1
|
Farag A, Koung Ngeun S, Kaneda M, Aboubakr M, Tanaka R. Optimizing Cardiomyocyte Differentiation: Comparative Analysis of Bone Marrow and Adipose-Derived Mesenchymal Stem Cells in Rats Using 5-Azacytidine and Low-Dose FGF and IGF Treatment. Biomedicines 2024; 12:1923. [PMID: 39200387 PMCID: PMC11352160 DOI: 10.3390/biomedicines12081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stem cells (MSCs) exhibit multipotency, self-renewal, and immune-modulatory properties, making them promising in regenerative medicine, particularly in cardiovascular treatments. However, optimizing the MSC source and induction method of cardiac differentiation is challenging. This study compares the cardiomyogenic potential of bone marrow (BM)-MSCs and adipose-derived (AD)-MSCs using 5-Azacytidine (5-Aza) alone or combined with low doses of Fibroblast Growth Factor (FGF) and Insulin-like Growth Factor (IGF). BM-MSCs and AD-MSCs were differentiated using two protocols: 10 μmol 5-Aza alone and 10 μmol 5-Aza with 1 ng/mL FGF and 10 ng/mL IGF. Morphological, transcriptional, and translational analyses, along with cell viability assessments, were performed. Both the MSC types exhibited similar morphological changes; however, AD-MSCs achieved 70-80% confluence faster than BM-MSCs. Surface marker profiling confirmed CD29 and CD90 positivity and CD45 negativity. The differentiation protocols led to cell flattening and myotube formation, with earlier differentiation in AD-MSCs. The combined protocol reduced cell mortality in BM-MSCs and enhanced the expression of cardiac markers (MEF2c, Troponin I, GSK-3β), particularly in BM-MSCs. Immunofluorescence confirmed cardiac-specific protein expression in all the treated groups. Both MSC types exhibited the expression of cardiac-specific markers indicative of cardiomyogenic differentiation, with the combined treatment showing superior efficiency for BM-MSCs.
Collapse
Affiliation(s)
- Ahmed Farag
- Veterinary Teaching Hospital, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Ryou Tanaka
- Veterinary Teaching Hospital, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
2
|
Li B, Kwon C. Mesendodermal cells fail to contribute to heart formation following blastocyst injection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595392. [PMID: 38826381 PMCID: PMC11142170 DOI: 10.1101/2024.05.22.595392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Blastocyst complementation offers an opportunity for generating transplantable whole organs from donor sources. Pluripotent stem cells (PSCs) have traditionally served as the primary donor cells due to their ability to differentiate into any type of body cell. However, the use of PSCs raises ethical concerns, particularly regarding their uncontrollable differentiation potential to undesired cell lineages such as brain and germline cells. To address this issue, various strategies have been explored, including the use of genetically modified PSCs with restricted lineage potential or lineage-specified progenitor cells as donors. In this study, we tested whether nascent mesendodermal cells (MECs), which appear during early gastrulation, can be used as donor cells. To do this, we induced Bry-GFP+ MECs from mouse embryonic stem cells (ESCs) and introduced them into the blastocyst. While donor ESCs gave rise to various regions of embryos, including the heart, Bry-GFP+ MECs failed to contribute to the host embryos. This finding suggests that MECs, despite being specified from PSCs within a few days, lack the capacity to assimilate into the developing embryo.
Collapse
Affiliation(s)
- Biyi Li
- Division of Cardiology, Department of Medicine, Department of Biomedical Engineering, Department of Cell Biology, Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Department of Biomedical Engineering, Department of Cell Biology, Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Mesenchymal Stem Cells for Cardiac Regeneration: from Differentiation to Cell Delivery. Stem Cell Rev Rep 2021; 17:1666-1694. [PMID: 33954876 DOI: 10.1007/s12015-021-10168-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are so far the most widely researched stem cells in clinics and used as an experimental cellular therapy module, particularly in cardiac regeneration and repair. Ever since the discovery of cardiomyogenesis induction in MSCs, a wide variety of differentiation protocols have been extensively used in preclinical models. However, pre differentiated MSC-derived cardiomyocytes have not been used in clinical trials; highlighting discrepancies and limitations in its use as a source of derived cardiomyocytes for transplantation to improve the damaged heart function. Therefore, this review article focuses on the strategies used to derive cardiomyocytes-like cells from MSCs isolated from three widely used tissue sources and their differentiation efficiencies. We have further discussed the role of MSCs in inducing angiogenesis as a cellular precursor to endothelial cells and its secretory aspects including exosomes. We have then discussed the strategies used for delivering cells in the damaged heart and how its retention plays a critical role in the overall outcome of the therapy. We have also conversed about the scope of the local and systemic modes of delivery of MSCs and the application of biomaterials to improve the overall delivery efficacy and function. We have finally discussed the advantages and limitations of cell delivery to the heart and the future scope of MSCs in cardiac regenerative therapy.
Collapse
|
4
|
Lauschke K, Volpini L, Liu Y, Vinggaard AM, Hall VJ. A Comparative Assessment of Marker Expression Between Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells and the Developing Pig Heart. Stem Cells Dev 2021; 30:374-385. [PMID: 33599158 DOI: 10.1089/scd.2020.0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The course of differentiation of pluripotent stem cells into cardiomyocytes and the intermediate cell types are characterized using molecular markers for different stages of development. These markers have been selected primarily from studies in the mouse and from a limited number of human studies. However, it is not clear how well mouse cardiogenesis compares with human cardiogenesis at the molecular level. We tackle this issue by analyzing and comparing the expression of common cardiomyogenesis markers [platelet-derived growth factor receptor, alpha polypeptide (PDGFR-α), fetal liver kinase 1 (FLK1), ISL1, NK2 homeobox 5 (NKX2.5), cardiac troponin T (CTNT), connexin43 (CX43), and myosin heavy chain 7 (MYHC-B)] in the developing pig heart at embryonic day (E)15, E16, E18, E20, E22, and E24 and in differentiating cardiomyocytes from human induced pluripotent stem cells (hiPSCs). We found that porcine expression of the mesoderm marker FLK1 and the cardiac progenitor marker ISL1 was in line with our differentiating hiPSC and reported murine expression. The cardiac lineage marker NKX2.5 was expressed at almost all stages in the pig and hiPSC, with an earlier onset in the hiPSC compared with reported murine expression. Markers of immature cardiomyocytes, CTNT, and MYHC-B were consistently expressed throughout E16-E70 in the pig, which is comparable with mouse development, whereas the markers increased over time in the hiPSC. However, the commonly used mature cardiomyocyte marker, CX43, should be used with caution, as it was also expressed in the pig mesoderm, as well as hiPSC immature cardiomyocytes, while this has not been reported in mice. Based on our observations in the various species, we suggest to use FLK1/PDGFR-α for identifying cardiac mesoderm and ISL1/NKX2.5 for cardiac progenitors. Furthermore, a combination of two or more of the following, CTNT+/MYHC-B+/ISL1+ could mark immature cardiomyocytes and CTNT+/ISL1- mature cardiomyocytes. CX43 should be used together with sarcomeric proteins. This knowledge may help improving differentiation of hiPSC into more in vivo-like cardiac tissue in the future.
Collapse
Affiliation(s)
- Karin Lauschke
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.,Department for Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Luca Volpini
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yong Liu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Vanessa Jane Hall
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
5
|
Swedlund B, Lescroart F. Cardiopharyngeal Progenitor Specification: Multiple Roads to the Heart and Head Muscles. Cold Spring Harb Perspect Biol 2020; 12:a036731. [PMID: 31818856 PMCID: PMC7397823 DOI: 10.1101/cshperspect.a036731] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the heart arises from various sources of undifferentiated mesodermal progenitors, with an additional contribution from ectodermal neural crest cells. Mesodermal cardiac progenitors are plastic and multipotent, but are nevertheless specified to a precise heart region and cell type very early during development. Recent findings have defined both this lineage plasticity and early commitment of cardiac progenitors, using a combination of single-cell and population analyses. In this review, we discuss several aspects of cardiac progenitor specification. We discuss their markers, fate potential in vitro and in vivo, early segregation and commitment, and also intrinsic and extrinsic cues regulating lineage restriction from multipotency to a specific cell type of the heart. Finally, we also discuss the subdivisions of the cardiopharyngeal field, and the shared origins of the heart with other mesodermal derivatives, including head and neck muscles.
Collapse
Affiliation(s)
- Benjamin Swedlund
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | |
Collapse
|
6
|
Phakdeedindan P, Setthawong P, Tiptanavattana N, Rungarunlert S, Ingrungruanglert P, Israsena N, Techakumphu M, Tharasanit T. Rabbit induced pluripotent stem cells retain capability of in vitro cardiac differentiation. Exp Anim 2019; 68:35-47. [PMID: 30089733 PMCID: PMC6389514 DOI: 10.1538/expanim.18-0074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Stem cells are promising cell source for treatment of multiple diseases as well as myocardial infarction. Rabbit model has essentially used for cardiovascular diseases and regeneration but information on establishment of induced pluripotent stem cells (iPSCs) and differentiation potential is fairly limited. In addition, there is no report of cardiac differentiation from iPSCs in the rabbit model. In this study, we generated rabbit iPSCs by reprogramming rabbit fibroblasts using the 4 transcription factors (OCT3/4, SOX2, KLF4, and c-Myc). Three iPSC lines were established. The iPSCs from all cell lines expressed genes (OCT3/4, SOX2, KLF4 and NANOG) and proteins (alkaline phosphatase, OCT-3/4 and SSEA-4) essentially described for pluripotency (in vivo and in vitro differentiation). Furthermore, they also had ability to form embryoid body (EB) resulting in three-germ layer differentiation. However, ability of particular cell lines and cell numbers at seeding markedly influenced on EB formation and also their diameters. The cell density at 20,000 cells per EB was selected for cardiac differentiation. After plating, the EBs attached and cardiac-like beating areas were seen as soon as 11 days of culture. The differentiated cells expressed cardiac progenitor marker FLK1 (51 ± 1.48%) on day 5 and cardiac troponin-T protein (10.29 ± 1.37%) on day 14. Other cardiac marker genes (cardiac ryanodine receptors (RYR2), α-actinin and PECAM1) were also expressed. This study concluded that rabbit iPSCs remained their in vitro pluripotency with capability of differentiation into mature-phenotype cardiomyocytes. However, the efficiency of cardiac differentiation is still restricted.
Collapse
Affiliation(s)
- Praopilas Phakdeedindan
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Piyathip Setthawong
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Narong Tiptanavattana
- Faculty of Veterinary Science, Prince of Songkla University, 15 Kanjanavanich Road, Hat Yai Songkhla 90110, Thailand
| | - Sasitorn Rungarunlert
- Faculty of Veterinary Science, Mahidol University, 999 Phutthamonthon Sai 4 Road, Nakhonpathom, 73170, Thailand
| | - Praewphan Ingrungruanglert
- Stem Cells and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, 1873 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Nipan Israsena
- Stem Cells and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, 1873 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
- The Research and Development Center for Livestock Production Technology at the Faculty of Veterinary Science, Chulalongkorn University, Thailand
| |
Collapse
|
7
|
Koyano-Nakagawa N, Garry DJ. Etv2 as an essential regulator of mesodermal lineage development. Cardiovasc Res 2018; 113:1294-1306. [PMID: 28859300 DOI: 10.1093/cvr/cvx133] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 11/14/2022] Open
Abstract
The 'master regulatory factors' that position at the top of the genetic hierarchy of lineage determination have been a focus of intense interest, and have been investigated in various systems. Etv2/Etsrp71/ER71 is such a factor that is both necessary and sufficient for the development of haematopoietic and endothelial lineages. As such, genetic ablation of Etv2 leads to complete loss of blood and vessels, and overexpression can convert non-endothelial cells to the endothelial lineage. Understanding such master regulatory role of a lineage is not only a fundamental quest in developmental biology, but also holds immense possibilities in regenerative medicine. To harness its activity and utility for therapeutic interventions, it is essential to understand the regulatory mechanisms, molecular function, and networks that surround Etv2. In this review, we provide a comprehensive overview of Etv2 biology focused on mouse and human systems.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Kim BJ, Kim YH, Lee YA, Jung SE, Hong YH, Lee EJ, Kim BG, Hwang S, Do JT, Pang MG, Ryu BY. Platelet-derived growth factor receptor-alpha positive cardiac progenitor cells derived from multipotent germline stem cells are capable of cardiomyogenesis in vitro and in vivo. Oncotarget 2018; 8:29643-29656. [PMID: 28410244 PMCID: PMC5444692 DOI: 10.18632/oncotarget.16772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/28/2017] [Indexed: 01/12/2023] Open
Abstract
Cardiac cell therapy has the potential to revolutionize treatment of heart diseases, but its success hinders on the development of a stem cell therapy capable of efficiently producing functionally differentiated cardiomyocytes. A key to unlocking the therapeutic application of stem cells lies in understanding the molecular mechanisms that govern the differentiation process. Here we report that a population of platelet-derived growth factor receptor alpha (PDGFRA) cells derived from mouse multipotent germline stem cells (mGSCs) were capable of undergoing cardiomyogenesis in vitro. Cells derived in vitro from PDGFRA positive mGSCs express significantly higher levels of cardiac marker proteins compared to PDGFRA negative mGSCs. Using Pdgfra shRNAs to investigate the dependence of Pdgfra on cardiomyocyte differentiation, we observed that Pdgfra silencing inhibited cardiac differentiation. In a rat myocardial infarction (MI) model, transplantation of a PDGFRAenriched cell population into the rat heart readily underwent functional differentiation into cardiomyocytes and reduced areas of fibrosis associated with MI injury. Together, these results suggest that mGSCs may provide a unique source of cardiac stem/progenitor cells for future regenerative therapy of damaged heart tissue.
Collapse
Affiliation(s)
- Bang-Jin Kim
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Republic of Korea.,Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yong-Hee Kim
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Yong-An Lee
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Sang-Eun Jung
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Yeong Ho Hong
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Eun-Ju Lee
- Department of Internal medicine, Seoul National University, Seoul, Republic of Korea
| | - Byung-Gak Kim
- Bio Environment Technology Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Jeollabuk-do, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
9
|
Salehnia M, Fayazi M, Ehsani S. Leukemia inhibitory factor increases the proliferation of human endometrial stromal cells and expression of genes related to pluripotency. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.4.209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
10
|
Generation of PDGFRα + Cardioblasts from Pluripotent Stem Cells. Sci Rep 2017; 7:41840. [PMID: 28165490 PMCID: PMC5292955 DOI: 10.1038/srep41840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/28/2016] [Indexed: 12/24/2022] Open
Abstract
Isolating actively proliferating cardioblasts is the first crucial step for cardiac regeneration through cell implantation. However, the origin and identity of putative cardioblasts are still unclear. Here, we uncover a novel class of cardiac lineage cells, PDGFRα+Flk1− cardioblasts (PCBs), from mouse and human pluripotent stem cells induced using CsAYTE, a combination of the small molecules Cyclosporin A, the rho-associated coiled-coil kinase inhibitor Y27632, the antioxidant Trolox, and the ALK5 inhibitor EW7197. This novel population of actively proliferating cells is cardiac lineage–committed but in a morphologically and functionally immature state compared to mature cardiomyocytes. Most important, most of CsAYTE-induced PCBs spontaneously differentiated into functional αMHC+ cardiomyocytes (M+CMs) and could be a potential cellular resource for cardiac regeneration.
Collapse
|
11
|
Zhang Y, Cao N, Huang Y, Spencer CI, Fu JD, Yu C, Liu K, Nie B, Xu T, Li K, Xu S, Bruneau BG, Srivastava D, Ding S. Expandable Cardiovascular Progenitor Cells Reprogrammed from Fibroblasts. Cell Stem Cell 2016; 18:368-81. [PMID: 26942852 DOI: 10.1016/j.stem.2016.02.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 12/11/2015] [Accepted: 02/09/2016] [Indexed: 12/31/2022]
Abstract
Stem cell-based approaches to cardiac regeneration are increasingly viable strategies for treating heart failure. Generating abundant and functional autologous cells for transplantation in such a setting, however, remains a significant challenge. Here, we isolated a cell population with extensive proliferation capacity and restricted cardiovascular differentiation potentials during cardiac transdifferentiation of mouse fibroblasts. These induced expandable cardiovascular progenitor cells (ieCPCs) proliferated extensively for more than 18 passages in chemically defined conditions, with 10(5) starting fibroblasts robustly producing 10(16) ieCPCs. ieCPCs expressed cardiac signature genes and readily differentiated into functional cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs) in vitro, even after long-term expansion. When transplanted into mouse hearts following myocardial infarction, ieCPCs spontaneously differentiated into CMs, ECs, and SMCs and improved cardiac function for up to 12 weeks after transplantation. Thus, ieCPCs are a powerful system to study cardiovascular specification and provide strategies for regenerative medicine in the heart.
Collapse
Affiliation(s)
- Yu Zhang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nan Cao
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - C Ian Spencer
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Ji-Dong Fu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chen Yu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kai Liu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Baoming Nie
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tao Xu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ke Li
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shaohua Xu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sheng Ding
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
12
|
Brickman JM, Serup P. Properties of embryoid bodies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 6. [PMID: 27911036 DOI: 10.1002/wdev.259] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022]
Abstract
Embryoid bodies (EBs) have been popular in vitro differentiation models for pluripotent stem cells for more than five decades. Initially, defined as aggregates formed by embryonal carcinoma cells, EBs gained more prominence after the derivation of karyotypically normal embryonic stem cells from early mouse blastocysts. In many cases, formation of EBs constitutes an important initial step in directed differentiation protocols aimed at generated specific cell types from undifferentiated stem cells. Indeed state-of-the-art protocols for directed differentiation of cardiomyocytes still rely on this initial EB step. Analyses of spontaneous differentiation of embryonic stem cells in EBs have yielded important insights into the molecules that direct primitive endoderm differentiation and many of the lessons we have learned about the signals and transcription factors governing this differentiation event is owed to EB models, which later were extensively validated in studies of early mouse embryos. EBs show a degree of self-organization that mimics some aspects of early embryonic development, but with important exceptions. Recent studies that employ modern signaling reporters and tracers of lineage commitment have revealed both the strengths and the weaknesses of EBs as a model of embryonic axis formation. In this review, we discuss the history, application, and future potential of EBs as an experimental model. WIREs Dev Biol 2017, 6:e259. doi: 10.1002/wdev.259 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Joshua M Brickman
- DanStem, The Danish Stem Cell Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Palle Serup
- DanStem, The Danish Stem Cell Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Oh SY, Kim JY, Park C. The ETS Factor, ETV2: a Master Regulator for Vascular Endothelial Cell Development. Mol Cells 2015; 38:1029-36. [PMID: 26694034 PMCID: PMC4696993 DOI: 10.14348/molcells.2015.0331] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 01/15/2023] Open
Abstract
Appropriate vessel development and its coordinated function is essential for proper embryogenesis and homeostasis in the adult. Defects in vessels cause birth defects and are an important etiology of diseases such as cardiovascular disease, tumor and diabetes retinopathy. The accumulative data indicate that ETV2, an ETS transcription factor, performs a potent and indispensable function in mediating vessel development. This review discusses the recent progress of the study of ETV2 with special focus on its regulatory mechanisms and cell fate determining role in developing mouse embryos as well as somatic cells.
Collapse
Affiliation(s)
- Se-Yeong Oh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
| | - Ju Young Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
- Molecular and Systems Pharmacology Program, Emory University School of Medicine, Atlanta, GA,
USA
| | - Changwon Park
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
- Molecular and Systems Pharmacology Program, Emory University School of Medicine, Atlanta, GA,
USA
- Biochemistry, Cell Biology and Developmental Biology Program, Emory University School of Medicine, Atlanta, GA,
USA
| |
Collapse
|
14
|
Skalova S, Svadlakova T, Shaikh Qureshi WM, Dev K, Mokry J. Induced pluripotent stem cells and their use in cardiac and neural regenerative medicine. Int J Mol Sci 2015; 16:4043-67. [PMID: 25689424 PMCID: PMC4346943 DOI: 10.3390/ijms16024043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 12/20/2022] Open
Abstract
Stem cells are unique pools of cells that are crucial for embryonic development and maintenance of adult tissue homeostasis. The landmark Nobel Prize winning research by Yamanaka and colleagues to induce pluripotency in somatic cells has reshaped the field of stem cell research. The complications related to the usage of pluripotent embryonic stem cells (ESCs) in human medicine, particularly ESC isolation and histoincompatibility were bypassed with induced pluripotent stem cell (iPSC) technology. The human iPSCs can be used for studying embryogenesis, disease modeling, drug testing and regenerative medicine. iPSCs can be diverted to different cell lineages using small molecules and growth factors. In this review we have focused on iPSC differentiation towards cardiac and neuronal lineages. Moreover, we deal with the use of iPSCs in regenerative medicine and modeling diseases like myocardial infarction, Timothy syndrome, dilated cardiomyopathy, Parkinson’s, Alzheimer’s and Huntington’s disease. Despite the promising potential of iPSCs, genome contamination and low efficacy of cell reprogramming remain significant challenges.
Collapse
Affiliation(s)
- Stepanka Skalova
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Tereza Svadlakova
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Wasay Mohiuddin Shaikh Qureshi
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Kapil Dev
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Jaroslav Mokry
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| |
Collapse
|
15
|
Chan SSK, Shi X, Toyama A, Arpke RW, Dandapat A, Iacovino M, Kang J, Le G, Hagen HR, Garry DJ, Kyba M. Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner. Cell Stem Cell 2014; 12:587-601. [PMID: 23642367 DOI: 10.1016/j.stem.2013.03.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 12/12/2012] [Accepted: 03/14/2013] [Indexed: 02/07/2023]
Abstract
Mesp1 is regarded as the master regulator of cardiovascular development, initiating the cardiac transcription factor cascade to direct the generation of cardiac mesoderm. To define the early embryonic cell population that responds to Mesp1, we performed pulse inductions of gene expression over tight temporal windows following embryonic stem cell differentiation. Remarkably, instead of promoting cardiac differentiation in the initial wave of mesoderm, Mesp1 binds to the Tal1 (Scl) +40 kb enhancer and generates Flk-1+ precursors expressing Etv2 (ER71) and Tal1 that undergo hematopoietic differentiation. The second wave of mesoderm responds to Mesp1 by differentiating into PDGFRα+ precursors that undergo cardiac differentiation. Furthermore, in the absence of serum-derived factors, Mesp1 promotes skeletal myogenic differentiation. Lineage tracing revealed that the majority of yolk sac and many adult hematopoietic cells derive from Mesp1+ precursors. Thus, Mesp1 is a context-dependent determination factor, integrating the stage of differentiation and the signaling environment to specify different lineage outcomes.
Collapse
Affiliation(s)
- Sunny Sun-Kin Chan
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The establishment and maintenance of the vascular system is critical for embryonic development and postnatal life. Defects in endothelial cell development and vessel formation and function lead to embryonic lethality and are important in the pathogenesis of vascular diseases. Here, we review the underlying molecular mechanisms of endothelial cell differentiation, plasticity, and the development of the vasculature. This review focuses on the interplay among transcription factors and signaling molecules that specify the differentiation of vascular endothelial cells. We also discuss recent progress on reprogramming of somatic cells toward distinct endothelial cell lineages and its promise in regenerative vascular medicine.
Collapse
Affiliation(s)
- Changwon Park
- Department of Pharmacology, Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
17
|
Turbendian HK, Gordillo M, Tsai SY, Lu J, Kang G, Liu TC, Tang A, Liu S, Fishman GI, Evans T. GATA factors efficiently direct cardiac fate from embryonic stem cells. Development 2013; 140:1639-44. [PMID: 23487308 DOI: 10.1242/dev.093260] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The GATA4 transcription factor is implicated in promoting cardiogenesis in combination with other factors, including TBX5, MEF2C and BAF60C. However, when expressed in embryonic stem cells (ESCs), GATA4 was shown to promote endoderm, not cardiac mesoderm. The capacity of related GATA factors to promote cardiogenesis is untested. We found that expression of the highly related gene, Gata5, very efficiently promotes cardiomyocyte fate from murine ESCs. Gata5 directs development of beating sheets of cells that express cardiac troponin T and show a full range of action potential morphologies that are responsive to pharmacological stimulation. We discovered that by removing serum from the culture conditions, GATA4 and GATA6 are each also able to efficiently promote cardiogenesis in ESC derivatives, with some distinctions. Thus, GATA factors can function in ESC derivatives upstream of other cardiac transcription factors to direct the efficient generation of cardiomyocytes.
Collapse
Affiliation(s)
- Harma K Turbendian
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Heart attack remains the leading cause of death in both men and women worldwide. Stem cell-based therapies, including the use of engineered cardiac tissues, have the potential to treat the massive cell loss and pathological remodeling resulting from heart attack. Specifically, embryonic and induced pluripotent stem cells are a promising source for generation of therapeutically relevant numbers of functional cardiomyocytes and engineering of cardiac tissues in vitro. This review will describe methodologies for successful differentiation of pluripotent stem cells towards the cardiovascular cell lineages as they pertain to the field of cardiac tissue engineering. The emphasis will be placed on comparing the functional maturation in engineered cardiac tissues and developing heart and on methods to quantify cardiac electrical and mechanical function at different spatial scales.
Collapse
Affiliation(s)
- Brian Liau
- Department of Biomedical Engineering, Faculty of Cardiology, Duke University, Room 136 Hudson Hall, Durham, NC 27708, USA
| | | | | |
Collapse
|
19
|
In vivo differentiation potential of buffalo (Bubalus bubalis) embryonic stem cell. In Vitro Cell Dev Biol Anim 2012; 48:349-58. [PMID: 22678753 DOI: 10.1007/s11626-012-9515-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/17/2012] [Indexed: 01/12/2023]
Abstract
Embryonic stem cells (ESCs) derived from inner cell mass (ICM) of mammalian blastocyst are having indefinite proliferation and differentiation capability for any type of cell lineages. In the present study, ICMs of in vitro-derived buffalo blastocysts were cultured into two different culture systems using buffalo fetal fibroblast as somatic cell support and Matrigel as synthetic support to obtain pluripotent buffalo embryonic stem cell (buESC) colonies. Pluripotency of the ESCs were characterised through pluripotency markers whereas, their differentiation capability was assessed by teratoma assay using immuno-compromised mice. Cumulus ooccyte complexes from slaughter house-derived ovaries were subjected to in vitro maturation, in vitro fertilization and in vitro culture to generate blastocysts. Total 262 blastocysts were derived through IVEP with 11.83 % (31/262) hatching rate. To generate buESCs, 15 ICMs from hatched blastocysts were cultured on mitomycin-C-treated homologous fetal fibroblast feeder layer, whereas the leftover 16 ICMs were cultured on extra-cellular matrix (Matrigel). No significant differences were observed for primary ESCs colony formation between two culture systems. Primary colonies as well as passaged ESCs were characterised by alkaline phosphatase staining, karyotyping and expression of transcription-based stem cell markers, OCT-4 and cell surface antigens SSEA-4 and TRA-1-60. Batch of ESCs found positive for pluripotency markers and showing normal karyotype after fifteenth passage were inoculated into eight immuno-compromised mice through subcutaneous and intramuscular route. Subcutaneous route of inoculation was found to be better than intramuscular route. Developed teratomas were excised surgically and subjected to histological analysis. Histological findings revealed presence of all the three germinal layer derivatives in teratoma sections. Presence of germinal layer derivatives were further confirmed by reverse transcriptase-polymerase chain reaction for the presence of differentiation markers like nerve cell adhesion molecule, fetal liver kinase-1 and alpha-feto protein for ectoderm, mesoderm and endoderm, respectively.
Collapse
|
20
|
Purpura KA, Bratt-Leal AM, Hammersmith KA, McDevitt TC, Zandstra PW. Systematic engineering of 3D pluripotent stem cell niches to guide blood development. Biomaterials 2012; 33:1271-80. [PMID: 22079776 PMCID: PMC4280365 DOI: 10.1016/j.biomaterials.2011.10.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/16/2011] [Indexed: 01/23/2023]
Abstract
Pluripotent stem cells (PSC) provide insight into development and may underpin new cell therapies, yet controlling PSC differentiation to generate functional cells remains a significant challenge. In this study we explored the concept that mimicking the local in vivo microenvironment during mesoderm specification could promote the emergence of hematopoietic progenitor cells from embryonic stem cells (ESCs). First, we assessed the expression of early phenotypic markers of mesoderm differentiation (E-cadherin, brachyury (T-GFP), PDGFRα, and Flk1: +/-ETPF) to reveal that E-T+P+F+ cells have the highest capacity for hematopoiesis. Second, we determined how initial aggregate size influences the emergence of mesodermal phenotypes (E-T+P+F+, E-T-P+/-F+, and E-T-P+F-) and discovered that colony forming cell (CFC) output was maximal with ~100 cells per PSC aggregate. Finally, we introduced these 100-cell PSC aggregates into a low oxygen environment (5%; to upregulate endogenous VEGF secretion) and delivered two potent blood-inductive molecules, BMP4 and TPO (bone morphogenetic protein-4 and thrombopoietin), locally from microparticles to obtain a more robust differentiation response than soluble delivery methods alone. Approximately 1.7-fold more CFCs were generated with localized delivery in comparison to exogenous delivery, while combined growth factor use was reduced ~14.2-fold. By systematically engineering the complex and dynamic environmental signals associated with the in vivo blood developmental niche we demonstrate a significant role for inductive endogenous signaling and introduce a tunable platform for enhancing PSC differentiation efficiency to specific lineages.
Collapse
Affiliation(s)
- Kelly A. Purpura
- The Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Andrés M. Bratt-Leal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Katy A. Hammersmith
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Todd C. McDevitt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter W. Zandstra
- The Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, Canada
- Heart and Stroke Richard Lewar Centre of Excellence, Toronto, ON, Canada
| |
Collapse
|
21
|
Ishida M, El-Mounayri O, Kattman S, Zandstra P, Sakamoto H, Ogawa M, Keller G, Husain M. Regulated expression and role of c-Myb in the cardiovascular-directed differentiation of mouse embryonic stem cells. Circ Res 2011; 110:253-64. [PMID: 22116818 DOI: 10.1161/circresaha.111.259499] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RATIONALE c-myb null (knockout) embryonic stem cells (ESC) can differentiate into cardiomyocytes but not contractile smooth muscle cells (SMC) in embryoid bodies (EB). OBJECTIVE To define the role of c-Myb in SMC differentiation from ESC. METHODS AND RESULTS In wild-type (WT) EB, high c-Myb levels on days 0-2 of differentiation undergo ubiquitin-mediated proteosomal degradation on days 2.5-3, resurging on days 4-6, without changing c-myb mRNA levels. Activin-A and bone morphogenetic protein 4-induced cardiovascular progenitors were isolated by FACS for expression of vascular endothelial growth factor receptor (VEGFR)2 and platelet-derived growth factor receptor (PDGFR)α. By day 3.75, hematopoesis-capable VEGFR2+ cells were fewer, whereas cardiomyocyte-directed VEGFR2+/PDGFRα+ cells did not differ in abundance in knockout versus WT EB. Importantly, highest and lowest levels of c-Myb were observed in VEGFR2+ and VEGFR2+/PDGFRα+ cells, respectively. Proteosome inhibitor MG132 and lentiviruses enabling inducible expression or knockdown of c-myb were used to regulate c-Myb in WT and knockout EB. These experiments showed that c-Myb promotes expression of VEGFR2 over PDGFRα, with chromatin immunopreciptation and promoter-reporter assays defining specific c-Myb-responsive binding sites in the VEGFR2 promoter. Next, FACS-sorted VEGFR2+ cells expressed highest and lowest levels of SMC- and fibroblast-specific markers, respectively, at days 7-14 after retinoic acid (RA) as compared with VEGFR2+/PDGFRα+ cells. By contrast, VEGFR2+/PDGFRα+ cells cultured without RA beat spontaneously, like cardiomyocytes between days 7 and 14, and expressed cardiac troponin. Notably, RA was required to more fully differentiate SMC from VEGFR2+ cells and completely blocked differentiation of cardiomyocytes from VEGFR2+/PDGFRα+ cells. CONCLUSIONS c-Myb is tightly regulated by proteosomal degradation during cardiovascular-directed differentiation of ESC, expanding early-stage VEGFR2+ progenitors capable of RA-responsive SMC formation.
Collapse
Affiliation(s)
- Masayoshi Ishida
- Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada, M5G 1L7
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Etv2 (Ets Variant 2) has been shown to be an indispensable gene for the development of hematopoietic cells (HPCs)/endothelial cells (ECs). However, how Etv2 specifies the mesoderm-generating HPCs/ECs remains incompletely understood. In embryonic stem cell (ESC) differentiation culture and Etv2-null embryos, we show that Etv2 is dispensable for generating primitive Flk-1(+)/PDGFRα(+) mesoderm but is required for the progression of Flk-1(+)/PDGFRα(+) cells into vascular/hematopoietic mesoderm. Etv2-null ESCs and embryonic cells were arrested as Flk-1(+)/PDGFRα(+) and failed to generate Flk-1(+)/PDGFRα(-) mesoderm. Flk-1(+)/Etv2(+) early embryonic cells showed significantly higher hemato-endothelial potential than the Flk-1(+)/Etv2(-) population, suggesting that Etv2 specifies a hemato-endothelial subset of Flk-1(+) mesoderm. Critical hemato-endothelial genes were severely down-regulated in Etv2-null Flk-1(+) cells. Among those genes Scl, Fli1, and GATA2 were expressed simultaneously with Etv2 in early embryos and seemed to be critical targets. Etv2 reexpression in Etv2-null cells restored the development of CD41(+), CD45(+), and VE-cadherin(+) cells. Expression of Scl or Fli1 alone could also restore HPCs/ECs in the Etv2-null background, indicating that these 2 genes are critical downstream targets. Furthermore, VEGF induced Etv2 potently and rapidly in Flk-1(+) mesoderm. We propose that Flk-1(+)/PDGFRα(+) primitive mesoderm is committed into Flk-1(+)/PDGFRα(-) vascular mesoderm through Etv2 and that up-regulation of Etv2 by VEGF promotes this commitment.
Collapse
|
23
|
Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 2011; 8:228-40. [PMID: 21295278 DOI: 10.1016/j.stem.2010.12.008] [Citation(s) in RCA: 846] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 10/07/2010] [Accepted: 12/10/2010] [Indexed: 02/06/2023]
Abstract
Efficient differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to a variety of lineages requires step-wise approaches replicating the key commitment stages found during embryonic development. Here we show that expression of PdgfR-α segregates mouse ESC-derived Flk-1 mesoderm into Flk-1(+)PdgfR-α(+) cardiac and Flk-1(+)PdgfR-α(-) hematopoietic subpopulations. By monitoring Flk-1 and PdgfR-α expression, we found that specification of cardiac mesoderm and cardiomyocytes is determined by remarkably small changes in levels of Activin/Nodal and BMP signaling. Translation to human ESCs and iPSCs revealed that the emergence of cardiac mesoderm could also be monitored by coexpression of KDR and PDGFR-α and that this process was similarly dependent on optimal levels of Activin/Nodal and BMP signaling. Importantly, we found that individual mouse and human pluripotent stem cell lines require optimization of these signaling pathways for efficient cardiac differentiation, illustrating a principle that may well apply in other contexts.
Collapse
Affiliation(s)
- Steven J Kattman
- McEwen Center for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Nishishita N, Ijiri H, Takenaka C, Kobayashi K, Goto K, Kotani E, Itoh T, Mori H, Kawamata S. The use of leukemia inhibitory factor immobilized on virus-derived polyhedra to support the proliferation of mouse embryonic and induced pluripotent stem cells. Biomaterials 2011; 32:3555-63. [PMID: 21315447 DOI: 10.1016/j.biomaterials.2010.12.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 12/29/2010] [Indexed: 11/16/2022]
Abstract
Human leukemia inhibitory factor (LIF) was immobilized into insect virus-derived microcrystals (polyhedra) to generate LIF polyhedra (LIF-PH) that can slowly release LIF into embryonic stem (ES) cell culture media and thus maintain ES cells in an undifferentiated state. Assays of the biological activities of LIF-PH indicated that a single addition of LIF-PH to the ES cell culture medium can support the proliferation of mouse ES and induced pluripotent stem (iPS) cells continuously for 14 days, and suggest that LIF-PH can be successfully used in the place of a periodic addition of recombinant LIF to the media every 2-3 days. The release of LIF protein from LIF-PH was determined by enzyme-linked immunosorbent assay (ELISA). Maintenance of undifferentiated state of mouse ES and iPS cells cultured with LIF-PH was determined by the detection of pluripotency-related biomarkers Oct3/4 and stage-specific embryonic antigen-1 (SSEA-1) through immunostaining and measurement of alkaline phosphatase activity. In this paper, we propose a closed culture system for mass production of ES and iPS cells that utilize a slow-releasing agent of LIF.
Collapse
Affiliation(s)
- Naoki Nishishita
- Foundation for Biomedical Research and Innovation TRI308, 1-5-4 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0043, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stem Cells and Their Derivatives: A Renaissance in Cardiovascular Translational Research. J Cardiovasc Transl Res 2010; 4:66-72. [DOI: 10.1007/s12265-010-9235-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 10/26/2010] [Indexed: 12/29/2022]
|
26
|
Clement CA, Larsen LA, Christensen ST. Using nucleofection of siRNA constructs for knockdown of primary cilia in P19.CL6 cancer stem cell differentiation into cardiomyocytes. Methods Cell Biol 2009; 94:181-97. [PMID: 20362091 DOI: 10.1016/s0091-679x(08)94009-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Primary cilia assemble as solitary organelles in most mammalian cells during growth arrest and are thought to coordinate a series of signal transduction pathways required for cell cycle control, cell migration, and cell differentiation during development and in tissue homeostasis. Recently, primary cilia were suggested to control pluripotency, proliferation, and/or differentiation of stem cells, which may comprise an important source in regenerative biology. We here provide a method using a P19.CL6 embryonic carcinoma (EC) stem cell line to study the function of the primary cilium in early cardiogenesis. By knocking down the formation of the primary cilium by nucleofection of plasmid DNA with siRNA sequences against genes essential in ciliogenesis (IFT88 and IFT20) we block hedgehog (Hh) signaling in P19.CL6 cells as well as the differentiation of the cells into beating cardiomyocytes (Clement et al., 2009). Immunofluorescence microscopy, western blotting, and quantitative PCR analysis were employed to delineate the molecular and cellular events in cilia-dependent cardiogenesis. We optimized the nucleofection procedure to generate strong reduction in the frequency of ciliated cells in the P19.CL6 culture.
Collapse
Affiliation(s)
- Christian A Clement
- Department of Biology, Section of Cell and Developmental Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | | | | |
Collapse
|
27
|
Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proc Natl Acad Sci U S A 2009; 107:3329-34. [PMID: 19846783 DOI: 10.1073/pnas.0905729106] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myocardial infarction resulting in irreversible loss of cardiomyocytes (CMs) remains a leading cause of heart failure. Although cell transplantation has modestly improved cardiac function, major challenges including increasing cell survival, engraftment, and functional integration with host tissue, remain. Embryonic stem cells (ESCs), which can be differentiated into cardiac progenitors (CPs) and CMs, represent a candidate cell source for cardiac cell therapy. However, it is not known what specific cell type or condition is the most appropriate for transplantation. This problem is exasperated by the lack of efficient and predictive strategies to screen the large numbers of parameters that may impact cell transplantation. We used a cardiac tissue model, engineered heart tissue (EHT), and quantitative molecular and electrophysiological analyses, to test transplantation conditions and specific cell populations for their potential to functionally integrate with the host tissue. In this study, we validated our analytical platform using contractile mouse neonatal CMs (nCMs) and noncontractile cardiac fibroblasts (cFBs), and screened for the integration potential of ESC-derived CMs and CPs (ESC-CMs and -CPs). Consistent with previous in vivo studies, cFB injection interfered with electrical signal propagation, whereas injected nCMs improved tissue function. Purified bioreactor-generated ESC-CMs exhibited a diminished capacity for electrophysiological integration; a result correlated with lower (compared with nCMs) connexin 43 expression. ESC-CPs, however, appeared able to appropriately mature and integrate into EHT, enhancing the amplitude of tissue contraction. Our results support the use of EHT as a model system to accelerate development of cardiac cell therapy strategies.
Collapse
|
28
|
Clement CA, Kristensen SG, Møllgård K, Pazour GJ, Yoder BK, Larsen LA, Christensen ST. The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation. J Cell Sci 2009; 122:3070-82. [PMID: 19654211 DOI: 10.1242/jcs.049676] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Defects in the assembly or function of primary cilia, which are sensory organelles, are tightly coupled to developmental defects and diseases in mammals. Here, we investigated the function of the primary cilium in regulating hedgehog signaling and early cardiogenesis. We report that the pluripotent P19.CL6 mouse stem cell line, which can differentiate into beating cardiomyocytes, forms primary cilia that contain essential components of the hedgehog pathway, including Smoothened, Patched-1 and Gli2. Knockdown of the primary cilium by Ift88 and Ift20 siRNA or treatment with cyclopamine, an inhibitor of Smoothened, blocks hedgehog signaling in P19.CL6 cells, as well as differentiation of the cells into beating cardiomyocytes. E11.5 embryos of the Ift88(tm1Rpw) (Ift88-null) mice, which form no cilia, have ventricular dilation, decreased myocardial trabeculation and abnormal outflow tract development. These data support the conclusion that cardiac primary cilia are crucial in early heart development, where they partly coordinate hedgehog signaling.
Collapse
|