nucleic Acids Res 2024; 52:8552-8565. [PMID: 38966993 PMCID: PMC11317137 DOI: 10.1093/nar/gkae564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/30/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024] Open
Abstract
Human antigen R (HuR) is an RNA binding protein mainly involved in maintaining the stability and controlling the translation of mRNAs, critical for immune response, cell survival, proliferation and apoptosis. Although HuR is a nuclear protein, its mRNA translational-related function occurs at the cytoplasm, where the oligomeric form of HuR is more abundant. However, the regulation of nucleo-cytoplasmic transport of HuR and its connection with protein oligomerization remain unclear. In this work, we describe the phosphorylation of Tyr5 as a new hallmark for HuR activation. Our biophysical, structural and computational assays using phosphorylated and phosphomimetic HuR proteins demonstrate that phosphorylation of Tyr5 at the disordered N-end stretch induces global changes on HuR dynamics and conformation, modifying the solvent accessible surface of the HuR nucleo-cytoplasmic shuttling (HNS) sequence and releasing regions implicated in HuR dimerization. These findings explain the preferential cytoplasmic accumulation of phosphorylated HuR in HeLa cells, aiding to comprehend the mechanisms underlying HuR nucleus-cytoplasm shuttling and its later dimerization, both of which are relevant in HuR-related pathogenesis.
Collapse
Affiliation(s)
- Blanca Baños-Jaime
- Institute for Chemical Research (IIQ), Scientific Research Center "Isla de la Cartuja" (cicCartuja), University of Seville - CSIC, Seville 41092, Spain
| | - Laura Corrales-Guerrero
- Institute for Chemical Research (IIQ), Scientific Research Center "Isla de la Cartuja" (cicCartuja), University of Seville - CSIC, Seville 41092, Spain
| | - Gonzalo Pérez-Mejías
- Institute for Chemical Research (IIQ), Scientific Research Center "Isla de la Cartuja" (cicCartuja), University of Seville - CSIC, Seville 41092, Spain
| | - Claudia M Rejano-Gordillo
- Centre for Biomedical Research Network of Hepatic and Digestive Diseases (CIBERehd), Madrid 28029, Spain
- Liver Disease Lab, BRTA CIC bioGUNE, Derio 48160 Bizkaia, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura; University Institute of Biosanitary Research of Extremadura (INUBE), Badajoz 06071, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physic of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, Zaragoza 50018, Spain
- Departament of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza 50009, Spain
- Institute for Health Research of Aragón (IIS Aragon), Zaragoza 50009, Spain
| | - Luis Alfonso Martínez-Cruz
- Centre for Biomedical Research Network of Hepatic and Digestive Diseases (CIBERehd), Madrid 28029, Spain
- Liver Disease Lab, BRTA CIC bioGUNE, Derio 48160 Bizkaia, Spain
| | - María Luz Martínez-Chantar
- Centre for Biomedical Research Network of Hepatic and Digestive Diseases (CIBERehd), Madrid 28029, Spain
- Liver Disease Lab, BRTA CIC bioGUNE, Derio 48160 Bizkaia, Spain
| | - Miguel A De la Rosa
- Institute for Chemical Research (IIQ), Scientific Research Center "Isla de la Cartuja" (cicCartuja), University of Seville - CSIC, Seville 41092, Spain
| | - Irene Díaz-Moreno
- Institute for Chemical Research (IIQ), Scientific Research Center "Isla de la Cartuja" (cicCartuja), University of Seville - CSIC, Seville 41092, Spain
| |
Collapse
|
2
|
Yi S, Singh SS, Rozen-Gagnon K, Luna JM. Mapping RNA-protein interactions with subcellular resolution using colocalization CLIP. RNA (NEW YORK, N.Y.) 2024; 30:920-937. [PMID: 38658162 PMCID: PMC11182006 DOI: 10.1261/rna.079890.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
RNA-binding proteins (RBPs) are essential for RNA metabolism and profoundly impact health and disease. The subcellular organization of RBP interaction networks with target RNAs remains largely unexplored. Here, we develop colocalization CLIP (coCLIP), a method that combines cross-linking and immunoprecipitation (CLIP) with proximity labeling, to explore in-depth the subcellular RNA interactions of the RBP human antigen R (HuR). Using this method, we uncover HuR's dynamic and location-specific interactions with RNA, revealing alterations in sequence preferences and interactions in the nucleus, cytosol, or stress granule (SG) compartments. We uncover HuR's unique binding preferences within SGs during arsenite stress, illuminating intricate interactions that conventional methodologies cannot capture. Overall, coCLIP provides a powerful method for revealing RBP-RNA interactions based on localization and lays the foundation for an advanced understanding of RBP models that incorporate subcellular location as a critical determinant of their functions.
Collapse
Affiliation(s)
- Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Shashi S Singh
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Kathryn Rozen-Gagnon
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Joseph M Luna
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
3
|
Ma XJ, Sun Z, Wang YP, Yao XP, Luo TT, Bao YL, Ainiwaer D, Zhang T, Zhu H, Zhang Y, Hu FM, Yu WY. Heat shock induces HuR-dependent MKP-1 posttranslational regulation through the p38 MAPK signaling cascade. Tissue Cell 2024; 86:102262. [PMID: 37984224 DOI: 10.1016/j.tice.2023.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Previous studies demonstrated that phosphatases play a pivotal role in modulating inflammation-associated signal transduction, particularly in the context of heat shock, where Mitogen-Activated Protein Kinase Phosphatase-1 (MKP-1) appears to have a central role. Recently, Human Antigen R (HuR) has also been identified as a factor that enhances stress-response protein MKP-1 levels. Consequently, we have directed our interest towards elucidating the mechanisms by which heat shock induces MKP-1 mRNA stabilization, dependent on HuR via the p38 MAPK Signaling Cascade. In this study, we subjected Mouse Embryonic Fibroblast (Mef) cells to heat shock treatment, resulting in a potent stabilization MKP-1 mRNA. The RNA-binding protein HuR, known to influence mRNA, was observed to bind to the MKP-1 AU-rich 3 ´untranslated region. Transfection of p38 wild-type Mef cells with a flag-HuR plasmid resulted in a significant increase in MKP-1 mRNA stability. Interestingly, transfection of the siRNA for HuR into Mef cells resulted in diminished MKP-1 mRNA stability following heat shock, inhibition of p38 MAPK activity effectively curtailed heat shock-mediated MKP-1 mRNA stability. Immunofluorescence analyses further revealed that the translocation of HuR was contingent on p38 MAPK Signaling Cascade. Collectively, these findings underscore the regulatory role of heat shock in MKP-1 gene expression at posttranscriptional levels. The mechanisms underlying the observed increased MKP-1 mRNA stability are shown to be partially dependent on HuR through the p38 MAPK Signaling Cascade.
Collapse
Affiliation(s)
- Xiao-Juan Ma
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Zhan Sun
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Yi-Ping Wang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Xue-Ping Yao
- Department of Functional Center,College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Ting-Ting Luo
- Hematological Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Ya-Li Bao
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Dina Ainiwaer
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Tian Zhang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Hengyi Zhu
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Yan Zhang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Fei-Ming Hu
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Wen-Yan Yu
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China; Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang 830000, China.
| |
Collapse
|
4
|
Yi S, Singh SS, Rozen-Gagnon K, Luna JM. Mapping RNA-Protein Interactions with Subcellular Resolution Using Colocalization CLIP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563984. [PMID: 37961159 PMCID: PMC10634835 DOI: 10.1101/2023.10.26.563984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
RNA binding proteins (RBPs) are essential for RNA metabolism and profoundly impact health and disease. The subcellular organization of RBP interaction networks with target RNAs remains largely unexplored. Here, we develop colocalization CLIP, a method that combines CrossLinking and ImmunoPrecipitation (CLIP) with proximity labeling, to explore in-depth the subcellular RNA interactions of the well-studied RNA-binding protein HuR. Using this method, we uncover HuR's dynamic and location-specific interactions with RNA, revealing alterations in sequence preferences and interactions in the nucleus, cytosol, or stress granule compartments. We uncover HuR's unique binding preferences within stress granules during arsenite stress, illuminating intricate interactions that conventional methodologies cannot capture. Overall, coCLIP provides a powerful method for revealing RBP:RNA interactions based on localization and lays the foundation for an advanced understanding of RBP models that incorporate subcellular location as a critical determinant of their functions.
Collapse
|
5
|
Hu Antigen R (HuR) Protein Structure, Function and Regulation in Hepatobiliary Tumors. Cancers (Basel) 2022; 14:cancers14112666. [PMID: 35681645 PMCID: PMC9179498 DOI: 10.3390/cancers14112666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Hepatobiliary tumors are a group of primary malignancies encompassing the liver, the intra- and extra-hepatic biliary tracts, and the gall bladder. Within the liver, hepatocellular carcinoma (HCC) is the most common type of primary cancer, which is, also, representing the third-most recurrent cause of cancer-associated death and the sixth-most prevalent type of tumor worldwide, nowadays. Although less frequent, cholangiocarcinoma (CCA) is, currently, a fatal cancer with limited therapeutic options. Here, we review the regulatory role of Hu antigen R (HuR), a ubiquitous member of the ELAV/Hu family of RNA-binding proteins (RBPs), in the pathogenesis, progression, and treatment of HCC and CCA. Overall, HuR is proposed as a valuable diagnostic and prognostic marker, as well as a therapeutic target in hepatobiliary cancers. Therefore, novel therapeutic approaches that can selectively modulate HuR function appear to be highly attractive for the clinical management of these types of tumors. Abstract Hu antigen R (HuR) is a 36-kDa ubiquitous member of the ELAV/Hu family of RNA-binding proteins (RBPs), which plays an important role as a post-transcriptional regulator of specific RNAs under physiological and pathological conditions, including cancer. Herein, we review HuR protein structure, function, and its regulation, as well as its implications in the pathogenesis, progression, and treatment of hepatobiliary cancers. In particular, we focus on hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), tumors where the increased cytoplasmic localization of HuR and activity are proposed, as valuable diagnostic and prognostic markers. An overview of the main regulatory axes involving HuR, which are associated with cell proliferation, invasion, metastasis, apoptosis, and autophagy in HCC, is provided. These include the transcriptional, post-transcriptional, and post-translational modulators of HuR function, in addition to HuR target transcripts. Finally, whereas studies addressing the relevance of targeting HuR in CCA are limited, in the past few years, HuR has emerged as a potential therapeutic target in HCC. In fact, the therapeutic efficacy of some pharmacological inhibitors of HuR has been evaluated, in early experimental models of HCC. We, further, discuss the major findings and future perspectives of therapeutic approaches that specifically block HuR interactions, either with post-translational modifiers or cognate transcripts in hepatobiliary cancers.
Collapse
|
6
|
Guha A, Waris S, Nabors LB, Filippova N, Gorospe M, Kwan T, King PH. The versatile role of HuR in Glioblastoma and its potential as a therapeutic target for a multi-pronged attack. Adv Drug Deliv Rev 2022; 181:114082. [PMID: 34923029 PMCID: PMC8916685 DOI: 10.1016/j.addr.2021.114082] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/15/2021] [Accepted: 12/12/2021] [Indexed: 02/03/2023]
Abstract
Glioblastoma (GBM) is a malignant and aggressive brain tumor with a median survival of ∼15 months. Resistance to treatment arises from the extensive cellular and molecular heterogeneity in the three major components: glioma tumor cells, glioma stem cells, and tumor-associated microglia and macrophages. Within this triad, there is a complex network of intrinsic and secreted factors that promote classic hallmarks of cancer, including angiogenesis, resistance to cell death, proliferation, and immune evasion. A regulatory node connecting these diverse pathways is at the posttranscriptional level as mRNAs encoding many of the key drivers contain adenine- and uridine rich elements (ARE) in the 3' untranslated region. Human antigen R (HuR) binds to ARE-bearing mRNAs and is a major positive regulator at this level. This review focuses on basic concepts of ARE-mediated RNA regulation and how targeting HuR with small molecule inhibitors represents a plausible strategy for a multi-pronged therapeutic attack on GBM.
Collapse
Affiliation(s)
- Abhishek Guha
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Saboora Waris
- Shaheed Zulfiqar Ali Bhutto Medical University, PIMS, G-8, Islamabad, Pakistan
| | - Louis B Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Natalia Filippova
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, United States
| | - Thaddaeus Kwan
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Peter H King
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, United States.
| |
Collapse
|
7
|
Triciribine Engages ZFP36L1 and HuR to Stabilize LDLR mRNA. Molecules 2020; 25:molecules25194505. [PMID: 33019656 PMCID: PMC7583736 DOI: 10.3390/molecules25194505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022] Open
Abstract
An increased understanding of low-density lipoprotein receptor (LDLR) and its regulation may facilitate drug development for the treatment of hypercholesterolemia. Triciribine (TCN), which is a highly selective AKT inhibitor, increases the stability of LDLR mRNA downstream of extracellular signal-regulated kinase (ERK) in human hepatoma cells (HepG2). Here, a candidate approach was used in order to determine whether the RNA-binding proteins (RBPs) ZFP36 ring finger protein like 1 (ZFP36L1) and Hu antigen R (HuR) play a role in TCN-mediated stabilization of LDLR mRNA. The depletion of HuR led to a reduction of LDLR mRNA stability, an event that was more pronounced in TCN-treated cells. TCN was found to induce the translocation of nuclear HuR to cytoplasm in an ERK-dependent manner. ZFP36L1 depletion increased the stability of LDLR mRNA consistent with its destabilizing role. However, in contrast to HuR, TCN had no effect on LDLR mRNA turnover in ZFP36L1-depleted cells. TCN induced the phosphorylation of ZFP36L1 in an ERK/RSK-dependent manner and promoted its dissociation from the CCR4-NOT complex. In sum, these data suggest that TCN utilizes ERK signaling to increase the activity of HuR and inhibit ZFP36L1 to stabilize LDLR mRNA in HepG2 cells.
Collapse
|
8
|
Wang H, Zhao X, Yun W, Chen LH, Li ST. Effect of Inhibiting p38 on HuR Involving in β-AChR Post-transcriptional Mechanisms in Denervated Skeletal Muscle. Cell Mol Neurobiol 2019; 39:1029-1037. [PMID: 31172341 DOI: 10.1007/s10571-019-00698-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
Previous studies reported that RNA-binding protein human antigen R (HuR) mediates changes in the stability of AChR β-subunit mRNA after skeletal muscle denervation; also, p38 pathway regulated the stability of AChR β-subunit mRNA in C2C12 myotubes. However, the relationship between HuR and p38 in regulating the stability of AChR β-subunit mRNA have not been clarified. In this study, we wanted to examine the effect of inhibiting p38 on HuR in denervated skeletal muscle. Denervation model was built and 10% DMSO or SB203580 were administered respectively follow denervation. Tibialis muscles were collected in 10% DMSO-administered contralateral (undenervated) leg, 10% DMSO-administered denervated leg, SB203580-administered contralateral (undenervated) leg, and SB203580-administered denervated leg, respectively. P38 protein, β-AChR mRNA and protein, HuR protein, β-AChR mRNA stability, and HuR binding with AChR β-subunit mRNAs were measured. Results demonstrated that the administration of SB203580 can inhibit the increase of β-AChR protein expression and mRNA expression and stability, and RNA-binding protein human antigen R (HuR) expression, in cytoplasmic and nuclear fractions in skeletal muscle cells following denervation. Importantly, we observed that SB203580 also inhibited the increased level of binding activity between HuR and AChR β-subunit mRNAs following denervation. Collectively, these results suggested that inhibition of p38 can post-transcriptionally inhibit β-AChR upregulation via HuR in denervated skeletal muscle.
Collapse
Affiliation(s)
- Hong Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Xiao Zhao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Wang Yun
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Lian-Hua Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Shi-Tong Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China.
| |
Collapse
|
9
|
Su W, Du M, Lin F, Zhang C, Chen T. Quantitative FRET measurement based on spectral unmixing of donor, acceptor and spontaneous excitation-emission spectra. JOURNAL OF BIOPHOTONICS 2019; 12:e201800314. [PMID: 30414249 DOI: 10.1002/jbio.201800314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/28/2018] [Accepted: 11/06/2018] [Indexed: 06/08/2023]
Abstract
The spontaneous excitation-emission (ExEm) spectrum is introduced to the quantitative mExEm-spFRET methodology we recently developed as a spectral unmixing component for quantitative fluorescence resonance energy transfer measurement, named as SPEES-FRET method. The spectral fingerprints of both donor and acceptor were measured in HepG2 cells with low autofluorescence separately expressing donor and acceptor, and the spontaneous spectral fingerprint of HEK293 cells with strong autofluoresence was measured from blank cells. SPEES-FRET was performed on improved spectrometer-microscope system to measure the FRET efficiency (E) and concentration ratio (R C ) of acceptor to donor vales of FRET tandem plasmids in HEK293 cells, and obtained stable and consistent results with the expected values. Moreover, SPEES-FRET always obtained stable results for the bright and dim cells coexpressing Cerulean and Venus or Cyan Fluorescent Protein (CFP)-Bax and Yellow fluorescent protein (YFP)-Bax, and the E values between CFP-Bax and YFP-Bax were 0.02 for healthy cells and 0.14 for the staurosporine (STS)-treated apoptotic cells. Collectively, SPEES-FRET has very strong robustness against cellular autofluorescence, and thus is applicable to quantitative evaluation on the protein-protein interaction in living cells with strong autofluoresence.
Collapse
Affiliation(s)
- Wenhua Su
- MOE Key Laboratory of Laser Life Science & College of Life Science, South China Normal University, Guangzhou, China
| | - Mengyan Du
- MOE Key Laboratory of Laser Life Science & College of Life Science, South China Normal University, Guangzhou, China
| | - Fangrui Lin
- MOE Key Laboratory of Laser Life Science & College of Life Science, South China Normal University, Guangzhou, China
| | - Chenshuang Zhang
- MOE Key Laboratory of Laser Life Science & College of Life Science, South China Normal University, Guangzhou, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & College of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
10
|
Filippova N, Yang X, Ananthan S, Sorochinsky A, Hackney JR, Gentry Z, Bae S, King P, Nabors LB. Hu antigen R (HuR) multimerization contributes to glioma disease progression. J Biol Chem 2017; 292:16999-17010. [PMID: 28790173 DOI: 10.1074/jbc.m117.797878] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/27/2017] [Indexed: 12/21/2022] Open
Abstract
Among primary brain cancers, gliomas are the most deadly and most refractory to current treatment modalities. Previous reports overwhelmingly support the role of the RNA-binding protein Hu antigen R (HuR) as a positive regulator of glioma disease progression. HuR expression is consistently elevated in tumor tissues, and a cytoplasmic localization appears essential for HuR-dependent oncogenic transformation. Here, we report HuR aggregation (multimerization) in glioma and the analysis of this tumor-specific HuR protein multimerization in clinical brain tumor samples. Using a split luciferase assay, a bioluminescence resonance energy transfer technique, and site-directed mutagenesis, we examined the domains involved in HuR multimerization. Results obtained with the combination of the split HuR luciferase assay with the bioluminescence resonance energy transfer technique suggested that multiple (at least three) HuR molecules come together during HuR multimerization in glioma cells. Using these data, we developed a model of HuR multimerization in glioma cells. We also demonstrate that exposing glioma cells to the HuR inhibitor tanshinone group compound 15,16-dihydrotanshinone-I or to the newly identified compound 5 disrupts HuR multimerization modules and reduces tumor cell survival and proliferation. In summary, our findings provide new insights into HuR multimerization in glioma and highlight possible pharmacological approaches for targeting HuR domains involved in cancer cell-specific multimerization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sejong Bae
- Medicine, School of Medicine, University of Alabama, Birmingham, Alabama 35294
| | - Peter King
- From the Departments of Neurology.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| | | |
Collapse
|
11
|
White EJF, Matsangos AE, Wilson GM. AUF1 regulation of coding and noncoding RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27620010 DOI: 10.1002/wrna.1393] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 01/12/2023]
Abstract
AUF1 is a family of four RNA-binding proteins (RBPs) generated by alternative pre-messenger RNA (pre-mRNA) splicing, with canonical roles in controlling the stability and/or translation of mRNA targets based on recognition of AU-rich sequences within mRNA 3' untranslated regions. However, recent studies identifying AUF1 target sites across the transcriptome have revealed that these canonical functions are but a subset of its roles in posttranscriptional regulation of gene expression. In this review, we describe recent developments in our understanding of the RNA-binding properties of AUF1 together with their biochemical implications and roles in directing mRNA decay and translation. This is then followed by a survey of newly discovered activities for AUF1 proteins in control of miRNA synthesis and function, including miRNA assembly into microRNA (miRNA)-loaded RNA-induced silencing complexes (miRISCs), miRISC targeting to mRNA substrates, interplay with an expanding network of other cellular RBPs, and reciprocal regulatory relationships between miRNA and AUF1 synthesis. Finally, we discuss recently reported relationships between AUF1 and long noncoding RNAs and regulatory roles on viral RNA substrates. Cumulatively, these findings have significantly expanded our appreciation of the scope and diversity of AUF1 functions in the cell, and are prompting an exciting array of new questions moving forward. WIREs RNA 2017, 8:e1393. doi: 10.1002/wrna.1393 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Elizabeth J F White
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aerielle E Matsangos
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Nishino T, Matsunaga R, Jikihara H, Uchida M, Maeda A, Qi G, Abe T, Kiyonari H, Tashiro S, Inagaki-Ohara K, Shimamoto F, Konishi H. Antagonizing effect of CLPABP on the function of HuR as a regulator of ARE-containing leptin mRNA stability and the effect of its depletion on obesity in old male mouse. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1816-1827. [PMID: 27616329 DOI: 10.1016/j.bbalip.2016.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 01/10/2023]
Abstract
Cardiolipin and phosphatidic acid-binding protein (CLPABP) is a pleckstrin homology domain-containing protein and is localized on the surface of mitochondria of cultured cells as a large protein-RNA complex. To analyze the physiological functions of CLPABP, we established and characterized a CLPABP knockout (KO) mouse. Although expression levels of CLPABP transcripts in the developmental organs were high, CLPABP KO mice were normal at birth and grew normally when young. However, old male mice presented a fatty phenotype, similar to that seen in metabolic syndrome, in parallel with elevated male- and age-dependent CLPABP gene expression. One of the reasons for this obesity in CLPABP KO mice is dependence on increases in leptin concentration in plasma. The leptin transcripts were also upregulated in the adipose tissue of KO mice compared with wild-type (WT) mice. To understand the difference in levels of the transcriptional product, we focused on the effect of CLPABP on the stability of mRNA involving an AU-rich element (ARE) in its 3'UTR dependence on the RNA stabilizer, human antigen R (HuR), which is one of the CLPABP-binding proteins. Increase in stability of ARE-containing mRNAs of leptin by HuR was antagonized by the expression of CLPABP in cultured cells. Depletion of CLPABP disturbed the normal subcellular localization of HuR to stress granules, and overexpression of CLPABP induced instability of leptin mRNA by inhibiting HuR function. Consequently, leptin levels in old male mice might be regulated by CLPABP expression, which might lead to body weight control.
Collapse
Affiliation(s)
- Tasuku Nishino
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Ryota Matsunaga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Hiroshi Jikihara
- Department of Health Science, Prefectural University of Hiroshima, Hiroshima 734-8558, Japan
| | - Moe Uchida
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Akane Maeda
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Guangying Qi
- Department of Health Science, Prefectural University of Hiroshima, Hiroshima 734-8558, Japan
| | - Takaya Abe
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi,Chuou-ku, Kobe 650-0047, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan; Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi,Chuou-ku, Kobe 650-0047, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kyoko Inagaki-Ohara
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Fumio Shimamoto
- Department of Health Science, Prefectural University of Hiroshima, Hiroshima 734-8558, Japan
| | - Hiroaki Konishi
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan.
| |
Collapse
|
13
|
Cascajo MV, Abdelmohsen K, Noh JH, Fernández-Ayala DJM, Willers IM, Brea G, López-Lluch G, Valenzuela-Villatoro M, Cuezva JM, Gorospe M, Siendones E, Navas P. RNA-binding proteins regulate cell respiration and coenzyme Q biosynthesis by post-transcriptional regulation of COQ7. RNA Biol 2015; 13:622-34. [PMID: 26690054 PMCID: PMC7609068 DOI: 10.1080/15476286.2015.1119366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3′-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.
Collapse
Affiliation(s)
- María V Cascajo
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Kotb Abdelmohsen
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Ji Heon Noh
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Daniel J M Fernández-Ayala
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Imke M Willers
- c Departamento de Biología Molecular , Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM) and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Madrid , Spain
| | - Gloria Brea
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Guillermo López-Lluch
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Marina Valenzuela-Villatoro
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - José M Cuezva
- c Departamento de Biología Molecular , Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM) and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Madrid , Spain
| | - Myriam Gorospe
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Emilio Siendones
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Plácido Navas
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| |
Collapse
|
14
|
Scheiba RM, de Opakua AI, Díaz-Quintana A, Cruz-Gallardo I, Martínez-Cruz LA, Martínez-Chantar ML, Blanco FJ, Díaz-Moreno I. The C-terminal RNA binding motif of HuR is a multi-functional domain leading to HuR oligomerization and binding to U-rich RNA targets. RNA Biol 2015; 11:1250-61. [PMID: 25584704 DOI: 10.1080/15476286.2014.996069] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human antigen R (HuR) is a 32 kDa protein with 3 RNA Recognition Motifs (RRMs), which bind to Adenylate and uridylate Rich Elements (AREs) of mRNAs. Whereas the N-terminal and central domains (RRM1 and RRM2) are essential for AREs recognition, little is known on the C-terminal RRM3 beyond its implication in HuR oligomerization and apoptotic signaling. We have developed a detergent-based strategy to produce soluble RRM3 for structural studies. We have found that it adopts the typical RRM fold, does not interact with the RRM1 and RRM2 modules, and forms dimers in solution. Our NMR measurements, combined with Molecular Dynamics simulations and Analytical Ultracentrifugation experiments, show that the protein dimerizes through a helical region that contains the conserved W261 residue. We found that HuR RRM3 binds to 5'-mer U-rich RNA stretches through the solvent exposed side of its β-sheet, located opposite to the dimerization site. Upon mimicking phosphorylation by the S318D replacement, RRM3 mutant shows less ability to recognize RNA due to an electrostatic repulsion effect with the phosphate groups. Our study brings new insights of HuR RRM3 as a domain involved in protein oligomerization and RNA interaction, both functions regulated by 2 surfaces on opposite sides of the RRM domain.
Collapse
Key Words
- AREs, Adenylate and uridylate Rich Elements
- AU, Analytical Ultracentrifugation
- CARM1, Coactivator associated Arginine Methyltransferase 1
- CD, Circular Dichroism
- Cdk1, Cyclin-dependent kinase 1
- Chk2, Checkpoint kinase 2
- ELAV1, Embryonic Lethal Abnormal Vision system human homolog 1
- EMSA, Electrophoretic Mobility Shift Assay
- FIR, FBP-Interacting Repressor
- FL, Full-Length, HNS, HuR Nucleocytoplasmic Shuttling Sequence
- HSQC, Heteronuclear Single-Quantum Correlation
- HuR, Human antigen R
- Human antigen R (HuR)
- MD, Molecular Dynamics
- NMR, Nuclear Magnetic Resonance
- NOE, Nuclear Overhauser Effect
- Nuclear Magnetic Resonance (NMR)
- PCA, Principal Component Analysis
- PKCα, Protein Kinase C α
- PKCδ, Protein Kinase C δ
- PMSF, PhenylMethylSulfonyl Fluoride
- PTB, Polypyrimidine Tract Binding protein
- RBPs, RNA Binding Proteins
- RNA binding
- RNA binding protein (RBP)
- RNA recognition motif (RRM)
- RRMs, RNA Recognition Motifs
- SPR, Surface Plasmon Resonance
- Serine Phosphorylation
- WT, Wild-Type
- dimerization
- hnRNP1, heterogeneous nuclear RiboNucleoprotein C protein
Collapse
Affiliation(s)
- Rafael M Scheiba
- a Instituto de Bioquímica Vegetal y Fotosíntesis; cicCartuja ; Sevilla , Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim HH, Lee SJ, Gardiner AS, Perrone-Bizzozero NI, Yoo S. Different motif requirements for the localization zipcode element of β-actin mRNA binding by HuD and ZBP1. Nucleic Acids Res 2015; 43:7432-46. [PMID: 26152301 PMCID: PMC4551932 DOI: 10.1093/nar/gkv699] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/29/2015] [Indexed: 11/13/2022] Open
Abstract
Interactions of RNA-binding proteins (RBPs) with their target transcripts are essential for regulating gene expression at the posttranscriptional level including mRNA export/localization, stability, and translation. ZBP1 and HuD are RBPs that play pivotal roles in mRNA transport and local translational control in neuronal processes. While HuD possesses three RNA recognition motifs (RRMs), ZBP1 contains two RRMs and four K homology (KH) domains that either increase target specificity or provide a multi-target binding capability. Here we used isolated cis-element sequences of the target mRNA to examine directly protein-RNA interactions in cell-free systems. We found that both ZBP1 and HuD bind the zipcode element in rat β-actin mRNA's 3' UTR. Differences between HuD and ZBP1 were observed in their binding preference to the element. HuD showed a binding preference for U-rich sequence. In contrast, ZBP1 binding to the zipcode RNA depended more on the structural level, as it required the proper spatial organization of a stem-loop that is mainly determined by the U-rich element juxtaposed to the 3' end of a 5'-ACACCC-3' motif. On the basis of this work, we propose that ZBP1 and HuD bind to overlapping sites in the β-actin zipcode, but they recognize different features of this target sequence.
Collapse
Affiliation(s)
- Hak Hee Kim
- Nemours Biomedical Research, Alfred I. duPont Hosp. for Children, Wilmington, DE 19803, USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Amy S Gardiner
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Nora I Perrone-Bizzozero
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. duPont Hosp. for Children, Wilmington, DE 19803, USA
| |
Collapse
|
16
|
Gao X, Dong H, Lin C, Sheng J, Zhang F, Su J, Xu Z. Reduction of AUF1-mediated follistatin mRNA decay during glucose starvation protects cells from apoptosis. Nucleic Acids Res 2014; 42:10720-30. [PMID: 25159612 PMCID: PMC4176339 DOI: 10.1093/nar/gku778] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Follistatin (FST) performs several vital functions in the cells, including protection from apoptosis during stress. The expression of FST is up-regulated in response to glucose deprivation by an unknown mechanism. We herein showed that the induction of FST by glucose deprivation was due to an increase in the half-life of its mRNA. We further identified an AU-rich element (ARE) in the 3′UTR of FST mRNA that mediated its decay. The expression of FST was elevated after knocking down AUF1 and reduced when AUF1 was further expressed. In vitro binding assays and RNA pull-down assays revealed that AUF1 interacted with FST mRNA directly via its ARE. During glucose deprivation, a majority of AUF1 shuttled from cytoplasm to nucleus, resulting in dissociation of AUF1 from FST mRNA and thus stabilization of FST mRNA. Finally, knockdown of AUF1 decreased whereas overexpression of AUF1 increased glucose deprivation-induced apoptosis. The apoptosis promoting effect of AUF1 was eliminated in FST expressing cells. Collectively, this study provided evidence that AUF1 is a negative regulator of FST expression and participates in the regulation of cell survival under glucose deprivation.
Collapse
Affiliation(s)
- Xiangwei Gao
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Haojie Dong
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chen Lin
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fan Zhang
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jinfeng Su
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhengping Xu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
17
|
Wu S, Lin L, Zhao W, Li X, Wang Y, Si X, Wang T, Wu H, Zhai X, Zhong X, Gao S, Tong L, Xu Z, Zhong Z. AUF1 is recruited to the stress granules induced by coxsackievirus B3. Virus Res 2014; 192:52-61. [PMID: 25148713 DOI: 10.1016/j.virusres.2014.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/05/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022]
Abstract
Stress granules (SGs) are cytoplasmic granules that are formed in cells when stress occurs. In this study, we found that SGs formed in cells infected with coxsackievirus B3 (CVB3), evidenced with the co-localization of some accepted SG markers in the viral infection-induced granules. We further discovered that adenosine-uridine (AU)-rich element RNA binding factor 1 (AUF1), which can bind to mRNAs and regulate their translation, was recruited to the SGs in response to high dose of CVB3 by detecting the co-localization of AUF1 with SG markers. Similar results were also observed in the enterovirus 71 (EV71)-infected cells. Finally, we demonstrated that AUF1 was also recruited to arsenite-induced SGs, suggesting that the recruitment of AUF1 to SG is not a specific response to viral infection. In summary, our data indicate that both CVB3 and EV71 infections can induce SG formation, and AUF1 is a novel SG component upon the viral infections. Our findings may shed light on understanding the picornavirus-host interaction.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin 150081, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Xiaoning Si
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Heng Wu
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Xia Zhai
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Shuoyang Gao
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Lei Tong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Zhikai Xu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
18
|
Abstract
ELAV (embryonic lethal/abnormal visual system)/Hu proteins comprise a family of highly related neuronal RBPs (RNA-binding proteins) involved in many aspects of mRNA processing. Although they bind to highly similar short sequence motifs, they have acquired diverse functions suggesting that cellular signalling is important for their functional diversification. Indeed, ELAV/Hu proteins harbour many phosphorylatable amino acids. In the present article, we review our current knowledge about phosphorylation of ELAV/Hu proteins and how phosphorylation affects cellular localization of ELAV/Hu proteins and their binding to RNA.
Collapse
|
19
|
Gao X, Shi X, Fu X, Ge L, Zhang Y, Su C, Yang X, Silvennoinen O, Yao Z, He J, Wei M, Yang J. Human Tudor staphylococcal nuclease (Tudor-SN) protein modulates the kinetics of AGTR1-3'UTR granule formation. FEBS Lett 2014; 588:2154-61. [PMID: 24815690 DOI: 10.1016/j.febslet.2014.04.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
Abstract
Human Tudor staphylococcal nuclease (Tudor-SN) interacts with the G3BP protein and is recruited into stress granules (SGs), the main type of discrete RNA-containing cytoplasmic foci structure that is formed under stress conditions. Here, we further demonstrate that Tudor-SN binds and co-localizes with AGTR1-3'UTR (3'-untranslated region of angiotensin II receptor, type 1 mRNA) into SG. Tudor-SN plays an important role in the assembly of AGTR1-3'UTR granules. Moreover, endogenous Tudor-SN knockdown can decrease the recovery kinetics of AGTR1-3'UTR granules. Collectively, our data indicate that Tudor-SN modulates the kinetics of AGTR1-3'UTR granule formation, which provides an additional biological role of Tudor-SN in RNA metabolism during stress.
Collapse
Affiliation(s)
- Xingjie Gao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Xuebin Shi
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Xue Fu
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Lin Ge
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Chao Su
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Xi Yang
- Department of Immunology, University of Manitoba, 471 Apotex Centre, 750 McDermot Avenue, Winnipeg R3E 0T5, Canada
| | - Olli Silvennoinen
- Institute of Medical Technology, University of Tampere, Tampere University Hospital, Biokatu 8, FI-33014 Tampere, Finland
| | - Zhi Yao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Jinyan He
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Minxin Wei
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin 300070, China.
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
20
|
Vantourout P, Willcox C, Turner A, Swanson C, Haque Y, Sobolev O, Grigoriadis A, Tutt A, Hayday A. Immunological visibility: posttranscriptional regulation of human NKG2D ligands by the EGF receptor pathway. Sci Transl Med 2014; 6:231ra49. [PMID: 24718859 PMCID: PMC3998197 DOI: 10.1126/scitranslmed.3007579] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human cytolytic T lymphocytes and natural killer cells can limit tumor growth and are being increasingly harnessed for tumor immunotherapy. One way cytolytic lymphocytes recognize tumor cells is by engagement of their activating receptor, NKG2D, by stress antigens of the MICA/B and ULBP families. This study shows that surface up-regulation of NKG2D ligands by human epithelial cells in response to ultraviolet irradiation, osmotic shock, oxidative stress, and growth factor provision is attributable to activation of the epidermal growth factor receptor (EGFR). EGFR activation causes intracellular relocalization of AUF1 proteins that ordinarily destabilize NKG2D ligand mRNAs by targeting an AU-rich element conserved within the 3' ends of most human, but not murine, NKG2D ligand genes. Consistent with these findings, NKG2D ligand expression by primary human carcinomas positively correlated with EGFR expression, which is commonly hyperactivated in such tumors, and was reduced by clinical EGFR inhibitors. Therefore, stress-induced activation of EGFR not only regulates cell growth but also concomitantly regulates the cells' immunological visibility. Thus, therapeutics designed to limit cancer cell growth should also be considered in terms of their impact on immunosurveillance.
Collapse
Affiliation(s)
- Pierre Vantourout
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
- London Research Institute, Cancer Research UK, London, UK
| | - Carrie Willcox
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Andrea Turner
- Children’s Services, Colchester General Hospital, Colchester, UK
| | - Chad Swanson
- Department of Infectious Diseases, King’s College London, London, UK
| | - Yasmin Haque
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
- London Research Institute, Cancer Research UK, London, UK
| | - Olga Sobolev
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
- London Research Institute, Cancer Research UK, London, UK
| | - Anita Grigoriadis
- Breakthrough Breast Cancer Research Unit, Guy’s Hospital, London, UK
- Department of Research Oncology, King’s College London, London, UK
| | - Andrew Tutt
- Breakthrough Breast Cancer Research Unit, Guy’s Hospital, London, UK
- Department of Research Oncology, King’s College London, London, UK
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
- London Research Institute, Cancer Research UK, London, UK
- Medical Research Council Centre for Transplantation Biology, London, UK
- Comprehensive Biomedical Research Centre of Guy’s and St Thomas’ Hospitals and King’s College London, London, UK
| |
Collapse
|
21
|
Moore AE, Chenette DM, Larkin LC, Schneider RJ. Physiological networks and disease functions of RNA-binding protein AUF1. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:549-64. [PMID: 24687816 DOI: 10.1002/wrna.1230] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 11/09/2022]
Abstract
Regulated messenger RNA (mRNA) decay is an essential mechanism that governs proper control of gene expression. In fact, many of the most physiologically potent proteins are encoded by short-lived mRNAs, many of which contain AU-rich elements (AREs) in their 3'-untranslated region (3'-UTR). AREs target mRNAs for post-transcriptional regulation, generally rapid decay, but also stabilization and translation inhibition. AREs control mRNA turnover and translation activities through association with trans-acting RNA-binding proteins that display high affinity for these AU-rich regulatory elements. AU-rich element RNA-binding protein (AUF1), also known as heterogeneous nuclear ribonucleoprotein D (HNRNPD), is an extensively studied AU-rich binding protein (AUBP). AUF1 has been shown to regulate ARE-mRNA turnover, primarily functioning to promote rapid ARE-mRNA degradation. In certain cellular contexts, AUF1 has also been shown to regulate gene expression at the translational and even the transcriptional level. AUF1 comprises a family of four related protein isoforms derived from a common pre-mRNA by differential exon splicing. AUF1 isoforms have been shown to display multiple and distinct functions that include the ability to target ARE-mRNA stability or decay, and transcriptional activation of certain genes that is controlled by their differential subcellular locations, expression levels, and post-translational modifications. AUF1 has been implicated in controlling a variety of physiological functions through its ability to regulate the expression of numerous mRNAs containing 3'-UTR AREs, thereby coordinating functionally related pathways. This review highlights the physiological functions of AUF1-mediated regulation of mRNA and gene expression, and the consequences of deficient AUF1 levels in different physiological settings.
Collapse
Affiliation(s)
- Ashleigh E Moore
- Alexandria Center for Life Sciences, New York University School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
22
|
Hood DA, Uguccioni G, Vainshtein A, D'souza D. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle: implications for health and disease. Compr Physiol 2013; 1:1119-34. [PMID: 23733637 DOI: 10.1002/cphy.c100074] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria have paradoxical functions within cells. Essential providers of energy for cellular survival, they are also harbingers of cell death (apoptosis). Mitochondria exhibit remarkable dynamics, undergoing fission, fusion, and reticular expansion. Both nuclear and mitochondrial DNA (mtDNA) encode vital sets of proteins which, when incorporated into the inner mitochondrial membrane, provide electron transport capacity for ATP production, and when mutated lead to a broad spectrum of diseases. Acute exercise can activate a set of signaling cascades in skeletal muscle, leading to the activation of the gene expression pathway, from transcription, to post-translational modifications. Research has begun to unravel the important signals and their protein targets that trigger the onset of mitochondrial adaptations to exercise. Exercise training leads to an accumulation of nuclear- and mtDNA-encoded proteins that assemble into functional complexes devoted to mitochondrial respiration, reactive oxygen species (ROS) production, the import of proteins and metabolites, or apoptosis. This process of biogenesis has important consequences for metabolic health, the oxidative capacity of muscle, and whole body fitness. In contrast, the chronic muscle disuse that accompanies aging or muscle wasting diseases provokes a decline in mitochondrial content and function, which elicits excessive ROS formation and apoptotic signaling. Research continues to seek the molecular underpinnings of how regular exercise can be used to attenuate these decrements in organelle function, maintain skeletal muscle health, and improve quality of life.
Collapse
Affiliation(s)
- David A Hood
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
23
|
Cathcart AL, Rozovics JM, Semler BL. Cellular mRNA decay protein AUF1 negatively regulates enterovirus and human rhinovirus infections. J Virol 2013; 87:10423-34. [PMID: 23903828 PMCID: PMC3807403 DOI: 10.1128/jvi.01049-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/19/2013] [Indexed: 01/12/2023] Open
Abstract
To successfully complete their replication cycles, picornaviruses modify several host proteins to alter the cellular environment to favor virus production. One such target of viral proteinase cleavage is AU-rich binding factor 1 (AUF1), a cellular protein that binds to AU-rich elements, or AREs, in the 3' noncoding regions (NCRs) of mRNAs to affect the stability of the RNA. Previous studies found that, during poliovirus or human rhinovirus infection, AUF1 is cleaved by the viral proteinase 3CD and that AUF1 can interact with the long 5' NCR of these viruses in vitro. Here, we expand on these initial findings to demonstrate that all four isoforms of AUF1 bind directly to stem-loop IV of the poliovirus 5' NCR, an interaction that is inhibited through proteolytic cleavage of AUF1 by the viral proteinase 3CD. Endogenous AUF1 was observed to relocalize to the cytoplasm of infected cells in a viral protein 2A-driven manner and to partially colocalize with the viral protein 3CD. We identify a negative role for AUF1 in poliovirus infection, as AUF1 inhibited viral translation and, ultimately, overall viral titers. Our findings also demonstrate that AUF1 functions as an antiviral factor during infection by coxsackievirus or human rhinovirus, suggesting a common mechanism that targets these related picornaviruses.
Collapse
Affiliation(s)
- Andrea L Cathcart
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697 USA
| | | | | |
Collapse
|
24
|
Abstract
Post-transcriptional mechanisms that modulate global and/or transcript-specific mRNA stability and translation contribute to the rapid and flexible control of gene expression in immune effector cells. These mechanisms rely on RNA-binding proteins (RBPs) that direct regulatory complexes (e.g. exosomes, deadenylases, decapping complexes, RNA-induced silencing complexes) to the 3'-untranslated regions of specific immune transcripts. Here, we review the surprising variety of post-transcriptional control mechanisms that contribute to gene expression in the immune system and discuss how defects in these pathways can contribute to autoimmune disease.
Collapse
Affiliation(s)
- Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
25
|
Bronicki LM, Jasmin BJ. Emerging complexity of the HuD/ELAVl4 gene; implications for neuronal development, function, and dysfunction. RNA (NEW YORK, N.Y.) 2013; 19:1019-1037. [PMID: 23861535 PMCID: PMC3708524 DOI: 10.1261/rna.039164.113] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Precise control of messenger RNA (mRNA) processing and abundance are increasingly being recognized as critical for proper spatiotemporal gene expression, particularly in neurons. These regulatory events are governed by a large number of trans-acting factors found in neurons, most notably RNA-binding proteins (RBPs) and micro-RNAs (miRs), which bind to specific cis-acting elements or structures within mRNAs. Through this binding mechanism, trans-acting factors, particularly RBPs, control all aspects of mRNA metabolism, ranging from altering the transcription rate to mediating mRNA degradation. In this context the best-characterized neuronal RBP, the Hu/ELAVl family member HuD, is emerging as a key component in multiple regulatory processes--including pre-mRNA processing, mRNA stability, and translation--governing the fate of a substantial amount of neuronal mRNAs. Through its ability to regulate mRNA metabolism of diverse groups of functionally similar genes, HuD plays important roles in neuronal development and function. Furthermore, compelling evidence indicates supplementary roles for HuD in neuronal plasticity, in particular, recovery from axonal injury, learning and memory, and multiple neurological diseases. The purpose of this review is to provide a detailed overview of the current knowledge surrounding the expression and roles of HuD in the nervous system. Additionally, we outline the present understanding of the molecular mechanisms presiding over the localization, abundance, and function of HuD in neurons.
Collapse
|
26
|
Farooq F, Abadía-Molina F, MacKenzie D, Hadwen J, Shamim F, O'Reilly S, Holcik M, MacKenzie A. Celecoxib increases SMN and survival in a severe spinal muscular atrophy mouse model via p38 pathway activation. Hum Mol Genet 2013; 22:3415-24. [PMID: 23656793 DOI: 10.1093/hmg/ddt191] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The loss of functional Survival Motor Neuron (SMN) protein due to mutations or deletion in the SMN1 gene causes autosomal recessive neurodegenerative spinal muscle atrophy (SMA). A potential treatment strategy for SMA is to upregulate the amount of SMN protein originating from the highly homologous SMN2 gene, compensating in part for the absence of the functional SMN1 gene. We have previously shown that in vitro activation of the p38 pathway stabilizes and increases SMN mRNA levels leading to increased SMN protein levels. In this report, we explore the impact of the p38 activating, FDA-approved, blood brain barrier permeating compound celecoxib on SMN levels in vitro and in a mouse model of SMA. We demonstrate a significant induction of SMN protein levels in human and mouse neuronal cells upon treatment with celecoxib. We show that activation of the p38 pathway by low doses celecoxib increases SMN protein in a HuR protein-dependent manner. Furthermore, celecoxib treatment induces SMN expression in brain and spinal cord samples of wild-type mice in vivo. Critically, celecoxib treatment increased SMN levels, improved motor function and enhanced survival in a severe SMA mouse model. Our results identify low dose celecoxib as a potential new member of the SMA therapeutic armamentarium.
Collapse
|
27
|
Hinman MN, Zhou HL, Sharma A, Lou H. All three RNA recognition motifs and the hinge region of HuC play distinct roles in the regulation of alternative splicing. Nucleic Acids Res 2013; 41:5049-61. [PMID: 23525460 PMCID: PMC3643579 DOI: 10.1093/nar/gkt166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The four Hu [embryonic lethal abnormal vision-like (ELAVL)] protein family members regulate alternative splicing by binding to U-rich sequences surrounding target exons and affecting the interaction of the splicing machinery and/or local chromatin modifications. Each of the Hu proteins contains a divergent N-terminus, three highly conserved RNA recognition motifs (RRM1, RRM2 and RRM3) and a hinge region separating RRM2 and RRM3. The roles of each domain in splicing regulation are not well understood. Here, we investigate how HuC, a relatively poorly characterized family member, regulates three target pre-mRNAs: neurofibromatosis type I, Fas and HuD. We find that the HuC N-terminus is dispensable for splicing regulation, and the three RRMs are required for splicing regulation of each target, whereas the hinge region contributes to regulation of only some targets. Interestingly, the regions of the hinge and RRM3 required for regulating different targets only partially overlap, implying substrate-specific mechanisms of HuC-mediated splicing regulation. We show that RRM1 and RRM2 are required for binding to target pre-mRNAs, whereas the hinge and RRM3 are required for HuC–HuC self-interaction. Finally, we find that the portions of RRM3 required for HuC–HuC interaction overlap with those required for splicing regulation of all three targets, suggesting a role of HuC–HuC interaction in splicing regulation.
Collapse
Affiliation(s)
- Melissa N Hinman
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
28
|
Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:680-8. [PMID: 23246978 DOI: 10.1016/j.bbagrm.2012.12.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/30/2012] [Accepted: 12/06/2012] [Indexed: 12/30/2022]
Abstract
AUF1 is a family of four proteins generated by alternative pre-mRNA splicing that form high affinity complexes with AU-rich, mRNA-destabilizing sequences located within the 3' untranslated regions of many labile mRNAs. While AUF1 binding is most frequently associated with accelerated mRNA decay, emerging examples have demonstrated roles as a mRNA stabilizer or even translational regulator for specific transcripts. In this review, we summarize recent advances in our understanding of mRNA recognition by AUF1 and the biochemical and functional consequences of these interactions. In addition, unique properties of individual AUF1 isoforms and the roles of these proteins in modulating expression of genes associated with inflammatory, neoplastic, and cardiac diseases are discussed. Finally, we describe mechanisms that regulate AUF1 expression in cells, and current knowledge of regulatory switches that modulate the cellular levels and/or activities of AUF1 isoforms through distinct protein post-translational modifications. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
29
|
Papadopoulou C, Ganou V, Patrinou-Georgoula M, Guialis A. HuR-hnRNP interactions and the effect of cellular stress. Mol Cell Biochem 2012; 372:137-47. [PMID: 22983828 DOI: 10.1007/s11010-012-1454-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/05/2012] [Indexed: 12/11/2022]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute an important group of RNA-binding proteins (RBPs) that play an active role in post-transcriptional gene regulation. Here, we focus on representative members of the hnRNP group of RBPs, namely hnRNP A1 and hnRNP C1/C2, which participate mainly in RNA splicing, as well as on HuR, a prototype of the AU-rich element-binding proteins (ARE-BP), which has an established role in regulating the stability and translation of target mRNAs. HuR and most hnRNPs are primarily localized in the nucleoplasm, and they can shuttle between the nucleus and the cytoplasm. Herein, we have extended our recently reported findings on the ability of HuR to associate with the immunopurified from mammalian cell extracts hnRNP and mRNP complexes by the application of an anti-HuR antibody that selects HuR-RNP complexes. We find that the protein components precipitated by the anti-HuR antibody are very similar to the hnRNP-HuR complexes reported previously. The in vivo association of HuR and hnRNP proteins is examined in the presence and the absence of thermal stress by confocal microscopy of intact cells and by in situ nuclear matrix preparation. We find notable heat-induced changes of HuR and of hnRNP A1, which exit the nucleus and co-localize to large cytoplasmic foci that represent heat-induced stress granules. The functional implications of HuR-hnRNP interactions in stressed and unstressed cells are discussed.
Collapse
Affiliation(s)
- Christina Papadopoulou
- RNA Processing Program, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | | | | | | |
Collapse
|
30
|
Kafasla P, Karakasiliotis I, Kontoyiannis DL. Decoding the functions of post-transcriptional regulators in the determination of inflammatory states: focus on macrophage activation. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:509-23. [PMID: 22761012 DOI: 10.1002/wsbm.1179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inflammation involves a continuum of intercellular interactions and cellular responses targeting infectious or tissue damage while maintaining homeostasis. At its core, this continuum encompasses the alternating phenotypes of innate immune cells; each phenotype is typified by the expression of molecules which either support host defence or aid tissue restoration and the resolution of inflammation. The aberrant persistence of any such phenotype can drive chronic inflammatory pathology. For macrophages, these phenotypes arise as changes in cellular plasticity because of adaptation. As such their underlying gene expression programs may not be determined by robust transcriptomic and epigenetic programs but by more flexible means like post-transcriptional mechanisms affecting mRNA use. These mechanisms require the assemblies of RNA-binding proteins (RBPs) and non-coding RNAs onto specific elements on their RNA targets in Ribonucleoprotein particles (RNPs) which control mRNA maturation, turnover and translation. The collection of RNPs within a cell defines the ribonome, that is, a high order system of coordinative post-transcriptional determination. mRNAs involved in the definition of different macrophage activation phenotypes share elements of RBP recognition rendering them amenable to ribonomic regulation. The molecular features of their cognitive RBPs and the pathologies developing in the corresponding mouse mutants support their involvement in inflammatory reactions. We view this information in the context of macrophage activation states to propose that these states can be determined via differential--synergistic or antagonistic--RNP associations. In doing so, we substantiate the need for the use of systems platforms to model RNP hierarchies controlling the continuum of inflammation.
Collapse
Affiliation(s)
- Panagiota Kafasla
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | | | | |
Collapse
|
31
|
Kim I, Kwak H, Lee HK, Hyun S, Jeong S. β-Catenin recognizes a specific RNA motif in the cyclooxygenase-2 mRNA 3'-UTR and interacts with HuR in colon cancer cells. Nucleic Acids Res 2012; 40:6863-72. [PMID: 22544606 PMCID: PMC3413138 DOI: 10.1093/nar/gks331] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RNA-binding proteins regulate multiple steps of RNA metabolism through both dynamic and combined binding. In addition to its crucial roles in cell adhesion and Wnt-activated transcription in cancer cells, β-catenin regulates RNA alternative splicing and stability possibly by binding to target RNA in cells. An RNA aptamer was selected for specific binding to β-catenin to address RNA recognition by β-catenin more specifically. Here, we characterized the structural properties of the RNA aptamer as a model and identified a β-catenin RNA motif. Similar RNA motif was found in cellular RNA, Cyclooxygenase-2 (COX-2) mRNA 3'-untranslated region (3'-UTR). More significantly, the C-terminal domain of β-catenin interacted with HuR and the Armadillo repeat domain associated with RNA to form the RNA-β-catenin-HuR complex in vitro and in cells. Furthermore, the tertiary RNA-protein complex was predominantly found in the cytoplasm of colon cancer cells; thus, it might be related to COX-2 protein level and cancer progression. Taken together, the β-catenin RNA aptamer was valuable for deducing the cellular RNA aptamer and identifying novel and oncogenic RNA-protein networks in colon cancer cells.
Collapse
Affiliation(s)
- Inae Kim
- Department of Molecular Biology, National Research Lab for RNA Cell Biology, BK21 Graduate Program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University, Yongin, Gyeonggi-do 448-701, Republic of Korea
| | | | | | | | | |
Collapse
|
32
|
Downregulation of HuR as a new mechanism of doxorubicin resistance in breast cancer cells. Mol Cancer 2012; 11:13. [PMID: 22436134 PMCID: PMC3325864 DOI: 10.1186/1476-4598-11-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/21/2012] [Indexed: 11/10/2022] Open
Abstract
Background HuR, an RNA binding protein involved in the post-transcriptional regulation of a wide spectrum of mRNAs, has been demonstrated to be a determinant of carcinogenesis and tumor aggressiveness in several cancer types. In this study, we investigated the role of HuR in the apoptosis and in the chemoresistance induced by the widely used anticancer drug doxorubicin in human breast cancer cells (MCF-7). Results We showed that HuR acts in the early phase of cell response to doxorubicin, being induced to translocate into the cytoplasm upon phosphorylation. Reducing HuR levels diminished the apoptotic response to doxorubicin. Doxorubicin-induced apoptosis was also correlated with the presence of HuR in the cytoplasm. Rottlerin, which was able to block HuR nuclear export, had correspondingly antagonistic effects with doxorubicin on cell toxicity. The proapoptotic activity of HuR was not due to cleavage to an active form, as was previously reported. In in vitro selected doxorubicin resistant MCF-7 cells (MCF-7/doxoR) overexpressing the multidrug resistance (MDR) related ABCG2 transporter, we observed a significant HuR downregulation that was paralleled by a corresponding downregulation of HuR targets and by loss of rottlerin toxicity. Restoration of HuR expression in these cells resensitized MCF-7/doxoR cells to doxorubicin, reactivating the apoptotic response. Conclusions The present study shows that HuR is necessary to elicit the apoptotic cell response to doxorubicin and that restoration of HuR expression in resistant cells resensitizes them to the action of this drug, thereby identifying HuR as a key protein in doxorubicin pharmacology.
Collapse
|
33
|
Barker A, Epis MR, Porter CJ, Hopkins BR, Wilce MCJ, Wilce JA, Giles KM, Leedman PJ. Sequence requirements for RNA binding by HuR and AUF1. J Biochem 2012; 151:423-37. [PMID: 22368252 DOI: 10.1093/jb/mvs010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The stability of RNAs bearing AU-rich elements in their 3'-UTRs, and thus the level of expression of their protein products, is regulated by interactions with cytoplasmic RNA-binding proteins. Binding by HuR generally leads to mRNA stabilization and increased protein production, whereas binding by AUF1 isoforms generally lead to rapid degradation of the mRNA and reduced protein production. The exact nature of the interplay between these and other RNA-binding proteins remains unclear, although recent studies have shown close interactions between them and even suggested competition between the two for binding to their cognate recognition sequences. Other recent reports have suggested that the sequences recognized by the two proteins are different. We therefore performed a detailed in vitro analysis of the binding site(s) for HuR and AUF1 present in androgen receptor mRNA to define their exact target sequences, and show that the same sequence is contacted by both proteins. Furthermore, we analysed a proposed HuR target within the 3'-UTR of MTA1 mRNA, and show that the contacted bases lie outside of the postulated motif and are a better match to a classical ARE than the postulated motif. The defining features of these HuR binding sites are their U-richness and single strandedness.
Collapse
Affiliation(s)
- Andrew Barker
- Laboratory for Cancer Medicine, Centre for Medical Research, Western Australian Institute for Medical Research, Perth, WA, 6000, Australia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kappeler KV, Zhang J, Dinh TN, Strom JG, Chen QM. Histone deacetylase 6 associates with ribosomes and regulates de novo protein translation during arsenite stress. Toxicol Sci 2012; 127:246-55. [PMID: 22367689 DOI: 10.1093/toxsci/kfs070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is known as a cytoplasmic enzyme that regulates cell migration, cell adhesion, and degradation of misfolded proteins by deacetylating substrates such as α-tubulin and Hsp90. When HaCaT keratinocytes were exposed to 1-200μM sodium arsenite, we observed perinuclear localization of HDAC6 within 30 min. Although the overall level of HDAC6 protein did not change, sodium arsenite caused an increase of HDAC6 in ribosomal fractions. Separation of ribosomal subunits versus intact ribosomes or polysomes indicated that HDAC6 was mainly detected in 40/43S fractions containing the small ribosomal subunit in untreated cells but was associated with 40/43S and 60/80S ribosomal fractions in arsenite-treated cells. Immunocytochemistry studies revealed that arsenite caused colocalization of HDAC6 with the ribosomal large and small subunit protein L36a and S6. Both L36a and S6 were detected in the immunocomplex of HDAC6 isolated from arsenite-treated cells. The observed physical interaction of HDAC6 with ribosomes pointed to a role of HDAC6 in stress-induced protein translation. Among arsenite stress-induced proteins, de novo Nrf2 protein translation was inhibited by Tubastatin A. These data demonstrate that HDAC6 was recruited to ribosomes, physically interacted with ribosomal proteins, and regulated de novo protein translation in keratinocytes responding to arsenite stress.
Collapse
Affiliation(s)
- Kyle V Kappeler
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | |
Collapse
|
35
|
Trojanowicz B, Dralle H, Hoang-Vu C. AUF1 and HuR: possible implications of mRNA stability in thyroid function and disorders. Thyroid Res 2011; 4 Suppl 1:S5. [PMID: 21835052 PMCID: PMC3155111 DOI: 10.1186/1756-6614-4-s1-s5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Abstract RNA-binding proteins may regulate every aspect of RNA metabolism, including pre-mRNA splicing, mRNA trafficking, stability and translation of many genes. The dynamic association of these proteins with RNA defines the lifetime, cellular localization, processing and the rate at which a specific mRNA is translated. One of the pathways involved in regulating of mRNA stability is mediated by adenylate uridylate-rich element (ARE) binding proteins. These proteins are involved in processes of apoptosis, tumorigenesis and development. Out of many ARE-binding proteins, two of them AUF1 and HuR were studied most extensively and reported to regulate the mRNA stability in vivo. Our previously published data demonstrate that both proteins are involved in thyroid carcinogenesis. Several other reports postulate that mRNA binding proteins may participate in thyroid hormone actions. However, until now, exacts mechanisms and the possible role of post-transcriptional regulation and especially the role of AUF1 and HuR in those processes remain not fully understood. In this study we shortly review the possible function of both proteins in relation to development and various physiological and pathophysiological processes, including thyroid function and disorders.
Collapse
Affiliation(s)
- Bogusz Trojanowicz
- Universitätsklinik und Poliklinik für Allgemein-, Viszeral- und Gefäßchirurgie, Martin-Luther Universität, Halle.
| | | | | |
Collapse
|
36
|
ELAV-mediated 3'-end processing of ewg transcripts is evolutionarily conserved despite sequence degeneration of the ELAV-binding site. Genetics 2011; 189:97-107. [PMID: 21705751 DOI: 10.1534/genetics.111.131383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Regulation of alternative mRNA processing by ELAV (embryonic lethal abnormal visual system)/Hu proteins is mediated by binding to AU-rich elements of low complexity. Since such sequences diverge very rapidly during evolution, it has not been clear if ELAV regulation is maintained over extended phylogenetic distances. The transcription factor Erect wing (Ewg) is a major target of ELAV in Drosophila melanogaster and coordinates metabolic gene expression with regulation of synaptic plasticity. Here, we demonstrate evolutionary conservation of ELAV regulation of ewg despite massive degeneration of its binding site and of associated elements in the regulated intronic 3'-end processing site in distantly related Drosophila virilis. In this species, the RNA-binding part of ELAV protein is identical to D. melanogaster. ELAV expression as well as expression and regulation of ewg are also conserved. Using in vitro binding assays and in vivo transgene analysis, we demonstrate, however, that the ELAV-binding site of D. virilis is fully functional in regulating alternative splicing of ewg intron 6 in D. melanogaster. Known features of the ELAV-binding site, such as the requirement of multiple poly(U) motifs spread over an extended binding site of ∼150 nt and a higher affinity to the 3' part of the binding site, are conserved. We further show that the 135-bp ELAV-binding site from D. melanogaster is sufficient for ELAV recruitment in vivo. Hence, our data suggest that ELAV/Hu protein-regulated alternative RNA processing is more conserved than anticipated from the alignment of degenerate low-complexity sequences.
Collapse
|
37
|
Zucconi BE, Wilson GM. Modulation of neoplastic gene regulatory pathways by the RNA-binding factor AUF1. FRONT BIOSCI-LANDMRK 2011; 16:2307-25. [PMID: 21622178 PMCID: PMC3589912 DOI: 10.2741/3855] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mRNA-binding protein AUF1 regulates the expression of many key players in cancer including proto-oncogenes, regulators of apoptosis and the cell cycle, and pro-inflammatory cytokines, principally by directing the decay kinetics of their encoded mRNAs. Most studies support an mRNA-destabilizing role for AUF1, although other findings suggest additional functions for this factor. In this review, we explore how changes in AUF1 isoform distribution, subcellular localization, and post-translational protein modifications can influence the metabolism of targeted mRNAs. However, several lines of evidence also support a role for AUF1 in the initiation and/or development of cancer. Many AUF1-targeted transcripts encode products that control pro- and anti-oncogenic processes. Also, overexpression of AUF1 enhances tumorigenesis in murine models, and AUF1 levels are enhanced in some tumors. Finally, signaling cascades that modulate AUF1 function are deregulated in some cancerous tissues. Together, these features suggest that AUF1 may play a prominent role in regulating the expression of many genes that can contribute to tumorigenic phenotypes, and that this post-transcriptional regulatory control point may be subverted by diverse mechanisms in neoplasia.
Collapse
Affiliation(s)
- Beth E. Zucconi
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201
| | - Gerald M. Wilson
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201
| |
Collapse
|
38
|
Ramírez O, García A, Rojas R, Couve A, Härtel S. Confined displacement algorithm determines true and random colocalization in fluorescence microscopy. J Microsc 2010; 239:173-83. [PMID: 20701655 DOI: 10.1111/j.1365-2818.2010.03369.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The quantification of colocalizing signals in multichannel fluorescence microscopy images depends on the reliable segmentation of corresponding regions of interest, on the selection of appropriate colocalization coefficients, and on a robust statistical criterion to discriminate true from random colocalization. Here, we introduce a confined displacement algorithm based on image correlation spectroscopy in combination with Manders colocalization coefficients M1(ROI) and M2(ROI) to quantify true and random colocalization of a given florescence pattern. We show that existing algorithms based on block scrambling exaggerate the randomization of fluorescent patterns with resulting inappropriately narrow probability density functions and false significance of true colocalization in terms of p values. We further confine our approach to subcellular compartments and show that true and random colocalization can be analysed for model dendrites and for GABA(B) receptor subunits GABA(B)R1/2 in cultured hippocampal neurons. Together, we demonstrate that the confined displacement algorithm detects true colocalization of specific fluorescence patterns down to subcellular levels.
Collapse
Affiliation(s)
- O Ramírez
- Laboratory for Scientific Image Analysis (SCIAN-Lab) at the Anatomy and Developmental Biology Program, ICBM, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
39
|
Gratacós FM, Brewer G. The role of AUF1 in regulated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2010; 1:457-73. [PMID: 21956942 PMCID: PMC3608466 DOI: 10.1002/wrna.26] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Messenger ribonucleic acid (mRNA) turnover is a major control point in gene expression. In mammals, many mRNAs encoding inflammatory cytokines, oncoproteins, and G-protein-coupled receptors are destabilized by the presence of AU-rich elements (AREs) in their 3'-untranslated regions. Association of ARE-binding proteins (AUBPs) with these mRNAs promotes rapid mRNA degradation. ARE/poly(U)-binding/degradation factor 1 (AUF1), one of the best-characterized AUBPs, binds to many ARE-mRNAs and assembles other factors necessary to recruit the mRNA degradation machinery. These factors include translation initiation factor eIF4G, chaperones hsp27 and hsp70, heat-shock cognate protein hsc70, lactate dehydrogenase, poly(A)-binding protein, and other unidentified proteins. Numerous signaling pathways alter the composition of this AUF1 complex of proteins to effect changes in ARE-mRNA degradation rates. This review briefly describes the roles of mRNA decay in gene expression in general and ARE-mediated decay (AMD) in particular, with a focus on AUF1 and the different modes of regulation that govern AUF1 involvement in AMD.
Collapse
Affiliation(s)
- Frances M Gratacós
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | |
Collapse
|
40
|
von Roretz C, Di Marco S, Mazroui R, Gallouzi IE. Turnover of AU-rich-containing mRNAs during stress: a matter of survival. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:336-47. [PMID: 21957021 DOI: 10.1002/wrna.55] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells undergo various adaptive measures in response to stress. Among these are specific changes in the posttranscriptional regulation of various genes. In particular, the turnover of mRNA is modified to either increase or decrease the abundance of certain target messages. Some of the best-studied mRNAs that are affected by stress are those that contain adenine/uridine-rich elements (AREs) in their 3'-untranslated regions. ARE-containing mRNAs are involved in many important cellular processes and are normally labile, but in response to stress they are differentially regulated through the concerted efforts of ARE-binding proteins (AUBPs) such as HuR, AUF1, tristetraprolin, BRF1, and KSRP, along with microRNA-mediated effects. Additionally, the fate of ARE-containing mRNAs is modified by inducing their localization to stress granules or mRNA processing bodies. Coordination of these various mechanisms controls the turnover of ARE-containing mRNAs, and thereby enables proper responses to cellular stress. In this review, we discuss how AUBPs regulate their target mRNAs in response to stress, along with the involvement of cytoplasmic granules in this process.
Collapse
|
41
|
David Gerecht PS, Taylor MA, Port JD. Intracellular localization and interaction of mRNA binding proteins as detected by FRET. BMC Cell Biol 2010; 11:69. [PMID: 20843363 PMCID: PMC2949623 DOI: 10.1186/1471-2121-11-69] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/15/2010] [Indexed: 02/10/2023] Open
Abstract
Background A number of RNA binding proteins (BPs) bind to A+U rich elements (AREs), commonly present within 3'UTRs of highly regulated RNAs. Individual RNA-BPs proteins can modulate RNA stability, RNA localization, and/or translational efficiency. Although biochemical studies have demonstrated selectivity of ARE-BPs for individual RNAs, less certain is the in vivo composition of RNA-BP multiprotein complexes and how their composition is affected by signaling events and intracellular localization. Using FRET, we previously demonstrated that two ARE-BPs, HuR and AUF1, form stable homomeric and heteromeric associations in the nucleus and cytoplasm. In the current study, we use immuno-FRET of endogenous proteins to examine the intracellular localization and interactions of HuR and AUF1 as well as KSRP, TIA-1, and Hedls. These results were compared to those obtained with their exogenously expressed, fluorescently labeled counterparts. Results All ARE-BPs examined were found to colocalize and to form stable associations with selected other RNA-BPs in one or more cellular locations variably including the nucleus, cytoplasm (in general), or in stress granules or P bodies. Interestingly, FRET based interaction of the translational suppressor, TIA-1, and the decapping protein, Hedls, was found to occur at the interface of stress granules and P bodies, dynamic sites of intracellular RNA storage and/or turnover. To explore the physical interactions of RNA-BPs with ARE containing RNAs, in vitro transcribed Cy3-labeled RNA was transfected into cells. Interestingly, Cy3-RNA was found to coalesce in P body like punctate structures and, by FRET, was found to interact with the RNA decapping proteins, Hedls and Dcp1. Conclusions Biochemical methodologies, such as co-immunoprecipitation, and cell biological approaches such as standard confocal microscopy are useful in demonstrating the possibility of proteins and/or proteins and RNAs interacting. However, as demonstrated herein, colocalization of proteins and proteins and RNA is not always indicative of interaction. To this point, using FRET and immuno-FRET, we have demonstrated that RNA-BPs can visually colocalize without producing a FRET signal. In contrast, proteins that appear to be delimited to one or another intracellular compartment can be shown to interact when those compartments are juxtaposed.
Collapse
Affiliation(s)
- Pamela S David Gerecht
- Department of Medicine/Cardiology and Pharmacology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
42
|
Ishimaru D, Zuraw L, Ramalingam S, Sengupta TK, Bandyopadhyay S, Reuben A, Fernandes DJ, Spicer EK. Mechanism of regulation of bcl-2 mRNA by nucleolin and A+U-rich element-binding factor 1 (AUF1). J Biol Chem 2010; 285:27182-27191. [PMID: 20571027 PMCID: PMC2930717 DOI: 10.1074/jbc.m109.098830] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 05/28/2010] [Indexed: 11/06/2022] Open
Abstract
The antiapoptotic Bcl-2 protein is overexpressed in a variety of cancers, particularly leukemias. In some cell types this is the result of enhanced stability of bcl-2 mRNA, which is controlled by elements in its 3'-untranslated region. Nucleolin is one of the proteins that binds to bcl-2 mRNA, thereby increasing its half-life. Here, we examined the site on the bcl-2 3'-untranslated region that is bound by nucleolin as well as the protein binding domains important for bcl-2 mRNA recognition. RNase footprinting and RNA fragment binding assays demonstrated that nucleolin binds to a 40-nucleotide region at the 5' end of the 136-nucleotide bcl-2 AU-rich element (ARE(bcl-2)). The first two RNA binding domains of nucleolin were sufficient for high affinity binding to ARE(bcl-2). In RNA decay assays, ARE(bcl-2) transcripts were protected from exosomal decay by the addition of nucleolin. AUF1 has been shown to recruit the exosome to mRNAs. When MV-4-11 cell extracts were immunodepleted of AUF1, the rate of decay of ARE(bcl-2) transcripts was reduced, indicating that nucleolin and AUF1 have opposing roles in bcl-2 mRNA turnover. When the function of nucleolin in MV-4-11 cells was impaired by treatment with the nucleolin-targeting aptamer AS1411, association of AUF1 with bcl-2 mRNA was increased. This suggests that the degradation of bcl-2 mRNA induced by AS1411 results from both interference with nucleolin protection of bcl-2 mRNA and recruitment of the exosome by AUF1. Based on our findings, we propose a model that illustrates the opposing roles of nucleolin and AUF1 in regulating bcl-2 mRNA stability.
Collapse
Affiliation(s)
- Daniella Ishimaru
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lisa Zuraw
- Department of Chemistry, The Citadel, Charleston, South Carolina 29409
| | - Sivakumar Ramalingam
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Tapas K Sengupta
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Sumita Bandyopadhyay
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Adrian Reuben
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Daniel J Fernandes
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Eleanor K Spicer
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
43
|
Lai RYJ, Ljubicic V, D'souza D, Hood DA. Effect of chronic contractile activity on mRNA stability in skeletal muscle. Am J Physiol Cell Physiol 2010; 299:C155-63. [PMID: 20375275 DOI: 10.1152/ajpcell.00523.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Repeated bouts of exercise promote the biogenesis of mitochondria by multiple steps in the gene expression patterning. The role of mRNA stability in controlling the expression of mitochondrial proteins is relatively unexplored. To induce mitochondrial biogenesis, we chronically stimulated (10 Hz; 3 or 6 h/day) rat muscle for 7 days. Chronic contractile activity (CCA) increased the protein expression of PGC-1alpha, c-myc, and mitochondrial transcription factor A (Tfam) by 1.6-, 1.7- and 2.0-fold, respectively. To determine mRNA stability, we incubated total RNA with cytosolic extracts using an in vitro cell-free system. We found that the intrinsic mRNA half-lives (t(1/2)) were variable within control muscle. Peroxisome proliferator-activated receptor-gamma, coactivator-1alpha (PGC-1alpha) and Tfam mRNAs decayed more rapidly (t(1/2) = 22.7 and 31.4 min) than c-myc mRNA (t(1/2) = 99.7 min). Furthermore, CCA resulted in a differential response in degradation kinetics. After CCA, PGC-1alpha and Tfam mRNA half-lives decreased by 48% and 44%, respectively, whereas c-myc mRNA half-life was unchanged. CCA induced an elevation of both the cytosolic RNA-stabilizing human antigen R (HuR) and destabilizing AUF1 (total) by 2.4- and 1.8-fold, respectively. Increases in the p37(AUF1), p40(AUF1), and p45(AUF1) isoforms were most evident. Thus these data indicate that CCA results in accelerated turnover rates of mRNAs encoding important mitochondrial biogenesis regulators in skeletal muscle. This adaptation is likely beneficial in permitting more rapid phenotypic plasticity in response to subsequent contractile activity.
Collapse
Affiliation(s)
- Ruanne Y J Lai
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | | | | | | |
Collapse
|
44
|
Papadopoulou C, Patrinou-Georgoula M, Guialis A. Extensive association of HuR with hnRNP proteins within immunoselected hnRNP and mRNP complexes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:692-703. [DOI: 10.1016/j.bbapap.2009.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 10/08/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
|
45
|
HuR regulates the expression of stress-sensitive genes and mediates inflammatory response in human umbilical vein endothelial cells. Proc Natl Acad Sci U S A 2010; 107:6858-63. [PMID: 20351266 DOI: 10.1073/pnas.1000444107] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An important aspect of vascular biology is the identification of regulators of stress-sensitive genes that play critical roles in mediating inflammatory response. Here, we show that expression of HuR in human umbilical vein endothelial cells is regulated by shear stress and statin treatment; HuR, in turn, regulates other stress-sensitive genes such as Kruppel-like factor 2 (Klf2), endothelial nitric oxide synthase (eNOS), and bone morphogenic protein 4 (BMP-4). We found that siRNA knockdown of HuR-inhibited inflammatory responses in endothelial cells, including ICAM-1 and VCAM-1 up-regulation, NFkappaB phosphorylation, and adhesion of monocytes. Tissue staining of the mouse aorta revealed increased HuR expression in the lesser curvature region of the arch that is exposed to disturbed flow, consistent with our in vitro data. Taken together, these results suggest that HuR plays a critical role in inducing inflammatory response of endothelial cells under mechanical and biochemical stresses.
Collapse
|
46
|
Meisner NC, Filipowicz W. Properties of the regulatory RNA-binding protein HuR and its role in controlling miRNA repression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 700:106-23. [PMID: 21627034 DOI: 10.1007/978-1-4419-7823-3_10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gene expression in eukaryotes is subject to extensive regulation at posttranscriptional levels. One of the most important sites of control involves mRNA 3' untranslated regions (3'UTRs), which are recognized by RNA-binding proteins (RBPs) and microRNAs (miRNAs). These factors greatly influence translational efficiency and stability of target mRNAs and often also determine their cellular localization. HuR, a ubiquitously expressed member of the ELAV family of RBPs, has been implicated in regulation of stability and translation of over one hundred mRNAs in mammalian cells. Recent data indicate that some of the effects of HuR can be explained by its interplay with miRNAs. Binding of HuR may suppress the inhibitory effect of miRNAs interacting with the 3'UTR and redirect the repressed mRNA to polysomes for active translation. However, HuR can also synergize with miRNAs. The finding that HuR is able to disengage miRNAs from the repressed mRNA, or render them inactive, provides evidence that miRNA regulation is much more dynamic then originally anticipated. In this chapter we review properties of HuR and describe examples of the cross-talk between the protein and miRNAs, with emphasis on response of the regulation to cellular stress.
Collapse
|
47
|
Dutkowski J, Tiuryn J. Phylogeny-guided interaction mapping in seven eukaryotes. BMC Bioinformatics 2009; 10:393. [PMID: 19948065 PMCID: PMC2793266 DOI: 10.1186/1471-2105-10-393] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 11/30/2009] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The assembly of reliable and complete protein-protein interaction (PPI) maps remains one of the significant challenges in systems biology. Computational methods which integrate and prioritize interaction data can greatly aid in approaching this goal. RESULTS We developed a Bayesian inference framework which uses phylogenetic relationships to guide the integration of PPI evidence across multiple datasets and species, providing more accurate predictions. We apply our framework to reconcile seven eukaryotic interactomes: H. sapiens, M. musculus, R. norvegicus, D. melanogaster, C. elegans, S. cerevisiae and A. thaliana. Comprehensive GO-based quality assessment indicates a 5% to 44% score increase in predicted interactomes compared to the input data. Further support is provided by gold-standard MIPS, CYC2008 and HPRD datasets. We demonstrate the ability to recover known PPIs in well-characterized yeast and human complexes (26S proteasome, endosome and exosome) and suggest possible new partners interacting with the putative SWI/SNF chromatin remodeling complex in A. thaliana. CONCLUSION Our phylogeny-guided approach compares favorably to two standard methods for mapping PPIs across species. Detailed analysis of predictions in selected functional modules uncovers specific PPI profiles among homologous proteins, establishing interaction-based partitioning of protein families. Provided evidence also suggests that interactions within core complex subunits are in general more conserved and easier to transfer accurately to other organisms, than interactions between these subunits.
Collapse
|
48
|
Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochim Biophys Acta Gen Subj 2009; 1800:223-34. [PMID: 19682549 DOI: 10.1016/j.bbagen.2009.07.031] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 12/18/2022]
Abstract
Acute contractile activity of skeletal muscle initiates the activation of signaling kinases. This promotes the phosphorylation of transcription factors, leading to enhanced DNA binding and transcriptional activation and/or repression. The mRNA products of nuclear genes encoding mitochondrial proteins are translated in the cytosol and imported into pre-existing mitochondria. When contractile activity is repeated, the recapitulation of these cellular events progressively leads to an expansion of the mitochondrial reticulum within muscle. This has physiologically relevant health benefit, including enhanced lipid metabolism and reduced muscle fatigability. In aging skeletal muscle, the response to contractile activity appears to be attenuated, suggesting that a greater contractile stimulus is required to attain a similar phenotype adaptation. This review summarizes our current understanding of the effects of exercise on the gene expression pathway leading to organelle biogenesis in muscle.
Collapse
|
49
|
Farooq F, Balabanian S, Liu X, Holcik M, MacKenzie A. p38 Mitogen-activated protein kinase stabilizes SMN mRNA through RNA binding protein HuR. Hum Mol Genet 2009; 18:4035-45. [DOI: 10.1093/hmg/ddp352] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Henao-Mejia J, He JJ. Sam68 relocalization into stress granules in response to oxidative stress through complexing with TIA-1. Exp Cell Res 2009; 315:3381-95. [PMID: 19615357 DOI: 10.1016/j.yexcr.2009.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/21/2009] [Accepted: 07/08/2009] [Indexed: 12/25/2022]
Abstract
Sam68 has been implicated in a variety of important cellular processes such as RNA metabolism and intracellular signaling. We have recently shown that Sam68 cytoplasmic mutants induce stress granules (SG) and inhibit HIV-1 nef mRNA translation [J. Henao-Mejia, Y. Liu, I.W. Park, J. Zhang, J. Sanford, J.J. He, Suppression of HIV-1 Nef translation by Sam68 mutant-induced stress granules and nef mRNA sequestration, Mol. Cell 33 (2009) 87-96]. These findings prompted us to investigate the possibility and the underlying mechanisms of the wild-type counterpart Sam68 SG recruitment. Herein, we revealed that Sam68 was significantly recruited into cytoplasmic SG under oxidative stress. We then demonstrated that domain aa269-321 and KH domain were both essential for this recruitment. Nevertheless, Sam68 knockdown had no effects on SG assembly, indicating that Sam68 is not a constitutive component of the SG. Moreover, we showed that Sam68 cytoplasmic mutant-induced SG formation was independent of eIF2alpha phosphorylation. Lastly, we demonstrated that Sam68 was complexed with T-cell intracellular antigen-1 (TIA-1), a core SG component, and that the complex formation was correlated with Sam68 SG recruitment. Taken together, these results provide direct evidence for the first time that Sam68 is recruited into SG through complexing with TIA-1 in response to oxidative stress and suggest that cytoplasmic SG recruitment of Sam68 and ensuing changes in Sam68 physiological functions are part of the host response to external stressful conditions.
Collapse
Affiliation(s)
- Jorge Henao-Mejia
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|