1
|
Jin CL, Wang SL, Wang S, Zhang YN, Xia WG, Zhang C, Huang XB, Li KC, Zheng CT, Chen W. Age-related calcium signaling disturbance restricted cAMP metabolism and induced ovarian oxidation stress in laying ducks. Poult Sci 2024; 104:104551. [PMID: 39662254 PMCID: PMC11697049 DOI: 10.1016/j.psj.2024.104551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
The ovary is the main controller of female fertility, unfortunately, its onset of aging processes was earlier than other organs. Our previous studies showed calcium (Ca) deficiency reduced ovarian weight and declined numbers of dominant follicles in an avian model. However, whether Ca provided a functional role in follicle development of aged avian, and its further mechanism was still unknown. In this study, fifty180-day-old and fifty 700-day-old female Longyan ducks were divided into the young group and the aged group to illustrate the differences of Ca signaling and further mechanisms. We found the poor productive performance of aged ducks was correlated with follicle decreased numbers and atrophied microstructure, and restricted antioxidant ability of granulosa cells (GCs). Then, according to RNA-Seq analysis, we detected those aged ducks displayed lower Ca concentration in the ovary, while Ca channel related gene expression was increased in GCs to maintain homeostasis. Moreover, the cyclic adenosine monophosphate (cAMP) concentration and cAMP synthase family related genes were also decreased in GCs of aged ducks. Fortunately, medium supplemented with Ca channel-activator A23187 enhanced GC viability, antioxidant ability, tight junction ability, and increased cAMP concentration by improved cAMP metabolism, otherwise, the opposite changes were observed with Ca2+-chelating agent EGTA or Ca channel-inhibitor Verapamil supplementation. In conclusion, aging disordered Ca signaling to limit cAMP metabolism, then decreased antioxidant ability and inhibited proliferation and migration ability of GCs. Thus, the follicle development and reproductive performance were restricted in aged avian.
Collapse
Affiliation(s)
- Cheng-Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Sheng-Lin Wang
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Shuang Wang
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Ya-Nan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Wei-Guang Xia
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Chang Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Xue-Bing Huang
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Kai-Chao Li
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Chun-Tian Zheng
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Wei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China.
| |
Collapse
|
2
|
Harasimov K, Gorry RL, Welp LM, Penir SM, Horokhovskyi Y, Cheng S, Takaoka K, Stützer A, Frombach AS, Taylor Tavares AL, Raabe M, Haag S, Saha D, Grewe K, Schipper V, Rizzoli SO, Urlaub H, Liepe J, Schuh M. The maintenance of oocytes in the mammalian ovary involves extreme protein longevity. Nat Cell Biol 2024; 26:1124-1138. [PMID: 38902423 PMCID: PMC11252011 DOI: 10.1038/s41556-024-01442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/14/2024] [Indexed: 06/22/2024]
Abstract
Women are born with all of their oocytes. The oocyte proteome must be maintained with minimal damage throughout the woman's reproductive life, and hence for decades. Here we report that oocyte and ovarian proteostasis involves extreme protein longevity. Mouse ovaries had more extremely long-lived proteins than other tissues, including brain. These long-lived proteins had diverse functions, including in mitochondria, the cytoskeleton, chromatin and proteostasis. The stable proteins resided not only in oocytes but also in long-lived ovarian somatic cells. Our data suggest that mammals increase protein longevity and enhance proteostasis by chaperones and cellular antioxidants to maintain the female germline for long periods. Indeed, protein aggregation in oocytes did not increase with age and proteasome activity did not decay. However, increasing protein longevity cannot fully block female germline senescence. Large-scale proteome profiling of ~8,890 proteins revealed a decline in many long-lived proteins of the proteostasis network in the aging ovary, accompanied by massive proteome remodeling, which eventually leads to female fertility decline.
Collapse
Affiliation(s)
- Katarina Harasimov
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rebecca L Gorry
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sarah Mae Penir
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yehor Horokhovskyi
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katsuyoshi Takaoka
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Laboratory of Embryology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Alexandra Stützer
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ann-Sophie Frombach
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ana Lisa Taylor Tavares
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| | - Monika Raabe
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sara Haag
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translation Alliance Lower Saxony, Hannover, Braunschweig, Göttingen, Germany
| | - Debojit Saha
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katharina Grewe
- Department for Neuro and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Vera Schipper
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Silvio O Rizzoli
- Department for Neuro and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, University of Göttingen, Göttingen, Germany.
| | - Juliane Liepe
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Benitez Mora MP, Kosior MA, Damiano S, Longobardi V, Presicce GA, Di Vuolo G, Pacelli G, Campanile G, Gasparrini B. Dietary supplementation with green tea extract improves the antioxidant status and oocyte developmental competence in Italian Mediterranean buffaloes. Theriogenology 2024; 215:50-57. [PMID: 38006855 DOI: 10.1016/j.theriogenology.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
The aim of this work was to assess the antioxidant status and the developmental competence of oocytes recovered by ovum pick-up (OPU) in Italian Mediterranean buffaloes supplemented with green tea extracts (GTE) for 90 days. Buffalo cows (n = 16) were randomly assigned to a control group receiving no supplement and a treatment group, receiving GTE starting 90 days before OPU, carried out for five consecutive sessions. Blood samples were collected before the start of supplementation with GTE (T0) and at day 45 (T1) and day 90 (T2) of supplementation, to measure ferric reducing activity (FRAP), total antioxidant capacity (TAC), superoxide dismutase (SOD) and catalase (CAT). The antioxidant status of follicles was measured as TAC on the follicular fluid collected from the dominant follicle just prior OPU, coinciding with T2, and at the end of five repeated OPU sessions (T3). Another objective was to assess in vitro the protective effects of green tea extracts on hepatic cells exposed to methanol insult. Different concentrations of GTE (0.5 μM and 1 μM) were tested on cultured hepatic cells and viability, morphology and SOD activity were assessed at 24, 48 and 72 h. Supplementation with GTE increased (P < 0.05) the number of total follicles (8.7 ± 0.5 vs 6.9 ± 0.5), the number and the percentage of Grade A + B cumulus-oocyte complexes (COCs) compared with the control (3.7 ± 0.4 vs 2.3 ± 0.3 and 57.5 ± 4.2 vs 40.4 ± 4.9 %, respectively). Oocyte developmental competence was improved in the GTE group as indicated by the higher (P < 0.05) percentages of Grade 1,2 blastocysts (44.8 vs 29.1 %). In the GTE group, plasma TAC was higher both at T1 and T2, while FRAP increased only at T2, with no differences in SOD and CAT. The TAC of follicular fluid was higher (P < 0.05) in the GTE compared to the control both at T2 and at T3 The in vitro experiment showed that co-treatment with methanol and 1 μM GTE increased (p < 0.01) cell viability at 24 h (P < 0.01), 48 h (P < 0.05) and 72 h (P < 0.01) compared with the methanol treatment co-treatment with 1 μM GTE prevented the decrease in SOD activity observed with methanol at 24 and 48 h of culture. In conclusion, the results of in vivo and in vitro experiments suggest that supplementation with GTE increases buffalo oocyte developmental competence, by improving oxidative status and liver function.
Collapse
Affiliation(s)
- M P Benitez Mora
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| | - M A Kosior
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| | - S Damiano
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| | - V Longobardi
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy.
| | - G A Presicce
- Agenzia Regionale per lo Sviluppo e l'Innovazione dell'Agricoltura del Lazio (ARSIAL), Via R. Lanciani 38, Rome, Italy
| | - G Di Vuolo
- National Reference Center of Water Buffalo Farming and Productions Hygiene and Technologies, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici, Italy
| | - G Pacelli
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy; Mangimi Liverini S.p.A, Via Nazionale Sannitica 60, 82037, Telese Terme, Italy
| | - G Campanile
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| | - B Gasparrini
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| |
Collapse
|
4
|
Zhou Q, Liu Z, Liao Z, Zhang Y, Qu M, Wu F, Tian J, Zhao H, Peng Q, Zheng W, Huang M, Yang S. miRNA profiling of granulosa cell-derived exosomes reveals their role in promoting follicle development. J Cell Physiol 2024; 239:20-35. [PMID: 38149730 DOI: 10.1002/jcp.31140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 12/28/2023]
Abstract
To explore whether granulosa cell (GC)-derived exosomes (GC-Exos) and follicular fluid-derived exosomes (FF-Exos) have functional similarities in follicle development and to establish relevant experiments to validate whether GC-Exos could serve as a potential substitute for follicular fluid-derived exosomes to improve folliculogenesis. GC-Exos were characterized. MicroRNA (miRNA) profiles of exosomes from human GCs and follicular fluid were analyzed in depth. The signature was associated with folliculogenesis, such as phosphatidylinositol 3 kinases-protein kinase B signal pathway, mammalian target of rapamycin signal pathway, mitogen-activated protein kinase signal pathway, Wnt signal pathway, and cyclic adenosine monophosphate signal pathway. A total of five prominent miRNAs were found to regulate the above five signaling pathways. These miRNAs include miRNA-486-5p, miRNA-10b-5p, miRNA-100-5p, miRNA-99a-5p, and miRNA-21-5p. The exosomes from GCs and follicular fluid were investigated to explore the effect on folliculogenesis by injecting exosomes into older mice. The proportion of follicles at each stage is counted to help us understand folliculogenesis. Exosomes derived from GCs were isolated successfully. miRNA profiles demonstrated a remarkable overlap between the miRNA profiles of FF-Exos and GC-Exos. The shared miRNA signature exhibited a positive influence on follicle development and activation. Furthermore, exosomes derived from GCs and follicular fluid promoted folliculogenesis in older female mice. Exosomes derived from GCs had similar miRNA profiles and follicle-promoting functions as follicular fluid exosomes. Consequently, GC-Exos are promising for replacing FF-Exos and developing new commercial reagents to improve female fertility.
Collapse
Affiliation(s)
- Qilin Zhou
- Department of Health Inspection and Quarantine, School of Public Health, Guangdong Medical University, Dongguan, China
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhen Liu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Zhengdong Liao
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yangzhuohan Zhang
- School of Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Mengyuan Qu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fanggui Wu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jingyan Tian
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Huan Zhao
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qianwen Peng
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wenchao Zheng
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Mingyuan Huang
- Department of Health Inspection and Quarantine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Sheng Yang
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Ferreira AF, Soares M, Almeida-Santos T, Ramalho-Santos J, Sousa AP. Aging and oocyte competence: A molecular cell perspective. WIREs Mech Dis 2023; 15:e1613. [PMID: 37248206 DOI: 10.1002/wsbm.1613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/30/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
Follicular microenvironment is paramount in the acquisition of oocyte competence, which is dependent on two interconnected and interdependent processes: nuclear and cytoplasmic maturation. Extensive research conducted in human and model systems has provided evidence that those processes are disturbed with female aging. In fact, advanced maternal age (AMA) is associated with a lower chance of pregnancy and live birth, explained by the age-related decline in oocyte quality/competence. This decline has largely been attributed to mitochondria, essential for oocyte maturation, fertilization, and embryo development; with mitochondrial dysfunction leading to oxidative stress, responsible for nuclear and mitochondrial damage, suboptimal intracellular energy levels, calcium disturbance, and meiotic spindle alterations, that may result in oocyte aneuploidy. Nuclear-related mechanisms that justify increased oocyte aneuploidy include deoxyribonucleic acid (DNA) damage, loss of chromosomal cohesion, spindle assembly checkpoint dysfunction, meiotic recombination errors, and telomere attrition. On the other hand, age-dependent cytoplasmic maturation failure is related to mitochondrial dysfunction, altered mitochondrial biogenesis, altered mitochondrial morphology, distribution, activity, and dynamics, dysmorphic smooth endoplasmic reticulum and calcium disturbance, and alterations in the cytoskeleton. Furthermore, reproductive somatic cells also experience the effects of aging, including mitochondrial dysfunction and DNA damage, compromising the crosstalk between granulosa/cumulus cells and oocytes, also affected by a loss of gap junctions. Old oocytes seem therefore to mature in an altered microenvironment, with changes in metabolites, ribonucleic acid (RNA), proteins, and lipids. Overall, understanding the mechanisms implicated in the loss of oocyte quality will allow the establishment of emerging biomarkers and potential therapeutic anti-aging strategies. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ana Filipa Ferreira
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| | - Maria Soares
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Teresa Almeida-Santos
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal
| | - Ana Paula Sousa
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Idrees M, Kumar V, Khan AM, Joo MD, Lee KW, Sohn SH, Kong IK. Cycloastragenol activation of telomerase improves β-Klotho protein level and attenuates age-related malfunctioning in ovarian tissues. Mech Ageing Dev 2023; 209:111756. [PMID: 36462538 DOI: 10.1016/j.mad.2022.111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
Age-related deterioration in the reproductive capacity of women is directly related to the poor developmental potential of ovarian follicles. Although telomerase plays a key role in female fertility, TERT-targeting therapeutic strategies for age-related female infertility have yet to be investigated. This study elucidated the effect of Telomerase activation on mice ovaries and more specifically on Klb (β-Klotho) gene expression, which is linked to ageing, female hormonal regulation, and cyclicity. The homology-based 3D model of hTERT was used to predict its binding mode of Cycloastragenol (CAG) using molecular docking and molecular dynamics simulations. Based on docking score, simulation behavior, and interaction with hTERT residues it was observed that CAG could bind with the hTERT model. CAG treatment to primary cultured mouse granulosa cells and activation of telomerase was examined via telomerase activity assay (Mouse TE (telomerase) ELISA Kit) and telomere length by quantitative fluorescence in situ hybridization. CAG mediated telomerase also significantly improved β-Klotho protein level in the aged granulosa cells. To demonstrate that β-Klotho is telomerase dependent, the TERT was knocked down via siRNA in granulosa cells and protein level of β-Klotho was examined. Furthermore, CAG-mediated telomerase activation significantly enhanced the level of Klb and recovered ovarian follicles in the D-galactose (D-gal)-induced ovarian ageing mouse model. Moreover, Doxorubicin-induced ovarian damage, which changes ovarian hormones, and inhibit follicular growth was successfully neutralized by CAG activated telomerase and its recovery of β-Klotho level. In conclusion, TERT dependent β-Klotho regulation in ovarian tissues is one of the mechanisms, which can overcome female infertility.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea.
| | - Vikas Kumar
- Division of Life Sciences, Department of Bio & Medical Big Data (BK21 Four), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea.
| | - Abdul Majid Khan
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea.
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea.
| | - Keun-Woo Lee
- Division of Life Sciences, Department of Bio & Medical Big Data (BK21 Four), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea.
| | - Sea-Hwan Sohn
- Department of Animal Science and Biotechnology, Gyeongsang National University, Jinju 52725, Gyeongnam Province, Republic of Korea.
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongnam Province, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea.
| |
Collapse
|
7
|
Gong X, Zhang Y, Ai J, Li K. Application of Single-Cell RNA Sequencing in Ovarian Development. Biomolecules 2022; 13:47. [PMID: 36671432 PMCID: PMC9855652 DOI: 10.3390/biom13010047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
The ovary is a female reproductive organ that plays a key role in fertility and the maintenance of endocrine homeostasis, which is of great importance to women's health. It is characterized by a high heterogeneity, with different cellular subpopulations primarily containing oocytes, granulosa cells, stromal cells, endothelial cells, vascular smooth muscle cells, and diverse immune cell types. Each has unique and important functions. From the fetal period to old age, the ovary experiences continuous structural and functional changes, with the gene expression of each cell type undergoing dramatic changes. In addition, ovarian development strongly relies on the communication between germ and somatic cells. Compared to traditional bulk RNA sequencing techniques, the single-cell RNA sequencing (scRNA-seq) approach has substantial advantages in analyzing individual cells within an ever-changing and complicated tissue, classifying them into cell types, characterizing single cells, delineating the cellular developmental trajectory, and studying cell-to-cell interactions. In this review, we present single-cell transcriptome mapping of the ovary, summarize the characteristics of the important constituent cells of the ovary and the critical cellular developmental processes, and describe key signaling pathways for cell-to-cell communication in the ovary, as revealed by scRNA-seq. This review will undoubtedly improve our understanding of the characteristics of ovarian cells and development, thus enabling the identification of novel therapeutic targets for ovarian-related diseases.
Collapse
Affiliation(s)
| | | | - Jihui Ai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Wang L, Mei Q, Xie Q, Li H, Su P, Zhang L, Li K, Ma D, Chen G, Li J, Xiang W. A comparative study of Mesenchymal Stem Cells transplantation approach to antagonize age-associated ovarian hypofunction with consideration of safety and efficiency. J Adv Res 2022; 38:245-259. [PMID: 35572405 PMCID: PMC9091735 DOI: 10.1016/j.jare.2021.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cells transplantation (MSCs’) to the ovaries of POF patients could lead to effective clinical outcomes. Assessment of MSCs’ effect for single transplantation was performed using 3 transplantation methods. MSCs into ovaries by ovarian local injection was determined as the most effective route. This technique exerted marked effect on antagonizing age-associated ovarian hypofunction. Histopathological data showed that no neoplasms and obvious prosoplasia were found after MSCs transplantation.
Introduction The transplantation of mesenchymal stem cells (MSCs) in patients with premature ovarian failure (POF) could lead to clinical improvement. The transplantation to the ovaries among other transplantation methods have been reported in various animal models, however, there is little evidence regarding the optimal method, including the clinical safety and the efficiency for the treatment of age associated ovarian hypofunction. Objectives To establish the most effective transplantation route of MSCs, explore the resistance to therapy, its safety and role in the natural aging process of the ovaries. Methods Highly purified MSCs were injected intraperitoneally, directly into the ovaries or tail-intravenously in mice animal model. The ovarian function, quantity and quality of oocytes, cell viability/apoptosis, were evaluated, applying chemiluminescence analysis (CLIA), western blotting, immunofluorescence staining, transmission electron microscope (TEM), TdT mediated dUTP Nick End Labeling (TUNEL) assay and other techniques. The organ tumorigenicity was also evaluated by long-term observation and histopathological examination. The efficiency of MSCs was further verified in non-human primates by the most effective transplantation route. Results The 32nd week was ultimately determined as the time point of MSCs transplantation. Our results showed that the intra-ovarian injection was the best transplantation method with a more conspicuous effect. With deeper investigations, we found that the transplanted MSCs showed an effective influence on the follicular number, promoted follicle maturation and inhibited cell apoptosis, which was further verified in non-human primates. In addition, the long-term observation and the histopathological examinations ruled out neoplasms or obvious prosoplasia after MSCs transplantation. Conclusion MSCs transplantation by intra-ovarian injection could within a month exert the most conspicuous anti-age-associated ovarian hypofunction effects, which may improve the quantity and quality of oocytes by changing the mitochondrial structure, regulating mitochondrial function and attenuating cell apoptosis to increase the storage of the follicle pool without a remarkable potential of tumorigenicity.
Collapse
Affiliation(s)
- Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiaojuan Mei
- Institute of Reproductive Health, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Xie
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huiying Li
- Institute of Reproductive Health, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Su
- Institute of Reproductive Health, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling Zhang
- Institute of Reproductive Health, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Corresponding authors.
| | - Jing Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Corresponding authors.
| | - Wenpei Xiang
- Institute of Reproductive Health, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Corresponding authors.
| |
Collapse
|
9
|
Liu C, Li L, Yang B, Zhao Y, Dong X, Zhu L, Ren X, Huang B, Yue J, Jin L, Zhang H, Wang L. Transcriptome-wide N6-methyladenine methylation in granulosa cells of women with decreased ovarian reserve. BMC Genomics 2022; 23:240. [PMID: 35346019 PMCID: PMC8961905 DOI: 10.1186/s12864-022-08462-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
The emerging epitranscriptome plays an essential role in female fertility. As the most prevalent internal mRNA modification, N6-methyladenine (m6A) methylation regulate mRNA fate and translational efficiency. However, whether m6A methylation was involved in the aging-related ovarian reserve decline has not been investigated. Herein, we performed m6A transcriptome-wide profiling in the ovarian granulosa cells of younger women (younger group) and older women (older group).
Results
m6A methylation distribution was highly conserved and enriched in the CDS and 3’UTR region. Besides, an increased number of m6A methylated genes were identified in the older group. Bioinformatics analysis indicated that m6A methylated genes were enriched in the FoxO signaling pathway, adherens junction, and regulation of actin cytoskeleton. A total of 435 genes were differently expressed in the older group, moreover, 58 of them were modified by m6A. Several specific genes, including BUB1B, PHC2, TOP2A, DDR2, KLF13, and RYR2 which were differently expressed and modified by m6A, were validated using qRT-PCR and might be involved in the decreased ovarian functions in the aging ovary.
Conclusions
Hence, our finding revealed the transcriptional significance of m6A modifications and provide potential therapeutic targets to promote fertility reservation for aging women.
Collapse
|
10
|
Zhang Y, Gong S, Su Y, Yao M, Liu X, Gong Z, Sui H, Luo M. Follicular development in livestock: Influencing factors and underlying mechanisms. Anim Sci J 2021; 92:e13657. [PMID: 34796578 DOI: 10.1111/asj.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/23/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022]
Abstract
Livestock farming development has become increasingly important in recent years. It not only provides us with meat nutrition and pet feeding but also increases the economic value by providing numerous employment opportunities, which improves our life quality. The livestock farming development depends on successful animal reproduction. As a vital process in animal reproduction, folliculogenesis and its influencing factors as well as their underlying mechanisms need to be understood thoroughly. This review is aimed at summarizing the factors such as cellular processes, gene regulation, noncoding RNAs and other endocrine or paracrine regulatory factors that affect follicular development, and their underlying mechanisms of action in livestock in order to provide novel insights for future studies. The above factors were found as significant determinants influencing the follicular development in livestock through various signaling pathways.
Collapse
Affiliation(s)
- Yanjun Zhang
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, China.,Jiaxiang County Animal Husbandry and Veterinary Bureau, Jining, China
| | - Shuai Gong
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, China
| | - Yanping Su
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Minhua Yao
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Xiaocui Liu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Zhaoqing Gong
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Hongshu Sui
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Mingjiu Luo
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
11
|
Lee S, Kang HG, Ryou C, Cheon YP. Spatiotemporal expression of aquaporin 9 is critical for the antral growth of mouse ovarian follicles†. Biol Reprod 2021; 103:828-839. [PMID: 32577722 DOI: 10.1093/biolre/ioaa108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/21/2019] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Although a few aquaporins (AQPs) expressed in granulosa cells have been postulated to mediate fluid passage into the antrum, the specific expression of AQPs in different follicle cell types and stages and their roles have not been evaluated extensively. The spatiotemporal expression of aquaporin (Aqp) 7, 8, and 9 and the functional roles of Aqp9 in antral growth and ovulation were examined using a superovulation model and 3-dimensional follicle culture. Aqp9 was expressed at a high level in the rapid growth phase (24-48 h post equine chorionic gonadotropin (eCG) for superovulation induction) compared to Aqp7 (after human chorionic gonadotropin (hCG)) and Aqp8 (8-24 h post eCG and 24 h post hCG). A dramatic increase in the expression and localization of Aqp9 mRNA in theca cells was observed, as evaluated using quantitative reverse transcription-polymerase (RT-PCR) coupled with laser capture microdissection and immunohistochemistry. AQP9 was located primarily on the theca cells of the tertiary and preovulatory follicles but not on the ovulated follicles. In phloretin-treated mice, the diameter of the preovulatory follicles and the number of ovulated oocytes decreased. Consistent with these findings, knocking down Aqp9 expression with an Aqp9 siRNA inhibited follicle growth (0.28:1 = siRNA:control) and decreased the number of ovulated follicles (0.36:1 = siRNA:control) during in vitro growth and ovulation induction. Based on these results, the expression of AQPs is under the control of the physiological status, and AQP9 expression in theca during folliculogenesis is required for antral growth and ovulation in a tissue-specific and stage-dependent manner.
Collapse
Affiliation(s)
- Sungeun Lee
- Department of Biotechnology, Sungshin University, Seoul, Korea
| | - Hee-Gyoo Kang
- Department of Biomedical Engineering and Institute of Pharmaceutical Science and Technology, Eulji University, Seongnam-Si, Gyeonggi-Do, Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Yong-Pil Cheon
- Department of Biotechnology, Sungshin University, Seoul, Korea
| |
Collapse
|
12
|
Chico-Sordo L, Córdova-Oriz I, Polonio AM, S-Mellado LS, Medrano M, García-Velasco JA, Varela E. Reproductive aging and telomeres: Are women and men equally affected? Mech Ageing Dev 2021; 198:111541. [PMID: 34245740 DOI: 10.1016/j.mad.2021.111541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
Successful reproduction is very important for individuals and for society. Currently, the human health span and lifespan are the object of intense and productive investigation with great achievements, compared to the last century. However, reproduction span does not progress concomitantly with lifespan. Reproductive organs age, decreasing the levels of sexual hormones, which are protectors of health through their action on several organs of the body. Thus, this is the starting point of the organismal decay and infertility. This starting point is easily detected in women. In men, it goes under the surface, undetected, but it goes, nevertheless. Regarding fertility, aging alters the hormonal equilibrium, decreases the potential of reproductive organs, diminishes the quality of the gametes and worsen the reproductive outcomes. All these events happen at a different pace and affecting different organs in women and men. The question is what molecular pathways are involved in reproductive aging and if there is a possible halting or even reversion of the aging events. Answers to all these points will be explained in the present review.
Collapse
Affiliation(s)
- Lucía Chico-Sordo
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Isabel Córdova-Oriz
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Alba María Polonio
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Lucía Sánchez S-Mellado
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Marta Medrano
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; IVIRMA Madrid, Spain.
| | - Juan Antonio García-Velasco
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain; IVIRMA Madrid, Spain; Rey Juan Carlos University, Madrid, Spain.
| | - Elisa Varela
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rey Juan Carlos University, Madrid, Spain.
| |
Collapse
|
13
|
Li CJ, Lin LT, Tsai HW, Chern CU, Wen ZH, Wang PH, Tsui KH. The Molecular Regulation in the Pathophysiology in Ovarian Aging. Aging Dis 2021; 12:934-949. [PMID: 34094652 PMCID: PMC8139203 DOI: 10.14336/ad.2020.1113] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022] Open
Abstract
The female reproductive system is of great significance to women’s health. Aging of the female reproductive system occurs approximately 10 years prior to the natural age-associated functional decline of other organ systems. With an increase in life expectancy worldwide, reproductive aging has gradually become a key health issue among women. Therefore, an adequate understanding of the causes and molecular mechanisms of ovarian aging is essential towards the inhibition of age-related diseases and the promotion of health and longevity in women. In general, women begin to experience a decline in ovarian function around the age of 35 years, which is mainly manifested as a decrease in the number of ovarian follicles and the quality of oocytes. Studies have revealed the occurrence of mitochondrial dysfunction, reduced DNA repair, epigenetic changes, and metabolic alterations in the cells within the ovaries as age increases. In the present work, we reviewed the possible factors of aging-induced ovarian insufficiency based on its clinical diagnosis and performed an in-depth investigation of the relevant molecular mechanisms and potential targets to provide novel approaches for the effective improvement of ovarian function in older women.
Collapse
Affiliation(s)
- Chia-Jung Li
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Li-Te Lin
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,3Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Hsiao-Wen Tsai
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chyi-Uei Chern
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- 4Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Peng-Hui Wang
- 3Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,5Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan.,6Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,7Female Cancer Foundation, Taipei, Taiwan
| | - Kuan-Hao Tsui
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,3Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,8Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| |
Collapse
|
14
|
Xu L, Idrees M, Joo MD, Sidrat T, Wei Y, Song SH, Lee KL, Kong IK. Constitutive Expression of TERT Enhances β-Klotho Expression and Improves Age-Related Deterioration in Early Bovine Embryos. Int J Mol Sci 2021; 22:ijms22105327. [PMID: 34070219 PMCID: PMC8158768 DOI: 10.3390/ijms22105327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Age-associated decline in oocyte quality is one of the dominant factors of low fertility. Aging alters several key processes, such as telomere lengthening, cell senescence, and cellular longevity of granulosa cells surrounding oocyte. To investigate the age-dependent molecular changes, we examined the expression, localization, and correlation of telomerase reverse transcriptase (TERT) and β-Klotho (KLB) in bovine granulosa cells, oocytes, and early embryos during the aging process. Herein, cumulus-oocyte complexes (COCs) obtained from aged cows (>120 months) via ovum pick-up (OPU) showed reduced expression of β-Klotho and its co-receptor fibroblast growth factor receptor 1 (FGFR1). TERT plasmid injection into pronuclear zygotes not only markedly enhanced day-8 blastocysts’ development competence (39.1 ± 0.8%) compared to the control (31.1 ± 0.5%) and D-galactose (17.9 ± 1.0%) treatment groups but also enhanced KLB and FGFR1 expression. In addition, plasmid-injected zygotes displayed a considerable enhancement in blastocyst quality and implantation potential. Cycloastragenol (CAG), an extract of saponins, stimulates telomerase enzymes and enhances KLB expression and alleviates age-related deterioration in cultured primary bovine granulosa cells. In conclusion, telomerase activation or constitutive expression will increase KLB expression and activate the FGFR1/β-Klotho pathway in bovine granulosa cells and early embryos, inhibiting age-related malfunctioning.
Collapse
Affiliation(s)
- Lianguang Xu
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
| | - Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
| | - Tabinda Sidrat
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
| | - Yiran Wei
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
| | - Seok-Hwan Song
- The Kingkong Co., Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (S.-H.S.); (K.-L.L.)
| | - Kyeong-Lim Lee
- The Kingkong Co., Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (S.-H.S.); (K.-L.L.)
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea
- The Kingkong Co., Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (S.-H.S.); (K.-L.L.)
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
15
|
Nakano T, Kono M, Segawa K, Kurosaka S, Nakaoka Y, Morimoto Y, Mitani T. Effects of exposure to methylglyoxal on sperm motility and embryonic development after fertilization in mice. J Reprod Dev 2021; 67:123-133. [PMID: 33551390 PMCID: PMC8075723 DOI: 10.1262/jrd.2020-150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Methylglyoxal (MG) is a precursor for the generation of endogenous advanced glycation end-products involved in various diseases, including infertility. The
present study evaluated the motility and developmental competence after in vitro fertilization of mouse sperm which were exposed to MG in the
capacitation medium for 1.5 h. Sperm motility was analyzed using an SQA-V automated sperm quality analyzer. Intracellular reactive oxygen species (ROS),
membrane integrity, mitochondrial membrane potential, and DNA damage were assessed using flow cytometry. The matured oocytes were inseminated with MG-exposed
sperm, and subsequently, the fertilization and embryonic development in vitro were evaluated in vitro. The exposure of sperm
to MG did not considerably affect the swim-up of sperm but resulted in a deteriorated sperm motility in a concentration-dependent manner, which was associated
with a decreased mitochondrial activity. However, these effects was not accompanied by obvious ROS accumulation or DNA damage. Furthermore, MG diminished the
fertilization rate and developmental competence, even after normal fertilization. Collectively, a short-term exposure to MG during sperm capacitation had a
critical impact on sperm motility and subsequent embryonic development after fertilization. Considering that sperm would remain in vivo for up
to 3 days until fertilization, our findings suggest that sperm can be affected by MG in the female reproductive organs, which may be associated with
infertility.
Collapse
Affiliation(s)
- Tatsuya Nakano
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan.,IVF Namba Clinic, Osaka 550-0015, Japan
| | - Mizuki Kono
- Department of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Kazuki Segawa
- Department of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Satoshi Kurosaka
- Institute of Advanced Technology, Kindai University, Wakayama 642-0017, Japan
| | | | | | - Tasuku Mitani
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan.,Department of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| |
Collapse
|
16
|
Liu Y, Shen Q, Li H, Xiang W, Zhang L. Cell-free mitochondrial DNA increases granulosa cell apoptosis and reduces aged oocyte blastocyst development in the mouse. Reprod Toxicol 2020; 98:278-285. [PMID: 33144175 DOI: 10.1016/j.reprotox.2020.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022]
Abstract
Cell-free mitochondrial DNA (cf-mtDNA) released into the extracellular environment can cause cellular inflammatory responses and damage. Here, we investigated the effects of cf-mtDNA on mouse ovarian granulosa cell function and on the developmental competence of oocytes matured in vitro. Granulosa cells in the cf-mtDNA treatment group had a lower ATP content (P < 0.05), a higher apoptotic cell percentage (P < 0.01), and higher mRNA and protein levels of apoptosis-related factors than the control group (P < 0.01). TLR9, NF-кB p65 and MAPK p38 expression levels in granulosa cells were significantly increased in the cf-mtDNA treatment group (P < 0.05). The blastocyst formation rate of aged mice oocytes matured in vitro decreased significantly (P < 0.05) when cf-mtDNA was added to the media, compared with the control. However, the oocytes from young mice were not affected. Our results suggest that cf-mtDNA may impair granulosa cell function and induce granulosa cell apoptosis, subsequently decreasing blastocyst development in aged oocytes. This role of cf-mtDNA may be associated with the binding to TLR9 and the activation of NF-кB p65 and MAPK p38 signaling pathways.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Qiuzi Shen
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Huiying Li
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Wenpei Xiang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ling Zhang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
17
|
Nagata S, Tatematsu K, Kansaku K, Inoue Y, Kobayashi M, Shirasuna K, Iwata H. Effect of aging on mitochondria and metabolism of bovine granulosa cells. J Reprod Dev 2020; 66:547-554. [PMID: 32921645 PMCID: PMC7768168 DOI: 10.1262/jrd.2020-071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study investigated the effect of aging on mitochondria in granulosa cells (GCs) collected from the antral follicles of young and aged cows (25–50 months and over 140 months in age, respectively). When GCs were cultured under 20% O2 for 4 days, mitochondrial DNA copy number (Mt-number), determined by real-time PCR, increased throughout the culture period, and the extent of increase was greater in the GCs of young cows than in those of old cows. In a second experiment, GCs were cultured under 20% O2 for 24 h. Protein levels of TOMM20 and TFAM in GCs were lower in aged cows than in young cows, and the amount of reactive oxygen species and the mitochondrial membrane potential were higher, whereas ATP content and proliferation activity were lower, respectively. Glucose consumption and lactate production were higher in the GCs of aged cows than in those of young cows. When GCs were cultured under 5% or 20% O2 for 24 h, low O2 decreased ATP content and increased glucose consumption in GCs of both age groups compared with high O2; however, low O2 decreased the Mt-number only in the GCs of young cows. In conclusion, we show that aging affects mitochondrial quantity, function, and response to differential O2 tensions in GCs.
Collapse
Affiliation(s)
- Shuta Nagata
- Department of Animal Science, Tokyo University of Agriculture Department of Animal Science, Kanagawa 243-0034, Japan
| | - Kaoru Tatematsu
- Department of Animal Science, Tokyo University of Agriculture Department of Animal Science, Kanagawa 243-0034, Japan
| | - Kazuki Kansaku
- Department of Animal Science, Tokyo University of Agriculture Department of Animal Science, Kanagawa 243-0034, Japan
| | - Yuki Inoue
- Department of Animal Science, Tokyo University of Agriculture Department of Animal Science, Kanagawa 243-0034, Japan
| | - Mitsuru Kobayashi
- Department of Animal Science, Tokyo University of Agriculture Department of Animal Science, Kanagawa 243-0034, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture Department of Animal Science, Kanagawa 243-0034, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture Department of Animal Science, Kanagawa 243-0034, Japan
| |
Collapse
|
18
|
Lin PH, Lin LT, Li CJ, Kao PG, Tsai HW, Chen SN, Wen ZH, Wang PH, Tsui KH. Combining Bioinformatics and Experiments to Identify CREB1 as a Key Regulator in Senescent Granulosa Cells. Diagnostics (Basel) 2020; 10:diagnostics10050295. [PMID: 32403258 PMCID: PMC7277907 DOI: 10.3390/diagnostics10050295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Aging of functional ovaries occurs many years before aging of other organs in the female body. In recent years, a greater number of women continue to postpone their pregnancies to later stages in their lives, raising concerns of the effect of ovarian aging. Mitochondria play an important role in the connection between the aging granulosa cells and oocytes. However, the underlying mechanisms of mitochondrial dysfunction in these cells remain poorly understood. Therefore, we evaluated the molecular mechanism of the aging granulosa cells, including aspects such as accumulation of mitochondrial reactive oxygen species, reduction of mtDNA, imbalance of mitochondrial dynamics, and diminished cell proliferation. Here, we applied bioinformatics approaches, and integrated publicly available resources, to investigate the role of CREB1 gene expression in reproduction. Senescence hallmark enrichment and pathway analysis suggested that the downregulation of bioenergetic-related genes in CREB1. Gene expression analyses showed alterations in genes related to energy metabolism and ROS production in ovary tissue. We also demonstrate that the biogenesis of aging granulosa cells is subject to CREB1 binding to the PRKAA1 and PRKAA2 upstream promoters. In addition, cofactors that regulate biogenesis significantly increase the levels of SIRT1 and PPARGC1A mRNA in the aging granulosa cells. These findings demonstrate that CREB1 elevates an oxidative stress-induced senescence in granulosa cells by reducing the mitochondrial function.
Collapse
Affiliation(s)
- Pei-Hsuan Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (P.-H.L.); (L.-T.L.); (C.-J.L.); (P.-G.K.); (H.-W.T.); (S.-N.C.)
- Daan Maternal and Children Hospital, Tainan 700, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (P.-H.L.); (L.-T.L.); (C.-J.L.); (P.-G.K.); (H.-W.T.); (S.-N.C.)
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (P.-H.L.); (L.-T.L.); (C.-J.L.); (P.-G.K.); (H.-W.T.); (S.-N.C.)
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Pei-Gang Kao
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (P.-H.L.); (L.-T.L.); (C.-J.L.); (P.-G.K.); (H.-W.T.); (S.-N.C.)
| | - Hsiao-Wen Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (P.-H.L.); (L.-T.L.); (C.-J.L.); (P.-G.K.); (H.-W.T.); (S.-N.C.)
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - San-Nung Chen
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (P.-H.L.); (L.-T.L.); (C.-J.L.); (P.-G.K.); (H.-W.T.); (S.-N.C.)
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Female Cancer Foundation, Taipei 104, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (P.-H.L.); (L.-T.L.); (C.-J.L.); (P.-G.K.); (H.-W.T.); (S.-N.C.)
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County 907, Taiwan
- Correspondence:
| |
Collapse
|
19
|
Establishment of A Reversibly Inducible Porcine Granulosa Cell Line. Cells 2020; 9:cells9010156. [PMID: 31936362 PMCID: PMC7017277 DOI: 10.3390/cells9010156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Granulosa cells (GCs) are the key components of ovarian follicles for regulating oocyte maturation. Previous established GC lines have allowed prolonged proliferation, but lost some physiological features owing to long-term immortalization. This study was to establish an induced immortal porcine GC line with reversible proliferation status by the tetracycline inducible (Tet-on) 3G system. Our conditional immortal porcine GCs (CIPGCs) line steadily propagated for at least six months and displayed primary GC morphology when cultured in the presence of 50 ng/mL doxycycline [Dox (+)]. Upon Dox withdrawal [Dox (–)], Large T-antigen expression, reflected by mCherry fluorescence, gradually became undetectable within 48 h, accompanied by less proliferation and size increase. The levels of estradiol and progesterone, and the expression of genes associated with steroid production, such as CYP11A1 (cytochrome P450 family 11), 3β-HSD (3β-hydroxysteroid dehydrogenase), StAR (steroidogenic acute regulatory protein), and CYP19A1 (cytochrome P450 family 19 subfamily a member 1), were all significantly higher in the Dox (–) group than Dox (+) group. The CIPGCs could switch into a proliferative state upon Dox induction. Interestingly, the expression of StAR and CYP19A1 in the CIPGCs (–Dox) was significantly increased by adding porcine follicular fluid (PFF) to mimic an ovary follicle environment. Moreover, PFF priming the CIPGCs in Dox (–) group resulted in similar estradiol production as that of primary GC, and enabled this cell line to respond to gonadotrophins in estradiol production. Collectively, we have established an inducible immortal porcine GC line, which offers a unique and valuable model for future research on the regulation of ovarian functions.
Collapse
|
20
|
Ishiguro A, Munakata Y, Shirasuna K, Kuwayama T, Iwata H. Addition of granulosa cells collected from differential follicle stages supports development of oocytes derived from porcine early antral follicles. Reprod Med Biol 2019; 18:65-71. [PMID: 30655723 PMCID: PMC6332817 DOI: 10.1002/rmb2.12248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Improvement of in vitro oocyte growth by addition of granulosa cells derived from differential developmental stages of follicles. METHODS Granulosa cells (GCs) collected from either early antral follicles (EAFs) or antral follicles (AFs) were added to oocyte-granulosa cell complexes (OGCs) derived from EAFs, and the in vitro growth of the oocytes was evaluated. RESULTS Granulosa cells were incorporated into OGCs to form new OGCs within 2 days of culture. After 14 days of culture, the number of GCs surrounding oocytes was similar among the three OGCs conditions (unmanipulated "natural OGCs," "EAF-GCs add OGCs," and "AF-GCs add OGCs"), whereas the survival rate of the GCs and diameter of oocytes grown in vitro were the greatest for "AF-GCs added OGCs." After parthenogenetic activation, developmental rate till the blastocyst stage tended to be higher for "AF-GCs add OGCs" compared with other groups. Addition of AF-GCs significantly increased a hypoxic marker (pimonidazole staining) and increased the lipid content in oocytes grown in vitro compared with unmanipulated OGCs. CONCLUSION Addition of GCs derived from more advanced stages of follicles to the OGCs changes the metabolism of oocytes and is beneficial for in vitro growth of oocytes derived from EAFs.
Collapse
Affiliation(s)
- Ai Ishiguro
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| | - Yasuhisa Munakata
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| | - Koumei Shirasuna
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| | - Takehito Kuwayama
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| | - Hisataka Iwata
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| |
Collapse
|
21
|
Hui L, Shuangshuang G, Jianning Y, Zhendan S. Systemic analysis of gene expression profiles in porcine granulosa cells during aging. Oncotarget 2017; 8:96588-96603. [PMID: 29228554 PMCID: PMC5722506 DOI: 10.18632/oncotarget.21731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/20/2017] [Indexed: 12/17/2022] Open
Abstract
Current studies have revealed that aging is a negative factor that suppresses granulosa cell functions and causes low fertility in women. However, the difference in gene expression between normal and aging granulosa cells remains undefined. Therefore, the aim of this study was to investigate the gene expression profiles of granulosa cells during aging. Granulosa cells from young healthy porcine ovaries were aged in vitro by prolonging the culture time (for 48h). First, the extracellular ultrastructure was observed by scanning electron microscopy followed by RNA-seq and KEGG pathway analysis. The results showed that the extracellular ultrastructure was significantly altered by aging; cell membranes were rough, and cavitations were found. Moreover, the formations of filopodia were greatly reduced. RNA-seq data revealed that 3411 genes were differentially expressed during aging, of which 2193 genes were up-regulated and 1218 genes were down-regulated. KEGG pathway analysis revealed that 25 pathways including pathway in cancer, PI3K-Akt signaling pathway, focal adhesion, proteoglycans in cancer, and cAMP signaling pathway were the most changed. Moreover, several high differentially expressed genes (CEBPB, CXCL12, ANGPT2, IGFBP3, and BBOX1) were identified in aging granulosa cells, The expressions of these genes and genes associated with extracellular matrix remodeling associated genes (TIMP3, MMP2, MMP3, and CTGF), energy metabolism associated genes (SLC2A1, PPARγ) and steroidogenesis associated genes (StAR, CYP11A1 and LHCGR) were confirmed by quantitative PCR. This study identifies the differently changed pathways and their related genes, contributes to the understanding of aging in granulosa cells, and provides an important foundation for further studies.
Collapse
Affiliation(s)
- Li Hui
- Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guo Shuangshuang
- Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yu Jianning
- Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shi Zhendan
- Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|