1
|
Du L, Chen W, Zhang D, Cui Y, He Z. The functions and mechanisms of piRNAs in mediating mammalian spermatogenesis and their applications in reproductive medicine. Cell Mol Life Sci 2024; 81:379. [PMID: 39222270 PMCID: PMC11369131 DOI: 10.1007/s00018-024-05399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
As the most abundant small RNAs, piwi-interacting RNAs (piRNAs) have been identified as a new class of non-coding RNAs with 24-32 nucleotides in length, and they are expressed at high levels in male germ cells. PiRNAs have been implicated in the regulation of several biological processes, including cell differentiation, development, and male reproduction. In this review, we focused on the functions and molecular mechanisms of piRNAs in controlling spermatogenesis, including genome stability, regulation of gene expression, and male germ cell development. The piRNA pathways include two major pathways, namely the pre-pachytene piRNA pathway and the pachytene piRNA pathway. In the pre-pachytene stage, piRNAs are involved in chromosome remodeling and gene expression regulation to maintain genome stability by inhibiting transposon activity. In the pachytene stage, piRNAs mediate the development of male germ cells via regulating gene expression by binding to mRNA and RNA cleavage. We further discussed the correlations between the abnormalities of piRNAs and male infertility and the prospective of piRNAs' applications in reproductive medicine and future studies. This review provides novel insights into mechanisms underlying mammalian spermatogenesis and offers new targets for diagnosing and treating male infertility.
Collapse
Affiliation(s)
- Li Du
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Wei Chen
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Dong Zhang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Yinghong Cui
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Jarva T, Zhang J, Flynt A. MiSiPi-Rna: an integrated tool for characterizing small regulatory RNA processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539760. [PMID: 37214880 PMCID: PMC10197562 DOI: 10.1101/2023.05.07.539760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RNA interference (RNAi) is mediated by small (20-30 nucleotide) RNAs that are produced by complex processing pathways. In animals, three main classes are recognized: microRNAs (miRNAs), small-interfering RNAs (siRNAs) and piwi-interacting RNAs (piRNAs). Understanding of small RNA pathways has benefited from genetic models where key enzymatic events were identified that lead to stereotypical positioning of small RNAs relative to precursor transcripts. Increasingly there is interest in using RNAi in non-model systems due to ease of generating synthetic small RNA precursors for research and biotechnology. Unfortunately, small RNAs are often rapidly evolving, requiring investigation of a species' endogenous small RNAs prior to deploying an RNAi approach. This can be accomplished through small non-coding RNA sequencing followed by applying various computational tools; however, the complexity and separately maintained packages lead to significant challenges for annotating global small RNA populations. To address this need, we developed a simple and efficient R package (MiSiPi-Rna) which can be used to characterize pre-selected loci with plots and statistics, aiding researchers understanding RNAi biology specific to their target species. Additionally, MiSiPi-Rna pioneers several computational approaches to identifying Dicer processing to assist annotation of miRNA and siRNA.
Collapse
|
3
|
Balaratnam S, Hoque ME, West N, Basu S. Decay of Piwi-Interacting RNAs in Human Cells Is Primarily Mediated by 5' to 3' Exoribonucleases. ACS Chem Biol 2022; 17:1723-1732. [PMID: 35687865 DOI: 10.1021/acschembio.2c00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are a group of small noncoding RNA molecules that regulate the activity of transposons and control gene expression. The cellular concentration of RNAs is generally maintained by their rates of biogenesis and degradation. Although the biogenesis pathways of piRNAs have been well defined, their degradation mechanism is still unknown. Here, we show that degradation of human piRNAs is mostly dependent on the 5'-3' exoribonuclease pathway. The presence of 3'-end 2'-O-methylation in piRNAs significantly reduced their degradation through the exosome-mediated decay pathway. The accumulation of piRNAs in XRN1 and XRN2 exoribonuclease-depleted cells further supports the 5'-3' exoribonuclease-mediated decay of piRNAs. Moreover, formation of stable secondary structures in piRNAs slows the rate of XRN1-mediated degradation. Our findings establish a framework for the piRNA degradation mechanism in cells and thus provide crucial information about how the basal level concentration of piRNAs is maintained in cells.
Collapse
Affiliation(s)
- Sumirtha Balaratnam
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States.,Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Mohammed Enamul Hoque
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Nicole West
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
4
|
Dhahbi JM, Chen JW, Bhupathy S, Atamna H, Cavalcante MB, Saccon TD, Nunes ADC, Mason JB, Schneider A, Masternak MM. Specific PIWI-Interacting RNAs and Related Small Noncoding RNAs Are Associated With Ovarian Aging in Ames Dwarf (df/df) Mice. J Gerontol A Biol Sci Med Sci 2021; 76:1561-1570. [PMID: 34387333 PMCID: PMC8361361 DOI: 10.1093/gerona/glab113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
The Ames dwarf (df/df) mouse is a well-established model for delayed aging. MicroRNAs (miRNAs), the most studied small noncoding RNAs (sncRNAs), may regulate ovarian aging to maintain a younger ovarian phenotype in df/df mice. In this study, we profile other types of ovarian sncRNAs, PIWI-interacting RNAs (piRNAs) and piRNA-like RNAs (piLRNAs), in young and aged df/df and normal mice. Half of the piRNAs derive from transfer RNA fragments (tRF-piRNAs). Aging and dwarfism alter the ovarian expression of these novel sncRNAs. Specific tRF-piRNAs that increased with age might target and decrease the expression of the breast cancer antiestrogen resistance protein 3 (BCAR3) gene in the ovaries of old df/df mice. A set of piLRNAs that decreased with age and map to D10Wsu102e mRNA may have trans-regulatory functions. Other piLRNAs that decreased with age potentially target and may de-repress transposable elements, leading to a beneficial impact on ovarian aging in df/df mice. These results identify unique responses in ovarian tissues with regard to aging and dwarfism. Overall, our findings highlight the complexity of the aging effects on gene expression and suggest that, in addition to miRNAs, piRNAs, piLRNAs, tRF-piRNAs, and their potential targets can be central players in the maintenance of a younger ovarian phenotype in df/df mice.
Collapse
Affiliation(s)
- Joseph M Dhahbi
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, USA
| | - Joe W Chen
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, USA
| | - Supriya Bhupathy
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, USA
| | - Hani Atamna
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, USA
| | | | - Tatiana D Saccon
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Rio Grande, Brazil
| | - Allancer D C Nunes
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
| | - Jeffrey B Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, Logan, USA
| | - Augusto Schneider
- Faculdade de Nutricao, Universidade Federal de Pelotas, Rio Grande, Brazil
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poland
| |
Collapse
|
5
|
|
6
|
Wu PH, Fu Y, Cecchini K, Özata DM, Arif A, Yu T, Colpan C, Gainetdinov I, Weng Z, Zamore PD. The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility. Nat Genet 2020; 52:728-739. [PMID: 32601478 PMCID: PMC7383350 DOI: 10.1038/s41588-020-0657-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Pachytene PIWI-interacting RNAs (piRNAs), which comprise >80% of small RNAs in the adult mouse testis, have been proposed to bind and regulate target RNAs like microRNAs, cleave targets like short interfering RNAs or lack biological function altogether. Although piRNA pathway protein mutants are male sterile, no biological function has been identified for any mammalian piRNA-producing locus. Here, we report that males lacking piRNAs from a conserved mouse pachytene piRNA locus on chromosome 6 (pi6) produce sperm with defects in capacitation and egg fertilization. Moreover, heterozygous embryos sired by pi6-/- fathers show reduced viability in utero. Molecular analyses suggest that pi6 piRNAs repress gene expression by cleaving messenger RNAs encoding proteins required for sperm function. pi6 also participates in a network of piRNA-piRNA precursor interactions that initiate piRNA production from a second piRNA locus on chromosome 10, as well as pi6 itself. Our data establish a direct role for pachytene piRNAs in spermiogenesis and embryo viability.
Collapse
Affiliation(s)
- Pei-Hsuan Wu
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Yu Fu
- Bioinformatics Program, Boston University, Boston, MA, USA.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA.,Oncology Drug Discovery Unit, Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Katharine Cecchini
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Deniz M Özata
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amena Arif
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA.,School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cansu Colpan
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ildar Gainetdinov
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA. .,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Phillip D Zamore
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
La Greca A, Scarafía MA, Hernández Cañás MC, Pérez N, Castañeda S, Colli C, Möbbs AM, Santín Velazque NL, Neiman G, Garate X, Aban C, Waisman A, Moro LN, Sevlever G, Luzzani C, Miriuka SG. PIWI-interacting RNAs are differentially expressed during cardiac differentiation of human pluripotent stem cells. PLoS One 2020; 15:e0232715. [PMID: 32369512 PMCID: PMC7199965 DOI: 10.1371/journal.pone.0232715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/20/2020] [Indexed: 11/18/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a class of non-coding RNAs initially thought to be restricted exclusively to germline cells. In recent years, accumulating evidence has demonstrated that piRNAs are actually expressed in pluripotent, neural, cardiac and even cancer cells. However, controversy remains around the existence and function of somatic piRNAs. Using small RNA-seq samples from H9 pluripotent cells differentiated to mesoderm progenitors and cardiomyocytes we identified the expression of 447 piRNA transcripts, of which 241 were detected in pluripotency, 218 in mesoderm and 171 in cardiac cells. The majority of them originated from the sense strand of protein coding and lncRNAs genes in all stages of differentiation, though no evidences of amplification loop (ping-pong) were found. Genes hosting piRNA transcripts in cardiac samples were related to critical biological processes in the heart, like contraction and cardiac muscle development. Our results indicate that these piRNAs might have a role in fine-tuning the expression of genes involved in differentiation of pluripotent cells to cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | - Nelba Pérez
- LIAN, Fleni Institute-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | - Ximena Garate
- LIAN, Fleni Institute-CONICET, Buenos Aires, Argentina
| | - Cyntia Aban
- LIAN, Fleni Institute-CONICET, Buenos Aires, Argentina
| | - Ariel Waisman
- LIAN, Fleni Institute-CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
8
|
Li C, Shen C, Shang X, Tang L, Xiong W, Ge H, Zhang H, Lu S, Shen Y, Wang J, Fei J, Wang Z. Two novel testis-specific long noncoding RNAs produced by <i>1700121C10Rik</i> are dispensable for male fertility in mice. J Reprod Dev 2019; 66:57-65. [PMID: 31801914 PMCID: PMC7040208 DOI: 10.1262/jrd.2019-104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Testis-specific genes are prone to affect spermatogenesis or sperm fertility, and thus may play pivotal roles in male reproduction. However, whether a gene really affects male reproduction
in vivo needs to be confirmed using a gene knock-out (KO) model, a ‘gold standard’ method. Increasing studies have found that some of the evolutionarily conserved
testis-enriched genes are not essential for male fertility. In this study, we report that 1700121C10Rik, a previously uncharacterized gene, is specifically expressed in the
testis and produces two long noncoding RNAs (lncRNAs) in mouse: Transcript 1 and Transcript 2. qRT-PCR, northern blotting, and in situ hybridization revealed that expression
of both the lncRNAs commenced at the onset of sexual maturity and was predominant in round and elongating spermatids during spermiogenesis. Moreover, we found different subcellular
localization of Transcript 1 and Transcript 2 that was predominant in the cytoplasm and nucleus, respectively. 1700121C10Rik-KO mouse model disrupting Transcript 1 and
Transcript 2 expression was generated by CRISPR/Cas9 to determine their role in male reproduction. Results showed that 1700121C10Rik-KO male mice were fully fertile with
approximately standard testis size, testicular histology, sperm production, sperm morphology, sperm motility, and induction of acrosome reaction. Thus, we conclude that both the
testis-specific 1700121C10Rik-produced lncRNAs are dispensable for male fertility in mice under standard laboratory conditions.
Collapse
Affiliation(s)
- Chaojie Li
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuan Shang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinjin Wang
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Jian Fei
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Research Center for Model Organisms, Shanghai 201203, China
| |
Collapse
|
9
|
PiRNA-DQ541777 Contributes to Neuropathic Pain via Targeting Cdk5rap1. J Neurosci 2019; 39:9028-9039. [PMID: 31519819 DOI: 10.1523/jneurosci.1602-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 01/06/2023] Open
Abstract
Piwi-Interacting RNA (piRNA) is the largest class of small noncoding RNA and is involved in various physiological and pathological processes. However, whether it has a role in pain modulation remains unknown. In the present study, we found that spinal piRNA-DQ541777 (piR-DQ541777) was significantly increased in the male mouse model of sciatic nerve chronic constriction injury (CCI)-induced neuropathic pain. Knockdown of spinal piR-DQ541777 alleviated CCI-induced thermal hyperalgesia and mechanical allodynia and spinal neuronal sensitization. However, the overexpression of spinal piR-DQ541777 in naive mice produced pain behaviors and increased spinal neuron sensitization. Furthermore, we found that piR-DQ541777 regulates pain behaviors by targeting CDK5 regulatory subunit-associated protein 1 (Cdk5rap1). CCI increased the methylation level of CpG islands in the cdk5rap1 promoter and consequently reduced the expression of Cdk5rap1, which was reversed by the knockdown of piR-DQ541777 and mimicked by the overexpression of piR-DQ541777 in naive mice. Finally, piR-DQ541777 increased the methylation level of CpG islands by recruiting DNA methyltransferase 3A (DNMT3a) to cdk5rap1 promoter. In conclusion, this study represents a novel role of piR-DQ541777 in the regulation of neuropathic pain through the methylation of cdk5rap1 SIGNIFICANCE STATEMENT Chronic pain affects ∼20% of the population of the world and is a major global public health problem. Although we have studied the neurobiological mechanism of neuropathic pain for decades, there is still no ideal drug available to treat it. This work indicates that a novel role of Piwi-interacting RNA (piRNA) DQ541777 in the regulation of neuropathic pain through the methylation of cdk5rap1 Our findings provide the first evidence of the regulatory effect of piRNAs on neuropathic pain, which may improve our understanding of pain mechanisms and lead to the discovery of novel drug targets for the prevention and treatment of neuropathic pain.
Collapse
|
10
|
Gong J, Zhang Q, Wang Q, Ma Y, Du J, Zhang Y, Zhao X. Identification and verification of potential piRNAs from domesticated yak testis. Reproduction 2017; 155:117-127. [PMID: 29101267 PMCID: PMC5763474 DOI: 10.1530/rep-17-0592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/24/2017] [Accepted: 11/03/2017] [Indexed: 01/02/2023]
Abstract
PIWI-interacting RNAs (piRNA) are small non-coding RNA molecules expressed in animal germ cells that interact with PIWI family proteins to form RNA–protein complexes involved in epigenetic and post-transcriptional gene silencing of retrotransposons and other genetic elements in germ line cells, including reproductive stem cell self-sustainment, differentiation, meiosis and spermatogenesis. In the present study, we performed high-throughput sequencing of piRNAs in testis samples from yaks in different stages of sexual maturity. Deep sequencing of the small RNAs (18–40 nt in length) yielded 4,900,538 unique reads from a total of 53,035,635 reads. We identified yak small RNAs (18–30 nt) and performed functional characterization. Yak small RNAs showed a bimodal length distribution, with two peaks at 22 nt and >28 nt. More than 80% of the 3,106,033 putative piRNAs were mapped to 4637 piRNA-producing genomic clusters using RPKM. 6388 candidate piRNAs were identified from clean reads and the annotations were compared with the yak reference genome repeat region. Integrated network analysis suggested that some differentially expressed genes were involved in spermatogenesis through ECM–receptor interaction and PI3K-Akt signaling pathways. Our data provide novel insights into the molecular expression and regulation similarities and diversities in spermatogenesis and testicular development in yaks at different stages of sexual maturity.
Collapse
Affiliation(s)
- Jishang Gong
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Quanwei Zhang
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Qi Wang
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Youji Ma
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Jiaxiang Du
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Yong Zhang
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Xingxu Zhao
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| |
Collapse
|
11
|
Abstract
Piwi-interacting RNAs (piRNAs) are the non-coding RNAs with 24-32 nucleotides (nt). They exhibit stark differences in length, expression pattern, abundance, and genomic organization when compared to micro-RNAs (miRNAs). There are hundreds of thousands unique piRNA sequences in each species. Numerous piRNAs have been identified and deposited in public databases. Since the piRNAs were originally discovered and well-studied in the germline, a few other studies have reported the presence of piRNAs in somatic cells including neurons. This paper reviewed the common features, biogenesis, functions, and distributions of piRNAs and summarized their specific functions in the brain. This review may provide new insights and research direction for brain disorders.
Collapse
Affiliation(s)
- Lingjun Zuo
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhiren Wang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine and Department of Psychology, University of Nevada, Las Vegas, NV, USA
| | - Xingguang Luo
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
12
|
Non-coding RNA in Spermatogenesis and Epididymal Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:95-120. [PMID: 26659489 DOI: 10.1007/978-94-017-7417-8_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Testicular germ and somatic cells express many classes of small ncRNAs, including Dicer-independent PIWI-interacting RNAs, Dicer-dependent miRNAs, and endogenous small interfering RNA. Several studies have identified ncRNAs that are highly, exclusively, or preferentially expressed in the testis and epididymis in specific germ and somatic cell types. Temporal and spatial expression of proteins is a key requirement of successful spermatogenesis and large-scale gene transcription occurs in two key stages, just prior to transcriptional quiescence in meiosis and then during spermiogenesis just prior to nuclear silencing in elongating spermatids. More than 60 % of these transcripts are then stockpiled for subsequent translation. In this capacity ncRNAs may act to interpret and transduce cellular signals to either maintain the undifferentiated stem cell population and/or drive cell differentiation during spermatogenesis and epididymal maturation. The assignation of specific roles to the majority of ncRNA species implicated as having a role in spermatogenesis and epididymal function will underpin fundamental understanding of normal and disease states in humans such as infertility and the development of germ cell tumours.
Collapse
|
13
|
Tóth KF, Pezic D, Stuwe E, Webster A. The piRNA Pathway Guards the Germline Genome Against Transposable Elements. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:51-77. [PMID: 26659487 DOI: 10.1007/978-94-017-7417-8_4] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Transposable elements (TEs) have the capacity to replicate and insert into new genomic locations. This contributs significantly to evolution of genomes, but can also result in DNA breaks and illegitimate recombination, and therefore poses a significant threat to genomic integrity. Excess damage to the germ cell genome results in sterility. A specific RNA silencing pathway, termed the piRNA pathway operates in germ cells of animals to control TE activity. At the core of the piRNA pathway is a ribonucleoprotein complex consisting of a small RNA, called piRNA, and a protein from the PIWI subfamily of Argonaute nucleases. The piRNA pathway relies on the specificity provided by the piRNA sequence to recognize complementary TE targets, while effector functions are provided by the PIWI protein. PIWI-piRNA complexes silence TEs both at the transcriptional level - by attracting repressive chromatin modifications to genomic targets - and at the posttranscriptional level - by cleaving TE transcripts in the cytoplasm. Impairment of the piRNA pathway leads to overexpression of TEs, significantly compromised genome structure and, invariably, germ cell death and sterility.The piRNA pathway is best understood in the fruit fly, Drosophila melanogaster, and in mouse. This Chapter gives an overview of current knowledge on piRNA biogenesis, and mechanistic details of both transcriptional and posttranscriptional TE silencing by the piRNA pathway. It further focuses on the importance of post-translational modifications and subcellular localization of the piRNA machinery. Finally, it provides a brief description of analogous pathways in other systems.
Collapse
Affiliation(s)
- Katalin Fejes Tóth
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA.
| | - Dubravka Pezic
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Evelyn Stuwe
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Alexandre Webster
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| |
Collapse
|
14
|
Luo LF, Hou CC, Yang WX. Small non-coding RNAs and their associated proteins in spermatogenesis. Gene 2015; 578:141-57. [PMID: 26692146 DOI: 10.1016/j.gene.2015.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/30/2015] [Accepted: 12/08/2015] [Indexed: 12/26/2022]
Abstract
The importance of the gene regulation roles of small non-coding RNAs and their protein partners is of increasing focus. In this paper, we reviewed three main small RNA species which appear to affect spermatogenesis. MicroRNAs (miRNAs) are single stand RNAs derived from transcripts containing stem-loops and hairpins which target corresponding mRNAs and affect their stability or translation. Many miRNA species have been found to be related to normal male germ cell development. The biogenesis of piRNAs is still largely unknown but several models have been proposed. Some piRNAs and PIWIs target transposable elements and it is these that may be active in regulating translation or stem cell maintenance. endo-siRNAs may also participate in sperm development. Some possible interactions between different kinds of small RNAs have even been suggested. We also show that male germ granules are seen to have a close relationship with a considerable number of mRNAs and small RNAs. Those special structures may also participate in sperm development.
Collapse
Affiliation(s)
- Ling-Feng Luo
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong-Cong Hou
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Exploiting RNA-sequencing data from the porcine testes to identify the key genes involved in spermatogenesis in Large White pigs. Gene 2015; 573:303-9. [DOI: 10.1016/j.gene.2015.07.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 07/07/2015] [Accepted: 07/16/2015] [Indexed: 11/19/2022]
|
16
|
Roles of small RNAs in the effects of nutrition on apoptosis and spermatogenesis in the adult testis. Sci Rep 2015; 5:10372. [PMID: 25996545 PMCID: PMC4440528 DOI: 10.1038/srep10372] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/10/2015] [Indexed: 12/16/2022] Open
Abstract
We tested whether reductions in spermatozoal quality induced by under-nutrition are associated with increased germ cell apoptosis and disrupted spermatogenesis, and whether these effects are mediated by small RNAs. Groups of 8 male sheep were fed for a 10% increase or 10% decrease in body mass over 65 days. Underfeeding increased the number of apoptotic germ cells (P < 0.05) and increased the expression of apoptosis-related genes (P < 0.05) in testicular tissue. We identified 44 miRNAs and 35 putative piRNAs that were differentially expressed in well-fed and underfed males (FDR < 0.05). Some were related to reproductive system development, apoptosis (miRNAs), and sperm production and quality (piRNAs). Novel-miR-144 (miR-98), was found to target three apoptotic genes (TP53, CASP3, FASL). The proportion of miRNAs as a total of small RNAs was greater in well-fed males than in underfed males (P < 0.05) and was correlated (r = 0.8, P < 0.05) with the proportion of piRNAs in well-fed and underfed males. In conclusion, the reductions in spermatozoal quality induced by under-nutrition are caused, at least partly, by disruptions to Sertoli cell function and increased germ cell apoptosis, mediated by changes in the expression of miRNAs and piRNAs.
Collapse
|
17
|
Schuster A, Hennig GW, Ortogero N, Luong D, Yan W. In silico identification of novel endo-siRNAs. Methods Mol Biol 2015; 1218:341-51. [PMID: 25319662 DOI: 10.1007/978-1-4939-1538-5_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many classes of small noncoding RNAs (sncRNAs), such as microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), have been identified as important regulators of gene expression. Endo-siRNAs represent an integral part of the endogenous RNAi pathway and have been identified in multiple organisms and cell types. Wide adoption of the next-generation deep sequencing (NGS)-based sncRNA profiling has made the identification of novel sncRNA species more accessible. However, it remains a challenge to identify novel endo-siRNAs that are not collected in the current endo-siRNA databases. We have developed an in silico method for identification of novel endo-siRNAs using small RNA NGS data. Here, we describe our protocol in detail.
Collapse
Affiliation(s)
- Andrew Schuster
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, MS575, 1664 North Virginia Street, Reno, NV, 89557, USA
| | | | | | | | | |
Collapse
|
18
|
Ortogero N, Schuster AS, Oliver DK, Riordan CR, Hong AS, Hennig GW, Luong D, Bao J, Bhetwal BP, Ro S, McCarrey JR, Yan W. A novel class of somatic small RNAs similar to germ cell pachytene PIWI-interacting small RNAs. J Biol Chem 2014; 289:32824-34. [PMID: 25320077 DOI: 10.1074/jbc.m114.613232] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small noncoding RNAs that bind PIWI family proteins exclusively expressed in the germ cells of mammalian gonads. MIWI2-associated piRNAs are essential for silencing transposons during primordial germ cell development, and MIWI-bound piRNAs are required for normal spermatogenesis during adulthood in mice. Although piRNAs have long been regarded as germ cell-specific, increasing lines of evidence suggest that somatic cells also express piRNA-like RNAs (pilRNAs). Here, we report the detection of abundant pilRNAs in somatic cells, which are similar to MIWI-associated piRNAs mainly expressed in pachytene spermatocytes and round spermatids in the testis. Based on small RNA deep sequencing and quantitative PCR analyses, pilRNA expression is dynamic and displays tissue specificity. Although pilRNAs are similar to pachytene piRNAs in both size and genomic origins, they have a distinct ping-pong signature. Furthermore, pilRNA biogenesis appears to utilize a yet to be identified pathway, which is different from all currently known small RNA biogenetic pathways. In addition, pilRNAs appear to preferentially target the 3'-UTRs of mRNAs in a partially complementary manner. Our data suggest that pilRNAs, as an integral component of the small RNA transcriptome in somatic cell lineages, represent a distinct population of small RNAs that may have functions similar to germ cell piRNAs.
Collapse
Affiliation(s)
- Nicole Ortogero
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557 and
| | - Andrew S Schuster
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557 and
| | - Daniel K Oliver
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557 and
| | - Connor R Riordan
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557 and
| | - Annie S Hong
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557 and
| | - Grant W Hennig
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557 and
| | - Dickson Luong
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557 and
| | - Jianqiang Bao
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557 and
| | - Bhupal P Bhetwal
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557 and
| | - Seungil Ro
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557 and
| | - John R McCarrey
- the Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Wei Yan
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557 and
| |
Collapse
|
19
|
Liu T, Qin AP, Liao B, Shao HG, Guo LJ, Xie GQ, Yang L, Jiang TJ. A novel microRNA regulates osteoclast differentiation via targeting protein inhibitor of activated STAT3 (PIAS3). Bone 2014; 67:156-65. [PMID: 25019593 DOI: 10.1016/j.bone.2014.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/24/2014] [Accepted: 07/02/2014] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) involve in the regulation of a wide range of physiological processes. Recent studies suggested that miRNAs might play a role in osteoclast differentiation. Here, we identify a new miRNA (miR-9718) in primary mouse osteoclasts that promotes osteoclast differentiation by repressing protein inhibitor of activated STAT3 (PIAS3) at the post-transcriptional level. MiR-9718 was found to be transcribed during osteoclastogenesis, which was induced by macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). Overexpression of miR-9718 in RAW 264.7 cells promoted M-CSF and RANKL-induced osteoclastogenesis, whereas inhibition of miR-9718 attenuated it. PIAS3 was predicted to be a target of miR-9718. Luciferase reporter gene validated the prediction. Transfection of pre-miR-9718 in RAW 264.7 cells induced by both M-CSF and RANKL inhibited expression of PIAS3 protein, while the mRNA levels of PIAS3 were not attenuated. In vivo, our study showed that silencing of miR-9718 using a specific antagomir inhibited bone resorption and increased bone mass in mice receiving ovariectomy (OVX) and in sham-operated control mice. Thus, our study showed that miR-9718 played an important role in osteoclast differentiation via targeting PIAS3 both in vitro and in vivo.
Collapse
Affiliation(s)
- Ting Liu
- Institute of Endocrinology and Metabolism, Second Xiangya Hospital of Central South University, 139# Middle Renmin Road, Changsha, Hunan 410011, PR China
| | - Ai-Ping Qin
- Department of Endocrinology, Hunan Province Geriatric Hospital, 89# Guhan Road, Changsha, Hunan 410001, PR China
| | - Bin Liao
- Department of Endocrinology, Hunan Province Geriatric Hospital, 89# Guhan Road, Changsha, Hunan 410001, PR China
| | - Hui-Ge Shao
- Department of Endocrinology, Changsha Central Hospital, 161# Shaoshan Road, Changsha, Hunan 410004, PR China
| | - Li-Juan Guo
- Department of Endocrinology, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, PR China
| | - Gen-Qing Xie
- Department of Endocrinology, Changsha Central Hospital, 161# Shaoshan Road, Changsha, Hunan 410004, PR China.
| | - Li Yang
- Department of Endocrinology, Hunan Province Geriatric Hospital, 89# Guhan Road, Changsha, Hunan 410001, PR China; Department of Endocrinology, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, PR China.
| | - Tie-Jian Jiang
- Department of Endocrinology, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, PR China.
| |
Collapse
|
20
|
Abstract
Small noncoding RNAs play several roles in regulating gene expression. In the nucleus, small RNA-Argonaute complexes recruit epigenetic modifying activities to genomic sites. This pathway has been described in mammals primarily for the germline; however, its role in somatic cells is less characterized. Here, we describe in human somatic cells a potential link between the expression of small RNAs from the macrosatellite DXZ4 and Argonaute-dependent DNA methylation of this locus. DXZ4 was found to express a wide range of small RNAs potentially representing several classes of small RNAs. A subpopulation of these RNAs is bound by Argonaute. Moreover, we show AGO association with DXZ4 and that the Argonaute proteins AGO-1 and PIWIL4 may play a role in DNA methylation of DXZ4. We hypothesize that the RNAs are involved in Argonaute-dependent methylation of DXZ4 DNA.
Collapse
|
21
|
Huang Y, Bai JY, Ren HT. piRNA biogenesis and its functions. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1068162014030169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Pandey R, Joshi G, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S. A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum. PLoS One 2014; 9:e95800. [PMID: 24759739 PMCID: PMC3997425 DOI: 10.1371/journal.pone.0095800] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/29/2014] [Indexed: 11/18/2022] Open
Abstract
Productivity of wheat crop is largely dependent on its growth and development that, in turn, is mainly regulated by environmental conditions, including abiotic stress factors. miRNAs are key regulators of gene expression networks involved in diverse aspects of development and stress responses in plants. Using high-throughput sequencing of eight small RNA libraries prepared from diverse abiotic stresses and tissues, we identified 47 known miRNAs belonging to 20 families, 49 true novel and 1030 candidate novel miRNAs. Digital gene expression analysis revealed that 257 miRNAs exhibited tissue-specific expression and 74 were associated with abiotic stresses. Putative target genes were predicted for miRNAs identified in this study and their grouping into functional categories indicated that the putative targets were involved in diverse biological processes. RLM-RACE of predicted targets of three known miRNAs (miR156, miR160 and miR164) confirmed their mRNA cleavage, thus indicating their regulation at post-transcriptional level by the corresponding miRNAs. Mapping of the sequenced data onto the wheat progenitors and closely related monocots revealed a large number of evolutionary conserved miRNAs. Additional expression profiling of some of these miRNAs in other abiotic stresses underline their involvement in multiple stresses. Our findings provide valuable resource for an improved understanding of the role of miRNAs in stress tolerance as well as plant development.
Collapse
Affiliation(s)
- Ritu Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Gopal Joshi
- Department of Botany, University of Delhi, Delhi, India
| | | | - Manu Agarwal
- Department of Botany, University of Delhi, Delhi, India
- * E-mail: (SK-A); (MA)
| | - Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- * E-mail: (SK-A); (MA)
| |
Collapse
|
23
|
Yakushev EY, Sokolova OA, Gvozdev VA, Klenov MS. Multifunctionality of PIWI proteins in control of germline stem cell fate. BIOCHEMISTRY (MOSCOW) 2014; 78:585-91. [PMID: 23980885 DOI: 10.1134/s0006297913060047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PIWI proteins interacting with specific type of small RNAs (piRNAs) repress transposable elements in animals. Besides, they have been shown to participate in various cellular processes: in the regulation of heterochromatin formation including telomere structures, in the control of translation and the cell cycle, and in DNA rearrangements. PIWI proteins were first identified by their roles in the self-renewal of germline stem cells. PIWI protein functions are not limited to gonadogenesis, but the role in determining the fate of stem cells is their specific feature conserved throughout the evolution of animals. Molecular mechanisms underlying these processes are far from being understood. This review focuses on the role of PIWI proteins in the control of maintenance and proliferation of germinal stem cells and its relation to the known function of PIWI in transposon repression.
Collapse
Affiliation(s)
- E Y Yakushev
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | | | | | | |
Collapse
|
24
|
Jacobs JE, Wagner M, Dhahbi J, Boffelli D, Martin DIK. Deficiency of MIWI2 (Piwil4) induces mouse erythroleukemia cell differentiation, but has no effect on hematopoiesis in vivo. PLoS One 2013; 8:e82573. [PMID: 24376547 PMCID: PMC3871168 DOI: 10.1371/journal.pone.0082573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022] Open
Abstract
Piwi proteins and their small non-coding RNA partners are involved in the maintenance of stem cell character and genome integrity in the male germ cells of mammals. MIWI2, one of the mouse Piwi-like proteins, is expressed in the prepachytene phase of spermatogenesis during the period of de novo methylation. Absence of this protein leads to meiotic defects and a progressive loss of germ cells. There is an accumulation of evidence that Piwi proteins may be active in hematopoietic tissues. Thus, MIWI2 may have a role in hematopoietic stem and/or progenitor cell self-renewal and differentiation, and defects in MIWI2 may lead to abnormal hematopoiesis. MIWI2 mRNA can be detected in a mouse erythroblast cell line by RNA-seq, and shRNA-mediated knockdown of this mRNA causes the cells to take on characteristics of differentiated erythroid precursors. However, there are no detectable hematopoietic abnormalities in a MIWI2-deficient mouse model. While subtle, non-statistically significant changes were noted in the hematopoietic function of mice without a functional MIWI2 gene when compared to wild type mice, our results show that MIWI2 is not solely necessary for hematopoiesis within the normal life span of a mouse.
Collapse
MESH Headings
- Aging/pathology
- Animals
- Argonaute Proteins/deficiency
- Argonaute Proteins/metabolism
- Blood Cells/metabolism
- Cell Differentiation
- Cell Line, Tumor
- Gene Knockdown Techniques
- Hematopoiesis
- Hemoglobins/metabolism
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Mice, Inbred C57BL
- Organ Specificity/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Sequence Analysis, RNA
- Spleen/metabolism
- Whole-Body Irradiation
Collapse
Affiliation(s)
- James E. Jacobs
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail:
| | - Mark Wagner
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Joseph Dhahbi
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Dario Boffelli
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - David I. K. Martin
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| |
Collapse
|
25
|
Li XZ, Roy CK, Dong X, Bolcun-Filas E, Wang J, Han BW, Xu J, Moore MJ, Schimenti JC, Weng Z, Zamore PD. An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol Cell 2013; 50:67-81. [PMID: 23523368 PMCID: PMC3671569 DOI: 10.1016/j.molcel.2013.02.016] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/17/2013] [Accepted: 02/12/2013] [Indexed: 02/07/2023]
Abstract
Animal germ cells produce PIWI-interacting RNAs (piRNAs), small silencing RNAs that suppress transposons and enable gamete maturation. Mammalian transposon-silencing piRNAs accumulate early in spermatogenesis, whereas pachytene piRNAs are produced later during postnatal spermatogenesis and account for >95% of all piRNAs in the adult mouse testis. Mutants defective for pachytene piRNA pathway proteins fail to produce mature sperm, but neither the piRNA precursor transcripts nor the trigger for pachytene piRNA production is known. Here, we show that the transcription factor A-MYB initiates pachytene piRNA production. A-MYB drives transcription of both pachytene piRNA precursor RNAs and the mRNAs for core piRNA biogenesis factors including MIWI, the protein through which pachytene piRNAs function. A-MYB regulation of piRNA pathway proteins and piRNA genes creates a coherent feedforward loop that ensures the robust accumulation of pachytene piRNAs. This regulatory circuit, which can be detected in rooster testes, likely predates the divergence of birds and mammals.
Collapse
Affiliation(s)
- Xin Zhiguo Li
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ro S, Ma HY, Park C, Ortogero N, Song R, Hennig GW, Zheng H, Lin YM, Moro L, Hsieh JT, Yan W. The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res 2013; 23:759-74. [PMID: 23478297 DOI: 10.1038/cr.2013.37] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Small noncoding RNAs identified thus far are all encoded by the nuclear genome. Here, we report that the murine and human mitochondrial genomes encode thousands of small noncoding RNAs, which are predominantly derived from the sense transcripts of the mitochondrial genes (host genes), and we termed these small RNAs mitochondrial genome-encoded small RNAs (mitosRNAs). DICER inactivation affected, but did not completely abolish mitosRNA production. MitosRNAs appear to be products of currently unidentified mitochondrial ribonucleases. Overexpression of mitosRNAs enhanced expression levels of their host genes in vitro, and dysregulated mitosRNA expression was generally associated with aberrant mitochondrial gene expression in vivo. Our data demonstrate that in addition to 37 known mitochondrial genes, the mammalian mitochondrial genome also encodes abundant mitosRNAs, which may play an important regulatory role in the control of mitochondrial gene expression in the cell.
Collapse
Affiliation(s)
- Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ortogero N, Hennig GW, Langille C, Ro S, McCarrey JR, Yan W. Computer-assisted annotation of murine Sertoli cell small RNA transcriptome. Biol Reprod 2013; 88:3. [PMID: 23136297 DOI: 10.1095/biolreprod.112.102269] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mammalian genomes encode a large number of small noncoding RNAs (sncRNAs) that play regulatory roles during development and adulthood by affecting gene expression. Several sncRNA species, including microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), endogenous small interfering RNAs (endo-siRNAs), and small nucleolar RNAs (snoRNAs), are abundantly expressed in the testis and required for normal testicular development and spermatogenesis. To evaluate global changes in sncRNA expression, the next-generation sequencing (NGS)-based sncRNA transcriptomic analysis has become routine, because it allows rapid determination of the small RNA transcriptome of a particular testicular cell type. However, annotation of small RNA NGS reads can be challenging due to the volume of reads obtained, which is usually in the millions. Therefore, we developed a computer-assisted sncRNA annotation protocol that could identify not only known sncRNAs but also previously uncharacterized ones. Using this protocol, we annotated NGS reads of a Sertoli cell sncRNA library, and we report to our knowledge the first comprehensive annotation of the sncRNA transcriptome of immature murine Sertoli cells. Moreover, the computer-assisted sncRNA annotation pipeline that we report is applicable for annotating NGS reads derived from other cell types and/or sequencing platforms.
Collapse
Affiliation(s)
- Nicole Ortogero
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | |
Collapse
|
28
|
Cloning, characterization and widespread expression analysis of testicular piRNA-like chicken RNAs. Mol Biol Rep 2012. [PMID: 23196706 DOI: 10.1007/s11033-012-2295-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are small RNAs abundant in the germline that have been implicated in germline development and maintenance of genomic integrity across several animal species including human, mouse, rat, zebrafish and drosophila. Tens of thousands of piRNAs have been discovered, yet abundant piRNAs have still not been detected in various eukaryotic organisms. This is a report on the characterization, cloning and expression profiling of piRNA-like chicken RNAs. Here, we identified 19 piRNAs, each 23-39 nucleotides long, from chicken testis using a small RNA cDNA library and T-A cloning methods. Three different pilRNAs were selected according to size, homology and secondary structure for temporal and spatial expression by Q-PCR technology in different tissues at five growth and four development stages of Chinese indigenous Rugao chickens (RG) and introduced recessive white feather chickens (RW). We found that, consistent to other organisms, pilRNA-encoding sequences within the chicken genome were asymmetrically distributed on the chromosomes while displaying a preference for intergenic regions across the genome. Interestingly, unlike miRNAs with unique stem-loop structures (mature miRNAs form stem section and the rest form loop section), distinct secondary structures of pilRNAs were predicted. In addition, chicken pilRNAs were not only abundant in the germline but also existed in somatic tissues, where, expression levels were influenced mainly by different pilRNAs, breed and gender. Taken together, our results suggest that two distinct secondary structures exist between pilRNAs and miRNAs, which may clarify the splicing and processing mechanisms of the two small RNAs are possible different. Moreover, our results suggest that pilRNAs may not only be confined to development and maintenance of the germline but may also play important roles in somatic tissues. Additionally, different pilRNAs may be involved in the unique regulatory machinery of complex biological processes.
Collapse
|
29
|
Blockade of pachytene piRNA biogenesis reveals a novel requirement for maintaining post-meiotic germline genome integrity. PLoS Genet 2012; 8:e1003038. [PMID: 23166510 PMCID: PMC3499362 DOI: 10.1371/journal.pgen.1003038] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/05/2012] [Indexed: 11/19/2022] Open
Abstract
Piwi-interacting RNAs are a diverse class of small non-coding RNAs implicated in the silencing of transposable elements and the safeguarding of genome integrity. In mammals, male germ cells express two genetically and developmentally distinct populations of piRNAs at the pre-pachytene and pachytene stages of meiosis, respectively. Pre-pachytene piRNAs are mostly derived from retrotransposons and required for their silencing. In contrast, pachytene piRNAs originate from ~3,000 genomic clusters, and their biogenesis and function remain enigmatic. Here, we report that conditional inactivation of the putative RNA helicase MOV10L1 in mouse spermatocytes produces a specific loss of pachytene piRNAs, significant accumulation of pachytene piRNA precursor transcripts, and unusual polar conglomeration of Piwi proteins with mitochondria. Pachytene piRNA-deficient spermatocytes progress through meiosis without derepression of LINE1 retrotransposons, but become arrested at the post-meiotic round spermatid stage with massive DNA damage. Our results demonstrate that MOV10L1 acts upstream of Piwi proteins in the primary processing of pachytene piRNAs and suggest that, distinct from pre-pachytene piRNAs, pachytene piRNAs fulfill a unique function in maintaining post-meiotic genome integrity.
Collapse
|
30
|
Kowalczykiewicz D, Pawlak P, Lechniak D, Wrzesinski J. Altered expression of porcine Piwi genes and piRNA during development. PLoS One 2012; 7:e43816. [PMID: 22952772 PMCID: PMC3431407 DOI: 10.1371/journal.pone.0043816] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/26/2012] [Indexed: 01/01/2023] Open
Abstract
Three Sus scrofa Piwi genes (Piwil1, Piwil2 and Piwil4) encoding proteins of 861, 985 and 853 aminoacids, respectively, were cloned and sequenced. Alignment of the Piwi proteins showed the high identity between Sus scrofa and Homo sapiens. Relative transcript abundance of porcine Piwil1, Piwil2 and Piwil4 genes in testes, ovaries and oocytes derived from sexually immature and mature animals was examined using Real-Time PCR. Expression of the three Piwi mRNAs was proved to be tissue specific and restricted exclusively to the gonads. In testes of adult pigs the highest relative transcript abundance was observed for the Sus scrofa Piwil1 gene. On the other hand, in testes of neonatal pigs the Piwil1 transcript level was over 2-fold reduced while the level of Piwil2 transcript was higher. As regards the expression of the Piwil4 transcript, its level was 34-fold elevated in testes of neonatal piglet when compared to adult male. In ovaries of prepubertal and pubertal female pigs transcript abundance of the three Piwi genes was significantly reduced in comparison with testes. However, similarly to testes, in ovaries of neonatal pigs the Piwil2 gene was characterized by the highest relative transcript abundance among the three Piwi genes analysed. In prepubertal and pubertal oocytes Piwil1 transcript was the most abundant whereas the expression of Piwil4 was undetectable. We also demonstrated that expression of piRNA occurs preferentially in the gonads of adult male and female pigs. Moreover, a piRNA subset isolated from ovaries was 2-3 nucleotides longer than the piRNA from testes.
Collapse
Affiliation(s)
| | - Piotr Pawlak
- Department of Genetics and Animal Breeding, University of Life Sciences, Poznań, Poland
| | - Dorota Lechniak
- Department of Genetics and Animal Breeding, University of Life Sciences, Poznań, Poland
| | - Jan Wrzesinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- * E-mail:
| |
Collapse
|
31
|
Discovery of potential piRNAs from next generation sequences of the sexually mature porcine testes. PLoS One 2012; 7:e34770. [PMID: 22493715 PMCID: PMC3321025 DOI: 10.1371/journal.pone.0034770] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs), a new class of small RNAs discovered from mammalian testes, are involved in transcriptional silencing of retrotransposons and other genetic elements in germ line cells. In order to identify a full transcriptome set of piRNAs expressed in the sexually mature porcine testes, small RNA fractions were extracted and were subjected to a Solexa deep sequencing. We cloned 6,913,561 clean reads of Sus Scrofa small RNAs (18-30 nt) and performed functional characterization. Sus Scrofa small RNAs showed a bimodal length distribution with two peaks at 21 nt and 29 nt. Then from 938,328 deep-sequenced small RNAs (26-30 nt), 375,195 piRNAs were identified by a k-mer scheme and 326 piRNAs were identified by homology searches. All piRNAs predicted by the k-mer scheme were then mapped to swine genome by Short Oligonucleotide Analysis Package (SOAP), and 81.61% of all uniquely mapping piRNAs (197,673) were located to 1124 defined genomic regions (5.85 Mb). Within these regions, 536 and 501 piRNA clusters generally distributed across only minus or plus genomic strand, 48 piRNA clusters distributed on two strands but in a divergent manner, and 39 piRNA clusters distributed on two strands in an overlapping manner. Furthermore, expression pattern of 7 piRNAs identified by homology searches showed 5 piRNAs displayed a ubiquitous expression pattern, although 2 piRNAs were specifically expressed in the testes. Overall, our results provide new information of porcine piRNAs and their specific expression pattern in porcine testes suggests that piRNAs have a role in regulating spermatogenesis.
Collapse
|
32
|
Li Y, Wang HY, Wan FC, Liu FJ, Liu J, Zhang N, Jin SH, Li JY. Deep sequencing analysis of small non-coding RNAs reveals the diversity of microRNAs and piRNAs in the human epididymis. Gene 2012; 497:330-5. [DOI: 10.1016/j.gene.2012.01.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/22/2011] [Accepted: 01/18/2012] [Indexed: 12/21/2022]
|
33
|
Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat Cell Biol 2012; 14:266-75. [PMID: 22366686 DOI: 10.1038/ncb2443] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 01/16/2012] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a tumour-suppressor mechanism that is triggered by cancer-initiating or promoting events in mammalian cells. The molecular underpinnings for this stable arrest involve transcriptional repression of proliferation-promoting genes regulated by the retinoblastoma (RB1)/E2F repressor complex. Here, we demonstrate that AGO2, RB1 and microRNAs (miRNAs), as exemplified here by let-7, physically and functionally interact to repress RB1/E2F-target genes in senescence, a process that we call senescence-associated transcriptional gene silencing (SA-TGS). Herein, AGO2 acts as the effector protein for let-7-directed implementation of silent-state chromatin modifications at target promoters, and inhibition of the let-7/AGO2 effector complex perturbs the timely execution of senescence. Thus, we identify cellular senescence as the an endogenous signal of miRNA/AGO2-mediated TGS in human cells. Our results suggest that miRNA/AGO2-mediated SA-TGS may contribute to tumour suppression by stably repressing proliferation-promoting genes in premalignant cancer cells.
Collapse
|
34
|
Integrative deep sequencing of the mouse lung transcriptome reveals differential expression of diverse classes of small RNAs in response to respiratory virus infection. mBio 2011; 2:mBio.00198-11. [PMID: 22086488 PMCID: PMC3221602 DOI: 10.1128/mbio.00198-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED We previously reported widespread differential expression of long non-protein-coding RNAs (ncRNAs) in response to virus infection. Here, we expanded the study through small RNA transcriptome sequencing analysis of the host response to both severe acute respiratory syndrome coronavirus (SARS-CoV) and influenza virus infections across four founder mouse strains of the Collaborative Cross, a recombinant inbred mouse resource for mapping complex traits. We observed differential expression of over 200 small RNAs of diverse classes during infection. A majority of identified microRNAs (miRNAs) showed divergent changes in expression across mouse strains with respect to SARS-CoV and influenza virus infections and responded differently to a highly pathogenic reconstructed 1918 virus compared to a minimally pathogenic seasonal influenza virus isolate. Novel insights into miRNA expression changes, including the association with pathogenic outcomes and large differences between in vivo and in vitro experimental systems, were further elucidated by a survey of selected miRNAs across diverse virus infections. The small RNAs identified also included many non-miRNA small RNAs, such as small nucleolar RNAs (snoRNAs), in addition to nonannotated small RNAs. An integrative sequencing analysis of both small RNAs and long transcripts from the same samples showed that the results revealing differential expression of miRNAs during infection were largely due to transcriptional regulation and that the predicted miRNA-mRNA network could modulate global host responses to virus infection in a combinatorial fashion. These findings represent the first integrated sequencing analysis of the response of host small RNAs to virus infection and show that small RNAs are an integrated component of complex networks involved in regulating the host response to infection. IMPORTANCE Most studies examining the host transcriptional response to infection focus only on protein-coding genes. However, mammalian genomes transcribe many short and long non-protein-coding RNAs (ncRNAs). With the advent of deep-sequencing technologies, systematic transcriptome analysis of the host response, including analysis of ncRNAs of different sizes, is now possible. Using this approach, we recently discovered widespread differential expression of host long (>200 nucleotide [nt]) ncRNAs in response to virus infection. Here, the samples described in the previous report were again used, but we sequenced another fraction of the transcriptome to study very short (about 20 to 30 nt) ncRNAs. We demonstrated that virus infection also altered expression of many short ncRNAs of diverse classes. Putting the results of the two studies together, we show that small RNAs may also play an important role in regulating the host response to virus infection.
Collapse
|
35
|
Yang H, Wang X, Liu X, Liu X, Li L, Hu X, Li N. Cloning and expression analysis of piRNA-like RNAs: adult testis-specific small RNAs in chicken. Mol Cell Biochem 2011; 360:347-52. [DOI: 10.1007/s11010-011-1074-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 09/16/2011] [Indexed: 10/16/2022]
|
36
|
Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, Diamond MP. A survey of small RNAs in human sperm. Hum Reprod 2011; 26:3401-12. [PMID: 21989093 DOI: 10.1093/humrep/der329] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND There has been substantial interest in assessing whether RNAs (mRNAs and sncRNAs, i.e. small non-coding) delivered from mammalian spermatozoa play a functional role in early embryo development. While the cadre of spermatozoal mRNAs has been characterized, comparatively little is known about the distribution or function of the estimated 24,000 sncRNAs within each normal human spermatozoon. METHODS RNAs of <200 bases in length were isolated from the ejaculates from three donors of proved fertility. RNAs of 18-30 nucleotides in length were then used to construct small RNA Digital Gene Expression libraries for Next Generation Sequencing. Known sncRNAs that uniquely mapped to a single location in the human genome were identified. RESULTS Bioinformatic analysis revealed the presence of multiple classes of small RNAs in human spermatozoa. The primary classes resolved included microRNA (miRNAs) (≈ 7%), Piwi-interacting piRNAs (≈ 17%), repeat-associated small RNAs (≈ 65%). A minor subset of short RNAs within the transcription start site/promoter fraction (≈ 11%) frames the histone promoter-associated regions enriched in genes of early embryonic development. These have been termed quiescent RNAs. CONCLUSIONS A complex population of male derived sncRNAs that are available for delivery upon fertilization was revealed. Sperm miRNA-targeted enrichment in the human oocyte is consistent with their role as modifiers of early post-fertilization. The relative abundance of piRNAs and repeat-associated RNAs suggests that they may assume a role in confrontation and consolidation. This may ensure the compatibility of the genomes at fertilization.
Collapse
Affiliation(s)
- Stephen A Krawetz
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Small noncoding RNAs have emerged as potent regulators of gene expression, especially in the germline. We review the biogenesis and regulatory function of three major small noncoding RNA pathways in the germline: The small interfering RNA (siRNA) pathway that leads to the degradation of target mRNAs, the microRNA (miRNA) pathway that mostly represses the translation of target mRNAs, and the newly discovered Piwi-interacting RNA (piRNA) pathway that appears to have diverse functions in epigenetic programming, transposon silencing, and the regulation of mRNA translation and stability. The siRNA and miRNA pathways are present in the germline as well as many somatic tissues, whereas the piRNA pathway is predominantly confined to the germline. Investigation of the three small RNA pathways has started to reveal a new dimension of gene regulation with defining roles in germline specification and development.
Collapse
Affiliation(s)
- Jonathan P Saxe
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
38
|
Abstract
In mammals, endogenous siRNAs (endo-siRNAs) have only been reported in murine oocytes and embryonic stem cells. Here, we show that murine spermatogenic cells express numerous endo-siRNAs, which are likely to be derived from naturally occurring double-stranded RNA (dsRNA) precursors. The biogenesis of these testicular endo-siRNAs is DROSHA independent, but DICER dependent. These male germ cell endo-siRNAs can potentially target hundreds of transcripts or thousands of DNA regions in the genome. Overall, our work has unveiled another hidden layer of regulation imposed by small noncoding RNAs during male germ cell development.
Collapse
|
39
|
Ilnytskyy Y, Kovalchuk O. Non-targeted radiation effects-an epigenetic connection. Mutat Res 2011; 714:113-25. [PMID: 21784089 DOI: 10.1016/j.mrfmmm.2011.06.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 01/18/2023]
Abstract
Ionizing radiation (IR) is a pivotal diagnostic and treatment modality, yet it is also a potent genotoxic agent that causes genome instability and carcinogenesis. While modern cancer radiation therapy has led to increased patient survival rates, the risk of radiation treatment-related complications is becoming a growing problem. IR-induced genome instability has been well-documented in directly exposed cells and organisms. It has also been observed in distant 'bystander' cells. Enigmatically, increased instability is even observed in progeny of pre-conceptually exposed animals, including humans. The mechanisms by which it arises remain obscure and, recently, they have been proposed to be epigenetic in nature. Three major epigenetic phenomena include DNA methylation, histone modifications and small RNA-mediated silencing. This review focuses on the role of DNA methylation and small RNAs in directly exposed and bystander tissues and in IR-induced transgenerational effects. Here, we present evidence that IR-mediated effects are maintained by epigenetic mechanisms.
Collapse
Affiliation(s)
- Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada
| | | |
Collapse
|
40
|
Oey HM, Youngson NA, Whitelaw E. The characterisation of piRNA-related 19mers in the mouse. BMC Genomics 2011; 12:315. [PMID: 21672259 PMCID: PMC3143105 DOI: 10.1186/1471-2164-12-315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/15/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Piwi interacting RNA, or piRNA, is a class of small RNA almost exclusively expressed in the germline where they serve essential roles in retrotransposon silencing. There are two types, primary and secondary piRNA, and the latter is a product of enzymatic cleavage of retrotransposons' transcripts directed by the former. Recently, a new class of 19nt long RNA was discovered that is specific to testis and appears to be linked to secondary piRNA biogenesis. RESULTS We locate clusters of the testis-specific 19mers, which we call piRNA-related 19mers (pr19RNA), and characterise the transcripts from which they are derived. Most pr19RNA clusters were associated with retrotransposons and unannotated antisense transcripts overlapping piRNA clusters. At these loci the abundance of 19mers was found to be greater than that of secondary piRNAs. CONCLUSION We find that pr19RNAs are distinguished from other RNA populations by their length and flanking sequence, allowing their identification without requiring overlapping piRNAs. Using such sequence features allows identification of the source transcripts, and we suggest that these likely represent the substrates of primary piRNA-guided RNA cleavage events. While pr19RNAs appear not to bind directly to Miwi or Mili, their abundance relative to secondary piRNAs, in combination with their precise length, suggests they may be more than by-products of secondary piRNA biogenesis.
Collapse
Affiliation(s)
- Harald M Oey
- Queensland Institute of Medical Research, Epigenetics, Herston, Brisbane 4006, Australia
| | | | | |
Collapse
|
41
|
Yan Z, Hu HY, Jiang X, Maierhofer V, Neb E, He L, Hu Y, Hu H, Li N, Chen W, Khaitovich P. Widespread expression of piRNA-like molecules in somatic tissues. Nucleic Acids Res 2011; 39:6596-607. [PMID: 21546553 PMCID: PMC3159465 DOI: 10.1093/nar/gkr298] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Piwi-interacting RNA (piRNA) are small RNA abundant in the germline across animal species. In fruit flies and mice, piRNA have been implicated in maintenance of genomic integrity by transposable elements silencing. Outside of the germline, piRNA have only been found in fruit fly ovarian follicle cells. Previous studies have further reported presence of multiple piRNA-like small RNA (pilRNA) in fly heads and a small number of pilRNA have been reported in mouse tissues and in human NK cells. Here, we analyze high-throughput small RNA sequencing data in more than 130 fruit fly, mouse and rhesus macaque samples. The results show widespread presence of pilRNA, displaying all known characteristics of piRNA in multiple somatic tissues of these three species. In mouse pancreas and macaque epididymis, pilRNA abundance was compatible with piRNA abundance in the germline. Using in situ hybridizations, we further demonstrate pilRNA co-localization with mRNA expression of Piwi-family genes in all macaque tissues. Further, using western blot, we have shown the expression of Miwi protein in mouse pancreas. These findings indicate that piRNA-like molecules might play important roles outside of the germline.
Collapse
Affiliation(s)
- Zheng Yan
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hu R, Liu W, Li H, Yang L, Chen C, Xia ZY, Guo LJ, Xie H, Zhou HD, Wu XP, Luo XH. A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem 2011; 286:12328-39. [PMID: 21324897 DOI: 10.1074/jbc.m110.176099] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our recent study showed that miR-2861 promotes osteoblast differentiation by targeting histone deacetylase 5, resulting in increased runt-related transcription factor 2 (Runx2) protein production. Here we identified another new microRNA (miRNA) (miR-3960) that played a regulatory role in osteoblast differentiation through a regulatory feedback loop with miR-2861. miR-3960 and miR-2861 were found clustered at the same loci. miR-3960 was transcribed during bone morphogenic protein 2 (BMP2)-induced osteogenesis of ST2 stromal cells. Overexpression of miR-3960 promoted BMP2-induced osteoblastogenesis. However, the inhibition of miR-3960 expression attenuated the osteoblastogenesis. Homeobox A2 (Hoxa2), a repressor of Runx2 expression, was confirmed to be a target of miR-3960. Electrophoretic mobility shift assay and chromatin immunoprecipitation experiments confirmed that Runx2 bound to the promoter of the miR-3960/miR-2861 cluster. Furthermore, overexpression of Runx2 induced miR-3960/miR-2861 transcription, and block of Runx2 expression attenuated BMP2-induced miR-3960/miR-2861 transcription. Here we report that miR-3960 and miR-2861, transcribed together from the same miRNA polycistron, both function in osteoblast differentiation through a novel Runx2/miR-3960/miR-2861 regulatory feedback loop. Our findings provide new insights into the roles of miRNAs in osteoblast differentiation.
Collapse
Affiliation(s)
- Rong Hu
- Institute of Endocrinology and Metabolism, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Large numbers of diverse small non-coding RNAs have been discovered and characterized in eukaryotic RNA interference pathways. These small RNAs have distinctive characteristics and are associated with Argonaute family proteins to regulate gene expression and genomes at various levels. These small RNAs include the Dicer-dependent group such as microRNAs (miRNAs) and small interfering RNAs (siRNAs), and the Dicer-independent group such as Piwi-interacting RNAs (piRNAs). This review summarizes the various classes of eukaryotic small RNAs and the general knowledge of their characteristics, biogenesis, and functions, with emphasis on some of the recently identified small RNAs.
Collapse
Affiliation(s)
- Liande Li
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
44
|
Steger K, Cavalcanti MCO, Schuppe HC. Prognostic markers for competent human spermatozoa: fertilizing capacity and contribution to the embryo. ACTA ACUST UNITED AC 2010; 34:513-27. [DOI: 10.1111/j.1365-2605.2010.01129.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Yang F, Wang J, Ji Y, Cheng H, Wan J, Xiao Z, Zhou G. Amplification of unknown RNAs and RNA mixtures based on unique restriction enzyme cleavage in vitro. Acta Biochim Biophys Sin (Shanghai) 2010; 42:873-82. [PMID: 21106769 DOI: 10.1093/abbs/gmq098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small RNAs, generally expressed at low levels, are difficult to reach usable levels from limited material. In this study, we have developed a novel method to amplify target RNA. The amplification procedure was carried out by sequential RT-PCR, effective separation, restriction enzymatic cleavage of cDNA strand, and run-off transcription in vitro of target RNA from its cDNA. Introduction of a unique stem-loop linker into cDNA strand is the key step to form a unique restriction enzyme recognition sequence that is not in cDNA sequence of target RNA. This method can be used to amplify RNA samples from various origins and has many advantages in amplifying unknown small RNAs and small RNA mixtures. The amplified RNA has the full sequence of original RNA except for an extra 5' G and an additional 3' A or C. The method worked well for amplifications of a microRNA, a piwi interacting RNA and two small RNA mixtures.
Collapse
Affiliation(s)
- Fangyi Yang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Piwi proteins and their partner small RNAs play an essential role in fertility, germ-line stem cell development, and the basic control and evolution of animal genomes. However, little knowledge exists regarding piRNA biogenesis. Utilizing microfluidic chip analysis, we present a quantitative profile of zebrafish piRNAs expressed differentially between testis and ovary. The sex-specific piRNAs are derived from separate loci of repeat elements in the genome. Ovarian piRNAs can be categorized into groups that reach up to 92 members, indicating a sex-specific arrangement of piRNA genes in the genome. Furthermore, precursor piRNAs preferentially form a hairpin structure at the 3'end, which seem to favor the generation of mature sex-specific piRNAs. In addition, the mature piRNAs from both the testis and the ovary are 2'-O-methylated at their 3' ends.
Collapse
|
47
|
A novel method for constructing pathogen-regulated small RNA cDNA library. Biochem Biophys Res Commun 2010; 397:532-6. [PMID: 20515661 DOI: 10.1016/j.bbrc.2010.05.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 05/27/2010] [Indexed: 12/31/2022]
Abstract
Pathogen-responsive endogenous small non-coding RNAs regulate gene expression in relation to plant immune responses by serving as RNA silencing machinery. Decay caused by the bacterium, Erwinia carotovora subsp. carotovora (Ecc), often leads to soft rot disease in the plant Brassica campestris L. ssp. pekinensis (Bcp). To discover endogenous small RNA species in Bcp in response to Ecc infection, we developed a highly efficient approach for cloning pathogen-regulated small RNAs. A group of degenerate stem-loop reverse primers was designed to synthesize first single-stranded cDNA (sscDNA) and the sscDNA was then tailed with a poly(C) at its 3' end to create a forward priming site. A novel cDNA/RNA subtractive hybridization was performed to capture Ecc-regulated small RNAs and this subsequently allowed construction of small RNA cDNA libraries for sequencing.
Collapse
|
48
|
Thomson T, Lin H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 2010; 25:355-76. [PMID: 19575643 DOI: 10.1146/annurev.cellbio.24.110707.175327] [Citation(s) in RCA: 392] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The evolutionarily conserved Argonaute/PIWI (AGO/PIWI, also known as PAZ-PIWI domain or PPD) family of proteins is crucial for the biogenesis and function of small noncoding RNAs (ncRNAs). This family can be divided into AGO and PIWI subfamilies. The AGO proteins are ubiquitously present in diverse tissues. They bind to small interfering RNAs (siRNAs) and microRNAs (miRNAs). In contrast, the PIWI proteins are predominantly present in the germline and associate with a novel class of small RNAs known as PIWI-interacting RNAs (piRNAs). Tens of thousands of piRNA species, typically 24-32 nucleotide (nt) long, have been found in mammals, zebrafish, and Drosophila. Most piRNAs appear to be generated from a small number of long single-stranded RNA precursors that are often encoded by repetitive intergenic sequences in the genome. PIWI proteins play crucial roles during germline development and gametogenesis of many metazoan species, from germline determination and germline stem cell (GSC) maintenance to meiosis, spermiogenesis, and transposon silencing. These diverse functions may involve piRNAs and may be achieved via novel mechanisms of epigenetic and posttranscriptional regulation.
Collapse
Affiliation(s)
- Travis Thomson
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
49
|
Abstract
The next generation sequencing technologies have made the exhaustive sequencing of all small RNA species within a small RNA library possible. Thus, comparative studies on the changes in small-RNA transcriptomes between two biological samples represent a powerful means of revealing the functions of small RNAs in physiological and pathological processes. Here, we describe a small RNA cloning method that can be used to generate small RNA cDNA libraries for both conventional and next generation (deep) sequencing. It can also be used for detection and quantitative analyses of small RNAs using PCR.
Collapse
|
50
|
Abstract
Increasing lines of evidence indicate that small non-coding RNAs including miRNAs, piRNAs, rasiRNAs, 21U endo-siRNAs, and snoRNAs are involved in many critical biological processes. Functional studies of these small RNAs require a simple, sensitive, and reliable method for detecting and quantifying levels of small RNAs. Here, we describe such a method that has been widely used for the validation of cloned small RNAs and also for quantitative analyses of small RNAs in both tissues and cells.
Collapse
|